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Abstract

We propose a top-down approach to non-invertible symmetries in 2D QFTs and their 3D

associated symmetry topological field theories. We focus on the gauge theory engineered on

D1-branes probing a particular Calabi-Yau 4-fold singularity. We show how to derive the

symmetry topological field theory, a 3D Dijkgraaf-Witten theory, from the IIB supergravity

under dimensional reduction. We also identify branes behind the non-invertible topological

lines by dimensionally reducing their worldvolume actions. The action of non-invertible lines

on charged local operators is then realized as the Hanany-Witten transition.
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1 Introduction

Global symmetry is one of the most important concepts in quantum field theories (QFTs).

It provides powerful tools to investigate QFTs, even those strongly coupled or without La-

grangian. A modern approach to understanding global symmetries is through their associated

topological symmetry operators or defects [1]: For a D-dimensional QFT with a q-form global

symmetry whose symmetry group is G, a topological operator U(MD−q−1)g is associated with

the group element g, and supported on the codimension-q manifold MD−q−1. An operator

charged under this q-form symmetry is supported on q-dimensional manifold Nq, linking with

the MD−q−1. It carries a representation of the group of the group G, and thus transformed

accordingly when acted by a topological operator U(MD−q−1)g. The group multiplication law

leads to the simple fusion rule between symmetry operators as U(MD−q−1)g×U(MD−q−1)h =

U(MD−q−1)gh. The existence of the group element g−1 gives rise to the invertibility of the

symmetry operator: U(MD−q−1)g × U(MD−q−1)g−1 ≡ U(MD−q−1) × U−1(MD−q−1) = 1. Re-

laxing the group multiplication law and considering non-trivial fusion rules for symmetry

operators Ui’s as Ui(MD−q−1)×Uj(MD−q−1) =
∑︁

k c
k
ijUk(MD−q−1), one ends up with symme-

tries which are not group-like, known as non-invertible symmetries1.

In the context of QFTs engineered from singularities in string theory, e.g., via geometric

engineering or brane probes, generalized global symmetries admit elegant top-down realiza-

tions. On the one hand, the charged defects are built by branes wrapping non-compact cycles

of the internal geometry, extending from the singularity (where the QFT is engineered) to

“infinity” [7–10]. On the other hand, it is recently pointed out in [11–13] (see also [14–18])

that generalized symmetry operators arise from wrapped branes “at infinity”2. In particu-

lar, in the case of non-invertible symmetries, the topological field theory (TFT) living on the

symmetry operator, responsible for the non-trivial fusion rules, can be directly obtained from

the topological sector of the brane action on its worldvolume via dimensional reduction on

the wrapped cycles “at infinity”.

Despite many top-down approaches and brane constructions for non-invertible symmetries

being introduced in the literature, as far as our knowledge, they almost exclusively focus on

QFTs in D > 2 dimensions. To some extent, this is a bit surprising since non-invertible

symmetries are most ubiquitous in 2D3. In this note, we fill this small gap by explicitly

constructing brane origins for non-invertible symmetries in 2D QFTs with string theory

realization.

1We refer the reader to [2–6] for recent reviews.
2In addition to branes, generalized symmetry operators can also arise from purely geometric configuration.

See e.g., [19] and Appendix A in [14].
3In 2D, non-invertible symmetries have a long history. See, e.g., [20–27] for a partial list of seminal papers.
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2D QFT on D1-branes probing singularities. The 2D QFTs we will focus on are gauge

theories engineered on D1-branes probing the conical singularity of a Calabi-Yau 4-fold (CY4).

The IIB string theory background reads

R1,1 × Y, (1.1)

where R1,1 supports the worldvolume of a stack of N D1-branes and Y is a local non-

compact CY4. In the case when Y is toric, an infinite class of 2D theories has been explicitly

constructed, using an elegant T-dual IIA intersecting brane configuration known as brane

brick models [28–31] 4. The resulting 2D QFTs are U(N)K quiver gauge theories5, which can

be fully specified by quiver diagrams (encoding the field content and the gauge interaction)

and superpotentials (encoding the matter interaction)6.

To illustrate our idea explicitly, in this note, we focus on the 2D gauge theory associated

with a specific conical CY4,

Cone(Y 2,0(P1 × P1)), (1.2)

which is the cone over a smooth 7-manifold known as Y 2,0(P1 ×P1). The 2D gauge theory is

constructed in [40], whose quiver diagram is shown in Figure 1.1. The 7-manifold Y 2,0(P1×P1)

falls in an infinite class of Sasaki-Einstein 7-manifolds denoted as Y p,k(P1×P1), which are lens

space S3/Zp bundles over P1 × P1 [42]. We leave the systematic treatment of non-invertible

and other global symmetries for general brane brick models in the forthcoming work [43].

3D symmetry TFT from string theory. We will use the symmetry TFT framework

to build non-invertible symmetries for our interested 2D gauge theory. Symmetry TFT is a

(D+1)-dimensional TFT capturing the topological nature of generalized global symmetries

in a D-dimensional QFT [21, 44–56]. It has a physical boundary and a topological boundary.

The local information (local operators and their correlation functions) of the interested D-

dimensional QFT is realized on the physical boundary, also known as the relative QFT [52].

On the other hand, gapped boundary conditions are defined on the topological boundary,

which specifies the global structure of the D-dimensional QFT.

For QFTs engineered on conical singularities of a local non-compact internal geometry Y

in string theory, the associated symmetry TFT can be derived from the topological sector of

the dimensional reduction for the 10D (11D for M-theory) supergravity on the asymptotic

boundary ∂Y [57] (see also [14, 15, 19, 56, 58–60]). Various string theory fluxes under

4See [32–40] for more details.
5Strictly speaking, there also exist gauge theory phases whose gauge factors U(Ni) can have different

ranks. These are referred to as non-toric phases [30], which can be derived by performing the N = (0, 2)

triality [41] from toric phases.
6Brane brick models enjoy N = (0, 2) supersymmetry. However, at the level of generalized global sym-

metries we discuss in this note, supersymmetry matters little.
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Figure 1.1: Quiver diagram for a 2D gauge theory phase associated with Y 2,0(P1×P1) probed

by N D1-branes [40]. Yellow circles denote U(N) gauge groups. Oriented black lines and

unoriented red lines denote bifundamental chiral and Fermi superfields, respectively.

dimensional reduction give rise to gauge fields in the symmetry TFT. For our interested case

in this note, namely, D1-branes probing Cone(Y (2,0)(P1 × P1)), the dimensional reduction to

obtain a 3D symmetry TFT is performed in the IIB string theory background

M3 × Y (2,0)(P1 × P1), (1.3)

where M3
∼= M2 × Rr≥0 is the 3D manifold for the symmetry TFT bulk. The physical

boundary corresponds to r = 0 where D1-branes are localized, while the topological boundary

arises at r = ∞ where boundary conditions of various IIB fluxes are picked. The detailed

computation will be discussed in Section 2, where we show the resulting 3D symmetry TFT

is a twisted Z2 × Z2 × Z2 3D Dijkgraaf-Witten theory

S3 =
2π

2

∫︂
M3

a1δâ1 + b1δb̂1 + c1δĉ1 + a1b1c1, (1.4)

Non-invertible symmetry operators from branes. Recall that picking a topological

boundary condition for the symmetry TFT corresponds to fixing a global structure of its

associated D-dimensional QFT. This procedure is called picking a polarization, and the re-

sulting QFT with a well-defined global structure is referred to as an absolute QFT (see, e.g.,

[19, 52, 61, 62]). From this bulk perspective, gauging a symmetry in a QFT to get another

QFT is translated in changing from one polarization to another.

Global symmetries of the resulting absolute QFT can be obtained by investigating the

behavior of bulk operators under the topological boundary condition. Operators trivialized

when touching the gapped boundary (due to the possible Dirichlet condition), giving rise to
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charged defects. In contrast, those not trivialized are still topological operators, generating

global symmetries for the absolute QFT.

Based on this general idea, one can start with the symmetry TFT (1.4) and write down

gauge-invariant line operators by purely field-theoretic consideration, much as in [63, 64].

However, since the Dijkgraaf–Witten theory (1.4) is derived from string theory, one naturally

asks whether there is a direct top-down approach to topological line operators. The answer

is indeed yes. As we will discuss in Section 2, all line operators, whether invertible or not,

have their corresponding brane origin. Line operators are obtained exactly from the brane

worldvolume action via dimensional reduction on various cycles wrapped by branes.

Having obtained line operators in the 3D bulk from branes, building non-invertible sym-

metries in 2D gauge theory associated with Y (2,0)(P1 × P1) then translates in writing down

polarizations under which the non-invertible bulk lines are still non-invertible when touching

the gapped boundary. We will show in Section 3 that these polarizations indeed exist, and

the resulting non-invertible symmetry is the well-known Z2 × Z2 Tambara-Yamagami fusion

category [65]! For example, the polarization corresponding to the boundary condition

a1, b̂1, ĉ1 Dirichlet; â1, b1, c1 Neumann, (1.5)

has the following non-invertible fusion rules

ND3 ×ND3 = 1 + ηF1 + ηD1 + ηF1ηD1,

ηF1 × ηF1 = ηD1 × ηD1 = 1,

ηF1 ×ND3 = ηD1 ×ND3 = ND3,

(1.6)

where ND3 is the non-invertible line from D3-brane, while ηF1, ηD1 are invertible Z2 lines from

F1- and D1-strings respectively.

In addition to polarizations enjoying non-invertible symmetries, we also find polarizations

where all topological line operators become invertible symmetry lines. That is to say, the

non-invertible symmetries we construct in this note are non-intrinsic [66–68].

2 3D Dijkgraaf–Witten Theory and its Line Operators

from IIB

In this section, we present how to obtain the 3D symmetry TFT and its line operators for

2D gauge theory associated with Cone(Y 2,0(P1×P1)) from IIB string theory via dimensional

reduction. In particular, we find the following top-down approach to the field theory content

IIB supergravity −→ 3D Dijkgraaf–Witten theory,

branes worldvolume actions −→ Line operators in the 3D bulk
(2.1)
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2.1 3D Dijkgraaf–Witten theory from the IIB supergravity

To derive the 3D symmetry TFT, we focus on the topological sector of the reduction for

IIB string theory on the asymptotic boundary of the Calabi-Yau 4-fold, which in this case is

just the base manifold L7 ≡ Y 2,0(P1 × P1) at infinity. In particular, we treat the various IIB

supergravity fluxes as elements in differential cohomology uplifts of (see, e.g.,[57, 61] )

H∗(L7,Z) =
{︁
Z, 0,Z2 ⊕ Z2, 0,Z⊕ Z2 ⊕ Z2,Z2,Z2,Z

}︁
. (2.2)

The above cohomology classes for L7 = Y 2,0(P1 × P1) can be found in [42].

The relevant topological action inherited from the IIB string theory, roughly speaking,

consists of two parts. The quadratic part comes from the kinetic terms for IIB fluxes, and

the cubic part comes from the 10D Chern-Simons coupling −
∫︁
C4∧dB2∧dC2.

7 Consider an

IIB string theory background without 7-branes. The topological action that we start with

reads
S11

2π
=

∫︂
N4×L7

1

2
F̆6 ⋆ F̆6 − F̆6 ⋆ H̆3 ⋆ Ğ3 (2.3)

which lives in 11D spacetime N4 × L7. The 4-manifold N4 satisfies ∂N4 = M3, an auxiliary

bulk manifold whose boundary is the 3-manifold where the symmetry TFT lives. Note that

all terms are 12-dimensional since we have uplifted IIB fluxes as differential cohomology

elements. F̆6 is the differential cohomology element whose connection part is the IIB self-

dual D3-brane 5-form flux F5. H̆3 and Ğ3 are differential cohomology uplift for F1- and

D1-string flux dB2 and dC2.
8

According to (2.2), we expand differential cohomology elements as

F̆6 =f̆6 ⋆ 1̆ +
2∑︂

α=1

F̆
(α)
4 ⋆ ŭ2(α) + F̆2 ⋆ ŭ4 +

2∑︂
α=1

F̆1(α) ⋆ ŭ
(α)
5 + Ă4 ⋆ t̆2 +

2∑︂
i=1

Ă
(i)
2 ⋆ t̆4(i),

Ğ3 =N v̆olM3 ⋆ 1̆ +
2∑︂

α=1

Ğ
(α)
1 ⋆ ŭ2(α) + C̆1 ⋆ t̆2,

H̆3 =h̆3 ⋆ 1̆ +
2∑︂

α=1

H̆
(α)
1 ⋆ ŭ2(α) + B̆1 ⋆ t̆2,

(2.4)

7The topological action of IIB string theory for symmetry TFT computation has been investigated in,

e.g., [8, 19, 56, 57, 69, 70]. We also refer the reader to the recent work [15] for a more systematic discussion.
8The ⋆ symbol defines a bilinear product operation on Cheeger–Simons characters H̆k1(Md)×H̆k2(Md) =

H̆k1+k2(Md) [71, 72]. In particular, when k1+k2 = d+1, the integral describes a perfect pairing H̆k1(Md)×
H̆d+1−k1(Md) → R/Z. We refer the reader to [73] for a nice review of differential cohomology.
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where the generators for various cohomology classes are denoted as

1̆ ↔ H0(L7,Z) = Z,
ŭ2(α), α = 1, 2 ↔ non-torsional H2(L7,Z) = Z2,

ŭ4 ↔ non-torsional H4(L7,Z) = Z,

ŭ
(α)
5 , α = 1, 2 ↔ H5(L7,Z) = Z2,

v̆ol ↔ H7(L7,Z) = Z,
t̆2 ↔ torsional H2(L7,Z) = Z2,

t̆4(i), i = 1, 2 ↔ torsional H4(L7,Z) = Z2 ⊕ Z2,

t̆6 ↔ H6(L7,Z) = Z2.

(2.5)

Fields from torsional parts give rise to finite symmetries while those from non-torsional parts

correspond to continuous symmetries. In this work, we only focus on finite symmetries and

their descendent non-invertible symmetries9, so we only turn on the fields as coefficients of

the torsional generators tp, where p = 2, 4, 6.

Substituting the torsional part of (2.4) into the 11D topological action (2.3), we derive

the 3D symmetry TFT for finite symmetries,

S3

2π
=

∫︂
N4

2∑︂
i,j=1

ΛijĂ
(i)
2 ⋆ Ă

(j)
2 −

∑︂
i

∆iĂ
(i)
2 ⋆ B̆1 ⋆ C̆1

=

∫︂
M3

∑︂
i,j

Λija
(i)
1 δa

(j)
1 −

2∑︂
i=1

∆ia
(i)
1 b1c1

(2.6)

where we use respective lower-case letters to express fields in terms of the ordinary cohomol-

ogy elements and omit the “∪” product symbol for simplicity. The coefficients in the action

are given by the linking numbers within the 7-manifold L7,

Λij ≡
1

2

∫︂
L7

t̆4(i) ⋆ t̆4(j) mod 1,

∆i ≡
∫︂
L7

t̆4(i) ⋆ t̆2 ⋆ t̆2 mod 1,

(2.7)

whose derivation requires expressing p-dimensional torsional generators t̆p in terms of various

compact (8− p)-cycles in the toric Calabi-Yau 4-fold [58]. The linking number computation

then translates into reading quadruple intersection numbers between codimension-2 divisors

in the toric varieties10.

9For brane interpretation of continuous symmetry operators, we refer the reader to [18].
10See Chapter 7 in [74] for how to compute intersection numbers in toric varieties.
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It is easy to see the action (2.6) is not complete. Notice that the quadratic term comes

from the non-commutativity for the boundary profile of the self-dual 5-form; thus, other

non-commutative fluxes should also be captured in the resulting 3D TFT [8]. This leads to

adding quadratic terms for b1 and c1 from the non-commutativity F1-NS5 and D1-D5 pairs

when wrapping torsional cycles linking to each other 11. The resulting TFT reads

S3

2π
=

∫︂
M3

∑︂
i,j

Λija
(i)
1 δa

(j)
1 + Ω

(︂
−c1δĉ1 + b1δb̂1

)︂
−

2∑︂
i=1

∆ia
(i)
1 b1c1 (2.8)

where ĉ1 and b̂1 are from IIB fluxes Ĝ7 and Ĥ7 (10D Hodge-dual of G3 and H7) via reduction

on torsional 5-cycles γ5 associated to the generator t̆6
12. Ω denotes the linking number

between the t̆2 and t̆6 generators:

Ω ≡
∫︂
L7

t̆2 ⋆ t̆6 mod 1. (2.9)

Computing the linking number (2.7, 2.9) and redefining the notation as

a
(1)
1 → a1, a

(2)
1 → â1, (2.10)

we end up with an elegant result

S3 =
2π

2

∫︂
M3

a1δâ1 + b1δb̂1 + c1δĉ1 + a1b1c1, (2.11)

which is just a 3D Z2 × Z2 × Z2 Dijkgraaf-Witten theory with a simple twist a1b1c1.

Each TFT field serves as the background gauge field for a factor within the defect group

[7, 19], which now can be straightforwardly read as

D =
(︁
Za

2 × Zâ
2

)︁
⊕
(︂
Zb

2 × Zb̂
2

)︂
⊕
(︁
Zc

2 × Zĉ
2

)︁
. (2.12)

We use “×” to denote the group factors with non-trivial Dirac pairing between their de-

fects, or equivalently, those background gauge fields canonical conjugate to each other un-

der the TFT quantization. “⊕”, on the contrary, means group factors without any non-

commutativity between their fluxes.

11We thank Inaki Garcia Etxebarria for valuable discussions on this point
12We would like to stress that differential cohomology and flux non-commutativity is not the only way to

read the quadratic terms in the symmetry TFT. In fact, it is also possible to derive these terms directly from

the supergravity kinetic terms. See [60, 75], and Appendix B in [56] for more details.
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2.2 Line operators from brane worldvolume actions

Having derived a 3D Dijkgraaf-Witten theory as the symmetry TFT for finite symmetries in

the 2D QFT, the next natural question is: What is the spectrum of line operators in this 3D

TFT, and how do these operators translate in (non-invertible) topological defect lines in the

2D QFT? Field-theoretically, this question has been intensively investigated in, e.g., [64]. In

this section, we will provide a top-down treatment where topological defect lines, no matter

whether invertible or not, enjoy elegant origins as branes in the IIB string theory.

The first step is to determine the candidate of branes that are responsible for line operators

in the Dijkgraaf-Witten theory (2.11). Recall finite gauge fields in (2.11) are reduced from

various IIB fluxes, each of which couples to a certain type of branes. For example, ĉ1 is

the expansion field from the t̆6 reduction of
˘̂
G7 (as a differential cohomology element) on

TorH6(L7,Z), which corresponds to the IIB flux Ĝ7 (electrically) coupled to D5-branes.

More precisely, according to the universal coefficient theorem TorHn = TorHn+1, we have

the correspondence between torsional cohomology generators and torsional cycles

γ(i)
n ↔ tn+1(i). (2.13)

This translates in the ĉ case as

ĉ ↔ D5s on γ5, (2.14)

where γ5 ∈ TorH5(L7,Z) is the torsional 5-cycle dual to the t̆6 generator. Similarly, one

can derive brane patterns associated with each TFT field. The dimensional reduction of the

D5-brane topological coupling then gives the corresponding naive magnetic line operator in

the 3D TFT:

exp

(︃
2πi

∫︂
M6

C6

)︃
→ exp

(︃
2πi

∫︂
M1×γ5

˘̂
G7

)︃
= exp

(︃
πi

∫︂
M1

ĉ1

)︃
. (2.15)

However, this invertible line is not the full construction of the magnetic operator depen-

dent on ĉ, because it is not gauge-invariant within our interested Dijkgraaf-Witten theory

(see also e.g., [64]). Note that C6 does not carry the full topological information of the D5-

brane but only the leading term of the Wess-Zumino part of the D5-brane action. In order

to encode the full topological effect of the D5-brane on the 3D Dijkgraaf-Witten theory (or

equivalently, on the 2D QFT on the physical boundary of the 3D bulk), we consider the

following action,

Stop
D5 =

∫︂
Df̂4Df2 exp

(︃
2πi

∫︂
N2×γ5

f̂4df2 + Ĝ7 − F5(B2 − f2)−
1

2
G3(B2 − f2)

2

)︃
. (2.16)

This is a topological action on an auxiliary 7D bulk N2 × γ5, where N2 satisfies ∂N2 = M1,

i.e. an auxiliary 2-manifold whose boundary is the topological line supporting the operator
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in the resulting 3D TFT. In this topological action, f2 is the field strength of the dynamical

gauge field from the F1 open string fluctuation, and f̂4 is its hodge dual on the D5-brane

worldvolume. The first term thus carries the relevant information from the Dirac-Born-Infeld

part of the D-brane action [15]. The other three terms come from the Wess-Zumino part

of the brane action [76], where the leading term Ĝ7 is the origin for the naive magnetic

operator which we discussed in (2.15). F5, G3 are fluxes for the induced lower dimensional

D3- and D1-brane charges, respectively, while B2 is the regular notation for the NS-NS field

electrically coupled to F1-strings. Note that the path integral is only performed over f2 and

f̂4, which are dynamical degrees of freedon on the D5-brane worldvolume.

In order to perform the dimensional reduction on the torsional cycle γ5, as what we did in

computing the symmetry TFT, we promote the topological action in terms of the differential

cohomology elements13

Stop
D5 →

∫︂
D ˘̂
f5Df̆3 exp

(︃
2πi

∫︂
N2×γ5

˘̂
f5 ⋆ f̆3 +

˘̂
G8 − F̆5 ⋆ (H̆3 − f̆3)−

1

2
Ğ3 ⋆ (H̆3 − f̆3)

2

)︃
.

(2.17)

The expansions of F̆5 and H̆3 are already given in (2.4)14, while the expansion for
˘̂
G8,

˘̂
f5 and

f̆3 can be defined as

˘̂
f5 = ϕ̂1 ⋆ t̆4(1) + ϕ̆′

1 ⋆ t̆4(2) + · · · ,
f̆3 = ϕ̆1 ⋆ t̆2 + · · · ,

(2.18)

where we only write down terms relevant to the reduction on the torsional cycle γ5. Again,

using the linking number between various cohomology generators, the resulting 1D TFT

reads

Sγ5
D5 ∝

∫︂
Dϕ̂0Dϕ0 exp

(︃
πi

∫︂
M1

ĉ1

)︃
exp

(︃
πi

∫︂
M1

ϕ̂0δϕ0 + ϕ0a1 − ϕ0b0c1 +
1

2
ϕ2
0c1

)︃
, (2.19)

where db0 = b1, and we have omitted all other terms decoupled from the dynamical ϕ̂0 and

ϕ0. Taking variation of ϕ0, we get the condition

δϕ̂0 = a1 + ϕ0c1 − b0c1, (2.20)

substituting which back to (2.19), we integral over c1 and end up with the topological line

operator

Sγ5
D5 ∝ ND5(M1) ≡

∫︂
Dϕ̂0Dϕ0 exp

(︃
πi

∫︂
M1

ĉ1

)︃
exp

(︃
πi

∫︂
M1

ϕ̂0δϕ0 + ϕ0a1 − ϕ̂0b1

)︃
. (2.21)

13The (H̆3 − f̆3)
2 here means an order-5 differential cohomology element from the star product between

the differential cohomology element H̆3 − f̆3 and its connection part.
14Note that in (2.4), the F̆6 is the differential cohomology element via F5 is its connection part, but here

F̆5 is the differential cohomology element itself, regarded as gauge-invariant field strength.
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This is a non-invertible gauge-invariant magnetic line operator for the 3D Dijkgraaf-Witten

theory, matching the result in [64].

The fusion rule for this line operator is

ND5 ×ND5 =

[︃
1 + exp

(︃
πi

∫︂
M1

a1

)︃]︃[︃
1 + exp

(︃
πi

∫︂
M1

b1

)︃]︃
. (2.22)

Further note that e
πi

∫︁
M1

a1 ≡ ηa and e
πi

∫︁
M1

b1 ≡ ηb are Z2 topological lines, where we use η to

denote invertible lines with subindices showing the TFT field dependence. The right-hand

side of the above equation is the condensation of Z2 ×Z2 topological lines on the M1, which

can be regarded as a result of higher-gauging [77]. Now we can write down the full fusion

rule involving non-invertible line ND5, invertible Z2 lines ηa and ηb as

ND5 ×ND5 = 1 + ηa + ηb + ηaηb,

ηa × ηa = ηb × ηb = 1,

ηa ×ND5 = ηb ×ND5 = ND5,

(2.23)

which is exactly the Z2 × Z2 Tambara-Yamagami category [65].

Similarly, we can derive other topological line operators respectively dependent on a1, â1, b1, b̂1
and c1 as what we did for ĉ and its corresponding D5-brane action. We leave the computation

to the interested reader as an exercise and conclude the results in Table 1.

Line Operators in 3D TFT Branes Configuration

ηD3 = e
πi

∫︁
M1

a1 D3-brane on γ
(1)
3

ηF1 = e
πi

∫︁
M1

b1 F1-string on γ1

ηD1 = e
πi

∫︁
M1

c1 D1-string on γ1

ND3 =
∫︁
Dϕ̂0Dϕ0e

πi
∫︁
M1

â1e
πi

∫︁
M1

ϕ̂0δϕ0+ϕ0b1−ϕ̂0c1 D3-brane wrapping γ
(2)
3

NNS5 =
∫︁
Dϕ̂0Dϕ0e

πi
∫︁
M1

b̂1e
πi

∫︁
M1

ϕ̂0δϕ0+ϕ0c1−ϕ̂0a1 NS5-brane wrapping γ5

ND5 =
∫︁
Dϕ̂0Dϕ0e

πi
∫︁
M1

ĉ1e
πi

∫︁
M1

ϕ̂0δϕ0+ϕ0a1−ϕ̂0b1 D5-brane wrapping γ5

Table 1: Line operators in 3D Dijkgraaf-Witten theory (2.11) and their brane origins. The

first three brane configurations give rise to invertible electric lines, while the last three

wrapped branes correspond to non-invertible magnetic lines.

It is easy to see the electric Z2 lines in (2.23) are identified with the brane origin ηa =

ηD3, ηb = ηF1. Furthermore, the non-invertible lines from D3- and NS5-branes also obey the

Z2 × Z2 Tambara-Yamagami fusion category respectively:

ND3 ×ND3 = 1 + ηF1 + ηD1 + ηF1ηD1,

ηF1 × ηF1 = ηD1 × ηD1 = 1,

ηF1 ×ND3 = ηD1 ×ND3 = ND3,

(2.24)
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and

NNS5 ×NNS5 = 1 + ηF1 + ηD3 + ηF1ηD3,

ηF1 × ηF1 = ηD3 × ηD3 = 1,

ηF1 ×NNS5 = ηD3 ×NNS5 = NNS5,

(2.25)

3 Branes Behind Polarizations and Non-invertible Sym-

metries in 2D

The 3D symmetry TFT bulk itself does not fully specify the global symmetry structure of the

2D QFT. At this stage, the 2D QFT associated with the conical singularity probed by D1-

branes is a relative QFT [19, 52, 62]. It does not have a well-defined scalar-valued partition

function but carries a partition vector. The corresponding space for the partition vector

is regarded as the Hilbert space H from the 3D TFT quantization (see, e.g., [21, 47, 52]).

Therefore, in this sense, the 2D QFT is “relative” to the 3D bulk theory.

In order to get rid of the “relativeness” upon the 3D bulk and thus obtain a well-defined

QFT with a scalar-valued partition function, we need to pick a polarization for the system.

From the 3D TFT perspective, this translates in introducing a purely gapped boundary,

on which we impose a topological boundary condition. Such a boundary condition can be

equivalently presented as a Lagrangian subgroup L ⊂ D of the defect group D.15 With

respect to the partition vector space under the 3D TFT quantization, the relative QFT and

the gapped boundary condition can be expressed as two boundary states

Colliding the gapped boundary with the relative QFT boundary, one obtains a genuine

2D system, known as an absolute QFT, that enjoys a scalar-valued partition function. This

process can be nicely expressed in terms of the inner product between boundary states |R⟩
and |P ;B⟩ in the partition vector space H:

ZP [B] = ⟨R|P ;B⟩. (3.1)

In this expression, ⟨R| denotes the relative QFT (dual) partition vector, |P ;B⟩ denotes

the boundary state for polarization P with the flux profile B, and ZP [B] gives rise to the

well-defined partition function with the presence of the background B16.

15Mathematically, the partition vector space of a relative QFT is captured by the Heisenberg group

H1(M2,D) with coefficients in the defect group D. Picking a polarization corresponds to picking a max-

imally isotropic subspace of the Heisenberg group. We refer the interested reader to [19] for a detailed

discussion.
16We remark that picking polarizations is not always possible for a generic relative QFT. Well-known

examples of this type include many 2D chiral CFTs and 6D SCFTs. See, e.g., [19, 52] for more details.
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3.1 A “Standard” polarization with only invertible symmetries

Come back to the 3D Dijkgraaf-Witten theory (2.11) and its relative 2D QFT associated

with Y 2,0(P1 × P1). The simplest boundary condition one can consider is

a1, b1, c1 Dirichlet; â1, b̂1, ĉ1 Neumann. (3.2)

This corresponds to the polarization which picks the Lagrangian subgroup L of the defect

group (2.12)

L = Zâ
2 × Zb̂

2 × Zĉ
2. (3.3)

Therefore, the resulting absolute 2D theory has a (Z2)
3 global symmetry

G = Za
2 × Zb

2 × Zc
2. (3.4)

Based on their behavior under the gapped boundary condition (3.2), line operators in the

3D TFT shown in Table 1 induce to various local charged operators and topological defect

lines in the 2D absolute theory.

For instance, due to the Dirichlet condition of a1, ηD3 will terminate on the gapped

boundary, i.e., it does not continue to fluctuate along the boundary and thus becomes a local

operator after shrinking the 3D TFT bulk. On the contrary, ND3 is not fully trivialized on

the gapped boundary due to the Neumann condition of â1. Its line manifold continues along

the gapped boundary and thus gives rise to a topological defect line. However, it loses its

non-invertible property during this process. To see this, notice that b1 and c1 are trivialized

on the gapped boundary, leading to

ND3 → e
πi

∫︁
M1

â1

∫︂
Dϕ̂0Dϕ0e

πi
∫︁
M1

ϕ̂0δϕ0 ∝ e
πi

∫︁
M1

â1 , (3.5)

where the path integral over ϕ0 and ϕ̂0 is now totally decoupled as a overall factor. Therefore,

ND3, under this polarization/absolute QFT, becomes an invertible Z2 line.

What is the brane configuration behind all this? Recall that the brane origins of ηD3 and

ND3 are D3-branes wrapping γ
(1)
3 and γ

(2)
3 , respectively. The non-trivial linking between these

two torsional 3-cycles is responsible for the canonical conjugation between a1 and â1 in the 3D

Dijkgraaf-Witten theory, thus tells us the local operator reduced from ηD3 is charged under

the Za
2 ⊂ L∨ symmetry generated by the invertible line reduced from ND3. In the 10D IIB

string theory picture, the gapped boundary for the 3D TFT is translated into the topological

boundary conditions on the asymptotic boundary Y 2,0(P1 × P1) “at infinity”. Therefore, we

have the following correspondence between the brane pattern behind operators under (3.4)

and the polarization (3.2):

local operator from ηD3 : D3-branes wrapping cone(γ
(1)
3 ) ,

invertible Za
2 line from ND3 : D3-branes wrapping γ

(2)
3 “at infinity”.

(3.6)
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This type of brane pattern falls in the general idea of branes “at infinity” as generalized

symmetry operators introduced in [11–13]. The charged local operators and topological

defect lines for the global symmetry Zb
2 and Zc

2 can be read similarly:

local operator from ηF1 : F1-strings wrapping cone(γ2) ,

invertible Zb
2 line from NNS5 : NS5-branes wrapping γ5 “at infinity”,

local operator from ηD1 : D1-strings wrapping cone(γ2) ,

invertible Zc
2 line from ND5 : D5-branes wrapping γ5 “at infinity”,

(3.7)

3.2 Polarizations with non-invertible symmetries

In the standard polarization L = Zâ
2 ⊕ Zb̂

2 ⊕ Zĉ
2, there is a mixed anomaly for the global

symmetry G = Za
2 ×Zb

2 ×Zc
2, inherited from the Dijkgraaf-Witten twist in the 3D symmetry

TFT:

π

∫︂
M3

a1b1c1. (3.8)

According to [78] (see also [64]), gauging two of the three Z2 symmetries, the left-over one will

be promoted to a non-invertible symmetry. Let us take gauging Za
2×Zb

2 as an example. From

the symmetry TFT perspective, this gauging process translates into changing the original

Dirichlet boundary condition for a1 and b1 fields to Neumann boundary conditions. Their

canonical conjugate â1 and b̂1 then pick Dirichlet boundary conditions accordingly. The

resulting gapped boundary condition reads

â1, b̂1, c1 Dirichlet; a1, b1, ĉ1 Neumann, (3.9)

which picks a new polarization associated with the Lagrangian subgroup

L = Za
2 × Zb

2 × Zĉ
2. (3.10)

As we did in the “standard” polarization case, we can investigate the fate of various

line operators in Table 1 under the gapped condition (3.9) to investigate their roles in the

resulting 2D absolute QFT. It is easy to see now

ηD1,ND3,NNS5 (3.11)

are terminating on the gapped boundary, thus corresponding to local operators in the 2D

QFT, while

ηD3, ηF1,ND5 (3.12)

can continue along the gapped boundary, thus corresponding to the topological defect line.

Furthermore, the Neumann boundary condition for a1, b1 and ĉ1 preserves the non-invertible

property for the ND5 line, so it still reads

ND5 =

∫︂
Dϕ̂0Dϕ0e

πi
∫︁
M1

ĉ1e
πi

∫︁
M1

ϕ̂0δϕ0+ϕ0a1−ϕ̂0b1 . (3.13)
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Polarization L Global Symmetry Charged Operators Symmetry Lines

Zâ
2 × Zb̂

2 × Zĉ
2 Za

2 × Zb
2 × Zc

2 ηD3, ηF1, ηD1 ND3,NNS5,ND5

Za
2 × Zb

2 × Zĉ
2 Zâ

2 × Zb̂
2 TY category ND3,NNS5, ηD1 ηD3, ηF1,ND5

Za
2 × Zb̂

2 × Zc
2 Zâ

2 × Zĉ
2 TY category ND3, ηF1,ND5 ηD3, ηD1,NNS5

Zâ
2 × Zb

2 × Zc
2 Zb̂

2 × Zĉ
2 TY category ηD3,NNS5,ND5 ηF1, ηD1,ND3

Table 2: A “Standard” polarization with the (Z2)
3 invertible symmetry, as well as three

polarizations with the Z2×Z2 Tambara-Yamagami (TY) categorical symmetry. The concrete

torsional cycles wrapped by branes for various η and N operators can be found in Table 1.

The charge operators are built by branes terminating at the asymptotic boundary Y 2,0(P1 ×
P1), while the symmetry lines are built by branes “at infinity” along the asymptotic boundary.

Therefore, based on its fusion rule (2.23), we conclude the global symmetry for the po-

larization (3.10) is

G = Zâ
2 × Zb̂

2 Tambara-Yamagami Categorical Symmetry. (3.14)

The brane pattern for this global symmetry can be built by wrapping branes in (3.11) ter-

minating “at infinity” as charged operators while wrapping branes in (3.12) “at infinity” as

topological defect lines.

Field theoretically, one would follow the step in [78] to compute what would be a non-

invertible TFT promote of the invertible Zc
2 line after gauging with the presence of the

mixed anomaly (3.8). The result will perfectly coincide with (3.13)17. The punchline of

our top-down approach is that the non-invertible line directly comes from the D5-brane

worldvolume action, as we computed in Section 2. Its (non-)invertible property in absolute

QFTs before/after gauging simply results from changing polarizations, which translates into

different brane patterns “at infinity”.

We remark that the non-invertible symmetry in this context is known as the non-intrinsic

one [66]. This is because it is related to an invertible symmetry via changing polarizations18.

We conclude this subsection by presenting three polarizations that enjoy non-invertible

symmetries and their comparison with the “standard” polarization in Table 2.

17We thank Ho Tat Lam for valuable discussions on this point.
18For discussion on intrinsic vs. non-intrinsic non-invertible symmetries from higher-dimensional perspec-

tive, we refer the reader to [14, 67]

15



3.3 Action of non-invertible lines and the Hanany-Witten transi-

tion

One salient property of the non-invertible symmetry defect is its action on the charged

operator (see, e.g., [26, 79]). Consider the polarization (3.10) with the non-invertible line

ND5. Moving this line past the local operator charged under Zâ
2 (resp. Zb̂

2) will make the

charged operator non-genuine and attach to the topological Zâ
2 (resp. Zb̂

2) topological line.

Namely, it belongs to the defect Hilbert space of the line it attached [24].

This non-trivial action enjoys an elegant string theory origin as the Hanany-Witten tran-

sition [80]. Note that the charged operator under Zâ
2 (resp. Zb̂

2) comes from the D3-brane

wrapping on cone(γ
(2)
3 ) (resp. NS5-brane wrapping on cone(γ5)). When the D5-brane gen-

erating the non-invertible ND5 passes through the above D3-brane (resp. NS5-brane), a F1

string wrapping γ1 (resp. D3-brane wrapping γ
(1)
3 ) is generated connecting them. What ob-

ject is generated by the F1-string wrapping γ1 (resp. D3-brane wrapping γ
(1)
3 )? It is exactly

the topological defect line ηF1 (resp. ηD3) for the Zâ
2 (resp. Zb̂

2) symmetry (see Table 1 and

2)! See Figure 3.1 for an illustration of how the Hanany-Witten transition translates into

non-trivial transitions of charged operators in the polarization, e.g., L = Za
2 × Zb̂

2 × Zc
2.

Figure 3.1: Bottom: Action of non-invertible defect line NNS5 (in the polarization L =

Za
2 ×Zb̂

2 ×Zc
2) on the local operators charged under the invertible symmetry Zâ

2 and Zĉ
2. The

corresponding topological defect lines are generated under this action. Top: This non-trivial

action enjoys a string theory origin as the Hanany-Witten transition, where the created

branes wrapping cycles “at infinity” perfectly serve as the topological defect lines.
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Similar Hanany-Witten transition origin for the non-trivial action of non-invertible defect

has been observed in 4D QFTs [11, 14]. Still, to our knowledge, in the context of 2D QFTs,

this is the first time the Hanany-Witten interpretation of this action appears in the literature.

It is, therefore, natural to conjecture that for non-invertible symmetries with brane origins19,

this correspondence holds for diverse dimensions 20.

4 Future Directions

Our work suggests various natural directions for future investigation. Some obvious and

interesting directions include:

• As we pointed out at the beginning of this note, there is so far an infinite family of

2D gauge theories arising from D1-branes probing toric Calabi-Yau 4-folds. Investigat-

ing their symmetry TFTs, non-invertible, and other generalized symmetries would be

interesting. We will explore this subject in [43].

• There are four fusion categories associated with the same Z2 × Z2 TY fusion rule, but

distinguished by their associators or F-symbols [65]. Three of those are given by the

representations as Rep(D4), Rep(Q8) and Rep(H8)
21. Identifying which corresponds to

the categorical symmetry we derived in this note would be interesting. This example

may shed new light on a general question: Given a categorical symmetry with certain

fusion rules from string theory, is there any top-down approach to its F-symbols or

(generalized) Frobenius-Schur indicators? We expect this 2D example to be a nice

starting point to answer this question in diverse dimensions.

• Based on the above direction, it would also be interesting to investigate anomalies and

gauging of non-invertible symmetries from string theory perspectives, following the

purely field-theoretic consideration [21, 23, 82–84].
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[57] F. Apruzzi, F. Bonetti, I. Garćıa Etxebarria, S. S. Hosseini, and S. Schafer-Nameki,

“Symmetry TFTs from String Theory,” arXiv:2112.02092 [hep-th].

[58] M. van Beest, D. S. W. Gould, S. Schafer-Nameki, and Y.-N. Wang, “Symmetry TFTs

for 3d QFTs from M-theory,” arXiv:2210.03703 [hep-th].

[59] M. Etheredge, I. Garcia Etxebarria, B. Heidenreich, and S. Rauch, “Branes and

symmetries for N = 3 S-folds,” arXiv:2302.14068 [hep-th].

[60] I. Garcia Etxebarria and S. Hosseini, “To Appear,”.

[61] D. Belov and G. W. Moore, “Holographic Action for the Self-Dual Field,”

arXiv:hep-th/0605038.

[62] S. Gukov, P.-S. Hsin, and D. Pei, “Generalized global symmetries of T [M ] theories.

Part I,” JHEP 04 (2021) 232, arXiv:2010.15890 [hep-th].

[63] M. D. F. de Wild Propitius, Topological interactions in broken gauge theories. PhD

thesis, Amsterdam U., 1995. arXiv:hep-th/9511195.

[64] J. Kaidi, E. Nardoni, G. Zafrir, and Y. Zheng, “Symmetry TFTs and Anomalies of

Non-Invertible Symmetries,” arXiv:2301.07112 [hep-th].

[65] D. Tambara and S. Yamagami, “Tensor categories with fusion rules of self-duality for

finite abelian groups,” Journal of Algebra 209 no. 2, (1998) 692–707.

https://www.sciencedirect.com/science/article/pii/S0021869398975585.

[66] J. Kaidi, G. Zafrir, and Y. Zheng, “Non-invertible symmetries of N = 4 SYM and

twisted compactification,” JHEP 08 (2022) 053, arXiv:2205.01104 [hep-th].

[67] V. Bashmakov, M. Del Zotto, A. Hasan, and J. Kaidi, “Non-invertible Symmetries of

Class S Theories,” arXiv:2211.05138 [hep-th].

[68] Z. Sun and Y. Zheng, “When are Duality Defects Group-Theoretical?,”

arXiv:2307.14428 [hep-th].

[69] J. J. Heckman and L. Tizzano, “6D Fractional Quantum Hall Effect,” JHEP 05 (2018)

120, arXiv:1708.02250 [hep-th].

[70] F. Apruzzi, “Higher form symmetries TFT in 6d,” JHEP 11 (2022) 050,

arXiv:2203.10063 [hep-th].

[71] J.-L. Brylinski, Loop spaces, characteristic classes and geometric quantization.

Springer Science & Business Media, 2007.

[72] J. Cheeger and J. Simons, “Differential characters and geometric invariants,” 1985.

https://api.semanticscholar.org/CorpusID:50800553.

22

http://arxiv.org/abs/2112.02092
http://arxiv.org/abs/2210.03703
http://arxiv.org/abs/2302.14068
http://arxiv.org/abs/hep-th/0605038
http://dx.doi.org/10.1007/JHEP04(2021)232
http://arxiv.org/abs/2010.15890
http://arxiv.org/abs/hep-th/9511195
http://arxiv.org/abs/2301.07112
http://dx.doi.org/https://doi.org/10.1006/jabr.1998.7558
https://www.sciencedirect.com/science/article/pii/S0021869398975585
http://dx.doi.org/10.1007/JHEP08(2022)053
http://arxiv.org/abs/2205.01104
http://arxiv.org/abs/2211.05138
http://arxiv.org/abs/2307.14428
http://dx.doi.org/10.1007/JHEP05(2018)120
http://dx.doi.org/10.1007/JHEP05(2018)120
http://arxiv.org/abs/1708.02250
http://dx.doi.org/10.1007/JHEP11(2022)050
http://arxiv.org/abs/2203.10063
https://api.semanticscholar.org/CorpusID:50800553


[73] C. Baer and C. Becker, “Differential characters and geometric chains,” 2013.

[74] K. Hori, S. Katz, A. Klemm, R. Pandharipande, R. Thomas, C. Vafa, R. Vakil, and

E. Zaslow, Mirror symmetry, vol. 1 of Clay mathematics monographs. AMS,

Providence, USA, 2003.

[75] P. G. Camara, L. E. Ibanez, and F. Marchesano, “RR photons,” JHEP 09 (2011) 110,

arXiv:1106.0060 [hep-th].

[76] M. R. Douglas, “Branes within branes,” NATO Sci. Ser. C 520 (1999) 267–275,

arXiv:hep-th/9512077.

[77] K. Roumpedakis, S. Seifnashri, and S.-H. Shao, “Higher Gauging and Non-invertible

Condensation Defects,” arXiv:2204.02407 [hep-th].

[78] J. Kaidi, K. Ohmori, and Y. Zheng, “Kramers-Wannier-like Duality Defects in (3+1)D

Gauge Theories,” Phys. Rev. Lett. 128 no. 11, (2022) 111601, arXiv:2111.01141

[hep-th].

[79] Y. Choi, C. Cordova, P.-S. Hsin, H. T. Lam, and S.-H. Shao, “Noninvertible duality

defects in 3+1 dimensions,” Phys. Rev. D 105 no. 12, (2022) 125016,

arXiv:2111.01139 [hep-th].

[80] A. Hanany and E. Witten, “Type IIB superstrings, BPS monopoles, and

three-dimensional gauge dynamics,” Nucl. Phys. B 492 (1997) 152–190,

arXiv:hep-th/9611230.

[81] G. Kac, “Finite group rings,” Trans. Moscow Math. Soc. 15 (1966) 251–294.

[82] C. Zhang and C. Córdova, “Anomalies of (1 + 1)D categorical symmetries,”

arXiv:2304.01262 [cond-mat.str-el].

[83] A. Perez-Lona, D. Robbins, E. Sharpe, T. Vandermeulen, and X. Yu, “Notes on

gauging noninvertible symmetries, part 1: Multiplicity-free cases,” arXiv:2311.16230

[hep-th].

[84] O. Diatlyk, C. Luo, Y. Wang, and Q. Weller, “Gauging Non-Invertible Symmetries:

Topological Interfaces and Generalized Orbifold Groupoid in 2d QFT,”

arXiv:2311.17044 [hep-th].

23

http://dx.doi.org/10.1007/JHEP09(2011)110
http://arxiv.org/abs/1106.0060
http://arxiv.org/abs/hep-th/9512077
http://arxiv.org/abs/2204.02407
http://dx.doi.org/10.1103/PhysRevLett.128.111601
http://arxiv.org/abs/2111.01141
http://arxiv.org/abs/2111.01141
http://dx.doi.org/10.1103/PhysRevD.105.125016
http://arxiv.org/abs/2111.01139
http://dx.doi.org/10.1016/S0550-3213(97)00157-0
http://arxiv.org/abs/hep-th/9611230
http://arxiv.org/abs/2304.01262
http://arxiv.org/abs/2311.16230
http://arxiv.org/abs/2311.16230
http://arxiv.org/abs/2311.17044

	Introduction
	3D Dijkgraaf–Witten Theory and its Line Operators from IIB
	3D Dijkgraaf–Witten theory from the IIB supergravity
	Line operators from brane worldvolume actions

	Branes Behind Polarizations and Non-invertible Symmetries in 2D
	A ``Standard'' polarization with only invertible symmetries
	Polarizations with non-invertible symmetries
	Action of non-invertible lines and the Hanany-Witten transition

	Future Directions

