
Research Articles

Science  16 October 2025 284

PLANT ECOLOGY

Drought intensity and duration interact to  
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As droughts become longer and more intense, impacts on terrestrial primary productivity are expected to increase progressively. Yet, some 

ecosystems appear to acclimate to multiyear drought, with constant or diminishing reductions in productivity as drought duration increases. 

We quantified the combined effects of drought duration and intensity on aboveground productivity in 74 grasslands and shrublands 

distributed globally. Ecosystem acclimation with multiyear drought was observed overall, except when droughts were extreme (i.e., ≤1-in-100-

year likelihood of occurrence). Productivity losses after four consecutive years of extreme drought increased by ~2.5-fold compared with 

those of the first year. These results portend a foundational shift in ecosystem behavior if drought duration and intensity increase, from 

maintenance of reduced functioning over time to progressive and profound losses of productivity when droughts are extreme.

Drought, defined meteorologically as “a prolonged absence or marked 

deficiency of precipitation” (1), is a frequent and impactful disturbance 

in many terrestrial ecosystems globally. Although most droughts are 

short term and moderate in intensity (2), the most damaging and 

costly droughts from the perspective of ecological, societal, and 

economic impacts are both prolonged, unfolding over multiple 

years, and extreme with respect to long-term variation in climate 

conditions [e.g., (3,4)]. Although such drought events have historically 

occurred infrequently and, in some places, are absent from the recent 

historical record (2, 5), there is evidence that longer-duration, intensi-

fied droughts are becoming more common (6, 7) and will further in-

crease in magnitude and frequency with global climate change (5, 8, 9). 

Yet, the impacts of multiyear, extreme droughts remain understudied, 

and past research is equivocal for how long-term droughts impact 

terrestrial ecosystems (2).

Theory predicts that as drought duration increases, the impacts of 

drought on ecosystem functioning (e.g., primary production) should 

accumulate or be magnified over time, resulting in more substantial 

losses in functioning, even for ecosystems that appear resistant to 

short-term drought (2, 10). Several past studies report this expected 

cumulative pattern of response: a progressively more negative effect 

of drought on ecosystem functioning as duration increases (11, 12). 

However, others find little evidence that increasing drought duration 

reduces functioning beyond that of a single-year drought [e.g., (13–15)]. 

Indeed, some research suggests that ecosystem function can “acclimate” 

or stabilize in response to multiyear drought [i.e., ecosystem acclimation; 

(16)], characterized by the impacts of drought remaining relatively 

constant or even diminishing over time (11, 16–19). These variable 

responses to drought duration may result from differences in the mag-

nitude (or intensity) of drought imposed. Indeed, drought duration 

and intensity are expected to interact in important ways (2, 10). Droughts 

that are both prolonged and extreme are more likely to result in large 

impacts on ecosystem functioning (10, 20, 21). By contrast, short-term 

drought or prolonged moderate drought may result in lesser impacts 

on ecosystem functioning than extreme drought (10, 13, 15). Thus, 

to fully understand patterns of ecosystem response to drought duration, 

we need to also assess its interaction with drought intensity.

Our goals for this study were to 1) determine if prolonged drought 

results in a pattern of ecosystem response consistent with ecosystem 

acclimation (constant or lessening over time ) vs. progressive 

losses (continuous decline over time), 2) quantify losses of ecosystem 

function attributable to each pattern, and 3) assess whether these 
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patterns of loss change with the magnitude of drought imposed. We 

achieved these goals with results from the International Drought 

Experiment (IDE), a multiyear global-scale study of drought effects on 

aboveground net primary productivity (hereafter referred to as “pro-

ductivity”), a key measure of ecosystem functioning and a major com-

ponent of the terrestrial carbon cycle (22).

The International Drought Experiment
The International Drought Experiment (IDE) is a coordinated drought 

experiment established in grassland and shrubland ecosystems across 

the globe [Fig. 1A and table S1; (23)]. These ecosystems cover ~40% of 

Earth’s land surface, provide crucial ecosystem services [e.g., food, forage, 

fiber (24, 25)], and their productivity is among the most responsive to 
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precipitation variability [e.g., (26)]. IDE sites were 

established on six continents and span broad pre-

cipitation, temperature, and environmental gradi-

ents [Fig. 1A and table S1; (27, 28)]. All IDE sites 

utilize a common experimental approach: passive 

rainfall manipulation shelters (29) that simulated 

year-round drought [365 days; (27)] for up to 4 years. 

This allows for drought-duration impacts to be 

assessed in a cost-effective manner while still repre-

senting key characteristics of natural drought events 

[i.e., smaller and fewer rainfall events accompanied 

by longer periods between rainfall events; (29)]. At 

the time of this analysis, there were 74 grassland and 

shrubland IDE sites that had imposed 3 (n = 21) or 

4 (n = 53) years of drought (Fig. 1B).

In addition to drought duration, IDE was de-

signed to capture another way in which drought 

events are changing: increased intensity (or magni-

tude). To accomplish this, we selected a statistically 

extreme target level of drought intensity tailored for 

each IDE site: a 1-in-100–year drought based on 

long-term annual precipitation amounts available 

from site-level historical records (Fig. 1B) (23). By 

choosing this target level, our intent was to impose 

a scenario of extreme drought that is currently pre-

dicted to become more common with climate 

change in the near future, yet not so extreme as to 

be unrealistic [e.g., a 1-in-100–year drought will be-

come more common well before a 1-in-1000–year 

drought does; (30)]. Thus, the goal with IDE was to 

apply drought treatments that (i) were historically 

and statistically rare for most if not all sites in-

cluded in our study but also (ii) are forecast to be-

come more common with climate change (31).

The IDE passive rainfall manipulation shelters 

rely on ambient precipitation to achieve drought 

(29). However, because ambient precipitation var-

ied each year of the study, the target 1-in-100–year 

drought treatment was realized only when ambient 

rainfall was less than or equal to mean annual pre-

cipitation (MAP) for a site (23). When this criterion 

was met, we categorized the drought treatment as 

“extreme” [following (27)]. By contrast, when ambi-

ent annual rainfall was greater than MAP for a site, 

the target 1-in-100–year drought was not met, but 

drought was still imposed. For this scenario, we 

categorized the drought treatment as “moderate.” 

The extreme and moderate categories of drought 

intensity align with those used in well-recognized 

drought classification systems, such as the US 

Drought Monitor (23). We also quantified the IDE 

drought treatments as a continuous variable using 

a common and comparable drought severity metric 

(32), calculated as the relative reduction in rainfall 

in the drought treatment from MAP (23). Average 

drought severity was substantially greater (~60%) 

for the extreme versus moderate drought intensity 

categories (fig. S1). An additional feature of the IDE 

design is that, in any given year, approximately half 

of the sites experienced extreme, 1-in-100–year 

drought, and after multiple years, sites experienced 

different combinations of moderate and extreme 

drought years (Fig. 1B). This allowed us to contrast 

distinct sequences of moderate and extreme drought 

impacts over multiple years.

Fig. 1. Overview of the IDE: geographic locations, drought treatments, and effects on aboveground 

productivity. (A) Locations of the 74 IDE sites included in this study and their distribution across six 

continents (site names are given in table S1). Background shading denotes Moderated Resolution Imaging 

Spectroradiometer–derived landcover types (50), and the colors of the points denote the vegetation type of 

each site: annual, herbaceous perennial, or woody perennial (23). (B) (Left) IDE sites ordered by the average 

productivity response to drought over the 3- to 4-year duration of the experiment. Error bars represent the 

standard error for each site. (Middle) The average drought severity [defined as (MAP – precipitation received 

by drought treatment plots)/MAP; (23)] experienced over the duration of the experiment (blue bars). The 

expected average drought severity for the target 1-in-100–year drought treatment is indicated by the vertical 

black line. Overall, 53% of sites experienced an average precipitation reduction equivalent to the level 

expected with the target 1-in-100–year extreme drought treatment over the duration of the experiment. 

(Right) The temporal sequence of extreme (orange) versus moderate (gray) drought years imposed at each 

site. Note that 21 sites imposed only 3 years of drought treatment, and, therefore, the designation for the 

fourth year of treatment is left empty (white). (C) Average productivity response to drought (moderate and 

extreme combined) over time for three vegetation types. Productivity response was calculated as the  

natural log of the ratio of productivity during drought to long-term mean productivity (23). For example, a 

productivity response of –1 equates to a change in productivity due to drought of about 63% of the long-term 

mean. Error bars represent standard error, and letters denote statistical differences among groups based  

on a linear mixed effect model and post hoc comparison (table S3).
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Variability in drought response over time
Previously, we showed that average productivity reductions were ~60% 

greater when a single-year drought was extreme versus not extreme; 

however, variability among IDE sites in their response to short-term 

drought was notably high, ranging from complete resistance (i.e., no 

reduction in productivity) to large declines in productivity (27). Much 

of this variability in response was related to variation in drought severity, 

with productivity decreasing, as expected, with increasing drought 

severity (27). As drought duration was increased from 1 to 4 years in 

this study, we expected that variation in productivity responses among 

sites would decrease. However, average productivity responses to mul-

tiple (3 to 4) years of drought remained notably variable, ranging from 

little response to as much as a 97% decline in productivity (Fig. 1B).

We examined a broad set of biotic and abiotic variables previously 

hypothesized to explain variation in drought response (23), including 

differences in plant species richness, abundance of key growth forms 

(i.e., graminoids), soil texture, MAP, mean annual temperature, mean 

aridity index (AI), interannual precipitation variability, precipitation 

seasonality, and previous and current year drought severity (figs. S2 

to S5 and table S2 ). We found that, as drought extended over multiple 

years, previous years’ drought severity (years 2 and 3), MAP (years 2 

to 4), mean AI (year 3), interannual variation (year 4) and seasonality 

in precipitation (year 3), and plant species richness (years 1 and 4) 

were major predictors of variation in drought response (figs. S2 to S5). 

Thus, as found in other studies (27, 33), drier and less biodiverse sites, 

as well as those with more variable or more seasonal precipitation, 

experienced greater losses in productivity with drought. However, drought 

severity was the best and most consistent predictor of variation 

in drought response, as observed with single-year droughts (27).

Pattern of productivity loss with multiyear drought
Despite variation in drought response among sites, we expected that a 

pattern of progressive (or cumulative) losses of productivity would 

emerge at most sites as drought continued over multiple years. After a 

significant decline in productivity in the first year of drought (29%), when 

averaged across all sites and drought intensity categories, productivity 

did not continue to decrease over time (Fig. 1C and table S3). Instead, 

ecosystem acclimation was generally observed. Notably, annual grass-

lands responded distinctly from perennial grasslands and shrublands, 

exhibiting a much larger initial response, but with the response lessening 

over time (table S3). Previous studies in annual-dominated systems have 

also found similar responses as well as strong drought resistance (34, 35). 

Unfortunately, given the small number of annual-dominated IDE sites 

(n = 8) and their limited geographic coverage (seven were in the south-

western United States, and six experienced above-average precipitation 

in year 4), it is difficult to draw substantive conclusions about the nature 

of drought-duration effects based on these annual ecosystems. As such, 

we focused all subsequent analyses on the more widely represented 

perennial-dominated grassland and shrubland sites.

Interaction of drought duration and severity
The above analysis of drought duration effects does not consider inten-

sity (extreme versus moderate) of the drought imposed. However, we 

expected that losses in productivity under extreme drought would be 

magnified over time and most pronounced when drought intensity was 

consistently extreme over multiple years. We tested this prediction in 

four ways. First, we examined relationships between productivity re-

sponses and drought severity for each year of the drought using multi-

model comparisons that also included the previous year’s drought 

severity to account for potential carry-over effects of the 

severity of drought from one year to the next (23). 

Consistent with simple linear regression analyses 

(figs. S2 to S5 and table S2), the current year’s drought 

severity was the best predictor of variation in productivity 

response, regardless of ecosystem type or the previous 

year’s drought severity (Fig. 2 and table S4). However, 

this analysis does not consider whether drought intensity 

was extreme or not. Therefore, we tested whether the 

slope of the relationship between productivity responses 

and drought severity would change depending on 

whether drought intensity was extreme versus moderate. 

This analysis allowed us to consider the magnitude of the 

drought treatment as both a continuous (i.e., severity) 

and categorical variable when describing the productivity 

response to drought over time. We found that, by year 3, 

the relationship between drought severity and productiv-

ity responses differed significantly between moderate 

versus extreme droughts, with the difference in these 

relationships most pronounced in year 4 (Fig. 2 and ta-

ble S5). In other words, the slope of the relationship be-

tween drought severity and productivity loss became 

more negative over time when the intensity of the 

drought treatment was extreme, whereas the slope of the 

relationship for moderate intensity droughts did not 

change significantly over time. Third, we assessed the 

impact of extreme versus moderate drought intensity in 

any given year during the 4-year period of precipitation 

reductions, regardless of the previous year’s drought se-

verity. We found that average productivity losses signifi-

cantly increased over time when drought was extreme, 

whereas the effects of moderate intensity droughts on 

productivity were independent of the year in which they 

occurred (Fig. 3A and table S6). Lastly, we quantified 

productivity responses of sites that had experienced only 

extreme drought for 1 to 4 years. For the subset of sites 

Fig. 2. Relationships between ecosystem productivity response to drought and drought severity 

across all sites (black line) and moderate (gray dots) versus extreme (orange dots) drought 

intensities for each of the 4 years of the experiment. Productivity response was calculated as the 

natural log of the ratio of productivity during drought to long-term mean productivity (23). Drought 

severity was calculated as: (MAP – precipitation received by drought treatment plots)/MAP (23). The 

regression across all sites was significant for all years (table S4). P values for moderate and extreme 

regressions are shown in the bottom left corner of each panel (table S5): M, moderate regression; E, 

extreme regression; MxE, the interaction between moderate and extreme regressions (i.e. whether the 

slopes differ from each other).
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with such consecutive extreme drought years, the strongest duration 

effects were revealed (Fig. 3B and table S7), with a ~2.5-fold greater loss 

of productivity as duration increased from 1 to 4 years (a 29 versus 77% 

reduction, respectively). Collectively, these results support predictions 

that droughts of extreme intensity cause greater impacts on ecosystem 

functioning than moderate droughts of similar duration (10). However, 

most notably, we show that increasing drought duration concurrent with 

consistently extreme drought results in progressive losses in ecosystem 

functioning that are more profound than previously reported (11, 12).

Conclusions
Our results help to reconcile contrasting patterns of drought duration 

responses reported previously. IDE results show that, after an initial loss 

of function in year one, ecosystems subjected to multiple years of moder-

ate (or less severe) drought are likely to maintain this level of limited 

functioning (i.e., exhibit ecosystem acclimation). By contrast, an increase 

in severity to historically extreme levels will result in a pattern of cumu-

lative loss of function over time. There are several mechanisms that may 

result in patterns of ecosystem acclimation versus cumulative effects of 

drought (10, 20, 21), including demographic and community shifts result-

ing from mortality or establishment failure (leading to loss in function) 

as well as plastic or adaptive responses to drought over time (leading to 

mitigation of loss over time). Although the IDE was not designed to rigor-

ously test such mechanisms, available data from 49 sites on species gains 

and losses as well as changes in species richness suggest that demographic 

and community shifts likely occurred (fig. S6A and tables S8 and S9), and 

over time, greater species losses were significantly related to increased losses 

in productivity with drought (fig. S6B and table S10). Although additional 

research will be required to test mechanisms that may determine acclima-

tion versus cumulative responses to drought, such mechanistic under-

standing is crucial in a future where extreme droughts become the norm.

The lack of duration effect with moderate drought intensity is not 

entirely surprising, given that many grassland and shrubland ecosys-

tems occur in a broad range of semiarid to arid climates, as did a majority 

of IDE sites (table S2). The ability of these water-limited systems to 

rapidly respond to short-term fluctuations in precipitation (22, 36, 37) 

but also maintain functioning for more extended dry periods is consis-

tent with the long-term stability of these ecosystems (38). Indeed, it is 

also worth highlighting that a subset of sites was resistant to multiple 

years of drought, regardless of severity. It may be that these ecosystems 

are less water limited (table S2) and therefore less impacted by drought, as 

has been observed for mesic grasslands [e.g., (14,16)]. However, it should 

also be noted that drought experiments may underestimate drought ef-

fects (39), and although passive rainout shelters alter precipitation inputs 

and soil moisture in ways that accurately simulate changes in rainfall 

during natural droughts (28), they do not reproduce ancillary drought 

attributes, such as higher temperatures and vapor pressure deficits that 

typically accompany drought events (40–42). Although direct tempera-

ture effects are not particularly strong in grasslands (43, 44), an in-

crease in vapor pressure deficits during drought has the potential to 

reduce photosynthesis and productivity (45, 46), and the lack of a tem-

perature manipulation in this study could partially explain why some 

IDE sites were unresponsive to drought over time.

The discovery that the resistance to drought duration of grasslands and 

shrublands rapidly eroded with prolonged drought of extreme intensity 

portends an uncertain future for these ecosystems, threatening their long-

term stability and the ecosystem goods and services they 

provide. Particularly alarming were the 160%-greater (or 

2.5-fold–greater) reductions in productivity observed when 

extreme drought years occur consecutively. Extreme, con-

secutive drought years, including megadroughts (8), are ex

pected to increase in the future with climate change (8, 31). 

Although concerns about ecosystem stability in the face of 

ongoing increases in both drought magnitude and duration 

have been voiced for decades (47, 48), our results provide 

experimental evidence in support of recent observations (5) 

that the functioning of these globally important ecosystems 

are at risk from longer and more intense droughts.
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