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Abstract. We prove a ‘Whitney’ presentation, and a ‘Coulomb branch’ pre-

sentation, for the torus equivariant quantum K theory of the Grassmann man-
ifold Gr(k;n), inspired from physics, and stated in an earlier paper. The

first presentation is obtained by quantum deforming the product of the Hirze-

bruch λy classes of the tautological bundles. In physics, the λy classes arise
as certain Wilson line operators. The second presentation is obtained from

the Coulomb branch equations involving the partial derivatives of a twisted

superpotential from supersymmetric gauge theory. This is closest to a pre-
sentation obtained by Gorbounov and Korff, utilizing integrable systems tech-

niques. Algebraically, we relate the Coulomb and Whitney presentations uti-

lizing transition matrices from the (equivariant) Grothendieck polynomials to
the (equivariant) complete homogeneous symmetric polynomials. Along the

way, we calculate K-theoretic Gromov-Witten invariants of wedge powers of
the tautological bundles on Gr(k;n), using the ‘quantum=classical’ statement.
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1. Introduction

Based on predictions inspired by physics, in [GMSZ22] we conjectured presen-
tations by generators and relations for the quantum K theory ring of the Grass-
mannian and for the Lagrangian Grassmannian. The main goal in this paper is
to provide rigorous mathematical proofs of these statements in the Grassmannian
case, in the more general equivariant context.

Let Gr(k;n) denote the Grassmann manifold parametrizing linear subspaces of
dimension k in CCn, and let 0 → S → Cn → Q → 0 be the tautological se-
quence, where rk(S) = k. An influential result by Witten [Wit95] states that
(QH∗(Gr(k;n)), ⋆), the quantum cohomology ring of the Grassmannian, is deter-
mined by the ‘quantum Whitney relations’:

(1) c(S) ⋆ c(Q) = c(Cn) + (−1)kq,

where c(E) = 1+c1(E)+ . . .+ce(E) is the total Chern class of the rank e bundle E.
This equation leads to a presentation of QH∗(Gr(k;n)) by generators and relations:

(2) QH∗(Gr(k;n)) =
Z[q][e1(x), . . . , ek(x); e1(x̃), . . . , en−k(x̃)]⟨(∑k

i=0 ei(x)
)(∑n−k

j=0 ej(x̃)
)
= 1 + (−1)kq

⟩ .
Here ei(x) = ei(x1, . . . , xk), ej(x̃) = ej(x̃1, . . . , x̃n−k) denote the elementary sym-
metric polynomials, and xi, x̃j correspond to the Chern roots of S, respectively
Q.

Let T be the torus of invertible diagonal matrices with its usual action on
Gr(k;n). In this paper we generalize Witten’s relations (1) from the quantum coho-
mology to the T -equivariant quantum K ring of Gr(k;n), defined by Givental and
Lee [Giv00, GL03, Lee04]. Denote this ring by QKT (Gr(k;n)) and by KT (Gr(k;n))
the ordinary equivariant K-theory ring.

For a vector bundle E, denote by λy(E) = 1+ yE+ . . .+ ye ∧eE the Hirzebruch
λy-class in the K theory ring. The K-theoretic Whitney relations are

λy(S) · λy(Q) = λy(Cn) ∈ KT (Gr(k;n)).

The main geometric result in this paper is a quantum deformation of these relations.

Theorem 1.1. The following equality holds in QKT (Gr(k;n)):

(3) λy(S) ⋆ λy(Q) = λy(Cn)− q

1− q
yn−k(λy(S)− 1) ⋆ detQ.

In the theorem we regard Cn as the T -module with weight space decomposition
Cn = Ct1 ⊕ . . .⊕Ctn . If we set T1 := et1 , . . . , Tn := etn , then KT (pt) is the Laurent
polynomial ring Z[T±1

1 , . . . , T±1
n ], and λy(Cn) =

∏n
i=1(1 + yTi), see §2.

The equality (3) may be translated into an abstract ‘quantum K-theoretic Whit-
ney’ presentation of the ring QKT (Gr(k;n)) by generators and relations; this is
stated in Theorem 1.2 and Theorem 8.2 below. In this case one uses variables
Xi, X̃j , interpreted as exponentials of the Chern roots: Xi = exi , X̃j = ex̃j . This
naturally generalizes the classical presentations of K(Gr(k;n)) by Lascoux [Las90],
and of QH∗(Gr(k;n)) by Witten from (2) above.

In [GMSZ22] we conjectured a second ‘Coulomb branch presentation’ of the
ring QKT (Gr(k;n)), and in this paper we prove an equivariant generalization of
it. Let W be a twisted superpotential [MP95, AHKT01, CK16, GMSZ22] arising
in the study of supersymmetric gauge theory; cf. §9 below. The expression for
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W depends on the exponentials X1, . . . , Xk. In this context, the exterior powers
∧iS,∧jQ arise as certain Wilson line operators considered in the physics literature
[JM20, JMNT20, JM19, UY20]. The Coulomb branch (or vacuum) equations for
W are

(4) exp

(
∂W

∂ lnXi

)
= 1, 1 ≤ i ≤ k.

It is convenient to work with the ‘shifted Wilson line operators’, or, equivalently,
with the (dual) K-theoretic Chern roots

(5) zi = 1−Xi, (1 ≤ i ≤ k); ζj = 1− Tj , (1 ≤ j ≤ n).

The Coulomb branch equations show that zi are the roots of a ‘characteristic poly-
nomial’:

(6) f(ξ, z, ζ, q) = ξn +

n−1∑
i=0

(−1)n−iξiĝn−i(z, ζ, q),

where the polynomials ĝj(z, ζ, q), defined in (43) below, are symmetric both in zi’s
and ζj ’s. Our main result in this paper is that the relations from Theorem 1.1
generate the ideal of relations of QKT (Gr(k;n)), and, furthermore, that the Vieta
relations satisfied by the roots of the polynomial (6) are algebraically equivalent to

those from Theorem 1.1; see Theorem 10.2 below. Specifically, denote by z̃j = 1−X̃j

the K-theoretic Chern roots of the dual of Q.

Theorem 1.2. The following two rings give presentations by generators and rela-
tions of QKT (Gr(k;n)):

(a) (Coulomb branch presentation) The ring Q̂KT (Gr(k;n)) given by

KT (pt)[[q]][e1(z), · · · , ek(z), e1(ẑ), · · · , en−k(ẑ)] / ⟨
∑

i+j=ℓ

ei(z)ej(ẑ)−ĝℓ(z, ζ, q)⟩1≤ℓ≤n.

Here ẑ = (ẑ1, . . . , ẑn−k) and the polynomials ĝℓ(z, ζ, q) are defined in (43).

(b) (QK-theoretic Whitney presentation) The ring Q̃KT (Gr(k;n)) given by

KT (pt)[[q]][e1(z), · · · , ek(z), e1(z̃), · · · , en−k(z̃)] / ⟨
∑

i+j=ℓ

ei(z)ej(z̃)−g̃ℓ(z, ζ, q)⟩1≤ℓ≤n,

and where the polynomials g̃ℓ are defined in (51).

In each situation, ei(z) is sent to
∑i

p=0(−1)p
(
k−p
i−p

)
∧p S, for 1 ≤ i ≤ k.

The relations giving Q̃KT (Gr(k;n)) are obtained from those in Theorem 1.1 by

the change of variables (5) and X̃j = 1− z̃j .
The two presentations satisfy some remarkable algebraic properties. In both

situations, the polynomials ĝℓ and g̃ℓ do not depend on q if 1 ≤ ℓ ≤ n− k; in other
words, the first n − k relations are ‘classical’. Furthermore, we may use the first
n− k relations to eliminate the variables ẑj , z̃j for 1 ≤ j ≤ n− k. We prove that in

Q̂KT (Gr(k;n)),

(−1)ℓeℓ(ẑ) = G′
ℓ(z, ζ) :=

∑
i+j=ℓ

(−1)jGi(z)ej(ζ),

where Gj(z) is the Grothendieck polynomial; see Proposition 11.6. Note that the
elimination of variables process led us to define G′

ℓ(z, ζ), which is an equivariant
deformation of Gℓ(z). This is different from another equivariant deformation of
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Gj(z), the factorial Grothendieck polynomial defined by McNamara [McN06], and
which represents equivariant Schubert classes. (The latter are not symmetric in
ζ’s.) In analogy to the presentation of H∗

T (Gr(k;n)), the Cauchy formulae calcu-

lating
∑

i+j=ℓ G
′
i(z, ζ)ej(ζ) allow us to formulate the relations in Q̂KT (Gr(k;n))

as expressions involving G′
n−k+1(z, ζ), . . . , G

′
n(z, ζ); see Theorem 11.8 below. We

have not seen a presentation formulated naturally in terms of these polynomials,
even in the ordinary non-quantum ring KT (Gr(k;n)).

A similar description holds for the QK-Whitney presentation Q̃KT (Gr(k;n)),
with the caveat that the Grothendieck polynomials Gj(z), G′

ℓ(z, ζ) are replaced
by the complete homogeneous symmetric polynomials hj(z) and their equivariant
versions h′

ℓ(z, ζ) =
∑

i+j=ℓ(−1)jhi(z)ej(ζ). Geometrically, the polynomials h′
ℓ(z, ζ)

represent (equivariant) K-theoretic Chern classes of the tautological quotient bundle
Q. Analyzing the precise algebraic relationship between G′

j(z, ζ) and h′
j(z, ζ) lies

at the foundation of proving the isomorphism between the two presentations in
Theorem 1.2; this is done in §11.

One advantage of working with K-theoretic Chern roots is that the leading terms
of these presentations give presentations of the equivariant quantum cohomology
ring QH∗

T (Gr(k;n)); both specialize to Witten’s presentation (2). In physics termi-
nology, one recovers the 2d limit of the theory. This is illustrated in §12.

As expected from physics [NS09], the Coulomb branch equations (4) coincide
with the Bethe Ansatz equations considered by Gorbounov and Korff [GK17]. In
their paper, Gorbounov and Korff utilized integrable systems and equivariant lo-
calization techniques to obtain another presentation of the equivariant quantum K
ring QKT (Gr(k;n)), different from those in Theorem 1.2. In order to identify the
geometric ring QKT (Gr(k;n)) with that given from integrable systems, they require
the equivariant quantum K Chevalley formula (a formula to multiply by a Schubert
divisor). As proved in [BCMP18a], this formula determines the ring structure.

Aside from a finite generation statement of the ‘classical’ Coulomb branch pre-
sentation (i.e., modulo q), used in the proof of Theorem 11.12, our proofs are logi-
cally independent from results in [GK17]. We calculate the product λy(S) ⋆ λy(Q)
from Theorem 1.1 directly, based on the ‘quantum=classical’ statement by Buch
and one of the authors [BM11], applied to the Schur bundles. This requires the
calculation of certain push-forwards of the K-theory classes of the exterior powers
∧iS,∧jQ. For this, we rely on sheaf cohomology vanishing statements obtained by
Kapranov [Kap84]. We obtain rather explicit calculations of KGW invariants and
quantum K products involving Schur bundles, which may be interesting in their
own right. To illustrate, we prove the following quantum deformation of the classi-
cal equality ∧iS · det(Q) = ∧k−iS∗ · det(Cn) ∈ KT (Gr(k;n)) (cf. Theorem 6.1, see
also Corollary 6.4).

Theorem 1.3. The following holds in QKT (Gr(k;n)):

(λy(S)− 1) ⋆ det(Q) = (1− q)((λy(S)− 1) · det(Q)).

Equivalently, for any i > 0,

∧i(S) ⋆ det(Q) = (1− q) ∧k−i (S∗) · det(Cn).
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Of course, the QK Whitney, the Coulomb branch, and the presentation from
[GK17] are isomorphic. In §12.1.2 we provide a direct isomorphism from the non-

equivariant Coulomb branch presentation Q̂K(Gr(k;n)) to the one from [GK17]. 1

The final step in proving Theorem 1.2 is to show that there are no other relations
in the quantum K ring beyond those stated in Theorem 1.1. In the quantum co-
homology case, a result going back to Siebert and Tian [ST97] (see also [FP97])
states that if one has a set of quantum relations such that the q = 0 specialization
gives the ideal of the ‘classical’ relations, then these generate the ideal of quan-
tum relations. The proof utilizes the graded Nakayama lemma. The quantum K
theory ring is not graded. Still, a similar statement holds, utilizing the ordinary
Nakayama lemma for the quantum K ring regarded as a module over the power
series ring QKT (pt) := KT (pt)[[q]], together with a finite generation statement for
completed rings; cf. [Eis95, Ex. 7.4, p. 203] or Remark A.4. Such arguments are
useful in studying presentations of more general quantum K rings, therefore we
took the opportunity to gather in Appendix A the relevant results about comple-
tions and filtered modules. A second appendix contains a worked out example for
QKT (Gr(2; 5)).

We mention that our initial paper [GMSZ22] also gives physics inspired pre-
dictions for the quantum K theory of the Lagrangian Grassmannian LG(n; 2n); a
mathematical followup analyzing this situation will be considered elsewhere.

Acknowledgments. We would like to thank Dave Anderson, Vassily Gorbounov,
Takeshi Ikeda, Christian Korff, Yaoxiong Wen, and Ming Zhang for useful discus-
sions. Special thanks are due to Prof. Satoshi Naito, whose remarks helped us realize
that the hypothesis that R is complete, or is localized, needs to be added to an
earlier arχiv version of Lemma A.1. W.G. was partially supported by NSF grant
PHY-1720321. This material is partly based upon work supported by the National
Science Foundation under Grant No. DMS-1929284 while LM was in residence at
the Institute for Computational and Experimental Research in Mathematics in
Providence, RI, during the Combinatorial Algebraic Geometry program. LM was
also supported in part by the NSF grant DMS-2152294 and a Simons Collaboration
Grant. E.S. was partially supported by NSF grant PHY-2014086.

Throughout this project we utilized the Maple based program Equivariant

Schubert Calculator, written by Anders Buch.2

2. Preliminaries on equivariant K theory

In this section we recall some basic facts about the equivariant K-theory of a
variety with a group action. For an introduction to equivariant K theory, and more
details, see [CG09].

Let X be a smooth projective variety with an action of a linear algebraic group
G. The equivariant K theory ring KG(X) is the Grothendieck ring generated by
symbols [E], where E → X is an G-equivariant vector bundle, modulo the relations
[E] = [E1] + [E2] for any short exact sequence 0 → E1 → E → E2 → 0 of
equivariant vector bundles. The additive ring structure is given by direct sum,
and the multiplication is given by tensor products of vector bundles. Since X is
smooth, any G-linearized coherent sheaf has a finite resolution by (equivariant)

1In an upcoming paper, it will be shown that a certain ‘functional relation’, which determines

the relations from [GK17], is equivalent to the quantum K Whitney relations (3).
2The program is available at https://sites.math.rutgers.edu/∼asbuch/equivcalc/
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vector bundles, and the ring KG(X) coincides with the Grothendieck group of G-
linearized coherent sheaves on X. In particular, any G-linearized coherent sheaf F
on X determines a class [F ] ∈ KG(X). An important special case is if Ω ⊂ X is a
G-stable subscheme; then its structure sheaf determines a class [OΩ] ∈ KG(X).

The ring KG(X) is an algebra over KG(pt) = Rep(G), the representation ring
of G. If G = T is a complex torus, then this is the Laurent polynomial ring
KT (pt) = Z[T±1

1 , . . . , T±1
n ] where Ti := eti are characters corresponding to a basis

of the Lie algebra of T .
The (Hirzebruch) λy class is defined by

λy(E) := 1 + y[E] + y2[∧2E] + . . .+ ye[∧eE] ∈ KG(X)[y].

This class was introduced by Hirzebruch [Hir95] in order to help with the formalism
of the Grothendieck-Riemann-Roch theorem. It may be thought as the K theoretic
analogue of the (cohomological) Chern polynomial

cy(E) = 1 + c1(E)y + . . .+ ce(E)ye

of the bundle E. The λy class is multiplicative with respect to short exact sequences,
i.e. if

0 E1 E2 E3 0

is such a sequence of vector bundles then

λy(E2) = λy(E1) · λy(E3);

cf. [Hir95]. A particular case of this construction is when V is a (complex) vector
space with an action of a complex torus T , and with weight decomposition V =
⊕iVµi

, where each µi is a weight in the dual of the Lie algebra of T . The character
of V is the element chT (V ) :=

∑
i dimVµi

eµi , regarded in KT (pt). The λy class of
V is the element λy(V ) =

∑
i≥0 y

ich(∧iV ) ∈ KT (pt)[y]. From the multiplicativity
property of the λy class it follows that

λy(V ) =
∏
i

(1 + yeµi)dimVµi ;

see [Hir95].
Since X is proper, the push-forward to a point equals the Euler characteristic,

or, equivalently, the virtual representation,

χ(X,F) =

∫
X

[F ] :=
∑
i

(−1)i chT Hi(X,F).

For E,F equivariant vector bundles, this gives a pairing

⟨−,−⟩ : KG(X)⊗KG(X) → KG(pt); ⟨[E], [F ]⟩ :=
∫
X

E ⊗ F = χ(X,E ⊗ F ).

3. Equivariant K theory of flag manifolds

In this paper we will utilize the torus equivariant K-theory of the partial flag
manifolds Fl(i1, i2, . . . , ik;n), which parametrize partial flags Fi1 ⊂ . . . ⊂ Fip ⊂ Cn,
where dimFi = i, to study the equivariant quantum K theory ring of Grassmann
manifolds Gr(k;n). The goal of this section is to review some of the basic features
of the equivariant K rings of the partial flag manifolds. Of special importance is
the calculations of K theoretic push forwards of Schur bundles, which will play a
key role later in the paper.
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3.1. Basic definitions. The flag manifold Fl(i1, i2, . . . , ik;n) is an algebraic vari-
ety homogeneous under the action of GLn := GLn(C). Let T ⊂ GLn be the sub-
group of diagonal matrices acting coordinate-wise on Cn. Denote by Ti ∈ KT (pt)
the weights of this action.

Set W to be the symmetric group in n letters, and let Wi1,...,ip ≤ W be the
subgroup generated by simple reflections si = (i, i + 1) where i /∈ {i1, . . . , ip}.
Denote by ℓ : W → N the length function, and by W i1,...,ik the set of minimal
length representatives of W/Wi1,...,ip . This consists of permutations w ∈ W which
have descents at positions i1, . . . , ip, i.e., w(ik+1) < . . . < w(ik+1), for k = 0, . . . , p,
with the convention that i0 = 1, ip+1 = n.

The torus fixed points ew ∈ Fl(i1, i2, . . . , ik;n) are indexed by the permutations
w ∈ W i1,...,ip . For each such point, the Schubert cell X◦

w ⊂ Fl(i1, i2, . . . , ik;n)
is the orbit B−.ew of the Borel subgroup of lower triangular matrices, and the
Schubert variety is the closure Xw = Xw,◦. Our convention ensures that Xw has
codimension ℓ(w). The Schubert varieties Xw determine classes Ow := [OXw

] in
KT (X). Similarly, the S-fixed points give classes denoted by ιw := [Oew ]. The
equivariant K-theory KT (Fl(i1, . . . , ip;n)) is a free module over KT (pt) with a basis
given by Schubert classes {Ow}w∈W i1,...,ip . For the Grassmannian Gr(k;n), the
Schubert varieties are indexed by partitions λ = (λ1, . . . , λk) included in the k ×
(n−k) rectangle, i.e., n−k ≥ λ1 ≥ . . . ≥ λk ≥ 0. For Grassmanians, we denote the
Schubert variety by Xλ; this has codimension |λ| = λ1+. . .+λk. The corresponding
class in KT (Gr(k;n)) is denoted Oλ := [OXλ

].
Let i = (1 < i1 < . . . < ip < n) and j obtained from i by removing some

of the indices is. Denote by Fl(i) and Fl(j) the respective flag manifolds and by
πi,j : Fl(i) → Fl(j) the natural projection. We will need the following well known
fact:

Lemma 3.1. Let w ∈ W i. Then for any Schubert varieties Xw ∈ Fl(i) and
Xv ∈ Fl(j)

(πi,j)∗Ow = Ow′ ∈ KT (Fl(j)), and π∗
i,jOv = Ov ∈ KT (Fl(i))

where w′ ∈ W j is the minimal length representative for w ∈ W/Wj.

Proof. The first equality follows from [BK05, Thm. 3.3.4(a)] and the second because
πi,j is a flat morphism. □

3.2. Push-forward formulae of Schur bundles. Next we recall some results
about cohomology of Schur bundles on Grassmannians. Our main reference is
Kapranov’s paper [Kap84]. A reference for basic definitions of Schur bundles is
Weyman’s book [Wey03].

Recall that if X is a T -variety, π : E → X is any T -equivariant vector bundle of
rank e, and λ = (λ1, . . . , λk) is a partition with at most e parts, the Schur bundle
Sλ(E) is a T -equivariant vector bundle over X. It has the property that if x ∈ X
is a T -fixed point, the fibre (Sλ(E))x is the T -module with character the Schur
function sλ. For example, if λ = (1k), then S(1k)(E) = ∧kE, and if λ = (k) then

S(k)(E) = Symk(E).
In this paper X = Gr(k;Cn) with the T -action restricted from GLn(C). To

emphasize the T = (C∗)n-module structure on Cn, we will occasionally denote by
V := Cn and by Gr(k;V ) the corresponding Grassmannian. Further, V will also be



8 WEI GU, LEONARDO C. MIHALCEA, ERIC SHARPE, AND HAO ZOU

identified with the trivial, but not equivariantly trivial, vector bundle Gr(k;V )×V .
The following was proved in [Kap84].

Proposition 3.2 (Kapranov). Consider the Grassmannian Gr(k;V ) with the tau-
tological sequence 0 → S → V → Q → 0. For any nonempty partition λ = (λ1 ≥
λ2 ≥ . . . ≥ λk ≥ 0) such that λ1 ≤ n − k, there are the following isomorphisms of
T -modules:

(a) For all i ≥ 0, Hi(Gr(k;V ),Sλ(S)) = 0.
(b)

Hi(Gr(k;V ),Sλ(S∗)) =

{
Sλ(V

∗) i = 0

0 i > 0.

(c)

Hi(Gr(k;V ),Sλ(Q)) =

{
Sλ(V ) i = 0

0 i > 0.

Proof. Parts (a) and (b) were proved in [Kap84, Prop. 2.2], as a consequence of the
Borel-Weil-Bott theorem on the complete flag manifold. For part (c), observe that
there is a T -equivariant isomorphism Gr(k;V ) ≃ Gr(dimV − k;V ∗) under which
the T -equivariant bundle Q is sent to S∗. Then part (c) follows from (b). □

We also need a relative version of Proposition 3.2. Consider an T -variety X
equipped with an T -equivariant vector bundle V of rank n. Denote by π : G(k,V) →
X the Grassmann bundle over X. It is equipped with a tautological sequence
0 → S → π∗V → Q → 0 over G(k,V). The following corollary follows from
Proposition 3.2, using that π is a T -equivariant locally trivial fibration:

Corollary 3.3. For any nonempty partition λ = (λ1 ≥ λ2 ≥ . . . ≥ λk ≥ 0) such
that λ1 ≤ n− k, there are the following isomorphisms of T -modules:

(a) For all i ≥ 0, the higher direct images, Riπ∗Sλ(S) = 0.
(b)

Riπ∗Sλ(S∗)) =

{
Sλ(V∗) i = 0

0 i > 0.

(c)

Riπ∗Sλ(Q) =

{
Sλ(V) i = 0

0 i > 0.

4. Quantum K theory and ‘quantum=classical’

4.1. Definitions and notation. The quantum K ring was defined by Givental and
Lee [Giv00, Lee04]. We recall the definition below, following [Giv00]. The quantum
K metric is a deformation of the usual K-theory pairing; we recall the definition
of this metric for X = Gr(k;n). Fix any basis (aλ) of KT (Gr(k;n)) over KT (pt),
where λ varies over partitions in the k × (n − k) rectangle. The (small) quantum
K metric is defined by

(7) (aλ, aµ)sm =
∑
d≥0

qd⟨aλ, aµ⟩d ∈ KT (pt)[[q]],

extended by KT (pt)[[q]]-linearity. The elements ⟨aλ, aµ⟩d ∈ KT (pt) denote 2-point
(genus 0, equivariant) K-theoretic Gromov-Witten (KGW) invariants if d > 0; if
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d = 0 then ⟨aλ, aµ⟩0 = ⟨aλ, aµ⟩ are given by the ordinary K-theory pairing. The
(n-point, genus 0) KGW invariants ⟨a1, . . . , an⟩d ∈ KT (pt) are defined by pulling
back via the evaluation maps, then integrating, over the Kontsevich moduli space
of stable maps M0,n(Gr(k;n), d). Instead of recalling the precise definition of the
KGW invariants, in Theorem 4.5 below we give a ‘quantum=classical’ statement
calculating 2 and 3-point KGW invariants of Grassmannians. Explicit combinato-
rial formulae for the 2-point KGW invariants for any homogeneous space may be
found in [BM15, BCLM20].

Example 4.1. Consider the projective plane P2, and for simplicity work non-
equivariantly. Consider the Schubert basis O0 = [OP2 ],O1 = [Oline],O2 = [Opt].
The classical K-theory pairing gives the matrix

(⟨Oi,Oj⟩) =

⎛⎝1 1 1
1 1 0
1 0 0

⎞⎠
For any i, j ≥ 0 and d > 0, ⟨Oi,Oj⟩d = 1. Then the quantum K metric is given by

(Oi,Oj)sm = ⟨Oi,Oj⟩+ q + q2 + ... = ⟨Oi,Oj⟩+
q

1− q
.

Theorem 4.2 (Givental [Giv00]). Consider the KT [pt][[q]]-module

QKT (Gr(k;n)) := KT (Gr(k;n))⊗KT (pt)[[q]].

Define the (small) equivariant quantum K product ⋆ on QKT (Gr(k;n)) by the equal-
ity

(8) (a ⋆ b, c)sm =
∑
d≥0

qd⟨a, b, c⟩d,

for any a, b, c ∈ KT (Gr(k;n)). Then (QKT (Gr(k;n)),+, ⋆) is a commutative, as-
sociative KT (pt)[[q]]-algebra. Furthermore, the small quantum K metric gives it a
structure of a Frobenius algebra, i.e. (a ⋆ b, c)sm = (a, b ⋆ c)sm.

Remark 4.3. It was proved in [BCMP13] that the submodule KT (Gr(k;n)) ⊗
KT (pt)[q] is stable under the QK product ⋆. This means that the product of two
Schubert classes in QKT (Gr(k;n)) has structure constants which are polynomials in
q. Similar statements hold for any flag manifold [ACT22, Kat18]. However, work-
ing over the ring of formal power series in q is needed for proving module finite
generation of the claimed presentations. It is also natural if one studies quantiza-
tions of dual bundles, such as those from Theorem 6.1 below.

We record the following immediate consequence.

Corollary 4.4. Let a, b, c ∈ KT (Gr(k;n))[[q]]. Then a⋆b = c if and only if for any
κ ∈ KT (Gr(k;n)), ∑

d≥0

qd⟨a, b, κ⟩d =
∑
d≥0

qd⟨c, κ⟩d.

4.2. Quantum=classical. The goal of this section is to recall the ‘quantum =
classical’ statement, which relates the (3-point, genus 0) equivariant KGW invari-
ants on Grassmannians to a ‘classical’ calculation in the equivariant K-theory of
a two-step flag manifold. This statement was proved in [BM11], and it general-
ized results of Buch, Kresch and Tamvakis [BKT03] from quantum cohomology.
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The proofs rely on the ‘kernel-span’ technique introduced by Buch [Buc03]. A Lie-
theoretic approach, for large degrees d, and for the larger family of cominuscule
Grassmannians, was obtained in [CP11]; see also [BCMP18b] for an alternative
way to ‘quantum=classical’ utilizing projected Richardson varieties.

We recall next the ‘quantum = classical’ result, proved in [BM11], and which
will be used later in this paper. To start, form the following incidence diagram:

(9)

Zd := Fl(k − d, k, k + d;n)
p′
1−−−−→ Fl(k − d, k;n)

p−−−−−−→ X := Gr(k;n)

p2

⏐⏐↓ q

⏐⏐↓
Yd := Fl(k − d, k + d;n)

pr−−−−→ Gr(k − d;n)

Here all maps are the natural projections. Denote by p1 : Fl(k − d, k, k + d;n) →
Gr(k;n) the composition p1 := p ◦ p′1. If d ≥ k then we set Yd := Fl(k+ d;n) and if
k + d ≥ n then we set Yd := Gr(k − d;n). In particular, if d ≥ min{k, n− k}, then
Yd is a single point.

Theorem 4.5. Let a, b, c ∈ KT (Gr(k;n)) and d ≥ 0 a degree.
(a) The following equality holds in KT (pt):

⟨a, b, c⟩d =

∫
Yd

(p2)∗(p
∗
1(a)) · (p2)∗(p∗1(b)) · (p2)∗(p∗1(c)).

(b) Assume that (p2)∗(p
∗
1(a)) = pr∗(a′) for some a′ ∈ KT (Gr(k − d;n). Then

⟨a, b, c⟩d =

∫
Gr(k−d;n)

a′ · (q)∗(p∗(b)) · (q)∗(p∗(c)).

Observe that part (b) follows from (a) and the fact that the left diagram is a
fibre square; for details see [BM11]. We will often use the tautological sequence on
Gr(k;n):

0 → S → Cn → Q := Cn/S → 0.

To lighten notation, we will denote by the same letters the bundles on various flag
manifolds from the diagram (9), but we will indicate in the subscript the rank
of the bundle in question. To illustrate in a situation used below, observe that
Fl(k−d, k;n) equals to the Grassmann bundle G(d,Cn/Sk−d) → Gr(k−d;n), with
tautological sequence

0 → Sk/Sk−d → Cn/Sk−d → Cn/Sk ≃ p∗(Cn/Sk) → 0;

all these are bundles on Fl(k − d, k;n), with Sk is pulled back from Gr(k;n), and
Sk−d is pulled back from Gr(k − d;n).

5. Cohomological calculations from ‘quantum = classical’ diagrams

In this section we calculate some push-forwards of tautological bundles, which
will be utilized in the proof of our main result. For a vector bundle E of rank e,
we denote by λ(E)≥s, respectively λ(E)≤s and so on, the truncations ys[∧sE] +
. . .+ ye[∧eE], respectively 1+ y[E]+ . . .+[∧sE] etc. We use the notation from the
diagram (9).

Proposition 5.1. Let d ≥ 1. Then the following hold:
(a) For any j ≥ 0, (p2)∗p

∗
1(∧jS) = ∧jSk−d in KT (Yd). In particular,

(10) (p2)∗(p
∗
1λy(S)) = λy(Sk−d).
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(b) The following holds in KT (Yd):

(11) (p2)∗p
∗
1(λy(Q)) = λy(Cn/Sk+d) · λy(Sk+d/Sk−d)≤d.

(c) The following holds in KT (Yd):

(12) (p2)∗p
∗
1(λy(S∗)) = λy(S∗

k−d) · λy((Sk+d/Sk−d)
∗)≤d.

Proof. Consider the exact sequence on Fl(k − d, k, k + d) given by

0 → Sk−d → Sk = p∗1S → Sk/Sk−d → 0.

It follows that λy(Sk) = λy(Sk−d) · λy(Sk/Sk−d). By the projection formula,

(13) (p2)∗(λy(Sk)) = λy(Sk−d) · (p2)∗(λy(Sk/Sk−d)).

Observe now that p2 : Fl(k − d, k, k + d;n) → Fl(k − d, k + d;n) may be iden-
tified with the Grassmann bundle G(d,Sk+d/Sk−d), with tautological subbundle
Sk/Sk−d. Then part (a) follows from the projection formula and Corollary 3.3,
which shows that

(p2)∗(λy(Sk/Sk−d)) = [OFl(k−d,k+d;n)].

For (b), consider the short exact sequence on Fl(k − d, k, k + d;n),

0 → Sk+d/Sk → Cn/Sk = p∗1Q → Cn/Sk+d → 0.

Then λy(p
∗
1Q) = λy(Sk+d/Sk) · (p2)∗λy(Cn/Sk+d), and by the projection formula

(p2)∗(λy(p
∗
1Q)) = (p2)∗(λy(Sk+d/Sk)) · λy(Cn/Sk+d).

The claim follows again by Corollary 3.3, using that Sk+d/Sk is the tautological
quotient bundle of the Grassmann bundle G(d,Sk+d/Sk−d), thus

π∗λy(Sk+d/Sk) = 1 + y[Sk+d/Sk−d] + . . .+ yd ∧d [Sk+d/Sk−d].

Part (c) follows similarly to (b), utilizing the exact sequence 0 → (Sk/Sk−d)
∗ →

S∗
k = p∗1(S∗) → S∗

k−d → 0 and Corollary 3.3. □

We need the analogues of some of the previous equations in the equivariant K
theory of Gr(k − d;n).

Corollary 5.2. (a) The following equations hold in KT (Gr(k − d;n)):
(a) q∗(p

∗λy(S)) = λy(Sk−d).
(b) q∗p

∗(λy(S∗)) = λy(S∗
k−d) · λy((Cn/Sk−d)

∗)≤d.
(c) q∗p

∗(λy(Q)) = λy(Cn/Sk−d)≤n−k.

Proof. Parts (a) and (b) follow similarly to Proposition 5.1 (a). For (a), we utilize
the short exact sequence 0 → Sk−d → Sk = p∗1S → Sk/Sk−d → 0 on Fl(k −
d, k;n), and that the projection q : Fl(k − d, k;n) → Gr(k − d;n) is identified to
the Grassmann bundle G(d;Cn/Sk−d) → Gr(k − d;n) with tautological subbundle
Sk/Sk−d. For (b) one takes the dual of this sequence. Then by Corollary 3.3

q∗(λy(Sk/Sk−d)) = [OGr(k−d;n)] and q∗(λy((Sk/Sk−d)
∗)) = λy((Cn/Sk−d)

∗)≤d.

Then (a) and (b) follow from this and the projection formula.
For part (c), observe that Fl(k−d, k;n) → Gr(k−d;n) is the Grassmann bundle

G(d,Cn/Sk−d) with tautological quotient bundle Cn/Sk = p∗Q. Then the claim
follows again by Corollary 3.3. □

Observe that pr∗(λy(Sk−d)) = λy(Sk−d) in KT (Yd). Utilizing this, and combin-
ing Proposition 5.1, Corollary 5.2 and part (b) from Theorem 4.5 we obtain the
following useful corollary:
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Corollary 5.3. Fix arbitrary b, c ∈ KT (Gr(k;n)) and any degree d ≥ 0. Then the
equivariant KGW invariant ⟨λy(S), b, c⟩d satisfies:

⟨λy(S), b, c⟩d =

∫
Gr(k−d;n)

λy(Sk−d) · q∗p∗(b) · q∗p∗(c).

In particular, the 2-point KGW invariant ⟨b, c⟩d satisfies:

⟨b, c⟩d =

∫
Gr(k−d;n)

q∗p
∗(b) · q∗p∗(c).

6. Quantum duals

The main goal of this section is to prove the next identity.

Theorem 6.1. The following holds in QKT (Gr(k;n)):

(λy(S)− 1) ⋆ det(Q) = (1− q)((λy(S)− 1) · det(Q)).

Equivalently, for any i > 0,

∧i(S) ⋆ det(Q) = (1− q) ∧k−i (S∗) · det(Cn).

An equivalent formulation of this identity is in terms of (equivariant) KGW
invariants: for any degree d ≥ 0 and any a ∈ KT (Gr(k;n)),

(14) ⟨λy(S)−1,det(Q), a⟩d = ⟨(λy(S)−1)·det(Q), a⟩d−⟨(λy(S)−1)·det(Q), a⟩d−1.

By Corollary 5.3 and Corollary 5.2, the left hand side may be calculated as:

(15) ⟨λy(S)−1,det(Q), a⟩d =

∫
Gr(k−d;n)

(λy(Sk−d)−1) ·∧n−k(Cn/Sk−d) · q∗p∗(a).

The next lemma calculates the push-forwards relevant for the right hand side.

Lemma 6.2. The following equality holds in KT (Gr(k − d;n)):

yn−kq∗(p
∗(λy(Sk) · det(Q))) = λy(Sk−d) · λy(Cn/Sk−d)≥n−k.

Proof. To start, observe that for any (equivariant) vector bundle E,

∧iE ⊗ det(E∗) = ∧rk(E)−iE∗ and yrk(E)λy−1(E∗) = λy(E) · det(E∗).

Utilizing this and that det(Cn/Sk) = detS∗
k ⊗ detCn , we obtain that

yn−kq∗(p
∗(λy(Sk) · det(Cn/Sk)))

= yn−kq∗(p
∗(λy(Sk) · detS∗

k · detCn))

= yn−kykq∗(λy−1(S∗
k) · detCn))

= ynq∗(λy−1(S∗
k−d) · λy−1(Sk/Sk−d)

∗) · detCn

= ynλy−1(S∗
k−d) · q∗(λy−1(Sk/Sk−d)

∗) · detCn.

By Corollary 3.3, q∗(λy((Sk/Sk−d)
∗)) = λy((Cn/Sk−d)

∗)≤d, therefore

ydq∗(λy−1(Sk/Sk−d)
∗) = yd(1 + y−1(Cn/Sk−d)

∗ + . . .+ y−d ∧d (Cn/Sk−d)
∗)

= det(Cn/Sk−d)
∗ · (yd ∧n−k+d (Cn/Sk−d)

+ yd−1 ∧n−k+d−1 (Cn/Sk−d) + . . .+ ∧n−k(Cn/Sk−d))

= y−(n−k) det(Cn/Sk−d)
∗ · λy(Cn/Sk−d)≥n−k.
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Combining the last two equalities above we obtain:

yn−kq∗(p
∗(λy(Sk) · det(Cn/Sk))

= ynλy−1(S∗
k−d) · q∗(λy−1(Sk/Sk−d)

∗) · detCn

= yn−dλy−1(S∗
k−d) · y−(n−k) det(Cn/Sk−d)

∗ · λy(Cn/Sk−d)≥n−k · detCn

= yk−dλy−1(S∗
k−d) · det(Sk−d) · λy(Cn/Sk−d)≥n−k

= λy(Sk−d) · λy(Cn/Sk−d)≥n−k.

The last expression is the one from the claim. □

Consider the following projection maps:

(16)

Fl(k − d, k − d+ 1, k;n) Gr(k;n)

Gr(k − d+ 1;n) Gr(k − d;n)

pk−d

qk−d+1 qk−d

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. A standard diagram chase and the equalities from Equa-
tion (15) and Lemma 6.2 imply that in order to prove Equation (14) it suffices to
show that in KT (Fl(k − d, k − d+ 1, k;n),

yn−kpk−d
∗ ((λy(Sk−d)− 1) · ∧n−k(Cn/Sk−d))

= pk−d
∗

(
λy(Sk−d) · λy(Cn/Sk−d)≥n−k − λy(Sk−d+1) · λy(Cn/Sk−d+1)≥n−k

)
− yn−k

(
∧n−k(Cn/Sk−d)− ∧n−k(Cn/Sk−d+1)

)
.

After expanding and canceling the like terms, this amounts to showing that

pk−d
∗ (λy(Sk−d) · λy(Cn/Sk−d)>n−k) = pk−d

∗ (λy(Sk−d+1) · λy(Cn/Sk−d+1)≥n−k)

− yn−kpk−d
∗ (∧n−k(Cn/Sk−d+1)).

(17)

Since this identity will be used again in the proof of relations in the quantum K ring,
we will prove it in the lemma below, thus finishing the proof of Theorem 6.1. □

Lemma 6.3. Equation (17) holds.

Proof. Consider the projection p′ : Fl(k−d, k−d+1, k;n) → Fl(k−d+1, k;n); this
is the Grassmann bundle G(k− d;Sk−d+1) over Fl(k− d+1, k;n) with tautological
subbundle Sk and quotient bundle L := Sk−d+1/Sk−d. In order to show the equality
17, it suffices to replace pk−d by p′, i.e.,

p′∗(λy(Sk−d) · λy(Cn/Sk−d)>n−k) = p′∗(λy(Sk−d+1) · λy(Cn/Sk−d+1)≥n−k)

− yn−kp′∗(∧n−k(Cn/Sk−d+1)).
.(18)

To calculate the left hand side, consider the short exact sequences

0 → Sk−d → Sk−d+1 → L → 0; 0 → L → Cn/Sk−d → Cn/Sk−d+1 → 0.

From this it follows that λy(Cn/Sk−d) = (1 + yL)λy(Cn/Sk−d+1), thus

λy(Cn/Sk−d)>n−k = λy(Cn/Sk−d+1)>n−k + yL · λy(Cn/Sk−d+1)≥n−k.
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Observe that p′∗(λy(Sk−d)) = 1, by Corollary 3.3. Using this and the projection
formula, we calculate the left hand side of Equation (18):

p′∗(λy(Sk−d) · λy(Cn/Sk−d)>n−k)

= p′∗(λy(Sk−d) · λy(Cn/Sk−d+1)>n−k)

+ p′∗(λy(Sk−d) · (λy(L)− 1) · λy(Cn/Sk−d+1)≥n−k)

= λy(Cn/Sk−d+1)>n−k) + p′∗((λy(Sk−d+1)− λy(Sk−d)) · λy(Cn/Sk−d+1)≥n−k)

= λy(Cn/Sk−d+1)>n−k) + (λy(Sk−d+1)− 1) · λy(Cn/Sk−d+1)≥n−k

= λy(Sk−d+1) · λy(Cn/Sk−d+1)≥n−k − yn−k ∧n−k (Cn/Sk−d+1).

The last expression is the right hand side of Equation (18), again by projection
formula. □

Corollary 6.4. Let i > 0. The following equalities hold QKT (Gr(k;n)):
(a) ∧iQ∗ ⋆ detS∗ = (1− q) ∧n−k−i Q · det(Cn)∗;
(b) ∧iS ⋆ detS∗ = (1− q) ∧k−i S∗;
(c) ∧n−k−iQ ⋆ detS = ∧iQ∗ · det(Cn);
(d) ∧n−k−iQ ⋆ detQ∗ = ∧iQ∗.

Proof. All are consequences of Theorem 6.1. Part (a) applies this theorem to the
dual Grassmannian Gr(n−k, (Cn)∗); we utilize that there is a T -equivariant isomor-
phism Gr(k;Cn) ≃ Gr(n−k, (Cn)∗) under which the T -equivariant bundle Q is sent
to S∗. Part (b) follows because as elements of KT (Gr(k;n)), detQ = detS∗ ·detCn,
then ∧iS ⋆ detS∗ = (detCn)∗ ∧i S ⋆ detQ = (1 − q) ∧k−i S∗. Part (c) follows by
multiplying (a) by detS, then using (b), and (d) follows from (c). □

7. Relations in quantum K theory

Recall the tautological sequence 0 → S → Cn → Q → 0 on X = Gr(k;n). The
goal of this section is to prove the following theorem.

Theorem 7.1. The following equalities hold in QKT (X):

λy(S) ⋆ λy(Q) = λy(Cn)− qyn−k
(
(λy(S)− 1)⊗ detQ

)
= λy(Cn)− q

1− q
yn−k(λy(S)− 1) ⋆ detQ

(19)

The second equality follows from Theorem 6.1, therefore we focus on the first.
Our strategy is to utilize again the ‘quantum=classical’ identity in order to show
that for any a ∈ KT (Gr(k;n)), and for any d ≥ 0,

(20) ⟨λy(S), λy(Q), a⟩d = λy(Cn)⟨1, a⟩d − yn−k⟨(λy(S)− 1)⊗ det(Q), a⟩d−1.

By Corollary 4.4 this will imply the desired identities. The KGW invariant from
the left hand side may be calculated using the following lemma.

Lemma 7.2. The following equality holds in KT (Gr(k − d;n)):

q∗p
∗(λy(S)) · q∗p∗(λy(Q)) = λy(Cn)− λy(Sk−d) · λy(Cn/Sk−d)>n−k.
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Proof. This follows from Corollary 5.2, working in the Grassmannian Gr(k − d;n)
with tautological sequence 0 → Sk−d → Cn → Cn/Sk−d → 0:

q∗p
∗(λy(S)) · q∗p∗(λy(Q)) = λy(Sk−d) · λy(Cn/Sk−d)≤n−k

= λy(Sk−d) · (λy(Cn/Sk−d)− λy(Cn/Sk−d)>n−k)

= λy(Cn)− λy(Sk−d) · λy(Cn/Sk−d)>n−k.

□

We are now ready to prove Theorem 7.1.

Proof of Theorem 7.1. We need to verify Equation (20), and for that, we utilize the
‘quantum= classical’ statement in Theorem 4.5. From Lemma 7.2, the left hand
side of Equation (20) equals:∫

Gr(k−d;n)

(λy(Cn)− λy(Sk−d) · λy(Cn/Sk−d)>n−k) · q∗p∗(a).

From Lemma 6.2, the right hand side equals:∫
Gr(k−d;n)

λy(Cn) · q∗p∗(a)−∫
Gr(k−d+1;n)

(
λy(Sk−d+1) · λy(Cn/Sk−d+1)≥n−k + yn−k ∧n−k (Cn/Sk−d+1)

)
· q̄∗p̄∗(a).

Here p̄ : Fl(k− d+1, k;n) → Gr(k;n) and q̄ : Fl(k− d+1, k;n) → Gr(k− d+1;n)
are the natural projections. After cancelling the like terms, this amounts to proving
the equality∫

Gr(k−d;n)

(λy(Sk−d) · λy(Cn/Sk−d)>n−k) · q∗p∗(a) =∫
Gr(k−d+1;n)

(
λy(Sk−d+1) · λy(Cn/Sk−d+1)≥n−k − yn−k ∧n−k (Cn/Sk−d+1)

)
· q∗p∗(a).

Recall the projection pk−d : Fl(k− d, k− d+1, k;n) → Gr(k;n). As in the proof of
Theorem 6.1, by diagram chasing and projection formula, one shows the previous
equality by demonstrating the following:

pk−d
∗ (λy(Sk−d) · λy(Cn/Sk−d)>n−k)

= pk−d
∗
(
λy(Sk−d+1) · λy(Cn/Sk−d+1)≥n−k − yn−k ∧n−k (Cn/Sk−d+1)

)
.

This is Equation (17), proved in Lemma 6.3. □

8. The QK Whitney presentation

In this section we prove that the relations found in Theorem 7.1 give a presenta-
tion of the algebra QKT (Gr(k;n)). The proof strategy is similar to that employed
in [ST97, FP97] from quantum cohomology: one first proves that in the classical
limit these generate the full ideal of relations, then one uses Nakayama-type argu-
ments to upgrade to the quantum situation. Unlike the quantum cohomology ring,
the quantum K theory is not a graded ring. One may still use the usual Nakayama
lemma for modules over completed rings to prove that the same phenomenon holds.
The necessary statements are collected in the Appendix A below.

As usual, we consider the Grassmannian Gr(k;n) equipped with the tauto-

logical sequence 0 → S → Cn → Q → 0. Let X = (X1, . . . , Xk) and X̃ =
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(X̃1, . . . , X̃n−k) denote formal variables. The elementary symmetric polynomials

ei(X) = ei(X1, . . . , Xk) and ej(X̃) = ej(X̃1, . . . , X̃n−k) are algebraically indepen-
dent. Geometrically, in KT (Gr(k;n)),

λy(S) =
k∏

i=1

(1 + yXi); λy(Q) =

n−k∏
j=1

(1 + yX̃j).

Define by I ⊂ KT (pt)[e1(X), . . . , ek(X), e1(X̃), . . . , en−k(X̃)] the ideal deter-
mined by the Whitney relations in KT (Gr(k;n)), i.e., I is generated by the coeffi-
cients of the powers of y in

(21)

k∏
i=1

(1 + yXi)

n−k∏
i=1

(1 + yX̃i) =

n∏
i=1

(1 + yTi).

A non-equivariant variant of the following proposition appears in [Las90, §7].

Proposition 8.1. There is an isomorphism of KT (pt)-algebras

Ψ : KT (pt)[e1(X), . . . , ek(X), e1(X̃), . . . , en−k(X̃)]/I → KT (Gr(k;n)),

sending ei(X) ↦→ ∧iS and ej(X̃) ↦→ ∧jQ.

Proof. Denote the ring on the left by A. Since λy(S) · λy(Q) = λy(Cn), the homo-
morphism Ψ : A → KT (Gr(k;n)) is well defined. Consider the polynomial ring

A′ := Z[T1, . . . , Tn][e1(X), . . . , ek(X), e1(X̃), . . . , en−k(X̃)].

Note that I is also an ideal in A′. Observe that A′/I is a free Z[T1, . . . , Tn]-
module of rank

(
n
k

)
. (There are several proofs. For instance, (temporarily) identify

Z[T1, . . . , Tn] to H∗
T (pt). Then from the Whitney relations cT (S) · cT (Q) = cT (Cn)

in H∗
T (Gr(k;n)), there is an isomorphism of H∗

T (pt)-algebras A
′/I ≃ H∗

T (Gr(k;n)),

sending ei(X) ↦→ cTi (S) and ej(X̃) ↦→ cTj (Q).) If we regard the Laurent polyno-

mial ring KT (pt) = Z[T±1
1 , . . . , T±1

n ] as a Z[T1, . . . , Tn]-algebra (under the natural
inclusion of polynomials into Laurent polynomials), we obtain that

A = (A′/I)⊗Z[T1,...,Tn] KT (pt)

is a free KT (pt)-module of rank
(
n
k

)
. We utilize this to show that Ψ induces an

isomorphism between the associated graded rings. To calculate gr(A), we make the

change of variables zi = 1 − Xi (1 ≤ i ≤ k), z̃j = 1 − X̃j (1 ≤ j ≤ n − k), and
ζs = 1− Ts (1 ≤ s ≤ n). Each of these variables has degree 1. Under this change,
A becomes

KT (pt)[e1(z), . . . , ek(z); e1(z̃), . . . , en−k(z̃)]

⟨
∑

i+j=ℓ ei(z1, . . . , zk)ej(z̃1, . . . , z̃n−k)− eℓ(ζ1, . . . , ζn)⟩1≤ℓ≤n
;

see also (48) below (with q = 0). The variables zi = 1 − Xi are sent to the K-
theoretic Chern roots of S∗, and similarly, z̃j to the K-theoretic Chern roots of
Q∗. We deduce that the initial term of Ψ(ei(z)), and of Ψ(ej(z̃)), equals to cTi (S∗),
respectively cTj (Q∗) in H∗

T (Gr(k;n)). Thus, when taking the associated graded
rings, Ψ recovers the usual presentation of the equivariant cohomology ring. This
implies that Ψ is injective.

The surjectivity follows from the theory of factorial Grothendieck polynomials.
More precisely, from [Buc02, Thm. 2.1] or [Oet21, Thm. 1.2], see also [FL94, McN06,
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IN13], for each partition λ, the equivariant Schubert class Oλ is a symmetric poly-
nomial in the K-theoretic Chern roots 1 − X1, . . . , 1 − Xk of S with coefficients
in KT (pt). By (50) below, this is a KT (pt)-linear combination of the (images of)
ei(X). Then Ψ is also surjective, and this finishes the proof. □

Recall from Theorem 7.1 that in QKT (Gr(k;n)),

(22) λy(S) ⋆ λy(Q) = λy(Cn)− q

1− q
yn−k(λy(S)− 1) ⋆ detQ.

Motivated by this, define the ideal

Iq ⊂ KT [pt][[q]][e1(X), . . . , ek(X), e1(X̃), . . . , en−k(X̃)]

generated by polynomials obtained by equating the powers of y in the equality:

k∏
i=1

(1 + yXi)×
n−k∏
j=1

(1 + yX̃i)

=

n∏
i=1

(1 + yTi)−
q

1− q
yn−kX̃1 · . . . · X̃n−k

( k∏
i=1

(1 + yXi)− 1
)
.

(23)

Theorem 8.2. There is an isomorphism of KT [pt][[q]]-algebras

Ψ : KT [pt][[q]][e1(X), . . . , ek(X), e1(X̃), . . . , en−k(X̃)]/Iq → QKT (Gr(k;n)),

sending ei(X) ↦→ ∧iS and ej(X̃) ↦→ ∧jQ.

Proof. There exists a ring homomorphism

Ψ̃ : KT [pt][[q]][e1(X), . . . , ek(X), e1(X̃), . . . , en−k(X̃)] → QKT (Gr(k;n)),

sending ei(X) ↦→ ∧iS and ej(X̃) ↦→ ∧jQ. It follows from Equation (22) that

Ψ̃(Iq) = 0, therefore this induces the homomorphism Ψ from the claim. In order
to prove that Ψ is an isomorphism, we will use the Nakayama-type result from
Proposition A.3, applied to the case when

M = KT [pt][[q]][e1(X), . . . , ek(X), e1(X̃), . . . , en−k(X̃)]/Iq

is the claimed presentation, regarded as a module over the ⟨q⟩-adically complete
ring R = KT [pt][[q]], and the free R-module N = QKT (Gr(k;n)). Proposition 8.1
implies that if one takes the quotient by ⟨q⟩, Ψ becomes an isomorphism. The fact
that M is a finite R-module follows from [Eis95, Ex. 7.4, p. 203] (cf. Remark A.4),
applied to the ideal m = ⟨q⟩, and then noting that M is finite over

S = KT [pt][[q]][e1(X), . . . , ek(X), e1(X̃), . . . , en−k(X̃)].

Note that R and S are Noetherian rings, e.g. by [AM69, Thm. 10.26], and that ⟨q⟩
is included in the Jacobson radical of R because 1 − aq is invertible in R, for any
a ∈ KT (pt).

3 □

3See also [GMS+23, §3 and Appendix A] for more details about this argument, and how it
applies to more general partial flag varieties.
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9. Physics, Wilson lines, & Jacobian ring presentations

In this section we will outline the approach giving the Jacobian relations (34)
derived from a holomorphic function W called the (twisted) superpotential in the
physics literature. These relations will be utilized in the next section to obtain the
Coulomb branch presentation of QKT (Gr(k;n)). See e.g. [JM20, JM19, JMNT20,
GMSZ22, UY20] for references.

Briefly, in the special case that a space can be realized as V//G for V a complex
vector space V and G a reductive algebraic group, the quantum K theory of V//G
arises from a three-dimensional “supersymmetric gauge theory,” which is ultimately
defined by G, a representation ρ defining the G action on V , and a matrix of real
numbers k̃ (of the same rank as G), whose values we will give momentarily. The
three-dimensional theory lives on a three-manifold, which is taken to be Σ×S1 for
a Riemann surface Σ, partly as a result of which the theory can be described as a
two-dimensional theory on Σ. Correlation functions in the two-dimensional theory
include “Wilson lines” (see e.g. [CK16, section 2])

(24) TrρP exp

(∫
S1

A

)
(for ρ a representation of G, A a connection on a principal G bundle, P a path-
ordering symbol) on S1 over a fixed point in Σ, and those Wilson lines correspond
to K theory elements on V//G. More precisely, we will identify them with Schur
functors on certain vector bundles on V//G associated to representations of G;
see Remark 9.3 below. Quantum K theory of spaces described as critical loci of
holomorphic functions on noncompact symplectic quotients can also be described
physically, but in this section we focus on the simpler case of spaces that are them-
selves symplectic quotients of vector spaces. Given V//G, the quantum K theory
relations arise as derivatives of a holomorphic function known as the superpotential
and conventionally denoted W ; cf. Equation (28) below.

Remark 9.1. At least in some cases physics makes predictions for the quantum
K theory ring of a space realized as the critical locus of a holomorphic function
on V//G (such as a hypersurface, or a complete intersection), but the details are
beyond the scope of this paper. See e.g., [GMSZ22] and references therein.

For simplicity, we specialize to the case that G = GLk for a positive integer k.
Then, define k̃1, k̃2 ∈ R as follows. Write ρ as a sum of irreducible representations

(25) ρ = ρ1 ⊕ · · · ⊕ ρℓ.

Define

(26) k̃1 = −1

2

ℓ∑
γ=1

(Cas1(ργ))
2
, k̃2 = k − 1

2

ℓ∑
γ=1

dim ργ
dimGL(k)

Cas2(ργ),

where Cas denotes eigenvalues of Casimir operators as in e.g., [Iac06, chapter 7].

Remark 9.2. The choice of k̃1 and k̃2 from (26) generates the standard quantum
K theory. However, physics considerations suggest there are other choices, conjec-
turally related to the quantum K theory with level structure considered in [RZ18].
See [GPZ21] for further physics discussions.
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Then, the quantum K theory ring relations are given physically as the critical
locus equations of a function W known as the superpotential, which is given as
[CK16, equ’n (2.33)], [GMSZ22, equ’n (2.1)]

W =
k̃2
2

k∑
a=1

(lnXa)
2
+

k̃1 − k̃2
2k

(
k∑

a=1

lnXa

)2

+
(
ln(−1)k−1q

) k∑
a=1

lnXa

+
∑
α

[
Li2 (exp(ρ̃α, lnX)) +

1

4
(ρ̃α, lnX)

2

]
,(27)

where we use lnX to denote a vector with components (lnXa), where (Xa) is a
point in (R⊗Z C−∆)/W ∼= (Ck −∆)/W for R the root lattice of GLk,

(28) ∆ =
∐
a<b

{Xa = Xb}
∐
a

{Xa = 1}
∐
a

{Xa = 0},

W = Sk the Weyl group of U(k), (, ) denotes a natural pairing between root and
weight lattice vectors, and {ρ̃α} are the weight vectors of the representation ρ. It
can be shown that the superpotential is invariant under the action of the Weyl
group.

For the case of a Grassmannian Gr(k;n), described as the GIT quotient V//GLk

for V = Hom(Ck,Cn), with ρ given by a sum of n copies of the fundamental
representation,

(29) k̃1 = −n/2, k̃2 = k − n/2,

and the superpotential specializes to

W =
k

2

k∑
a=1

(lnXa)
2 − 1

2

(
k∑

a=1

lnXa

)2

+ ln
(
(−1)k−1q

) k∑
a=1

lnXa + n

k∑
a=1

Li2 (Xa) .(30)

Remark 9.3. A Wilson line in representation ϕ of U(k) is the Chern character of
the Schur functor SϕS for S the universal subbundle, where the Xa are exponentials
of Chern roots. We give a few simple examples below:

Representation Schur functor Wilson line
S e1(X)

Sym2S h2(X)

∧2S e2(X)

Remark 9.4. There exists an analogous superpotential W whose derivatives encode
quantum K theory relations for more general V//G. Write G as the complexification
of a compact Lie group G′, and decompose the Lie algebra of G′, g, as a sum
of central pieces and simple factors. Very schematically, there is one qi for each
central copy of Lie U(1) in g, and the superpotential is a Weyl-invariant function
determined by the weight vectors of the representation ρ and the “Chern-Simons
levels,” here k̃1, k̃2, which are determined by slight generalizations of (26).
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We claim that the quantum K theory ring is determined by an analogue of the
Jacobian ring of W (involving exponentials of derivatives rather than just deriva-
tives). For the moment, we compute the relations generated by W , and then later
we will observe that the resulting ring is the quantum K theory ring of Gr(k;n) as
presented by [GK17].

Returning to the Grassmannian Gr(k;n), using the possibly obscure fact that

(31) y
∂

∂y
Li2(y) = − ln(1− y),

we find for each 1 ≤ a ≤ k that

(32) exp

(
∂W

∂ lnXa

)
= 1

implies that

(33) (−1)k−1q (Xa)
k
=

(
k∏

b=1

Xb

)
(1−Xa)

n
.

There is also an equivariant version of these identities. Let Ti ∈ KT (pt) denote
equivariant parameters. These appear in the pertinent physical theories as expo-
nentials of “twisted masses.” Concretely, in cases with twisted masses, the super-
potential (30) for Gr(k;n) generalizes to [UY20]

W =
k

2

k∑
a=1

(lnXa)
2 − 1

2

(
k∑

a=1

lnXa

)2

+ ln
(
(−1)k−1q

) k∑
a=1

lnXa +

n∑
i=1

k∑
a=1

Li2
(
XaT

−1
i

)
.

Simplifying

(34) exp

(
∂W

∂ lnXa

)
= 1

for each 1 ≤ a ≤ k, we find

(35) (−1)k−1q(Xa)
k

n∏
j=1

Tj =

(
k∏

b=1

Xb

)
·

n∏
i=1

(Ti −Xa).

In the next section we will symmetrize these relations to obtain the Coulomb branch
presentation of QKT (Gr(k;n)). This will be proved to be isomorphic to the QK
Whitney ring from Theorem 8.2. We also note that the equations (35) are the
same as the Bethe Ansatz equations from [GK17, equ’n (4.17)]. In loc.cit., the
authors utilize an approach based on algebraic properties of integrable systems and
of equivariant localization, to obtain a distinct presentation of QKT (Gr(k;n)). See
also §12.1.2 below for a comparison.

Observe that in the non-equivariant specialization, i.e. when Ti = 1, the equa-
tions (35) specialize to (33).

Remark 9.5. If one considers the specialization q ↦→ 1 in the finite difference op-
erator H annihilating the I-function considered by Givental and Yan in [GY21, p.
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21] (see also [Wen19]), one recovers again the vacuum (or the Bethe Ansatz) equa-
tions from (35).4 The I-function from [GY21] corresponds to the ‘abelianization’ of
the Grassmannian Gr(k;n); cf. loc.cit. From this perspective, our procedure below
may be interpreted as a symmetrization of the specialization Hq ↦→1. This further
suggests that the abelian-nonabelian correspondence proved for quantum cohomology
in [CFKS08] may extend to quantum K theory; see [GW22]. See also [IMT15] for
a related method to obtain relations in quantum K theory by identifying difference
operators which annihilate the appropriate J-function.

Example 9.6. In the case of Gr(2; 5), the superpotential is given by

W =
1

2
(lnX1)

2
+

1

2
(lnX2)

2 − (lnX1) (lnX2)

+ ln (−q)

2∑
a=1

lnXa +

5∑
i=1

2∑
a=1

Li2
(
XaT

−1
i

)
.(36)

and the chiral ring relations (35) are, for a ∈ {1, 2},

(37)

5∏
i=1

(Ti −Xa) = (−q)
X2

a

X1X2

5∏
j=1

Tj .

In the nonequivariant case, we take Ti = 1, then the chiral ring relations become

(38) − qX1 = X2(1−X1)
5, −qX2 = X1(1−X2)

5,

in agreement with (33). We show in the next section how the symmetrization of
this leads the quantum K relations; see also Appendix B below.

10. Coulomb branch and quantum Whitney presentations

The goal of this section is to obtain the Coulomb branch presentation we denoted

by Q̂KT (Gr(k;n)), and predicted by physics. We will prove in Theorem 10.2 that
this is equivalent to the presentation of QKT (Gr(k;n)) from Theorem 8.2.

The idea of obtaining the Coulomb branch presentation was already used in
the authors’ previous work [GMSZ22]. First, one rewrites the ‘vacuum equa-
tions’ (35) in terms of the ‘shifted variables’ from (39) below. Since Gr(k;n) =
Hom(Ck,Cn)//GLk, any presentation has to satisfy a symmetry with respect to
Sk, the Weyl group of GLk. While the ideal generated by equations (35) is sym-
metric under permutations in Sk, the individual generators are not. To rectify this,
we write down a ‘characteristic polynomial’ (cf. Equation (44) below) where all
the coefficients satisfy the required symmetry. Then we utilize the Vieta equations
for this polynomial to obtain a set of polynomial equations. These are Sk × Sn−k

symmetric, and they give a presentation of the equivariant quantum K ring. To
start, define

(39) ζi = 1− Ti, za = 1−Xa (1 ≤ i ≤ n; 1 ≤ a ≤ k),

so that for any a, equation (35) becomes

(40)

(
n∏

i=1

(za − ζi)

)⎛⎝∏
b ̸=a

(1− zb)

⎞⎠ + (−1)kq(1− za)
k−1

n∏
i=1

(1− ζi) = 0.

4More precisely, in loc. cit. one needs to take the T -equivariant version of all objects involved,
and their q is the ‘loop parameter,’ which is different from ours.
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A key observation is that we may rewrite this in the form

(41) (za)
n +

n−1∑
i=0

(−1)n−i(za)
iĝn−i(z, ζ, q) = 0.

where the ĝi(z, ζ, q) are symmetric polynomials in z1, . . . , zk and ζ1, . . . , ζn. To do
this, it suffices to take a = 1. The only non-trivial part is the symmetry in the
variables z. This follows from repeated application of the identity

ej(z2, . . . , zk) = ej(z1, . . . , zk)− z1ej−1(z2, . . . , zk)

to the factor
∏

j=2(1− zj) =
∑k−1

i=0 (−1)iei(z2, . . . , zk), then collecting the resulting
powers of z1.

To state the formula for the polynomial ĝℓ(z, ζ, q), we fix some notation. Set

cz =
k∏

i=1

(1−zi) =
∑
i≥0

(−1)iei(z); c
z
≤j =

j∑
i=0

(−1)iei(z); c
z
≥j = (−1)j(c(z)−c≤j−1(z)).

Informally these are truncations of the Chern polynomial in z = (z1, . . . , zk). One

defines similarly cζ , cζ≤j , c
ζ
≥j ; these are polynomials in ζ = (ζ1, . . . , ζn). Set

(42) c′≥ℓ(z, ζ) = eℓ(ζ) + eℓ−1(ζ)c
z
≥2 + eℓ−2(ζ)c

z
≥3 + . . .+ eℓ−k+1(ζ)c

z
≥k.

If clear from the context, we will drop the variables z, ζ from the notation. (As
usual, ei(z) = ei(ζ) = 0 for i < 0 and e0(z) = e0(ζ) = 1.) Define the matrices

E =

⎛⎜⎜⎜⎝
−1 0 . . . 0
−e1 −1 . . . 0
...

...
. . . 0

−ek−1 −ek−2 . . . −1

⎞⎟⎟⎟⎠ ;

Cζ
≥n−k+2 =

⎛⎜⎜⎜⎝
cζ≥n−k+2

...

cζ≥n

0

⎞⎟⎟⎟⎠ ; Cz,ζ
≥n−k+1 =

⎛⎜⎜⎜⎝
c′≥n−k+1

c′≥n−k+2
...

c′≥n

⎞⎟⎟⎟⎠ .

Besides their usefulness in the lemma below, these matrices will appear naturally in
§11 below, in relation to an equivariant generalization of Grothendieck polynomials.

Lemma 10.1. The polynomial coefficients ĝℓ(z, ζ, q) from (41) are given by:

(43)

{
c′≥ℓ(z, ζ) if 1 ≤ ℓ ≤ n− k

c′≥ℓ(z, ζ) +
(
E · Cζ

≥n−k+2

)
ℓ
+ (−1)n+kq

(
k−1
n−ℓ

)
cζ if n− k + 1 ≤ ℓ ≤ n.

Here Mℓ denotes the ℓ−n+k-th component of the k-component column matrix M .

Proof. This is a tedious, but rather standard algebraic manipulation, which we
leave to the reader. □

Define a ‘characteristic polynomial’ f(ξ, z, ζ, q) by

(44) f(ξ, z, ζ, q) = ξn +

n−1∑
i=0

(−1)n−iξiĝn−i(z, ζ, q).

From (41) we deduce that f(ξ, z, ζ, q) = 0 whenever ξ = za for some a. Since f
is a degree n polynomial in ξ, the equation f(ξ, z, ζ, q) = 0 has n roots in some
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appropriate field extension, which by construction include z1, . . . , zk. Let {z, ẑ} =
{z1, · · · , zk; ẑk+1, · · · , ẑn} denote the n roots of (44). From Vieta’s formula,

(45)
∑

i+j=ℓ

ei(z)ej(ẑ) = ĝℓ(z, ζ, q).

This determines the ‘Coulomb branch ring’:

(46) Q̂KT (Gr(k;n)) = KT (pt)[[q]][e1(z), · · · , ek(z), e1(ẑ), · · · , en−k(ẑ)]/Ĵ,

where Ĵ is the ideal generated by the polynomials

(47)
∑

i+j=ℓ

ei(z)ej(ẑ)− ĝℓ(z, ζ, q); 1 ≤ ℓ ≤ n.

Our goal is to demonstrate that the relations above are equivalent to those from
Theorem 8.2 arising from the QK-Whitney relations. To this aim, apply the same
change of variables (39) to the relations (23), denoting in addition z̃i = 1 − X̃i.
Then the presentation in Theorem 8.2 can be written as:

(48) Q̃KT (Gr(k;n)) = KT (pt)[[q]][e1(z), . . . , ek(z), e1(z̃), . . . , en−k(z̃)]/J̃,

where the ideal J̃ is generated by
∑

i+j=ℓ ei(z)ej(z̃) − g̃ℓ(z, ζ, q) for

(49) g̃ℓ(z, ζ, q) = eℓ(ζ) − q

1− q

ℓ∑
s=n−k+1

(−1)s
(
n− s

ℓ− s

)
∆s+k−n,

for 1 ≤ ℓ ≤ n, and ∆i = ei(1 − z)en−k(1 − z̃). Note that g̃ also depends on z̃,
although this is not included in the notation. (In fact, in the proof of Theorem 10.2
we will eliminate the dependence on z̃; see Theorem 11.8.) To get a more explicit
formula, observe that

(50) ei(1− x1, . . . , 1− xn) =

i∑
s=0

(−1)s
(
n− s

i− s

)
es(x1, . . . , xn).

An easy algebra manipulation based on this formula shows that for 1 ≤ ℓ ≤ n,

ℓ∑
s=n−k+1

(−1)s
(
n− s

ℓ− s

)
es+k−n(1− z) = (−1)n−k+1

(( k

ℓ+ k − n

)
− eℓ+k−n(z)

)
,

therefore (49) may be rewritten as

(51) g̃ℓ(z, ζ, q) = eℓ(ζ) + (−1)n−k q

1− q
en−k(1− z̃)

(( k

ℓ+ k − n

)
− eℓ+k−n(z)

)
.

Theorem 10.2. The following three rings are isomorphic to one another and to
the algebra QKT (Gr(k;n)):

(a) The ring Q̂KT (Gr(k;n)) from (46);

(b) The ring Q̃KT (Gr(k;n)) from (48);

(c) The ring KT (pt)[[q]][e1(X), . . . , ek(X), e1(X̃), . . . , en−k(X̃)]/Iq, where Iq is
the ideal defined in (23).

Note that the ring in (c) was proved in Theorem 8.2 to be isomorphic to the
‘geometric’ ring QKT (Gr(k;n)). We already proved that the isomorphism of the
rings in (b) and (c) follows from the change of variables

zi = 1−Xi (1 ≤ i ≤ k); z̃j = 1− X̃j (1 ≤ j ≤ n− k).
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The isomorphism between (a) and (b) is proved in the next section. In the process
we will reformulate these presentations in terms of (equivariant) Grothendieck poly-
nomials and (equivariant) complete homogeneous symmetric functions; see Theo-
rem 11.8 below. An example for QKT (Gr(2; 5)) is given in Appendix B.

11. An isomorphism between the Whitney and Coulomb branch
presentations

The goal of this section is to prove Theorem 11.12, thus finishing the proof of
Theorem 10.2. We utilize the notation from §10.

11.1. Grothendieck polynomials. We start by recording some algebraic identi-
ties about the Grothendieck polynomials Gj(z) = Gj(z1, . . . , zk), indexed by single
row partitions. As usual, z = (z1, . . . , zk), and ei = ei(z), hi = hi(z) denote the
elementary symmetric function, respectively the complete homogeneous symmetric
function. It was proved in [Len00, p.80] that
(52)

Gj(z) =
∑

a,b≥0;a+b≤k

(−1)bhj+aeb = hj+(hj+1−hje1)+(hj+2−hj+1e1+hje2)+ . . . .

An equivalent formulation proved in [Len00, Thm. 2.2]) is

(53) Gj(z) = hj(z)−
k∑

a=2

(−1)as(j,1a−1)(z),

where sµ(z) denotes the Schur polynomial, and (j, 1a−1) is the partition (j, 1, . . . , 1)
with a − 1 1’s. We refer to [Len00] for more about these polynomials. We record
a Cauchy-type identity for Grothendieck polynomials. It is likely well known, but
we could not find a reference.

Lemma 11.1. If ℓ ≥ 1 and z = (z1, . . . , zk), then

(54)
∑

i,j≥0;i+j=ℓ

(−1)jei(z)Gj(z) = eℓ+1(z)− eℓ+2(z) + . . . .

In particular for ℓ ≥ k,
∑

i,j≥0;i+j=ℓ(−1)jei(z)Gj(z) = 0.

Proof. From (53) we obtain∑
i+j=ℓ

(−1)jei(z)Gj(z) = eℓ(z) +

ℓ∑
j=1

k∑
a=1

(−1)j+a−1eℓ−j(z)s(j,1a−1)(z)

= eℓ(z) +

k∑
a=1

(−1)a−1

⎡⎣ ℓ∑
j=1

(−1)jeℓ−j(z)s(j,1a−1)(z)

⎤⎦ .

To prove the lemma, it suffices to show that

ℓ∑
j=1

(−1)jeℓ−j(z)s(j,1a−1)(z) = −eℓ+a−1(z).

The case when a = 1 follows from
∑

i+j=ℓ(−1)jei(z)hj(z) = 0 (i.e., the usual

Cauchy formula) for ℓ ≥ 1. For a > 1 we utilize the Pieri formula to multiply a
Schur function by ei(z) (cf e.g. [Ful97]). To start, only Schur functions sµ with
µ1 ≤ ℓ+ 1 and 1 ≤ µ2 ≤ 2 may appear. Furthermore, if µ = (µ1, . . . , µs) is such a
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partition with 1 < µ1 ≤ ℓ+ 1, then the Schur function sµ appears in the left hand
side twice, in the expansion of the terms

(−1)µ1eℓ−µ1
(z)sµ1,1a−1(z) + (−1)µ1−1eℓ−µ1+1(z)sµ1−1,1a−1(z).

Since the coefficients of sµ appearing in the Pieri rule equal to 1, and since the
terms above have opposite signs, it follows that the corresponding sµ’s cancel. We
are left with the situation when µ1 = 1. Then necessarily j = 1, i.e., we consider
the terms −eℓ−1(z)ea(z). Again by Pieri formula, the only multiple of sµ with
µ1 = 1 is −eℓ+a−1(z). This finishes the proof. □

Define the column matrices:

H =

⎛⎜⎜⎜⎝
(−1)n−k+1hn−k+1

(−1)n−k+2hn−k+2

...
(−1)nhn

⎞⎟⎟⎟⎠ ; G =

⎛⎜⎜⎜⎝
(−1)n−k+1Gn−k+1

(−1)n−k+2Gn−k+2

...
(−1)nGn

⎞⎟⎟⎟⎠ .

Define also the k × k matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c≤k−1 −c≤k−2 · · · · · · · · · · · · (−1)k−1

(−1)k−2c≥k c≤k−2 · · · · · · · · · · · · (−1)k−2

...
. . .

. . .
. . . · · · · · ·

...
(−1)k−ic≥k · · · (−1)k−ic≥k−i+2 c≤k−i −c≤k−i−1 · · · (−1)k−i

...
. . .

. . .
. . .

. . . · · ·
...

−c≥k · · · · · · · · · · · · c≤1 −1
c≥k · · · · · · · · · · · · c≥2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
Lemma 11.2. The following equality holds: G = AH.

Proof. This follows from (52) together with the Cauchy formula
∑

a+b=j(−1)ahaeb =
0 for j ≥ 1. □

11.2. Equivariant deformations. Motivated by propositions 11.6 and 11.7 be-
low, define the polynomials h′

j , G
′
j ∈ C[z, ζ] by

h′
j(z, ζ) =

∑
a+b=j

(−1)aea(ζ)hb(z); G′
j(z, ζ) =

∑
a+b=j

(−1)aea(ζ)Gb(z).

Note that both are symmetric polynomials in variables z and ζ. The polyno-
mial h′

j(z, ζ) is a specialization of the factorial complete homogeneous polyno-
mial (see e.g. [Mih08]), but the polynomial G′

j(z, ζ) is far from being the factorial

Grothendieck polynomial [McN06], which is much more complicated. 5

Lemma 11.3. The following Cauchy-type formulae hold:
(a) If ℓ ≥ 1 then ∑

a+b=ℓ

(−1)ah′
a(z, ζ)eb(z) = eℓ(ζ).

(b) If ℓ ≥ 1 then ∑
a+b=ℓ

(−1)aG′
a(z, ζ)eb(z) = c′≥ℓ(z, ζ),

5The factorial Grothendieck polynomials, which represent the equivariant Schubert classes in
KT (Gr(k;n)), are not symmetric in ζ.
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where c′≥ℓ(z, ζ) is defined in (42).

Proof. For (a), we collect the coefficients of ei(ζ) from both sides. On the left hand
side this coefficient equals to∑

i≤a

(−1)aeℓ−a(z)(−1)iha−i(z) =
∑
i≤a

(−1)a−ieℓ−a(z)ha−i(z).

By Cauchy formula, this equals to 0 if i < ℓ, and it equals to 1 if i = ℓ, thus
proving part (a). We apply the same strategy for (b). The coefficient of eℓ(ζ) on
the left hand side equals to 1, and a calculation similar to (a) shows that if i < ℓ,
the coefficient of ei(ζ) is∑

i≤a

(−1)aeℓ−a(z)(−1)iGa−i(z) = eℓ−i+1(z)− eℓ−i+2(z) + . . . = cz≥ℓ−i+1.

Here the first equality follows from the Cauchy-type formula (54). This finishes the
proof of (b). □

Our next task is to write down the analogue of Lemma 11.2 relating the polyno-
mials G′

ℓ and h′
ℓ. To this aim, in analogy to (52), define the polynomial

(55)

G†
j(z, ζ) =

∑
(−1)bh′

j+a(z, ζ)eb(z) = h′
j+(h′

j+1−h′
je1)+(h′

j+2−h′
j+1e1+h′

je2)+. . . ,

where the sum is over a, b ≥ 0 and a+ b ≤ k.

Lemma 11.4. For any ℓ ≥ 1, the following holds:

G†
ℓ(z, ζ)−G′

ℓ(z, ζ) = (−1)ℓ+1(eℓ+1(ζ)− eℓ+2(ζ) + . . .+ (−1)k−1eℓ+k(ζ)).

Proof. This follows from a direct calculation, by identifying the coefficients of ei(ζ)
in both sides. We leave the details to the reader. □

Define the column matrices:

H ′ =

⎛⎜⎜⎜⎝
(−1)n−k+1h′

n−k+1

(−1)n−k+2hn−k+2

...
(−1)nh′

n

⎞⎟⎟⎟⎠ ; G′ =

⎛⎜⎜⎜⎝
(−1)n−k+1G′

n−k+1

(−1)n−k+2G′
n−k+2

...
(−1)nG′

n

⎞⎟⎟⎟⎠ .

Corollary 11.5. The following holds: G′ = AH ′ + Cζ
≥n−k+2.

Proof. Let G† be the column matrix with entries (−1)n−k+iG†
n−k+i(z, ζ). As in

the proof of Lemma 11.2, G† = AH ′. Then the claim follows from the formula in
Lemma 11.4. □

11.3. Elimination of variables. Our strategy is to utilize the Vieta relations in

order to eliminate the variables ẑi, z̃i from the quantum rings Q̂KT (Gr(k;n)) and

Q̃KT (Gr(k;n)) respectively, then prove that the resulting rings are isomorphic. It
turns out that the elimination process naturally leads to the study of variations of
the Grothendieck, respectively the complete homogeneous polynomials.

Proposition 11.6. Consider the Coulomb branch ring Q̂KT (Gr(k;n)) from (46).
Then the following holds for 1 ≤ ℓ ≤ n− k:

eℓ(ẑ) ≡
∑

i+j=ℓ

(−1)jei(ζ)Gj(z) = (−1)ℓG′
ℓ(z, ζ) mod Ĵ .
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Proof. We proceed by induction on ℓ ≥ 1. If ℓ = 1, the claim follows from the defi-

nition of g1(z, ζ, q) and the fact that G1(z) =
∑k

i=1(−1)iei(z) from Equation (53).
By induction and the relations (45) we obtain that for ℓ ≥ 2,

eℓ(ẑ) ≡ gℓ(z, ζ, q)−
ℓ−1∑
s=0

eℓ−s(z)

⎛⎝ ∑
i+j=s

(−1)jei(ζ)Gj(z)

⎞⎠
= gℓ(z, ζ, q)−

ℓ−1∑
s=0

eℓ−s(z)(−1)sG′
s(z, ζ)

= gℓ(z, ζ, q) + (−1)ℓG′
ℓ(z, ζ)− c′≥ℓ(z, ζ)

= (−1)ℓG′
ℓ(z, ζ).

(56)

Here the third equality follows from Lemma 11.3(b), and the fourth follows from
the definition of ĝℓ from Lemma 10.1. □

Proposition 11.7. Consider the quantum K Whitney ring Q̃KT (Gr(k;n)) from
(48). Then the following holds for 1 ≤ ℓ ≤ n− k:

eℓ(z̃) ≡
∑

i+j=ℓ

(−1)jei(ζ)hj(z) = (−1)ℓh′
ℓ(z, ζ) mod J̃ .

Proof. The proof is similar to that for Proposition 11.6, utilizing the Cauchy for-
mula in Lemma 11.3(a), and that in this case g̃ℓ(z, ζ) = eℓ(ζ) by Equation (51). □

Recall the notation from (42) and the surrounding paragraphs. Define the col-
umn matrices

(57) R̃ =

⎛⎜⎜⎜⎝
g̃n−k+1

g̃n−k+2

...
g̃n

⎞⎟⎟⎟⎠ ; R̂ =

⎛⎜⎜⎜⎝
ĝn−k+1

ĝn−k+2

...
ĝn

⎞⎟⎟⎟⎠ ; Eζ
n−k+1 =

⎛⎜⎜⎜⎜⎝
en−k+1(ζ)

...

...
en(ζ)

⎞⎟⎟⎟⎟⎠
Theorem 11.8. (a) The ring Q̃K(Gr(k;n)) is isomorphic to KT (pt)[[q]][e1, . . . , ek]/Ĩ,

where the ideal Ĩ is defined by R̃ = EH ′ + Eζ
n−k+1, i.e.,⎛⎜⎜⎜⎝

g̃n−k+1

g̃n−k+2

...
g̃n

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−1 0 . . . 0
−e1 −1 . . . 0
...

...
. . . 0

−ek−1 −ek−2 . . . −1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
(−1)n−k+1h′

n−k+1

(−1)n−k+2h′
n−k+2

...
(−1)nh′

n

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
en−k+1(ζ)

...

...
en(ζ)

⎞⎟⎟⎟⎟⎠
(b) The ring Q̂K(Gr(k;n)) is isomorphic to KT (pt)[[q]][e1, . . . , ek]/Î, where the

ideal Îq is defined by R̂ = EG′ + Cz,ζ
≥n−k+1, i.e.,⎛⎜⎜⎜⎝

ĝn−k+1

ĝn−k+2

...
ĝn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−1 0 . . . 0
−e1 −1 . . . 0
...

...
. . . 0

−ek−1 −ek−2 . . . −1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
(−1)n−k+1G′

n−k+1

(−1)n−k+2G′
n−k+2

...
(−1)nG′

n

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎜⎝
c′≥n−k+1

...

...
c′≥n

⎞⎟⎟⎟⎟⎠
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Proof. The isomorphisms are obtained by eliminating the variables z̃i, respectively

ẑi (1 ≤ i ≤ n − k) from the first n − k relations in Q̂KT (Gr(k;n)) respectively

Q̃KT (Gr(k;n)) (cf. (46) respectively (48)). We indicate the main steps to obtain
these formulae.

Consider first Q̃KT (Gr(k;n)). By Proposition 11.7, ej(z̃) ≡ (−1)jh′
j(z, ζ) mod-

ulo Ĩ; we utilize this to eliminate the first n− k relations from J̃ to show that Ĩ is
generated by ∑

a+b=ℓ;b≤n−k

(−1)bea(z)h
′
b(z, ζ)− g̃ℓ(z, ζ), n− k + 1 ≤ ℓ ≤ n.

From the Cauchy formula in Lemma 11.3(a) it follows that for n− k + 1 ≤ ℓ ≤ n,∑
a+b=ℓ;b≤n−k

(−1)beah
′
b = eℓ(ζ)−

ℓ∑
b=n−k+1

(−1)beℓ−bh
′
b ≡ g̃ℓ mod Ĩ .

Writing these expressions in matrix form proves the claim for Ĩ.

Same proof works for Î, after utilizing that ej(ẑ) ≡ (−1)jG′
j(z, ζ) modulo Î by

Proposition 11.6, and the Cauchy-type formula from Lemma 11.3(b); the matrix

Cz,ζ
≥n−k+1 accounts for the right hand side of the Cauchy formula. □

11.4. Proof of Theorem 10.2. We need the following algebraic identities.

Lemma 11.9. (a) Let A′ be the antidiagonal transpose of A from (11.1). Then

A′

⎛⎜⎜⎜⎝
(
k
1

)
− e1(z)(

k
2

)
− e2(z)
...(

k
k

)
− ek(z)

⎞⎟⎟⎟⎠ =

k∏
i=1

(1− zi)

⎛⎜⎜⎜⎝
(
k−1
k−1

)(
k−1
k−2

)
...(

k−1
0

)
⎞⎟⎟⎟⎠ .

(b) R̂− Cz,ζ
≥n−k+1 − E · Cζ

≥n−k+2 = (−1)n+kq
∏n

i=1(1− ζi)

⎛⎜⎜⎜⎝
(
k−1
k−1

)(
k−1
k−2

)
...(

k−1
0

)
⎞⎟⎟⎟⎠.

Proof. Part (a) follows e.g. from induction on i; we leave the details to the reader.
Part (b) is equivalent to Lemma 10.1. □

Next we state the key result which relates the two presentations.

Lemma 11.10. The following equality holds:

R̂− Cz,ζ
≥n−k+1 − E · Cζ

≥n−k+2 ≡ A′(R̃− Eζ
n−k+1) mod Ĩ ,

where A′ is the antidiagonal transpose of A.

Proof. From part (b) of Lemma 11.9 we need to show that

A′(R̃− Eζ
n−k+1) ≡ (−1)n+kq

n∏
i=1

(1− ζi)

⎛⎜⎜⎜⎝
(
k−1
k−1

)(
k−1
k−2

)
...(

k−1
0

)
⎞⎟⎟⎟⎠ .
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From the definition of g̃ℓ from (51) it follows that for ℓ ≥ n− k + 1,

g̃ℓ − eℓ(ζ) ≡ (−1)n−k q

1− q
en−k(1− z̃)

(( k

ℓ+ k − n

)
− eℓ+k−n(z)

)
.

By Lemma 11.9(a), for n− k + 1 ≤ ℓ ≤ n,

A′(R̃− Eζ
n−k+1) ≡ (−1)n−k q

1− q
en−k(1− z̃)A′ ·

(( k

ℓ+ k − n

)
− eℓ+k−n(z)

)
ℓ+k−n

= (−1)n−k q

1− q
en−k(1− z̃)ek(1− z)

⎛⎜⎜⎜⎝
(
k−1
k−1

)(
k−1
k−2

)
...(

k−1
0

)
⎞⎟⎟⎟⎠ .

If one writes en−k(1 − z̃)ek(1 − z) in the presentation from Theorem 10.2(c), it

follows that in Q̃KT (Gr(k;n))

en−k(1− z̃)ek(1− z) = en−k(X̃)ek(X) ≡ (1− q)

n∏
i=1

(1− ζi) mod Ĩ .

Then the claim follows by combining the previous equalities. □

Corollary 11.11. The ideal Î ⊂ Ĩ.

Proof. We need to show that R̂−EG′−Cz,ζ
≥n−k+1 ≡ 0 modulo Ĩ. From definitions,

Lemma 11.10 and Corollary 11.5 we have

R̂− EG′ − Cz,ζ
≥n−k+1 = R̂− E(AH ′ + Cζ

≥n−k+2)− Cz,ζ
≥n−k+1

= R̂− ECζ
≥n−k+2 − Cz,ζ

≥n−k+1 − EAH ′

≡ A′(R̃− Eζ
n−k+1)− EAH ′

≡ AEH ′ − EAH ′.

Then the claim follows because EA = A′E as matrices with polynomial coefficients.
□

The next theorem finishes the proof of Theorem 10.2.

Theorem 11.12. There is KT (pt)[[q]]-algebra isomorphism

KT (pt)[[q]][e1, . . . , ek]/Î → KT (pt)[[q]][e1, . . . , ek]/Ĩ

sending ei(z) ↦→ ei(z).

Proof. By Corollary 11.11, there is a surjective ring homomorphism of KT (pt)[[q]]-
algebras

Φ : KT (pt)[[q]][e1(z), . . . , ek(z)]/Î → KT (pt)[[q]][e1(z), . . . , ek(z)]/Ĩ,

sending ei(z) ↦→ ei(z). To prove Φ is an isomorphism, we follow the same approach
as in the proof of Theorem 8.2, relying on Proposition A.3. We need to check

that the Coulomb branch presentation KT (pt)[[q]][e1, . . . , ek]/Î is a finite module
over KT (pt)[[q]], and that we obtain an isomorphism after taking the quotient by

⟨q⟩. To start, note that from the definition of the ideal Ĵ from (47), the variables
z1, . . . , zk are solutions of the Bethe Ansatz equations (40). Then the same hap-

pens for the variables z1, . . . , zk appearing in KT (pt)[[q]][e1, . . . , ek]/Î. From this,
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and from the special case q = 0 of [GK17, Lemma 4.7], we obtain that the quo-

tient KT (pt)[[q]][e1, . . . , ek]/(⟨q⟩ + Î) is KT (pt)-module-generated by the factorial
Grothendieck polynomialsGλ(z; ξ) from [McN06], where λ is included in the k×(n−
k) rectangle. (This result uses a determinantal formula for factorial Grothendieck
polynomials from [GK17, Prop. 2.14], in turn attributed to [IN13].) Since Φ is
surjective, Proposition 8.1 and Lemma A.2 imply that the images Φ(Gλ(z; ξ))

modulo q form a basis in KT (Gr(k;n)) ≃ KT (pt)[[q]][e1, . . . , ek]/(⟨q⟩ + Ĩ). This
implies that Φ must be an isomorphism modulo ⟨q⟩. Then the same argument as
in Theorem 8.2, based on [Eis95, Ex. 7.4, p. 203] (cf. Remark A.4), implies that

KT (pt)[[q]][e1, . . . , ek]/Î is a finite module, thus Φ is an isomorphism, by Proposi-
tion A.3. □

12. Examples: Non-equivariant and quantum cohomology
specializations

In this section we illustrate the non-equivariant specializations of the Coulomb
QK Whitney presentations of QKT (Gr(k;n)), i.e. when ζi = 0 for 1 ≤ i ≤ n. The
second part is dedicated to the quantum cohomology limit. In particular we show
that both presentations specialize to Witten’s presentation of QH∗

T (Gr(k;n)).

12.1. Non-equivariant presentations. We abuse notation and denote by the
same symbols the non-equivariant specializations of relations, ideals, etc. For ℓ ≥ 1,
the polynomials g̃ℓ, ĝℓ are given by

g̃ℓ(z, q) = (−1)n−k q

1− q
en−k(1− z̃)

(( k

ℓ+ k − n

)
− eℓ+k−n(z)

)
;

ĝℓ(z, q) = cz≥ℓ+1 + (−1)n+kq

(
k − 1

n− ℓ

)
.

In particular, if 1 ≤ ℓ ≤ n − k, g̃ℓ = 0 and ĝℓ does not depend on q. The non-
equivariant versions of propositions 11.7 and 11.6 state that for any 1 ≤ j ≤ n− k,
the following identities hold:

(58) ej(z̃) = (−1)jhj(z) mod J̃ ; ej(ẑ) = (−1)jGj(z) mod Ĵ .

Remark 12.1. It is well known that the Grothendieck polynomials Gj(z) represent
Schubert classes Oj ∈ K(Gr(k;n)) [Las90]. Nevertheless, the geometric interpreta-
tion ej(ẑ) = (−1)jOj fails in the equivariant case, already for j = 1. The Schubert
divisor class may be calculated from the exact sequence:

0 → ∧kS ⊗ C−t1−...−tk → OGr(k;n) → O1 → 0.

Then, from the geometric interpretation of the variables zi, ζi,

(59) O1 = 1− (1− z1) · . . . · (1− zk)

(1− ζ1) · . . . · (1− ζk)
∈ KT (Gr(k;n)).

However, from Proposition 11.6,

e1(ẑ) = −G′
1(z, ζ) = −G1(z) + e1(ζ),

which is different from the expression in Equation (59).



QK THEORY VIA SCHUR BUNDLES 31

Corollary 12.2. The rings Q̃K(Gr(k;n)) and Q̂K(Gr(k;n)) are isomorphic to

Q̃K(Gr(k;n)) = Z[[q]][e1, . . . , ek]/Ĩ; Q̂K(Gr(k;n)) = Z[[q]][e1, . . . , ek]/Î,

where the ideal Ĩ is defined by R̃ = EH, i.e.,⎛⎜⎜⎜⎝
g̃n−k+1

g̃n−k+2

...
g̃n

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−1 0 . . . 0
−e1 −1 . . . 0
...

...
. . . 0

−ek−1 −ek−2 . . . −1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
(−1)n−k+1hn−k+1

(−1)n−k+2hn−k+2

...
(−1)nhn

⎞⎟⎟⎟⎠
and the ideal Î is defined by R̂ = EG+ Cz

≥n−k+2, i.e.,⎛⎜⎜⎜⎝
ĝn−k+1

ĝn−k+2

...
ĝn

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
−1 0 . . . 0
−e1 −1 . . . 0
...

...
. . . 0

−ek−1 −ek−2 . . . −1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
(−1)n−k+1Gn−k+1

(−1)n−k+2Gn−k+2

...
(−1)nGn

⎞⎟⎟⎟⎠+

⎛⎜⎜⎜⎝
cz≥n−k+2

...
cz≥n

0

⎞⎟⎟⎟⎠
12.1.1. Projective spaces. To illustrate both presentations we take two ‘opposite’
examples, for the projective space Gr(1;n) and its dual Gr(n − 1;n). These are
isomorphic manifolds, and their quantum K rings are also isomorphic. But the
isomorphism is highly non-trivial; this is expected, given that the Grassmannians
are realized as different GIT quotients. A worked out example for QKT (Gr(2; 5) is
included in Appendix B.

If k = 1, then Gn(z) = hn(z) = zn1 . The presentations from Corollary 12.2 are

Q̂K(Gr(1;n)) = Z[[q]][z]/⟨zn − q⟩ = Q̃K(Gr(1;n)).

Consider now k = n−1. From (53) it follows that the Grothendieck polynomials Gj

are significantly more complicated than the polynomials hj . To illustrate, consider
QK(Gr(3; 4)). The QK Whitney presentation is

Q̃K(Gr(3; 4)) =
Z[[q]][e1(z1, z2, z3), e2(z1, z2, z3), e3(z1, z2, z3)]
⟨g̃2 + h2, g̃3 + e1h2 − h3, g̃4 + e2h2 − e1h3 + h4⟩

where

g̃2 =
q

q − 1
(1+e1)(3−e1); g̃3 =

q

q − 1
(1+e1)(3−e2); g̃4 =

q

q − 1
(1+e1)(1−e3).

The Coulomb presentation is

Q̂K(Gr(3; 4)) =
Z[[q]][e1(z1, z2, z3), e2(z1, z2, z3), e3(z1, z2, z3)]

⟨ĝ2 +G2, ĝ3 + e1G2 −G3 − e3, ĝ4 + e2G2 − e1G3 +G4⟩

where ĝ2 = e3 − q, ĝ3 = −2q, ĝ4 = −q and

G2 = h2 − s2,1 + s2,1,1; G3 = h3 − s3,1 + s3,1,1; G4 = h4 − s4,1 + s4,1,1.

12.1.2. Relation to the Gorbounov and Korff presentation. In this section we re-
call the description of the non-equivariant quantum K-theory ring QK(Gr(k;n))
from Gorbounov and Korff’s paper [GK17], based on the Bethe Ansatz equations.
Then we indicate an isomorphism between this and our non-equivariant Coulomb

presentation Q̂K(Gr(k;n)).
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For a variable ξ, denote by ⊖ξ = −ξ
1−ξ . Consider a sequence of indeterminates

E1, . . . , Ek, H1, . . . ,Hn−k, and extend this sequence by requiring E0 = H0 = 1 and
Hr = 0 for r > n− k and Er = 0 for r > k. Consider the generating series

H(ξ) =

n−k∑
r=0

(Hr −Hr+1)ξ
n−k−r; E(ξ) =

k∑
r=0

(Er − Er+1)ξ
k−r.

The following is stated in [GK17, Theorem 1.1].

Theorem 12.3 (Gorbounov-Korff). The non-equivariant quantum K theory ring
of Gr(k;n) is generated by H1, . . . ,Hn−k, E1, . . . , Ek with relations given by the
coefficients of ξ in the expansion of

(60) H(ξ)E(⊖ξ) =

(
k∏

i=1

⊖ξ

)
ξn−k(1−H1) + q.

Denote by QKGK(Gr(k;n)) the Gorbounov and Korff’s presentation. A direct
computation gives that the coefficient of ξℓ in (60) is equal to

(61) (−1)k(Hℓ −Hℓ+1) +

ℓ∑
j=1

(Hℓ−j −Hℓ+1−j)

⎡⎣(−1)k−j
k∑

s=j

(
s− 1

s− j

)
Es

⎤⎦
=

{
0 1 ≤ ℓ ≤ n− k − 1,

(−1)n−ℓq
(

k
n−ℓ

)
n− k ≤ ℓ ≤ n.

We provide next an algebra isomorphism between the (non-equivariant) Coulomb

branch presentation Q̂K(Gr(k;n)) and the presentation QKGK(Gr(k;n)).

Proposition 12.4. Consider the map Ξ : QKGK(Gr(k;n)) → Q̂K(Gr(k;n)) de-
fined by

Ξ(Hj) = Gj(z) for 1 ≤ j ≤ n− k; Ξ(Ej) = G1j (z) for 1 ≤ j ≤ k.

Then Ξ is an algebra isomorphism.

Proof. The main argument is showing that Ξ is well defined. To calculate the
image of the left hand side of (61), one utilizes the polynomial identity eℓ(z) =∑k

j=ℓ

(
j−1
j−ℓ

)
G1j (z) (see, e.g., [Len00, Thm. 2.2]), together with the (non-equivariant)

Cauchy identity from Lemma 11.3(b). We leave the details to the reader. □

12.2. Quantum cohomology as a limit. Next we discuss how the quantum
K theory reduces to the quantum cohomology. Mathematically, this is achieved
by taking leading terms, or, equivalently, taking the associated graded rings. In
physics this corresponds to ‘taking a two-dimensional limit’ which we recall next,
see [GMSZ22]. If we assume the theory is defined on a 3-manifold S1 ×Σ for some
Riemann surface Σ, where S1 has diameter L, then

q = Lnq2d, Xa = exp (Lσa) = 1 + Lσa +
L2

2
σa

2 + · · · ,

Ti = exp (Lmi) = 1 + Lmi +
L2

2
mi

2 + · · ·
(62)
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Here q2d is the quantum parameter in the 2d theory and mi are elements in H∗
T (pt)

(in physics terminology, the twisted masses). The term −Lmi corresponds to the
cohomological parameter ti ∈ H∗

T (pt). We have

za = 1−Xa = −Lσa −
L2

2
σa

2 − . . . ; ζi = 1− Ti = −Lmi −
L2

2
mi

2 − . . . .

In the two-dimensional limit, L → 0 and the leading terms will dominate. We
now take the 2d limit in Equation (35) arising from the Coulomb branch. After
taking the leading terms, (35) becomes

n∏
i=1

(σa −mi) = (−1)k−1q2d, a = 1, . . . , k.

These are the generators which determine the chiral rings of the 2d gauge lin-
ear sigma model (GLSM) for Gr(k;n) when twisted masses mi are turned on.
The 2d limits of the polynomials ĝℓ(z, ζ, q) are ĝℓ(z, ζ, q) → Lℓg2dℓ (σ,m, q2d), with
ĝ2dℓ (z,m, q2d) given by

ĝ2dℓ (σ,m, q2d) = eℓ(m) + (−1)n+kq2dδℓ,n, ℓ = 1, . . . , n.

where δℓ,n is the Kronecker delta. Then the 2d limit of the Coulomb branch pre-
sentation in (46) is

(63)
∑

i+j=ℓ

ei(σ)ej(σ̂) = ĝ2dℓ (σ,m, q2d), ℓ = 1, . . . , n.

We may identify {−σa} with Chern roots of S and {−σ̂a} with Chern roots of Q.
This recovers the equivariant quantum Whitney relations from (1):

cT (S) ⋆ cT (Q) = cT (Cn) + (−1)kq2d.

As we observed earlier, the 2d limits of the Coulomb branch and the Whitney
presentations from (46) and (48) coincide. Indeed, under the change of variables
from (62) and after taking leading terms we obtain

g̃2dℓ (σ,m, q2d) = eℓ(m) + (−1)n−kq2dδℓ,n = g2dℓ (σ,m, q2d), ℓ = 1, . . . , n.

Appendix A. Completions of filtered modules

For the convenience of the reader, in this appendix we gather some results about
I-adic completions of modules. We utilize them to deduce properties of the (equi-
variant) quantum K theory in terms of those of the ordinary (equivariant) K theory,
but they may be of more general interest. We follow the terminology from [AM69,
Ch. 10].

From now on we will consider a commutative ring R with a descending filtration
by additive groups R = R0 ⊃ R1 ⊃ . . . such that Ri · Rj ⊂ Ri+j . Consider
a filtered R-module M , i.e., M is equipped with a filtration by additive groups
M = M0 ⊃ M1 ⊃ . . . such that RiMj ⊂ Mi+j .

Fix I ⊂ R an ideal. This determines filtrations Rn := InR and Mn := InM of

R respectively M . We denote by R̂, M̂ the I-adic completions.

If we assume in addition that R is Noetherian then R̂ is Noetherian and it is
equipped with an ideal Î ≃ I ⊗R R̂ included in the Jacobson radical of R̂ [AM69,
Prop. 10.15]. For a finitely generated R-module M , there is an isomorphism

(64) M ⊗R R̂ ≃ M̂ ;
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see [AM69, Prop. 10.13]. Furthermore, R̂ is a flat R-algebra, in particular the

operation M ↦→ M̂ preserves short exact sequences. Finally, if we assume that M
is equipped with another filtration compatible with I, that is, I.Mn ⊂ Mn+1, then

(64) equips M̂ with a natural filtration induced from M which is compatible with

respect to Î.
We recall next a version of Nakayama’s Lemma.

Lemma A.1. Let R be a Noetherian ring, I ⊂ R an ideal, and let M be a finitely

generated R̂-module. Let M ′ ⊂ M be a submodule such that

M/M ′ = Î .(M/M ′).

Then M = M ′ as R̂-modules.

Proof. The claim follows from the ordinary Nakayama Lemma [AM69, Prop. 2.6],

utilizing that Î is included in the Jacobson radical of R̂. □

Lemma A.2. Let M be a free R-module of rank p where R is an integral domain.
Then any set of R-module generators m1, ...,mp ∈ M of cardinality p forms a basis.

Proof. Let K be the fraction field of R. Then M ⊗R K is a K-vector space of
dimension p. Consider the map Φ : Kp → M given by Φ(ei) = mi, where ei is the
natural basis for Kp. We have an exact sequence

0 → ker(Φ) → Kp → M → 0.

Now K is a flat R-module (see [AM69, Cor. 3.6]), and therefore we have an exact
sequence of K-vector spaces

0 → ker(Φ)⊗R K → Kp ⊗R K → M ⊗R K → 0.

Since dimK M ⊗R K = p, the last map is an isomorphism. The hypothesis implies
that m1⊗1, ...,mp⊗1 is a generating set for the K-vector space, therefore it is also
a basis. If c1m1 + ... + cpmp = 0 in M then c1m1 ⊗ 1 + ... + cpmp ⊗ 1 = 0, from
where we get that ci = 0, which finishes the proof. □

Proposition A.3. Let R be a Noetherian integral domain, and let I ⊂ R be an
ideal. Assume that R is complete in the I-adic topology. Let M,N be finitely gen-
erated R-modules.

Assume that the R-module N , and the R/I-module N/IN , are both free mod-
ules of the same rank p < ∞, and that we are given an R-module homomorphism
f : M → N such that the induced R/I-module map f : M/IM → N/IN is an
isomorphism of R/I-modules.

Then f is an isomorphism.

Proof. We start by observing that since R is complete in the I-adic topology, R̂ ≃ R

and Î ≃ I; cf. [AM69, Prop. 10.5 and Prop. 10.15]. Let m1, . . . ,mp ∈ M be any
lifts of a basis of the free R/I-module M/IM ≃ N/IN . By Lemma A.1 applied
to the modules M and M ′ = ⟨m1, . . . ,mp⟩, the elements m1, . . . ,mp generate M ,
and similarly the elements f(m1), . . . , f(mp) generate N . Since N is free of rank p,
it follows from Lemma A.2 that f(m1), . . . , f(mp) is a basis over R. In particular,
f must be surjective. To prove that f is an isomorphism, it suffices to show that
m1, . . . ,mp are linearly independent over R. If

∑
cimi = 0 with ci ∈ R, taking

the image under f and using that {f(mi)} form a basis implies that ci = 0. This
finishes the proof. □
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Remark A.4. A useful criterion for finite generation of a module is provided in
[Eis95, Ex. 7.4]. Assume that R ⊂ S are Noetherian rings such that R is complete
with respect to an ideal m ⊂ S, and that m is contained in the Jacobson radical of
S. If M is a finitely generated S-module and M/mM is a finitely generated R/m-
module, then M is a finitely generated R-module. See also [GMS+23, Appendix A]
for more details.

Remark A.5. By [AM69, Prop. 10.24] the hypothesis that M,N are finitely gen-
erated may be deduced if we know that R is I-complete, and M,N are equipped with
good and separated filtrations compatible with respect to I. (Recall that a filtration
of M is good if the associated graded grM =

⨁
i Mi/Mi+1 is a finitely generated

grR-module, and it is separated if
⋂

i Mi = 0.)

Remark A.6. If f : M → N is a filtered homomorphism of R-modules (i.e.
f(Mi) ⊂ Ni) which induces an isomorphism grf : grM → grN of graded grR-

modules, then the induced map between the completions f̂ : M̂ → N̂ is an isomor-
phism [AM69, Lemma 10.23]. This is an alternative to Proposition A.3.

Remark A.7. Instead of working with completions in Lemma A.1 and Proposi-
tion A.3, one may work with the localizations with respect to the multiplicative set
S = 1 + I. The hypothesis that R is Noetherian is not needed in this case, and the
ideal S−1I is included in the Jacobson radical of S−1R; cf. [AM69, Ch. 3, Ex. 2].

If R is Noetherian, then S−1R ↪→ R̂ is a subring [AM69, Remark, p. 110].

Appendix B. Example: Equivariant quantum K theory of Gr(2; 5)

In this section, we illustrate the Whitney and Coulomb branch presentations for
QKT (Gr(2; 5)). The QK Whitney relations are obtained by equating powers of y
in

(1 + yX1)(1 + yX2)(1 + yX̃1)(1 + yX̃2)(1 + yX̃3) =

5∏
i=1

(1 + Tiy)−
q

1− q
y4X̃1X̃2X̃3(X1 +X2 + yX1X2).

(65)

Under the changes of variable Xi = 1 − zi, (1 ≤ i ≤ 2), X̃j = 1 − z̃j , (1 ≤ j ≤ 3),
Ts ≡ 1− ζs (1 ≤ s ≤ 5), the QK Whitney relations become∑

i+j=ℓ

ei(z)ej(z̃) ≡ eℓ(ζ)−
q

1− q
(δℓ,4∆1 + δℓ,5(∆1 −∆2)) ,

for 1 ≤ ℓ ≤ 5, with

∆1 = e1(1− z1, 1− z2)(1− z̃1)(1− z̃2)(1− z̃3);

∆2 = e2(1− z1, 1− z2)(1− z̃1)(1− z̃2)(1− z̃3).

One may solve for ei(z̃) in terms of ei(z) to obtain:

e1(z̃) ≡ e1(ζ)− h1(z) = −h′
1(z, ζ);

e2(z̃) ≡ e2(ζ)− h1(z)e1(ζ) + h2(z) = −h′
2(z, ζ);

e3(z̃) ≡ e3(ζ)− h1(z)e2(ζ) + h2(z)e1(ζ)− h3(z) = −h′
3(z, ζ).
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This allows the elimination of the variables z̃. The remaining two relations, and

the Cauchy formula from Lemma 11.3 give the generators for the ideal Ĩ:

e4(ζ)− h′
4(z, ζ) = −e1(z)h

′
3(z, ζ) + e2(z)h

′
2(z, ζ)

≡ e4(ζ)−
q

1− q
(1 + h1(z) + h2(z))(2− e1(z)).

e5(ζ) + h′
5(z, ζ)− e1(z)h

′
4(z, ζ) = −e2(z)h

′
3(z, ζ)

≡ e5(ζ)−
q

1− q
(1 + h1(z) + h2(z))(1− e2(z)).

We now turn to the Coulomb branch relations for QKT (Gr(2; 5)). The Vieta
relations give ∑

i+j=ℓ

ei(z)ej(ẑ) ≡ ĝℓ(z, ζ, q) ,

for 1 ≤ ℓ ≤ 5, where the polynomials ĝℓ(z, ζ, q) are given by

ĝℓ(z, ζ) = eℓ(ζ) + eℓ−1(ζ)e2(z), ℓ = 1, 2, 3,

ĝ4(z, ζ) = e4(ζ) + e3(ζ)e2(z)− e5(ζ)− q

5∑
s=0

(−1)ses(ζ),

ĝ5(z, ζ) = e5(ζ) + e2(z)e4(ζ)− e1(z)e5(ζ)− q

5∑
s=0

(−1)ses(ζ).

One may solve for ei(z̃) in terms of ei(z) to obtain:

e1(ẑ) = e1(ζ)−G1(z) = −G′
1(z, ζ);

e2(ẑ) = e2(ζ)−G1(z)e1(ζ) +G2(z) = G′
2(z, ζ);

e3(ẑ) = e3(ζ)−G1(z)e2(ζ) +G2(z)e1(ζ)−G3(z) = −G′
3(z, ζ).

Here Gi(z) are the Grothendieck polynomials, given by

G1(z) = h1 − e2 = z1 + z2 − z1z2;

G2(z) = h2 − s2,1 = z21 + z1z2 + z22 − z21z2 − z1z
2
2 ;

G3(z) = h3 − s3,1 = z31 + z21z2 + z1z
2
2 + z32 − z31z2 − z21z

2
2 − z1z

3
2 .

After eliminating the variables ẑ, the remaining two relations, and the Cauchy

formula from Lemma 11.3(b) give the generators for the ideal Î of Q̂KT (Gr(2; 5)):

ĝ4(z, ζ, q) ≡ −G′
4(z, ζ) + c′≥4 = −G′

4(z, ζ) + e4(ζ) + e3(ζ)e2(z)

ĝ5(z, ζ, q) ≡ −e1(z)G
′
4(z, ζ) +G′

5(z, ζ) + c′≥5

= −e1(z)G
′
4(z, ζ) +G′

5(z, ζ) + e5(ζ) + e4(ζ)e2(z),

with the equivariant Grothendieck polynomials defined by

G′
4(z, ζ) = G4(z)−G3(z)e1(ζ) +G2(z)e2(ζ)−G1(z)e3(ζ) + e4(ζ);

G′
5(z, ζ) = G5(z)−G4(z)e1(ζ) +G3(z)e2(ζ)−G2(z)e3(ζ) +G1(z)e4(ζ)− e5(ζ),

and G4(z), G5(z) are given by (53).
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