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Abstract

We propose a top-down approach to non-invertible symmetries in 2D QFTs and their 3D
associated symmetry topological field theories. We focus on the gauge theory engineered on
D1-branes probing a particular Calabi-Yau 4-fold singularity. We show how to derive the
symmetry topological field theory, a 3D Dijkgraaf-Witten theory, from the IIB supergravity
under dimensional reduction. We also identify branes behind the non-invertible topological
lines by dimensionally reducing their worldvolume actions. The action of non-invertible lines
on charged local operators is then realized as the Hanany-Witten transition.
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1 Introduction

Global symmetry is one of the most important concepts in quantum field theories (QFTSs).
It provides powerful tools to investigate QFTs, even those strongly coupled or without La-
grangian. A modern approach to understanding global symmetries is through their associated
topological symmetry operators or defects [I]: For a D-dimensional QFT with a ¢-form global
symmetry whose symmetry group is G, a topological operator U(Mp_,_1), is associated with
the group element g, and supported on the codimension-¢ manifold Mp_,_;. An operator
charged under this ¢g-form symmetry is supported on g-dimensional manifold Ny, linking with
the Mp_,_1. It carries a representation of the group of the group G, and thus transformed
accordingly when acted by a topological operator U(Mp_q_1),. The group multiplication law
leads to the simple fusion rule between symmetry operators as U(Mp_q—1)y X U(Mp_q—1)n =
U(Mp—4-1)gn- The existence of the group element ¢! gives rise to the invertibility of the
symmetry operator: U(Mp_,—1)y X U(Mp_q-1)g-1 = U(Mp_q—1) x U1 (Mp_4—1) = 1. Re-
laxing the group multiplication law and considering non-trivial fusion rules for symmetry
operators U;’s as U;(Mp_q—1) x U;j(Mp_q—1) =D, cijk(MD,q,l), one ends up with symme-
tries which are not group-like, known as non-invertible symmetriedl]

In the context of QFTs engineered from singularities in string theory, e.g., via geometric
engineering or brane probes, generalized global symmetries admit elegant top-down realiza-
tions. On the one hand, the charged defects are built by branes wrapping non-compact cycles
of the internal geometry, extending from the singularity (where the QFT is engineered) to
“Infinity” [7HI0]. On the other hand, it is recently pointed out in [TTHI3] (see also [14H18])
that generalized symmetry operators arise from wrapped branes “at inﬁnity”ﬂ In particu-
lar, in the case of non-invertible symmetries, the topological field theory (TFT) living on the
symmetry operator, responsible for the non-trivial fusion rules, can be directly obtained from
the topological sector of the brane action on its worldvolume via dimensional reduction on
the wrapped cycles “at infinity”.

Despite many top-down approaches and brane constructions for non-invertible symmetries
being introduced in the literature, as far as our knowledge, they almost exclusively focus on
QFTs in D > 2 dimensions. To some extent, this is a bit surprising since non-invertible
symmetries are most ubiquitous in 2DP In this note, we fill this small gap by explicitly
constructing brane origins for non-invertible symmetries in 2D QFTs with string theory
realization.

1We refer the reader to [2HB] for recent reviews.

2In addition to branes, generalized symmetry operators can also arise from purely geometric configuration.
See e.g., [19] and Appendix A in [I4].

3In 2D, non-invertible symmetries have a long history. See, e.g., [20-27] for a partial list of seminal papers.



2D QFT on D1-branes probing singularities. The 2D QFTs we will focus on are gauge
theories engineered on D1-branes probing the conical singularity of a Calabi-Yau 4-fold (CYy).
The IIB string theory background reads

RY x Y, (1.1)

where R supports the worldvolume of a stack of N Dl-branes and Y is a local non-
compact CY,. In the case when Y is toric, an infinite class of 2D theories has been explicitly
constructed, using an elegant T-dual ITA intersecting brane configuration known as brane
brick models [28-31] [] The resulting 2D QFTs are U(N)¥ quiver gauge theoried’] which can
be fully specified by quiver diagrams (encoding the field content and the gauge interaction)
and superpotentials (encoding the matter interaction )

To illustrate our idea explicitly, in this note, we focus on the 2D gauge theory associated
with a specific conical CYy,
Cone(Y*°(P! x P)), (1.2)

which is the cone over a smooth 7-manifold known as Y2°(P! x P1). The 2D gauge theory is
constructed in [40], whose quiver diagram is shown in Figure . The 7-manifold Y*° (P! xP')
falls in an infinite class of Sasaki-Einstein 7-manifolds denoted as Y?*(IP* x P!), which are lens
space S*/Z, bundles over P! x P! [42]. We leave the systematic treatment of non-invertible
and other global symmetries for general brane brick models in the forthcoming work [43].

3D symmetry TFT from string theory. We will use the symmetry TFT framework
to build non-invertible symmetries for our interested 2D gauge theory. Symmetry TFT is a
(D+1)-dimensional TFT capturing the topological nature of generalized global symmetries
in a D-dimensional QFT [21] [44H56]. It has a physical boundary and a topological boundary.
The local information (local operators and their correlation functions) of the interested D-
dimensional QFT is realized on the physical boundary, also known as the relative QFT [52].
On the other hand, gapped boundary conditions are defined on the topological boundary,
which specifies the global structure of the D-dimensional QFT.

For QFTs engineered on conical singularities of a local non-compact internal geometry Y
in string theory, the associated symmetry TFT can be derived from the topological sector of
the dimensional reduction for the 10D (11D for M-theory) supergravity on the asymptotic
boundary 9Y [57] (see also [14], 15, 19, [56, 58-60]). Various string theory fluxes under

4See [32H40)] for more details.

5Strictly speaking, there also exist gauge theory phases whose gauge factors U(N;) can have different
ranks. These are referred to as non-toric phases [30], which can be derived by performing the ' = (0,2)
triality [41] from toric phases.

6Brane brick models enjoy N = (0,2) supersymmetry. However, at the level of generalized global sym-
metries we discuss in this note, supersymmetry matters little.



Figure 1.1: Quiver diagram for a 2D gauge theory phase associated with Y*°(P! x P!) probed
by N Dl-branes [40]. Yellow circles denote U(N) gauge groups. Oriented black lines and
unoriented red lines denote bifundamental chiral and Fermi superfields, respectively.

dimensional reduction give rise to gauge fields in the symmetry TF'T. For our interested case
in this note, namely, D1-branes probing Cone(Y (>0 (P! x P')), the dimensional reduction to
obtain a 3D symmetry TFT is performed in the IIB string theory background

M x YEO (Pt x P, (1.3)

where M; = M, x R,>¢ is the 3D manifold for the symmetry TFT bulk. The physical
boundary corresponds to r = 0 where D1-branes are localized, while the topological boundary
arises at r = oo where boundary conditions of various IIB fluxes are picked. The detailed
computation will be discussed in Section 2, where we show the resulting 3D symmetry TFT
is a twisted Zy X Zy X Zsy 3D Dijkgraaf-Witten theory

2 ~
S3 = g a10aq + b10by + c10¢1 + alblcla (14)
M3

Non-invertible symmetry operators from branes. Recall that picking a topological
boundary condition for the symmetry TEFT corresponds to fixing a global structure of its
associated D-dimensional QFT. This procedure is called picking a polarization, and the re-
sulting QFT with a well-defined global structure is referred to as an absolute QFT (see, e.g.,
[19, 2] 61, [62]). From this bulk perspective, gauging a symmetry in a QFT to get another
QFT is translated in changing from one polarization to another.

Global symmetries of the resulting absolute QFT can be obtained by investigating the
behavior of bulk operators under the topological boundary condition. Operators trivialized
when touching the gapped boundary (due to the possible Dirichlet condition), giving rise to
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charged defects. In contrast, those not trivialized are still topological operators, generating
global symmetries for the absolute QFT.

Based on this general idea, one can start with the symmetry TFT and write down
gauge-invariant line operators by purely field-theoretic consideration, much as in [63] [64].
However, since the Dijkgraaf-Witten theory is derived from string theory, one naturally
asks whether there is a direct top-down approach to topological line operators. The answer
is indeed yes. As we will discuss in Section 2, all line operators, whether invertible or not,
have their corresponding brane origin. Line operators are obtained exactly from the brane
worldvolume action via dimensional reduction on various cycles wrapped by branes.

Having obtained line operators in the 3D bulk from branes, building non-invertible sym-
metries in 2D gauge theory associated with Y (29 (P! x P!) then translates in writing down
polarizations under which the non-invertible bulk lines are still non-invertible when touching
the gapped boundary. We will show in Section 3 that these polarizations indeed exist, and
the resulting non-invertible symmetry is the well-known Zs x Zs Tambara-Yamagami fusion
category [65]! For example, the polarization corresponding to the boundary condition

ay, by, ¢; Dirichlet; ay, by, c; Neumann, (1.5)

has the following non-invertible fusion rules

Nbs X Npz = 1+ g1 + 1p1 + 7p17p1,
nr1 X Nr1 = Np1 X Np1 = 1, (1.6)
nr1 X NDs = "p1 X ND3 = ND3,

where Npj is the non-invertible line from D3-brane, while ng;, np; are invertible Z, lines from
F1- and D1-strings respectively.

In addition to polarizations enjoying non-invertible symmetries, we also find polarizations
where all topological line operators become invertible symmetry lines. That is to say, the
non-invertible symmetries we construct in this note are non-intrinsic [66-68].

2 3D Dijkgraat—Witten Theory and its Line Operators
from 1IB

In this section, we present how to obtain the 3D symmetry TFT and its line operators for

2D gauge theory associated with Cone(Y?9(P! x P1)) from IIB string theory via dimensional

reduction. In particular, we find the following top-down approach to the field theory content
[1B supergravity — 3D Dijkgraaf-Witten theory,

2.1
branes worldvolume actions — Line operators in the 3D bulk 21)

5



2.1 3D Dijkgraaf-Witten theory from the I1IB supergravity

To derive the 3D symmetry TFT, we focus on the topological sector of the reduction for
IIB string theory on the asymptotic boundary of the Calabi-Yau 4-fold, which in this case is
just the base manifold L; = Y*0(P! x P!) at infinity. In particular, we treat the various IIB
supergravity fluxes as elements in differential cohomology uplifts of (see, e.g.,[57, [61] )

H*(L7,Z) = {Z,0,Z° ® Z5,0,Z® Ly S L, Z*, Lo, L} . (2.2)

The above cohomology classes for L; = Y29(P! x P!) can be found in [42].

The relevant topological action inherited from the IIB string theory, roughly speaking,
consists of two parts. The quadratic part comes from the kinetic terms for IIB fluxes, and
the cubic part comes from the 10D Chern-Simons coupling — [ Cy AdBy AdCs ﬂ Consider an
IIB string theory background without 7-branes. The topological action that we start with
reads

511 1. v v v v

——/ —Fgx Fg — Fgx Hy % G5 (2.3)

2m NyxLy
which lives in 11D spacetime Ny x L;. The 4-manifold N, satisfies 0N, = M3, an auxiliary
bulk manifold whose boundary is the 3-manifold where the symmetry TFT lives. Note that
all terms are 12-dimensional since we have uplifted IIB fluxes as differential cohomology
elements. Fy is the differential cohomology element whose connection part is the IIB self-
dual D3-brane 5-form flux Fj. ﬁg and ég are differential cohomology uplift for F1- and
D1-string flux dBy and dC’QEI

According to (2.2)), we expand differential cohomology elements as
2 2 2 4
Fﬁ :f6 * 14+ ZFéa) *ag(a) + FQ *ﬁ4 + ZFl(a) *ﬂéa) + A4 * ty + ZAS) * T4 (4),
a=1 a=1 i=1

2
ég :]\[V\(J)ljw3 * i + Z éga) * ﬂg(a) + él * Eg, (24)

a=1

2
Hi =hs %1+ Z Pv[fo‘) * U (a) + By * £,

"The topological action of IIB string theory for symmetry TFT computation has been investigated in,
e.g., [8, 19, 56l 57, [69] [70]. We also refer the reader to the recent work [I5] for a more systematic discussion.

8The  symbol defines a bilinear product operation on Cheeger-Simons characters H*' (My) x H*> (My) =
Fk1tke (My) [(1,[72). In particular, when k1 + ko = d+ 1, the integral describes a perfect pairing Hk (Myg) x
HA1=k1 (M) — R/Z. We refer the reader to [73] for a nice review of differential cohomology.



where the generators for various cohomology classes are denoted as

1 HYL;,Z) =12,
Ua(a), @ = 1,2 4> non-torsional H*(L;,7) = 77,
li4 <+ non-torsional H*(L7,7Z) = 7Z,
W o =1,2 H(L;,Z) = 72,
vol &> H'(L7,Z) = Z,
ty <+ torsional H?(Ly,7Z) = Z,
54(1-),@' = 1,2 < torsional H*(L7,Z) = Zy ® Zs,
te <> H%(L7,Z) = Zs.

(2.5)

Fields from torsional parts give rise to finite symmetries while those from non-torsional parts
correspond to continuous symmetries. In this work, we only focus on finite symmetries and
their descendent non-invertible symmetrieﬂ so we only turn on the fields as coefficients of
the torsional generators t,, where p = 2,4, 6.

Substituting the torsional part of (2.4) into the 11D topological action (2.3), we derive
the 3D symmetry TF'T for finite symmetries,

ij=1
- ) | (2.6)
_ / S Ayal’sa? = 3 Aoy
L i=1

where we use respective lower-case letters to express fields in terms of the ordinary cohomol-
ogy elements and omit the “U” product symbol for simplicity. The coefficients in the action
are given by the linking numbers within the 7-manifold L,

1 v o
Aij —/ t4(z) *t4(j) mod 1,
2 )L,
(2.7)
Ai = / 54(2) *7\52 *Eg mod 1,
Ly

whose derivation requires expressing p-dimensional torsional generators fp in terms of various
compact (8 — p)-cycles in the toric Calabi-Yau 4-fold [58]. The linking number computation
then translates into reading quadruple intersection numbers between codimension-2 divisors
in the toric varietiedVl

9For brane interpretation of continuous symmetry operators, we refer the reader to [I8].
10See Chapter 7 in [74] for how to compute intersection numbers in toric varieties.



It is easy to see the action is not complete. Notice that the quadratic term comes
from the non-commutativity for the boundary profile of the self-dual 5-form; thus, other
non-commutative fluxes should also be captured in the resulting 3D TFT [§]. This leads to
adding quadratic terms for b; and ¢; from the non-commutativity F1-NS5 and D1-D5 pairs
when wrapping torsional cycles linking to each other E The resulting TF'T reads

S D) s (i . 5 : i
ﬁ = / Z Aijag )(SCng) + Q (—61501 + b15b1> — Z Alag )blCl (28)
Ms i=1

where ¢; and 131 are from IIB fluxes G7 and fh (10D Hodge-dual of G3 and H7) via reduction
on torsional 5-cycles 75 associated to the generator f. ) denotes the linking number
between the f, and fg generators:

0= / tyx tg mod 1. (2.9)
L7

Computing the linking number (2.7} and redefining the notation as

agl) — a, a§2) — ar, (2.10)
we end up with an elegant result
27 . - R
S3 = 7/ CL15(11 —+ b15b1 -+ 01501 -+ alblcl, (21].)
M3

which is just a 3D Zy X Zy X Zs Dijkgraat-Witten theory with a simple twist a;b;cy.

Each TFT field serves as the background gauge field for a factor within the defect group
[7, 19], which now can be straightforwardly read as

D= (23 x 23) & (2} x Z}) & (25 x Z3) . (2.12)

We use “x” to denote the group factors with non-trivial Dirac pairing between their de-
fects, or equivalently, those background gauge fields canonical conjugate to each other un-
der the TFT quantization. “®”, on the contrary, means group factors without any non-
commutativity between their fluxes.

HWe thank Inaki Garcia Etxebarria for valuable discussions on this point

12We would like to stress that differential cohomology and flux non-commutativity is not the only way to
read the quadratic terms in the symmetry TFT. In fact, it is also possible to derive these terms directly from
the supergravity kinetic terms. See [60, [75], and Appendix B in [56] for more details.



2.2 Line operators from brane worldvolume actions

Having derived a 3D Dijkgraaf-Witten theory as the symmetry TFT for finite symmetries in
the 2D QFT, the next natural question is: What is the spectrum of line operators in this 3D
TFT, and how do these operators translate in (non-invertible) topological defect lines in the
2D QFT? Field-theoretically, this question has been intensively investigated in, e.g., [64]. In
this section, we will provide a top-down treatment where topological defect lines, no matter
whether invertible or not, enjoy elegant origins as branes in the IIB string theory.

The first step is to determine the candidate of branes that are responsible for line operators
in the Dijkgraaf-Witten theory (2.11)). Recall finite gauge fields in (2.11)) are reduced from
various IIB fluxes, each of which couples to a certain type of branes. For example, ¢; is

the expansion field from the # reduction of G; (as a differential cohomology element) on
TorHS(L7,Z), which corresponds to the IIB flux G (electrically) coupled to D5-branes.
More precisely, according to the universal coefficient theorem TorH, = TorH""! we have
the correspondence between torsional cohomology generators and torsional cycles

(%)

This translates in the ¢ case as
¢ <« Dbson s, (2.14)

where 5 € TorHs(L7,7Z) is the torsional 5-cycle dual to the fg generator. Similarly, one
can derive brane patterns associated with each TFT field. The dimensional reduction of the
D5-brane topological coupling then gives the corresponding naive magnetic line operator in
the 3D TFT:

exp (27ri/ 06) — exp (27m'/ é7) = exp (m/ 61) : (2.15)
Me My X5 M,y

However, this invertible line is not the full construction of the magnetic operator depen-
dent on ¢, because it is not gauge-invariant within our interested Dijkgraaf-Witten theory
(see also e.g., [64]). Note that Cs does not carry the full topological information of the D5-
brane but only the leading term of the Wess-Zumino part of the D5-brane action. In order
to encode the full topological effect of the D5-brane on the 3D Dijkgraaf-Witten theory (or
equivalently, on the 2D QFT on the physical boundary of the 3D bulk), we consider the
following action,

SpP = / DfyDfsexp (2m' /N fudfs + Gy — F5(By — f2) — %Gg(Bg - f2)2> . (2.16)
2X75

This is a topological action on an auxiliary 7D bulk Ny X 75, where Ny satisfies 0Ny = My,
i.e. an auxiliary 2-manifold whose boundary is the topological line supporting the operator
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in the resulting 3D TF'T. In this topological action, f5 is the field strength of the dynamical
gauge field from the F1 open string fluctuation, and f4 is its hodge dual on the D5-brane
worldvolume. The first term thus carries the relevant information from the Dirac-Born-Infeld
part of the D-brane action [I5]. The other three terms come from the Wess-Zumino part
of the brane action [76], where the leading term Gy is the origin for the naive magnetic
operator which we discussed in (2.15). F5,G3 are fluxes for the induced lower dimensional
D3- and D1-brane charges, respectively, while By is the regular notation for the NS-NS field
electrically coupled to F1-strings. Note that the path integral is only performed over f; and
f4, which are dynamical degrees of freedon on the D5-brane worldvolume.

In order to perform the dimensional reduction on the torsional cycle 75, as what we did in
computing the symmetry TFT, we promote the topological action in terms of the differential
cohomology elementﬂ

o Xy ) Xy X v . o 1. v v
S]t);) — /Df5Df3 exp (271'2/ f5 *fg + Gg — F5 * (Hg — fg) — §G3 * (Hg — f3>2) .
Na Xy,
o (2.17)

9]

The expansions of Fs and H; are already given in 1) while the expansion for Gs, f5 and
f3 can be defined as

f5=<51*54(1)+€5/1*f4(2)+"',
f3:§51*{2+"'7

where we only write down terms relevant to the reduction on the torsional cycle 5. Again,

(2.18)

using the linking number between various cohomology generators, the resulting 1D TFT
reads

A ) . . A 1
Sg% X /ngngbo exp (m /M cl) exp (m y DodPy + Poar — ¢oboct + 5@25801) . (2.19)

where dby = by, and we have omitted all other terms decoupled from the dynamical ng and
¢o. Taking variation of ¢y, we get the condition

8¢ = ay + ¢oc1 — bocy, (2.20)

substituting which back to (2.19), we integral over ¢; and end up with the topological line
operator

S5 oc Nps(My) = / DDy exp (m / él) exp <7ri / boddo + doay — q%obl) . (2.21)
M, M,

13The (Hs — f3)? here means an order-5 differential cohomology element from the star product between
the differential cohomology element H; — fg, and its connection part.

MNote that in , the Fy is the differential cohomology element via Fj is its connection part, but here
ﬁ’s is the differential cohomology element itself, regarded as gauge-invariant field strength.
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This is a non-invertible gauge-invariant magnetic line operator for the 3D Dijkgraaf-Witten
theory, matching the result in [64].

The fusion rule for this line operator is

N x N = |1+ exp (i | | o) 1o (i [ | n)|- (222)

Further note that ¢™ /41 9 =y, and ™/ % =, are Z, topological lines, where we use 1 to
denote invertible lines with subindices showing the TF'T field dependence. The right-hand
side of the above equation is the condensation of Zy x Zs topological lines on the M, which
can be regarded as a result of higher-gauging [77]. Now we can write down the full fusion
rule involving non-invertible line Aps, invertible Z, lines 7, and 1, as

Nbs X Nps = 1+ 1 + 15 + 0atp,
Na X Mg =My X My = 1, (223)
Na X Nps = 1y X Nps = Nps,
which is exactly the Zy X Zs Tambara-Yamagami category [65].
Similarly, we can derive other topological line operators respectively dependent on aq, aq, by, by

and ¢; as what we did for ¢ and its corresponding D5-brane action. We leave the computation
to the interested reader as an exercise and conclude the results in Table [1l

Line Operators in 3D TFT Branes Configuration
P D3-brane on 74"
e = e Jay B Fl1-string on v,
oy = €™ @ D1-string on v,

ND3 _ f ,Déopd)oem' fMl dlem' fMl b0dpo+pobi—poct D3-brane wrapping ")/;EQ)
Niss = [ Do Depoe™ 1 V1™ Jary Pod¢0+dver=doar | NG5 hane wrapping s
Nps = [ DooDeoe™ Jasy &1 Jagy G0800td0ar—dobL | D5 e wrapping s

Table 1: Line operators in 3D Dijkgraaf-Witten theory 1} and their brane origins. The
first three brane configurations give rise to invertible electric lines, while the last three
wrapped branes correspond to non-invertible magnetic lines.

It is easy to see the electric Zy lines in (2.23)) are identified with the brane origin 1, =
Np3, My = Nr1- Furthermore, the non-invertible lines from D3- and NS5-branes also obey the
Zo X 7 Tambara-Yamagami fusion category respectively:

Nbs X Npsz = 14 g1 + o1 + Nr17p1,
nr1 X Nr1 = Np1 X Np1 = 1, (2.24)
nr1 X NDg = "p1 X ND3 = NDg,

11



and

Nxss X Nuss = 1+ np1 + o3 + Dr17p3,
nr1 X Ne1 = Np3 X Np3 = 1, (2.25)
nr1 X Nuss = Nps X Nxss = NNS5,

3 Branes Behind Polarizations and Non-invertible Sym-

metries in 2D

The 3D symmetry TFT bulk itself does not fully specify the global symmetry structure of the
2D QFT. At this stage, the 2D QFT associated with the conical singularity probed by D1-
branes is a relative QFT [19 52} [62]. It does not have a well-defined scalar-valued partition
function but carries a partition vector. The corresponding space for the partition vector
is regarded as the Hilbert space H from the 3D TFT quantization (see, e.g., [21], 47, 52]).
Therefore, in this sense, the 2D QFT is “relative” to the 3D bulk theory.

In order to get rid of the “relativeness” upon the 3D bulk and thus obtain a well-defined
QFT with a scalar-valued partition function, we need to pick a polarization for the system.
From the 3D TFT perspective, this translates in introducing a purely gapped boundary,
on which we impose a topological boundary condition. Such a boundary condition can be
equivalently presented as a Lagrangian subgroup L C D of the defect group D['"] With
respect to the partition vector space under the 3D TF'T quantization, the relative QFT and
the gapped boundary condition can be expressed as two boundary states

Colliding the gapped boundary with the relative QFT boundary, one obtains a genuine
2D system, known as an absolute QFT, that enjoys a scalar-valued partition function. This
process can be nicely expressed in terms of the inner product between boundary states |R)
and |P; B) in the partition vector space H:

Zp[B] = (RIP; B). (3.1)

In this expression, (R| denotes the relative QFT (dual) partition vector, |P; B) denotes
the boundary state for polarization P with the flux profile B, and Zp[B] gives rise to the
well-defined partition function with the presence of the background B

5Mathematically, the partition vector space of a relative QFT is captured by the Heisenberg group
H 1(MQ,]D)) with coefficients in the defect group D. Picking a polarization corresponds to picking a max-
imally isotropic subspace of the Heisenberg group. We refer the interested reader to [I9] for a detailed
discussion.

16We remark that picking polarizations is not always possible for a generic relative QFT. Well-known
examples of this type include many 2D chiral CFTs and 6D SCFTs. See, e.g., [19, [62] for more details.
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3.1 A “Standard” polarization with only invertible symmetries

Come back to the 3D Dijkgraaf-Witten theory (2.11]) and its relative 2D QFT associated
with Y20(P! x P!). The simplest boundary condition one can consider is

a1, by, ¢; Dirichlet; &1,81,61 Neumann. (3.2)

This corresponds to the polarization which picks the Lagrangian subgroup L of the defect
group (Z12) A

L =73 x 75 x 7Z5. (3.3)
Therefore, the resulting absolute 2D theory has a (Z;)* global symmetry

G =173 x 75 x 7. (3.4)

Based on their behavior under the gapped boundary condition (3.2)), line operators in the
3D TFT shown in Table [1| induce to various local charged operators and topological defect
lines in the 2D absolute theory.

For instance, due to the Dirichlet condition of a;, npsz will terminate on the gapped
boundary, i.e., it does not continue to fluctuate along the boundary and thus becomes a local
operator after shrinking the 3D TFT bulk. On the contrary, Nps is not fully trivialized on
the gapped boundary due to the Neumann condition of a;. Its line manifold continues along
the gapped boundary and thus gives rise to a topological defect line. However, it loses its
non-invertible property during this process. To see this, notice that b; and c; are trivialized
on the gapped boundary, leading to

ND3 SN emel a1 /Déopﬂsoeﬂ-ifMl b0d¢o x eme1 CAl1’ (35>

where the path integral over ¢y and $0 is now totally decoupled as a overall factor. Therefore,
Nps, under this polarization/absolute QFT, becomes an invertible Z, line.

What is the brane configuration behind all this? Recall that the brane origins of np3 and
Nps are D3-branes wrapping %Sl) and 7§2), respectively. The non-trivial linking between these
two torsional 3-cycles is responsible for the canonical conjugation between a; and a; in the 3D
Dijkgraaf-Witten theory, thus tells us the local operator reduced from 7ps is charged under
the Z3 C LY symmetry generated by the invertible line reduced from Nps. In the 10D IIB
string theory picture, the gapped boundary for the 3D TFT is translated into the topological
boundary conditions on the asymptotic boundary Y2%(P! x P!) “at infinity”. Therefore, we
have the following correspondence between the brane pattern behind operators under

and the polarization (3.2)):

local operator from 7p3 : D3-branes wrapping Cone(y?()l)) ,

(2)

(3.6)
invertible Z§ line from Nps : D3-branes wrapping 73~ “at infinity”.
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This type of brane pattern falls in the general idea of branes “at infinity” as generalized
symmetry operators introduced in [IIHI3]. The charged local operators and topological
defect lines for the global symmetry Z5 and Z$ can be read similarly:

local operator from ng; : Fl-strings wrapping cone(7s) ,

invertible Z5 line from Nygs : NS5-branes wrapping s “at infinity”, (3.7)

local operator from 7p; : D1-strings wrapping cone(7ys) ,

invertible Z line from Npjs : D5-branes wrapping 75 “at infinity”,

3.2 Polarizations with non-invertible symmetries

In the standard polarization L = Z3 & Zg @ 75, there is a mixed anomaly for the global
symmetry G = Z3 x Z5 x 75, inherited from the Dijkgraaf-Witten twist in the 3D symmetry

TFT:
’/T/ &1b161. (38)
M3

According to [78] (see also [64]), gauging two of the three Z, symmetries, the left-over one will
be promoted to a non-invertible symmetry. Let us take gauging Z$ x Z5 as an example. From
the symmetry TF'T perspective, this gauging process translates into changing the original
Dirichlet boundary condition for a; and b; fields to Neumann boundary conditions. Their
canonical conjugate a; and by then pick Dirichlet boundary conditions accordingly. The
resulting gapped boundary condition reads

a1, by, ¢; Dirichlet; ay, by, ¢ Neumann, (3.9)

which picks a new polarization associated with the Lagrangian subgroup
L =78 x 75 x 7ZS. (3.10)
As we did in the “standard” polarization case, we can investigate the fate of various

line operators in Table || under the gapped condition (3.9) to investigate their roles in the
resulting 2D absolute QFT. It is easy to see now

o1, Np3, Nxss (3.11)

are terminating on the gapped boundary, thus corresponding to local operators in the 2D
QFT, while

03, M1, Nps (3.12)
can continue along the gapped boundary, thus corresponding to the topological defect line.
Furthermore, the Neumann boundary condition for ay, b, and ¢; preserves the non-invertible
property for the Nps line, so it still reads

ND5 _ /’DQEOIDQﬁoemIMl 616” fMl ¢A>05¢0+¢>0a1—<130b1‘ (313)
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Polarization L Global Symmetry Charged Operators | Symmetry Lines
L5 x 7 x 7§ 7§ x 7 x 1§ D3, 1F1, 1)D1 Nbs, Nxss, Nbs
Ly X Zg X 7§ | Z§ x 75 TY category Nbs, Nxss, b1 103, MF1, Nps
Ly X Zg X Ly | Ly x 25 TY category Nbs, ne1, Nps N3, M1, NNss
7§ x 75 x IS | Z5 x Z§ TY category np3; Nxss: Nps nr1, o1, Nps

Table 2: A “Standard” polarization with the (Zy)® invertible symmetry, as well as three
polarizations with the Zy x Zy Tambara-Yamagami (TY) categorical symmetry. The concrete
torsional cycles wrapped by branes for various  and A operators can be found in Table
The charge operators are built by branes terminating at the asymptotic boundary Y*°(P! x
P!), while the symmetry lines are built by branes “at infinity” along the asymptotic boundary.

Therefore, based on its fusion rule (2.23)), we conclude the global symmetry for the po-
larization (13.10)) is

G =75 x Zg Tambara-Yamagami Categorical Symmetry. (3.14)

The brane pattern for this global symmetry can be built by wrapping branes in (3.11]) ter-
minating “at infinity” as charged operators while wrapping branes in (3.12)) “at infinity” as
topological defect lines.

Field theoretically, one would follow the step in [78] to compute what would be a non-
invertible TFT promote of the invertible Z$ line after gauging with the presence of the
mixed anomaly . The result will perfectly coincide with B The punchline of
our top-down approach is that the non-invertible line directly comes from the D5-brane
worldvolume action, as we computed in Section 2. Its (non-)invertible property in absolute
QFTs before/after gauging simply results from changing polarizations, which translates into
different brane patterns “at infinity”.

We remark that the non-invertible symmetry in this context is known as the non-intrinsic
one [66]. This is because it is related to an invertible symmetry via changing polarizationﬁ.

We conclude this subsection by presenting three polarizations that enjoy non-invertible
symmetries and their comparison with the “standard” polarization in Table [2]

1"We thank Ho Tat Lam for valuable discussions on this point.
8For discussion on intrinsic vs. non-intrinsic non-invertible symmetries from higher-dimensional perspec-
tive, we refer the reader to [14 [67]

15



3.3 Action of non-invertible lines and the Hanany-Witten transi-
tion

One salient property of the non-invertible symmetry defect is its action on the charged
operator (see, e.g., [26] [79]). Consider the polarization with the non-invertible line
Nbps. Moving this line past the local operator charged under Z3 (resp. Zg) will make the
charged operator non-genuine and attach to the topological Z3 (resp. Zg) topological line.
Namely, it belongs to the defect Hilbert space of the line it attached [24].

This non-trivial action enjoys an elegant string theory origin as the Hanany-Witten tran-

sition [80]. Note that the charged operator under Z3 (resp. Z4) comes from the D3-brane

wrapping on cene(’y§2)) (resp. NS5-brane wrapping on cone(7s)). When the D5-brane gen-

erating the non-invertible Nps passes through the above D3-brane (resp. NS5-brane), a F1

string wrapping 7, (resp. D3-brane wrapping 'yél)) is generated connecting them. What ob-

ject is generated by the Fl-string wrapping ~; (resp. D3-brane wrapping vél))? It is exactly
the topological defect line np; (resp. mp3) for the Z& (resp. Z%) symmetry (see Table [1] and
2)! See Figure for an illustration of how the Hanany-Witten transition translates into

non-trivial transitions of charged operators in the polarization, e.g., L = Zj x Zg X 7.

D3 NS5 NS5 D3 D5 NS5 NS5 D5
D1 D3
= -
A NS5 VNS5
D1 D3
® - —— . —>

(@ (b)

Figure 3.1: Bottom: Action of non-invertible defect line Nygs (in the polarization L =
72 x 7k x 75) on the local operators charged under the invertible symmetry Z& and Z5. The
corresponding topological defect lines are generated under this action. Top: This non-trivial
action enjoys a string theory origin as the Hanany-Witten transition, where the created
branes wrapping cycles “at infinity” perfectly serve as the topological defect lines.
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Similar Hanany-Witten transition origin for the non-trivial action of non-invertible defect
has been observed in 4D QFTs [I1], 14]. Still, to our knowledge, in the context of 2D QFTs,
this is the first time the Hanany-Witten interpretation of this action appears in the literature.
It is, therefore, natural to conjecture that for non-invertible symmetries with brane origingd'}
this correspondence holds for diverse dimensions

4 Future Directions

Our work suggests various natural directions for future investigation. Some obvious and
interesting directions include:

e As we pointed out at the beginning of this note, there is so far an infinite family of
2D gauge theories arising from D1-branes probing toric Calabi-Yau 4-folds. Investigat-
ing their symmetry TFTs, non-invertible, and other generalized symmetries would be
interesting. We will explore this subject in [43].

e There are four fusion categories associated with the same Zs x Zy TY fusion rule, but
distinguished by their associators or F-symbols [65]. Three of those are given by the
representations as Rep(D,), Rep(Qs) and Rep(Hg)EI. Identifying which corresponds to
the categorical symmetry we derived in this note would be interesting. This example
may shed new light on a general question: Given a categorical symmetry with certain
fusion rules from string theory, is there any top-down approach to its F-symbols or
(generalized) Frobenius-Schur indicators? We expect this 2D example to be a nice
starting point to answer this question in diverse dimensions.

e Based on the above direction, it would also be interesting to investigate anomalies and
gauging of non-invertible symmetries from string theory perspectives, following the
purely field-theoretic consideration [21], 23], [82-84].
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