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Abstract—Van Trees inequality, also known as the Bayesian
Cramér-Rao lower bound, is a powerful tool for establishing
lower bounds for minimax estimation through Fisher informa-
tion. It easily adapts to different statistical models and often
yields tight bounds. Recently, its application has been extended
to distributed estimation with privacy and communication con-
straints where it yields order-wise optimal minimax lower bounds
for various parametric tasks under squared L2 loss.

However, a widely perceived drawback of the van Trees
inequality is that it is limited to squared L2 loss. The goal of this
paper is to dispel that perception by introducing a strengthened
version of the van Trees inequality that applies to general Lq

loss functions by building on the Efroimovich’s inequality – a
lesser-known entropic inequality dating back to the 1970s. We
then apply the generalized van Trees inequality to lower bound
Lq loss in distributed minimax estimation under communication
and local differential privacy constraints. This leads to lower
bounds for Lq loss that apply to sequentially interactive and
blackboard communication protocols. Additionally, we show how
the generalized van Trees inequality can be used to obtain local
and non-asymptotic minimax results that capture the hardness of
estimating each instance at finite sample sizes.

I. INTRODUCTION

For a real-valued parameter ✓ 2 ⇥ and an observation
X ⇠ P✓, the basic question of parametric statistics is how
well one can estimate ✓ from X under a given loss function
`(✓̂ � ✓). The Fisher information IX(✓) plays a crucial role
in this context by capturing the local hardness of estimating ✓

from X , with implications both asymptotically [17] and non-
asymptotically [11, 16]. For example, the famous Cramér-Rao
lower bound [11, 22] states that the squared L2 estimation
error (a.k.a. the mean squared error) of any unbiased estimator
is lower bounded by the inverse of the Fisher information. The
unbiasedness assumption on the estimator can be removed
by assuming that the parameter ✓ is distributed according
to a prior on ⇥. This is known as the Bayesian Cramér-
Rao lower bound or the van Trees Inequality [26, 16]. By
strategically constructing the prior, this approach can also be
used to prove lower bounds for minimax estimation, where
the goal is to minimize the worst-case error of the estimator
over the parameter space ⇥.

The classic parametric estimation tasks have gained renewed
popularity over recent years, driven by the prevalence of
modern datasets often generated and stored on local devices,
such as in federated learning (FL) and analytics (FA) [21].

This work was partially supported by NSF Award # CCF-2213223.

In these settings, the collection and utilization of decentral-
ized data encounter various resource constraints, including
communication and privacy considerations. These constraints
have raised the question of how well one can estimate the
unknown parameter ✓ 2 ⇥ from a processed observation
Y , which corresponds to the output of a privatization and/or
compression mechanism applied to X ⇠ P✓. In Barnes et al.
[4, 5, 6], the classical Fisher information framework has
been extended to the case of privacy and communication (or
compression) constraints. This approach first upper bounds
the Fisher information from a differentially private and/or
compressed sample Y and then uses the van Trees inequality
to lower bound the minimax squared L2 error of distributed
estimation. This, in a unified fashion, leads to order-optimal
lower bounds for various parametric tasks under privacy and/or
communication constraints, including two tasks that have
been of significant interest in the recent literature: distributed
mean estimation [23] and discrete distribution (or frequency)
estimation [28]. While order-optimal minimax lower bounds
for distributed estimation under information constraints can
also be derived by using other techniques, e.g., leveraging
strong data-processing inequalities [13, 27, 15, 8, 12, 3] or
employing methods based on Le Cam, Fano, or Assouad
[1], the constrained Fisher information approach has several
distinct advantages:

• It is relatively straightforward and applies to various
parametric models in a unified fashion, e.g., mean es-
timation or distribution estimation. In contrast, methods
based on Le Cam, Fano, or Assouad are more versatile in
that they can be potentially adopted to diverse statistical
problems beyond parametric settings, e.g., testing, but the
construction of worst-case instances tends to be intricate
and is heavily tied to the specific problem structure.

• The Fisher information approach elucidates a clear re-
lationship between the tail behavior of the score func-
tion of the parametric model and error rates under pri-
vacy/communication constraints.

• Leveraging the chain rule of Fisher information, the
Fisher information approach naturally extends to sequen-
tially interactive communication protocols or even fully
interactive blackboard protocols [19].

• Finally, Fisher information is inherently a local measure
of hardness. For example, the influential Hájek-Le Cam’s
local asymptotic minimax (LAM) theorem asserts that,
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for a general ball-shaped loss function `(·), the asymptotic

estimation error at ✓ 2 ⇥ is at least E [`(Z)], where
Z ⇠ N

�

0, I�1
X (✓)

�

[17]. Using the van Trees inequality
with a carefully constructed prior, Chen et al. [10] shows
that Fisher information can be used to prove local and
non-asymptotic minimax lower bounds that capture the
hardness of estimating each instance of the problem at
finite sample size. To the best of our knowledge, this is
the only example of non-asymptotic local lower bounds
for distributed estimation, combining the power of Hájek-
Le Cam type results to capture local hardness with the
non-asymptotic nature of global minimax lower bounds
that have been almost exclusively the focus of the existing
distributed estimation literature.

However, a widely perceived drawback of the Fisher in-
formation approach, both for classical parametric statistics as
well as its extension to the distributed setting with privacy and
communication constraints, is that its applicability is limited to
squared L2 error. For example, Tsybakov [25] acknowledges
several advantages of van Trees inequality, such as its relative
simplicity in application and ability to establish sharp bounds,
and also notes “a limitation is that the van Trees inequality

applies only to the squared loss function.” The goal of this
paper is to dispel this perception by showing how Fisher
information can be used to prove lower bounds for any Lq

loss for 1  q < 1. We do this by building on a less-
known entropic inequality called Efroimovich’s inequality [14]
highlighted in recent works Aras et al. [2], Lee [20]. Our paper
makes the following contributions:

• We prove a van Trees type inequality for Lq loss by
combining Efroimovich’s inequality with a maximum
entropy argument.1

• We leverage this generalized van Trees inequality to
establish global minimax lower bounds for various dis-
tributed estimation tasks under Lq loss. As an immediate
consequence, this yields lower bounds for Lq loss ap-
plicable to sequentially interactive and blackboard com-
munication protocols. Our approach not only recovers
previous lower bounds presented in Acharya et al. [1]
for sequentially interactive models in a cleaner and more
straightforward manner, but also extends to fully interac-
tive blackboard communication protocols.

• We show how the generalized van Trees inequality can
be used to derive local non-asymptotic minimax lower
bounds for distribution estimation under Lq loss ex-
tending the approach of Chen et al. [10]. This emph
local lower bounds match the performance of a scheme
previously developed in Chen et al. [10] and establish its
instance-optimality under L1 loss. The results extend to
Lq loss.

Organization.: The rest of the paper is organized as
follows. We recap van Trees inequality and extend it to Lq

1In Aras et al. [2], Lee [20], the authors comment that Efroimovich’s
inequality can be potentially used to bound loss functions beyond L2.
However, we have not been able to find an explicit result in this direction.

loss via Efroimovich inequality in Section II. In Section III,
we leverage the generalized van Trees inequality to establish
global minimax lower bounds for various distributed estima-
tion tasks under Lq loss. In Section IV, we extend our focus to
derive local minimax lower bounds for distribution estimation
tasks and provide schemes that achieve the lower bounds
pointwisely. Finally, we summarize the work in Section V.

II. PRELIMINARIES

In this section, we recap van Trees inequality and
Efroimovich inequality and refer interested readers to [2]
and [20] for more details and recent advances. Throughout
the paper, we consider the following parametric model: let
{P✓|✓ 2 ⇥} with ⇥ ✓ R

d be a family of probability measures
over X with a dominating �-finite measure � such that the
density:

dP✓(·) = f(·; ✓)d�(·)

exists. We make the following assumption on the model:
Assumption 2.1: The density function f(x; ✓) is differen-

tiable for x 2 X �-a.e. In addition, f satisfies
Z

X

r✓f(x; ✓)d�(x) = 0,

for all ✓ 2 ⇥.
Assumption 2.1 is a common regularity condition in the
Cramér-Rao type bounds, allowing for exchanging the differ-
entiation and integration. For a prior distribution ⇡ over ⇥,
the information theorists’ Fisher information is defined as

J(⇡) ,

Z

Rd

|r✓⇡(✓)|
2

⇡(✓)
d✓, (1)

if it exists. On the other hand, the Fisher information matrix
of {P✓|✓ 2 ⇥} is defined as

[IX(✓)]ij ,

Z

X

@

@✓i
f(x; ✓) · @

@✓j
f(x; ✓)

f(x; ✓)
d�(x). (2)

Van Trees inequality states that the L2 estimation error for
estimating ✓ 2 ⇥, given a prior distribution ⇡ over ⇥, is lower
bound by the inverse Fisher information:

Theorem 2.2 ([26, 16]): Let X ⇠ P✓ and ✓ ⇠ ⇡ for some
prior distribution ⇡. Let Assumption 2.1 hold. Then, for any
prior distribution ⇡ on ⇥ for which the information theorist’s
Fisher information J(⇡) exists, it holds that

E



�

�

�✓ � ✓̂

�

�

�

2

2

�

� d

det (IX(✓) + J(⇡))
1/d

. (3)

While van Trees inequality only applies to the L2 error,
the following Efroimovich inequality can be used to establish
lower bounds for more general loss functions.

Theorem 2.3 ([14]): Under the assumptions of Theorem 2.2,
we also have

1

2⇡e
e

2
dh(✓|X) � 1

det (IX(✓) + J(⇡))
1/d

, (4)

where h(✓|X) is the conditional (differential) entropy.
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To see how Theorem 2.3 implies the classical van Trees
inequality, observe that

2

d
h(✓|X)  2

d
h(✓|✓̂(X))  2

d
h(✓ � ✓̂) (5)

 log

✓

2⇡e · det
⇣

E

h

(✓̂ � ✓)(✓̂ � ✓)|
i⌘1/d

◆

 log

✓

2⇡e ·
1

d
E



�

�

�✓̂ � ✓

�

�

�

2

2

�◆

.

The last two inequalities follow from the fact that the Gaussian
distribution maximizes entropy for fixed second moments and
the AM-GM inequality. Rearranging yields Theorem 2.2.

Through Efroimovich’s inequality, one can easily extend van
Trees inequality to L1 loss: following (5), we obtain

2

d
h(✓̂ � ✓)  2

d

X

i

h(✓̂i � ✓i) 
2

d

X

i

log
⇣

2eE
h�

�

�✓i � ✓̂i

�

�

�

i⌘

 2 log

 

2e

d

X

i

E

h�

�

�✓i � ✓̂i

�

�

�

i

!

= log

 

✓

2e

d
E

h�

�

�✓̂ � ✓

�

�

�

1

i

◆2
!

.

The last two inequalities follow from (1) the fact that the
Laplace distribution maximizes entropy for a fixed mean
absolute error, and (2) the AM-GM inequality. Applying
Theorem 2.3, we immediately obtain the following lower
bound for L1 loss:

E

h�

�

�✓̂ � ✓

�

�

�

1

i

�
r

⇡

2e

d

det (IX(✓) + J(⇡))
1/2d

. (6)

The above lower bound is order-wise optimal. To see this,
suppose that there exists an order-optimal estimator ✓̂⇤(X)
such that

E



�

�

�
✓ � ✓̂

⇤
�

�

�

2

2

�

= C ·
d

det (IX(✓) + J(⇡))
1/d

.

Then, the Cauchy–Schwartz inequality yields

E

h�

�

�✓ � ✓̂
⇤
�

�

�

1

i


s

d · E



�

�

�✓ � ✓̂⇤
�

�

�

2

2

�

=
p
C ·

d

det (IX(✓) + J(⇡))
1/2d

.

Since it is well-known that the L2 lower bound can be
achieved, this argument implies the L1 lower bound is also
tight up to a constant. More generally, we can prove the
following van Trees inequality for any Lq loss:

Theorem 2.4 (Generalized van Trees Inequality): Let q � 1
and let CME(q) be the partition function of the Lq max-entropy
distribution, formally defined as2

CME(q) , 2e
1
q �

✓

1

q

◆

q
1
q�1.

2One can verify that CME(2) =
p

2⇡e and CME(1) =
p

2e.

Then, it holds that

E✓,X



�

�

�✓̂(X)� ✓

�

�

�

q

q

�

�
 p

2⇡e

CME(q)

!q
d

det (IX(✓) + J(⇡))
q
2d

.

We can simplify the lower bound with the following AM-
GM inequality

det(A)1/d  Tr(A)

d
for any PSD A 2 R

d⇥d,

obtaining the following simpler but slightly weaker form:
Proposition 2.5: Let q � 1 and CME(q) be defined as in

Theorem 2.4. Then, it holds that

E✓,X



�

�

�
✓̂(X)� ✓

�

�

�

q

q

�

�
 p

2⇡e

CME(q)

!q

·
d1+

q
2

Tr (IX(✓) + J(⇡))
q
2

.

III. INFORMATION-CONSTRAINED ESTIMATION

The generalized van Trees inequality (in the form stated in
Proposition 2.5), can be combined with an upper bound on
the trace of the Fisher information matrix to obtain a lower
bound on the minimax Lq loss achievable in a distributed
setting under privacy and communication constraints. This
approach is rather straightforward and is outlined in [5, 6, 4],
where authors also develop the necessary upper bounds on
the trace of the Fisher information matrix under privacy and
communication constraints. In this section, we overview how
privacy and communication constraints are mathematically
modeled in a distributed estimation setting and state the
corresponding lower bounds under Lq loss.

A. Problem Setup

The general distributed statistical task we consider in this
paper can be formulated as follows. Each one of the n
clients observes a local sample Xi ⇠ P✓, processes it via
a local channel (i.e., a randomized mapping), and then sends
a message Yi 2 Y to the server, which, upon receiving Y n,
aims to estimate the unknown parameter ✓.

At client i, the message Yi is generated via a sequential

communication protocol; that is, samples are communicated
sequentially by broadcasting the communication to all nodes
in the system, including the server. Therefore, the encoding
function Wi of the i-th client can depend on all previous
messages Y1, ..., Yi�1 2 Y . Formally, it can be written as
a randomized mapping (possibly using shared randomness
across participating clients and the server) of the form Yi ⇠
Wi(·|Xi, Y

i�1).
b-bit communication constraint: The b-bit communica-

tion constraint restricts |Y|  2b, ensuring the local message
can be described in b bits.

Remark 3.1: While we only overview the b-bit sequentially
interactive communication model, our results extend to the b-
bit blackboard communication protocol [19],where each node
is allowed to write b-bits in total on a publicly seen blackboard
in a randomized order that can depend on the samples. The
blackboard model allows for much more interaction between
the nodes as compared to the sequential model (e.g. the
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protocol can start with one of the nodes writing a single bit
on the blackboard and the second node to write a bit can
depend on the value of the first written bit etc.). The results
in Corollary 3.2 trivially apply to these more powerful com-
munication protocols simply because the Fisher information
bounds in [5, 6] are proven under this more general model.

"-local differential constraint: The "-LDP constraint re-
quires that, for any i 2 [n], xi, x

0
i 2 X , yi�1 2 Yi�1, S 2

� (Yi), it holds that

Wi(S|xi, y
i�1)

Wi(S|x0
i, y

i�1)
 e". (7)

It ensures that any adversary who observes the output Yi and
the context Y i�1 cannot infer the local sample Xi.

As a special case, when Wi depends only on Xi and
is independent of the other messages Y i�1 for all i (i.e.
Wi(·|Xi, Y

i�1) = Wi(·|Xi)), we say the corresponding proto-

col is non-interactive. Finally, we call the tuple
⇣

Wn, ✓̂(Y n)
⌘

an estimation scheme, where ✓̂ (Y n) is an estimator of ✓. We
use ⇧seq and ⇧ind to denote the collections of all sequentially
interactive and non-interactive schemes, respectively. The goal
is to lower bound the global minimax Lq risk:

R (Lq,⇥) , inf
(Wn,✓̂)2⇧seq

sup
✓2⇥

E



�

�

�
✓ � ✓̂ (Y n)

�

�

�

q

q

�

and construct schemes in ⇧seq that match these lower bounds.

B. Global Minimax Lower Bounds

Combining Proposition 2.5 with the Fisher information
bounds in [5], we obtain the following lower bounds on the
Lq risk of common statistical models, including the discrete
distribution estimation and the Gaussian mean estimation.

Corollary 3.2 (Estimation under b-bit constraint): Let

(q) ,
⇣ p

2⇡e
CME(q)

⌘q

. Then the following lower bounds hold:

• Gaussian location model: let X ⇠ N (✓,�2Id) with
[�B,B] ⇢ ⇥. For nB2 min (b, d) � d�2, we have

R (Lq,⇥) & d(q)max

(

✓

d�2

nb

◆

q
2

,

✓

�2

n

◆

q
2

)

. (8)

• Gaussian covariance estimation: Suppose that X ⇠
N (0, diag(✓1, ..., ✓d)) with [�2

min,�
2
max] ⇢ ⇥. Then for

n
�

�2
max � �2

min

�2
min

�

b2, d
�

� d�4
min, we have

R (Lq,⇥) & d(q)max

(

✓

d�4
min

nb2

◆

q
2

,

✓

�4
min

n

◆

q
2

)

.

(9)

• Distribution estimation: Suppose that X = {1, 2, ..., d}
and that f(x|✓) = ✓x. Let ⇥ = �d be the d-dim
probability simplex. For nmin

�

2b, d
�

� d2, we have

R (Lq,⇥) & d(q)max

(

✓

1

n2b

◆
q
2

,

✓

1

nd

◆
q
2

)

. (10)

• Product Bernoulli model: suppose that X ⇠
Qd

i=1 Bern(✓i). If ⇥ = [0, 1]d, then for nmin {b, d} � d,
we have

R (Lq,⇥) & d(q)max

(

✓

d

nb

◆
q
2

,

✓

1

n

◆
q
2

)

. (11)

for some universal constant C. On the other hand, ⇥ =
�d, then for nmin

�

2b, d
 

� d2, we get instead

R (Lq,⇥) & d(q)max

(

✓

1

n2b

◆
q
2

,

✓

1

nd

◆
q
2

)

. (12)

Similarly, we can prove lower bounds under the "-local DP
model by using the Fisher information upper bounds in [6].
We defer this to Corollary A.1 in Appendix A. Corollary 3.2
and Corollary A.1 recover several existing lower bounds and
extend them into the broader blackboard communication mod-
els. Specifically, (8) and (15) recover the non-sparse setting
of in [1, Theorem 4] for q < 1; (10) and (17) recover [1,
Corollary 3]; (11), (12), (17), and (18) recover [1, Theorem 3]
for q < 1.

C. Achievability

We note that nearly all of the aforementioned lower bounds
are order-wise tight3, meaning that they accurately characterize
the correct dependence on parameters such as d, n, b, and ".

Lemma 3.3: Assume the same conditions in Corollary 3.2.
Then (8), (10), (11), (12) from Corollary 3.2 are tight. The
same results hold for Corollary A.1 in Appendix A.

For 1  q  2, the upper bounds readily follow from
Hölder’s inequality. For q > 2, the order-optimal estimation
schemes can be constructed via a sample splitting trick in a
fashion similar to [18, 6], which yields optimal error perfor-
mance. Notably, these upper bounds can be achieved through
independent protocols, indicating that the global minimax error
is not improved by interaction among clients.

IV. LOCAL MINIMAX BOUNDS

In Section III, we establish minimax bounds for various
distributed statistical estimation models. However, these global

minimax lower bounds tend to be too conservative and may
not accurately reflect the difficulty of estimating each instance
✓ 2 ⇥. This is especially notable in the case of discrete
distribution estimation. For example, we would expect the
estimation problem to be inherently easier when the underlying
distribution we aim to estimate happens to be sparse. Ideally, it
is desirable to have estimation schemes that can automatically
adapt to the hardness of the underlying instance, i.e. achieve
smaller error in easier instances of the problem, without
knowing the instance ahead of time. In contrast, globally
minimax optimal estimation schemes are typically designed
and tuned for worst-case scenarios and can therefore be too
pessimistic, i.e. not able to exploit structures that make the
problem instance easier.

3The only exception is the sub-exponential case (9), in which the tightness
of the lower bound (even under L2 loss) remains open.
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In this section, we focus on the discrete distribution es-
timation problem and derive local bounds with respect to
general Lq loss. We consider the same setting as in Sec-
tion III; however to highlight that the parameter of interest
is an instance of the d-dim probability simplex, we use
p = (p1, p2, ..., pd) 2 �d to denote the unknown parameter
(✓ 2 ⇥). The goal here is to design a scheme (Wn, p̂ (Y n))
to minimize the Lq local statistical risk:

R (Lq, p, (W
n, p̂)) , E

h

kp� p̂ (Y n)kqq
i

for all p 2 �d.

We mainly focus on the regime 1 ⌧ d ⌧ n and aim to
characterize the pointwise statistical convergence rates when
n is sufficiently large.

A. b-bit communication constraint

We start with the b-bit communication constraint. [10]
provides a two-round scheme that achieves the following
estimation error:

Theorem 4.1 (L2 local minimax error [10]): Let b 
blog2 dc.

1) There exists a sequentially interactive scheme (with a
single round of interaction) (Wn, p̌) 2 ⇧seq, such that
for all p 2 �d,

R (L2, p, (W
n, p̌)) ⇣

kpk 1
2

+ on(1)

n2b
. (13)

2) There exists a sequentially interactive scheme (with a
single round of interaction)

⇣

W̃n, p̌
⌘

2 ⇧seq, such that
for all p 2 �d,

R
⇣

L1, p,
⇣

W̃n, p̌
⌘⌘

.

s

kpk 1
3

+ on(1)

n2b
. (14)

Note that the upper bound on the risk is now a function
of the unknown p. [9] develops the matching lower bound in
(13) for L2 loss. The optimality of the L1 rate in (14) has
remained open. In this paper, we close this gap by proving
the following matching lower bound for general Lq loss.

Theorem 4.2 (b-bit Lq local minimax lower bounds): Let
p 2 �0

d ,
�

p 2 �d

�

�

1
2 < p1 < 2

3

 

. Then for any � > 0, B �
q

kpk
1/2

d2b
, as long as n = ⌦

⇣

d3 log d
kpk

1/2

⌘

, it holds that4

inf
(Wn,p̂)2⇧seq

sup
p0:kp0�pk1 Bp

n

Ep0

h

kp̂ (Wn(Xn))� p0kqq
i

& max

0

@

C� kpk q
q+2

+�

(n2b)
q
2

,
kpk q

q+2

(n2b)
q
2 log d

,
C� kpkq/2+�

q/2+�

n
q
2

,
kpkq/2q/2

n
q
2 log d

1

A ,

where C� , (�/(1 + �))
2 is a �-dependent constant.

4Indeed, the lower bound holds for blackboard interactive schemes [19], a
more general class of interactive schemes than ⇧seq. See [5] for a discussion
of blackboard schemes.

Sketch of the proof: The proof is based on the frame-
work introduced in [5] (see also [10] for the analysis of `2

case), where a global upper bound on the quantized Fisher
information is given and used to derive the minimax lower
bound on the `2 error. We extend their results to the local
regime and develop a local upper bound on the quantized
Fisher information around a neighborhood of p.

To obtain a local upper bound, we construct an h-
dimensional parametric sub-model ⇥h

p that contains p and is
a subset of Pd, where h 2 [d] is a tuning parameter and will
be determined later. By considering the sub-model ⇥h

p , we
can control its Fisher information around p with a function
of h and p. Optimizing over h 2 [d] yield an upper bound
that depends on kpk q

q+2

. Finally, the local upper bound on the
quantized Fisher information is translated to a local minimax
lower bound on the Lq error via the generalized van Trees
inequality ( Theorem 2.4). We defer the detailed proof to
Appendix B. ⇤

Remark 4.3: Note that Theorem 4.2 complements Theo-
rem 4.1 and is nearly tight (up to a log d factor) for q = 1 and
q = 2. We believe the upper bound can be easily adapted to
match the lower bound for all q > 1.

B. "-local differential privacy

Similarly, under the "-local DP constraint, we prove the
following local lower bound:

Theorem 4.4 ("-LDP Lq local minimax lower bounds): Let
p 2 �0

d ,
�

p 2 �d

�

�

1
2 < p1 < 2

3

 

. Then for any � > 0, B �
r

kpk
1/2

dmin(e",(e"�1)2)
, as long as n = ⌦

⇣

d3 log d
kpk

1/2

⌘

, it holds that

inf
(Wn,p̂)2⇧seq

sup
p0:kp0�pk1 Bp

n

Ep0

h

kp̂ (Wn(Xn))� p0kqq
i

& max

 

C� kpk q
q+2

+�

⇣

nmin
⇣

e", (e" � 1)
2
⌘⌘

q
2

,

C1kpk q
q+2

⇣

nmin
⇣

e", (e" � 1)
2
⌘⌘

q
2

log d

,
C� · kpkq/2+�

q/2+�

n
q
2

,
C2 kpkq/2q/2

n
q
2 log d

!

,

for some C�, C1, C2 > 0.
However, unlike the b-bit communication constraint, the tight-
ness of Theorem 4.4 is unknown, and a matching achievability
scheme currently remains unsettled.

V. CONCLUSION

In this work, we first point out that the popular van Trees
inequality can be generalized to accommodate general loss
functions through Efroimovich’s inequality. Subsequently, we
extend the application of the generalized van Trees inequality
to Lq loss in the context of distributed estimation under
communication and local differential privacy constraints. No-
tably, combining with previous bounds on constrained Fisher
information, our results offer a significantly simplified analysis
over existing (global) lower bounds and, more importantly,
can be used to derive local minimax results that capture the
hardness of instances.
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