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1. Introduction

There is a long tradition of employing spatial optimization in the context of emergency response
and systems planning (Toregas et al. 1971), including police response and planning (Mitchell
1972). Covering models have been a prominent and persistent component of this work (Church
and Murray 2018). Novel variants of the Maximal Covering Location Problem recently appeared
in the literature, designed for an application in the area of drug interdiction at a hemispheric scale
(Price et al. 2022). The novelty of these models lay primarily in their ability to maximize
coverage while recognizing that there are multiple different types of demands to be covered, and
multiple different types of facilities that can — or cannot — cover those demands. In this chapter
the concepts of multiple-type demand and multiple-type facilities are applied to the motivating
example of police response and police unit location.

This work seeks to build on the previous literature regarding coverage models as a means of
optimizing location planning under varying demand conditions (Curtin et al. 2010). While this
previous work recognized that there were different priorities associated with different types of
calls, it did not distinguish between categories of calls that may necessitate entirely different
types of response. For example, the urgency, the level of response, and the needed equipment for
a call of an “active shooter” is far different from the response necessary for a report of vandalism
or a minor car accident. Moreover, the existing police response and patrol literature has not yet
recognized that not all police units are identical. There are categories of police units (e.g., bomb
squad, canine, SWAT, detectives) that differ in their numbers, in their equipment, in their
training, and in their response behavior. This work will demonstrate how these variations can be
modeled in order to more realistically represent police response and location scenarios and to
optimize those operations.

The following section reviews the literature in the areas of police optimization, related covering
models, and the integration of multiple types of facilities in location optimization. This is
followed by a presentation of the motivating application for this work, the optimal covering of
multiple different types of calls for police services in the city of Chicago, Il, and the optimal
stationing of multiple types of police units throughout the city. This is followed by optimization
formulations that cast the multiple-type demand maximal covering problem (MTD-MCLP) and
the multiple-type facility maximal covering problem (MTF-MCLP) in the context of police
response and unit location. Demonstrative results are included along with the descriptions of the
models. The chapter concludes with perspectives on the potential benefits of these models for
police operations planning, the limitations of these models, and extensions in the context of
police operations and additional application areas.

2. Background and Literature Review

The literature pertinent to this research lies in three broad areas, 1) the use of optimization
techniques in police operations planning, 2) maximal and backup covering modeling, and 3)
multiple-type covering models. Each of these areas is briefly reviewed.



2.1.  Police Optimization

Organizational strategies that focus on police presence, such as community-oriented, problem-
oriented, or other place-based policing methods and targeted intervention efforts, rely on the
proper spatial allocation of police resources and can readily be modeled with spatial optimization
techniques. Allocating police assets optimally relies not only on the identification of
criminogenic areas, but on differentiating among the types of calls for service and the number
and type of assets available. In the context of crime prevention and deterrence, the objective is to
optimally allocate police resources (e.g., patrol units) among known criminogenic locations to
maximize the demand for police services that is covered by police presence, which in turn can
contribute to improved public safety.

Spatial optimization models can be used to represent various aspects of law enforcement
operations, including routine patrol and reactive policing, via the spatial allocation of police
presence. The literature on police patrolling problems can be broadly (Samanta et al. 2021)
grouped as focusing on 1) designing patrol areas (e.g., (Yang et al. 2021)), 2) allocating patrol
units or other resources within those areas (e.g., (Adler et al. 2014; Liberatore et al. 2020)), 3)
designing patrol routes on a street network (e.g., (Chen et al. 2018; Dewinter et al. 2020;
Samanta et al. 2021)), and to a lesser extent, some combination of the three (e.g., (Curtin et al.
2010)).

Collectively, spatial optimization problems for police patrol most commonly have the objective
of minimizing response time given historical spatial and temporal patterns of crime, the type and
capacity of each unit, and the frequency and duration (dosage) of police presence needed at
demand locations (Samanta et al. 2021). The focus on response time minimization persists (Zhu
et al. 2022) even though reduced response time is not consistently correlated with lower crime
rates. Models applied to routing or allocating other emergency services such as fire or EMS, are
of less utility as several aspects of police operations create unique objectives and constraints. For
example, police patrols do not include return to a base station (unless there is an arrest or
administrative duties), meaning the dispatch location is dynamic. Police patrols are also sensitive
to dosage (the time spent at a location) and timing quotas, which controls the frequency of visits
to locations, and reactive policing can in turn influence timing and dosage at those locations
(Dewinter et al. 2022; Dau et al. 2023). Given that there is some stochasticity in the timing and
location of calls for service, other considerations include probabilistic elements, such as random
patrols during idle time with maximum dosage and frequency at those locations, and random
reactive policing to locations within the patrol area. In those cases, the objective is not
necessarily to minimize response time, but to maximize the calls responded to, balance the time
spent at patrol locations, or minimize waiting or idle time (Dewinter et al. 2020).

With regard to patrol area and police district design, the most common objectives are to
minimize response time or idle time in order to minimize the deviations in the level of police
activity between jurisdictions (Liberatore et al. 2020; Samanta et al. 2021). District design
problems can be situated in a network space (Adler et al., 2014) or rely on areal units, and typical
constraints include assigning all demand locations to a district and balancing the level of police
activity/resources needed across districts. Chevaleyre (2004) and Portugal and Rocha (2010)



developed multi-agent patrolling models to minimize idle time and presented heuristic solution
procedures using synthetic networks. Santana et al. (2004) used a Markov decision process to
design patrol districts by minimizing idle time on a weighted graph. D’ Amico et al. (2002)
presented a constrained-graph partitioning model and simulated annealing heuristic solution
procedure to minimize response and idle times among reporting districts in Buffalo, NY.
Liberatore and Camacho-Collados (2016) used a similar graph partitioning model to minimize
response times while constraining the deviations among the size of patrol areas and allowing for
backup coverage from adjacent districts in Madrid. The same problem, dataset, and constraints
were used in Camacho-Collados et al., (2015), albeit on a rasterized version of the street
network. Chen et al., (2019) formulated the street-network police districting problem (SNPDP)
to balance police activity among patrol districts using crime risk and the travel distance within
each district. Similar adjacency constraints appear in the redistricting formulation in Kong et al.,
(2019), which used a clustering algorithm to assign smaller area units to larger districts. Bucarey
et al., (2015) extends the p-median problem to balance policework among districts by
minimizing the sum of distances from each block to its assigned patrol district and constraining
the allowable travel distance that can be patrolled during a single shift.

Spatial optimization problems for the allocation of police resources typically rely on existing
district geography and can have the objective(s) of maximizing police coverage/visibility, or
minimizing average response time, operating costs, or variation in police activity among
districts. Node routing problems have been formulated, but may be of less utility in representing
police patrols, as the demand for police presence is more intuitively located along street
segments (Dewinter et al., 2020). Patrol routing along street networks can be represented by
directed arc routing problems, with required edges (patrol areas), where the demand along edges
is a dosage and frequency. There are also multi-period models that can accommodate flexible
assignments at each time step (Haghani et al. 2004) which minimizes response time based on the
vehicles’ current locations. Liberatore, Camacho-Collados, and Quijano-Sanchez (2021) used
dual objectives to maximize the minimum time spent patrolling an area and the ratio of police
contact to the size of population groups so that patrol time is allocated proportional to the
expected crime risk and to the population.

Routine police presence influences criminal outcomes at patrol locations by deterring crime,
reducing call volumes, and preventing traffic and other minor violations, especially when
directed at spatial and temporal hotspots (Telep and Weisburd 2012; Dau et al. 2023). Law
enforcement resources are limited in comparison to the volume and frequency of criminal
activity that occurs, the location and timing of individual incidents is subject to many dynamic
influences, and there are numerous and diverse types of police interventions that may be required
at specific locations or of individual law enforcement agencies. In this way, the nature of the
objectives and constraints on actual police operations is readily accommodated by location
allocation problems.

2.2.  Maximal Covering and Backup Covering
The focus on minimizing response time in the literature reviewed above highlights a contrast in
the perception of the quality of police service by policymakers, elected officials, and the



population at large on one hand, and by police officers and officials on the other. While police
are often judged on the time (or average time) to respond to calls for service, it has been noted
that fast responses do not equate to safe neighborhoods. There are examples of neighborhoods
where there are high incidences of crime, and significant police presence in close proximity, but
the pervasive nature of the crime does not permit policing to be effective. Police themselves
describe the need to cover areas where their services are needed in order to provide thorough
public service. For this reason, location covering problems have become one of the primary
approaches relevant to police operations. These problems optimally locate a resource or set of
resources that can serve or “cover” spatially distributed demand within a given distance or time
period. In police operations, these resources are located to be available to respond to, or “cover,”
spatially distributed criminal or emergency response incidents.

Research in facility location has created a family of variant location covering problems. There
are those with the objective of complete coverage using a minimum number of facilities as
formulated in the Location Set Covering Problem (LSCP); those that maximize coverage based
on cost, a limited number of facilities, or other resource constraints as addressed by the Maximal
Covering Location Problem (MCLP) (Church and Revelle 1974) and problems that avoid
coverage to the largest extent possible as addressed in the Minimum Impact Location Problem
(MILP) (Church and Murray 2018). It should be noted that these models are also related to a
wider range of location problems (Church and Weaver 1986).

The LCSP and the MCLP share a common limitation; once a facility is located, all demand
points under its coverage are considered completely covered. In many instances, this is not the
case. This is addressed with multiple extensions and variations of the LSCP and the MCLP that
allow for multiple coverage. Daskin and Stern (1981) proposed the hierarchical objective set
covering model (HOSC) to maximize secondary coverage to the LSCP model (Murray et al.
2010). Later, Hogan and Revelle (1986) addressed problems of the HOSC formulation by
presenting a multi-objective problem rather than a hierarchical formulation in the back-up
covering problem BACOP and subsequent variations (BACOP or BACK UP 2-4) (Daskin et al.
1988). Others yet have the objective of maximizing the demands that are covered multiple times
(Gendreau et al. 1997; Li et al. 2011). There are also many more variants that can accommodate
multiple coverage (multiple facilities at a single location), gradual coverage (the quality of
coverage decreases with distance), and cooperative coverage, in which multiple facilities can
contribute to fully covering a demand (e.g., (Price and Curtin 2024)). In the specific context of
police operations, Curtin, Hayslett-McCall, and Qiu (2010) traded off backup coverage with
optimal single coverage to allow a comparison of allocations where high-priority calls for service
could be covered by multiple police patrols.

2.3. Multiple-Type Covering

The spatial allocation of law enforcement resources relies not only on the location of calls for
service, but on differentiating among potential targeted intervention efforts, the types of police
assets available, and the consideration of districts or jurisdictions that can respond to specific
locations. In the context of law enforcement operations, the objective is to optimally allocate
police assets (e.g., patrol, K9, or marine units) among police districts or incident locations. The



demand associated with incident locations has a priority based on the nature of the incident
reported to police (e.g., robbery, narcotics, fraud), and there can be multiple units and types of
assets available to respond to the incident locations. Location covering models in particular can
be suited to modeling and solving these spatial allocation problems given the objectives and
constraints on law enforcement operations.

There is an established set of location allocation models cast in the context of police operations,
and there is a range of spatial optimization models that have considered locating multiple types
of facilities and others that can accommodate covering multiple types of demands. There are
those that have considered multiple facility types (Wilt and Sharkey 2019) albeit in the context
of task forces for illicit trafficking rather than policing, those that have addressed co-locating
multiple types of facilities at the same location (Magliocca et al. 2022; Price et al. 2022) and
others yet that focus on maximizing the spatial dispersion of multiple types of facilities (Curtin
and Church 2006; Church and Drezner 2022). Multiple-type facility location models exist in
numerous derivations and extensions applied to healthcare facilities, but typical constraints avoid
multiple coverage of the same demand location (Farahani et al. 2019) or do not permit multiple
facilities of the same type at the same location. Similarly, of those models that can accommodate
multiple types of demands, many are concerned with locating a single facility type (Mirzaei et al.
2021), with a system of hierarchal facilities, or with maintaining existing service locations (Paul
et al. 2017; Stanimirovic et al. 2017). There are multi-objective formulations to model covering
multiple types of flows (Jabarzare et al. 2020), but the typical objectives aim to maximize
disruption over the entire study area and do not account for isolating multiple types of demands
(e.g., types of crime) at a single location. Others have examined locating multiple types of
facilities across multiple time periods, albeit with the objective of maximizing coverage over the
entire planning horizon (Zarandi et al. 2013; Porras et al. 2019). Addressing multiple types of
crimes as a component of policing operations has only recently been integrated into the
operations research literature (Brandt et al. 2022).

In summary, we know from the literature that police planners have been increasingly accepting
of optimization modeling to assess the effectiveness of a range of operational decisions. The
maximal covering and related models have proven particularly useful given the nature of
policing, the constraints on resources, and the spatially distributed need for police services.
Finally, we know that considering multiple types of demands is of increasing interest in spatial
optimization across domain areas but is only recently being considered in the context of policing,
and the consideration of how to locate multiple types of facilities or police units is entirely absent
from the literature. The research presented here seeks to address this gap in the literature and
provide a useful model for police decision-makers. Given that police specialization is ongoing,
with more and varied types of police units designed for and trained to respond to different types
of calls for service (Reaves 2015), and given that police resources are under nearly constant
threat of reallocation (Piza and Connealy 2022; Lum et al. 2022) models that capture this
changing nature of police staffing and response and can optimize the use of those scarce
resources would appear to have some potential practical application. Therefore, this research
uses an example dataset and formulations in the following sections to demonstrate how location



covering models can be used to allocate multiple types of law enforcement units throughout an
urban area and cover multiple types of demands.

3. Motivating Example and Data

The purpose of this chapter is not to provide a particular police patrol scheme, but rather to
demonstrate that using multiple-type demand and multiple-type facility covering models can
inform the process of allocating police units should practitioners choose to do so. Instances of the
multiple-type demand and facility problems will be solved using the police geography and
incident-level crime data from the Chicago Police Department (Figure 1). Shapefiles containing
district and beat boundaries and police station locations were obtained from the Chicago Data
Portal (2023). Incident locations and details were available via a spreadsheet containing latitude
and longitude coordinates, which were subsequently geocoded in ArcGIS Pro, and transformed
to a spatial reference that is appropriate for the Chicago area. A sample subset of the available
incident data can be seen in the inset map of Figure 1. The example data consists of 870
geocoded locations for calls for service in the city of Chicago on August 2, 2019.
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Figure 1: Chicago Police Geography. Districts (n = 22), beats (n =
274), and the locations of police stations and incidents

3.1.  The Multiple-Type Demand Maximal Covering Location Problem

The spatial optimization formulations presented here are inspired by the multiple-type
formulations that appeared recently in Price et. al, (2022) in the context of hemispheric drug
trafficking and interdiction. The rationale for the Multiple-Type Demand Maximal Covering
Location Problem (MTD-MCLP) is that, in general, there may be more than one kind of demand
that needs to be covered to some extent, and covering more of one type is not equivalent to



covering the required amount of each type of demand. In terms of police response consider that
police may need to exert pressure on certain groups (e.g., different street gangs) in such a way
that all of the groups are influenced rather than targeting a single group while the others flourish
with no police pressure. The same could be true of calls for police to patrol locations for crime
suppression, or allocating police for outreach, community engagement, traffic control, or other
targeted interventions. The demand locations are areas where the police units are allocated for a
specific type of intervention, but where that presence may also provide a protective effect or
provide the ability for a unit to respond to nearby incidents. The MTD-MCLP can be cast in the
context of police response with the following formulation and notation.
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Where:
[ i = the set and index of incident locations
C, ¢ = the set and index of types of targeted interventions
i, j = the indices of demand incident locations to which police may respond
J. = the set of locations j where police units can respond to call for intervention type ¢
Xjc = 1 if a police unit responds to call type c at location j, and 0 otherwise
vic = 1 if demand incident 7 of call type c is covered by a police unit, and 0 otherwise
a;. = priority of covering a call of type ¢ at demand incident location i
P.= number of police units allocated to respond to call type ¢
N; .= the set of locations j where police units can respond to demand incident i of type ¢

In the MTD-MCLP, the objective (1) is to cover as many demands for the targeted intervention
of a number of criminal organizations as possible. The demands additionally have priorities for
coverage for each organization. Constraints (2) are the covering constraints and serve to ensure
that a demand incident location i can only be considered covered if a police unit responds to an
incident location j that is within the neighborhood set with a targeted intervention of type c.
Constraints (3) serve as the cardinality constraints and ensure that only the available number of
police units P, allocated to respond to organization type c are located. Constraints (4) and (5)
require only integer values in the solution, meaning a police unit cannot be partially assigned to a
call at incident location j and similarly, incidents cannot be partially covered. The location
decision variables indicate which locations/organizations receive a police intervention. If a



minimum amount of police units are available to target organizations, the model will enforce the
minimum required allocation of police units. As written, constraint (3) serves as the cardinality
constraint by defining the exact number of available units allocated to each intervention type c.
The MTD-MCLP can be made to encourage a minimum number of police units available for a
particular intervention type by replacing constraints (3) with a constraint on the total number of
police units to allocate (6) and a set of constraints setting the minimum number of units (7)
available for each for each intervention.

z z Xjc = P 6) Z Xjc 2 Pemin v c (7)

j€Jc ceC J€Jc

3.2.  The Multiple-Type Facility Maximal Covering Location Problem
Similarly, the Multiple-Type Facility Maximal Covering Location Problem (MTF-MCLP) can
model the different types of law enforcement units that may be located at each police station:
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Where:
Tt = the set and index of law enforcement unit types
Xjt =1 if a police unit of type ¢ is located at police station j, and 0 otherwise
Vit =1 if incident 7 is covered by law enforcement unit of type ¢, and 0 otherwise
ait = priority for call at incident i that can be covered by police unit type ¢
P; = number of law enforcement units of type ¢

Qjt = the capacity of district j for law enforcement units of type ¢



K:

it = the minimum number of units of type ¢ to located in district j

The MTF-MCLP demonstrates the case where it is not the interventions that are of a different
kind, but rather the law enforcement units themselves differ. These differences may limit the sets
of police station locations where those units can be located, or where their location would have a
covering effect. In the context of police response consider that different available law
enforcement units may have different assets, equipment, or training. In the MTF-MCLP, each
police station location j is assigned a capacity Qjr and a minimum allocation Kj; defined as the
maximum and minimum, respectively, number of law enforcement units of type ¢ that can be
located at police station j. For those types that can be located at a given location, one or more
may be located there if this leads to maximal coverage. Only those incidents that can be served
by a given law enforcement unit type (ai; > 0) will be covered by the law enforcement unit of that
of that type. The decision variables x;; and y;; now indicate which types ¢ of police units are
located at location j and which demand i is covered by a unit of type ¢. In the MTF-MCLP the
objective (8) is to maximize the number of priority-weighted calls for service that are covered by
a police unit of the appropriate type. Constraints (9) are the covering constraints and serve to
ensure that an incident of type 7 in police district j can only be considered covered if a unit of the
appropriate type is located within that district. Constraints (10) are the cardinality constraints and
indicate the total number of units available. Constraints (11) require that the number of facilities
located at each location j do not exceed the capacity of that location. Constraints (12) similarly
require that a minimum number of facilities in each district are met for each particular type. In
the context of police operations, capacity may be influenced by police geography (e.g., number
of patrol officers per beat) or by the available equipment, such as the number of patrol cars. The
decision variables are restricted to integer values, (13,14) and now indicate the number of law
enforcement units of type ¢ that are allocated to district j, and the demand locations i that are
covered by a facility.

In practice, the demand for, and availability of, law enforcement fluctuates over time. The MTF-
MCLP can accommodate multiple variants of constraints on the law enforcement response by
assigning the different sets of facility types to locations, by altering the capacity of each potential
facility location, or by adjusting the constraints on the total number of available facilities. For
example, major events, emergency response, budget shortages, or other routine changes in
personnel or equipment can all necessitate a redirection or reallocation of law enforcement
resources.

4. Results

The MTD-MCLP and the MTF-MCLP were written as Python (3.1) programs in Jupyter
Notebook within ArcGIS Pro 2.9 and solved using the Gurobi 10.0.1 module.

4.1.  The Multiple-Type Demand Maximal Covering Location Problem (MTD-

MCLP)
The MTD-MCLP was tested on the sample dataset with the goal of covering three different types
of demands for targeted intervention. Each demand location in the dataset was randomly
assigned to at least two of three hypothetical types of demands, with each demand allocated to a
similar number of demand locations. The objective for the MTD-MCLP is cover as many
demands for different types of targeted interventions as possible. These problem instances of the



MTD-MCLP employed beat-level neighborhood sets, meaning a potential facility sited within a
beat is assumed to provide a protective or deterrent effect to nearby incidents. Figure 2 shows the
results of the MTD-MCLP results using the equality constraint in (3), where P. was constrained
to 8, 11, and 9 for demands of types 1, 2, and 3, respectively. The MTD-MCLP was then tested
with the goal of targeting each demand with at least 1 police unit using the total P. constraint in
(6) and the inequality constraint in (7), and the results are shown in Figure 3. Both instances of
the MTD-MCLP resulted in a targeted 38% of the total demand locations, although the use of the
alternative constraints (P. = 28, xjc = 1) resulted in 12 facilities of types 1 and 3, while type 2
was allocated four interventions.
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Figure 2: MTD-MCLP (a) intervention locations and (b) demands (beats) covered using the
equality constraint in (3).
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Figure 3:-MTD-MCLP (a) intervention locations and (b) demands covered (beats) using the
inequality and total constraints in (6) and (7).



4.2.  The Multiple-Type Facility Maximal Covering Location Problem (MTF-

MCLP)
In this instance of the MTF-MCLP, the objective is to allocate a number of multiple types of
police units among 22 police districts in the city of Chicago. Each incident in the sample dataset
was assigned a priority (ai;) based on the nature of the call reported (e.g., murder, robbery, fraud)
and the location of the incident. Incidents were assigned priority values for patrol units ranging
from 2-5 based on FBI Uniform Crime Reporting (UCR) offense definitions (FBI 2019). The ais
values were assigned as follows: Criminal homicide, sexual assault (ai;; = 5); robbery, aggravated
assault, and burglary/breaking & entering (ai; = 4); larceny, motor vehicle theft, and arson (a;; =
3); Part 2 offenses (ai; = 2). The total number of patrol officers to allocate (P; = 2/92) assumes
an average of 8 patrol officers per beat (n = 274), and the capacity for each district similarly
assumes a maximum of 9 patrol officers per beat (Chicago Police Department, 2023a). This
problem instance employed the minimum allocation constraint in (12) to ensure each beat was
allocated at least one patrol officer (Kj; = 1). No other unit types were constrained to a
minimum number of facilities. The constrained values for each type is shown in Table 1.

All incidents at transit stations were assigned priority values of a;; = 5 for transit units. In this
example it is assumed that law enforcement units assigned to transit stations may also be able to
respond to nearby incidents. As such, transit units were assigned to the neighborhood set
belonging to those incidents in the beat surrounding the transit station. Assuming nearby
incidents will be of lower priority to transit units, all other incidents in the beat were assigned a;;
values of one less than those values assigned to patrol units. Location-based selection was used
to identify 84 beats within 18 districts that contained a transit station. The minimum allocation
was constrained to 1 per beat and 65 transit units were located.

The mounted patrol units, as part of CPD’s Special Functions division, are both limited in
number, and are assigned to a small scope of specialized duties in specific police districts. For
example, these assignments may include crowd control in downtown Chicago, patrolling major
festivals/events, or maintaining community relations as ‘Ambassadors of Good Will (Chicago
Police Department 2023b).” Mounted units were assigned to the neighborhood sets of incidents
in four police districts that include downtown, the waterfront, and Grant Park. All incidents in
which the location description indicated waterfront or park property were assigned priority
values of a;; = 5 to mounted units. As with the priority values assigned to transit incidents, all
other a;; values were assigned as one less those values assigned to patrol units.

Police canine (K9) units are tasked with tracking individuals, attending community outreach
events, and detecting narcotics and explosives, among many other duties (Chicago Police
Department 2023c¢) . For this demonstration, incidents a K9 unit can cover were assigned the
highest priority value (a; = 5) for incidents involving narcotics and other incidents were
similarly assigned a;; values of one less that those values assigned to patrol units.

This example instance of the MTF-MCLP also considered two other specialized units: Marine
and Helicopter. Marine units consist of both maritime and land-based operations and among
many other specialized duties, are present at major waterfront events (Chicago Police



Department 2023d). Incidents on park or waterfront property were assigned the highest priority
for marine type facilities(ai;; = 5). Other incidents were assigned a;; values of one less that those
values assigned to patrol units, excluding all Part two offenses, which were given no priority.
Marine units appear in the neighborhood set of incidents in districts adjacent to water features
including Lake Michigan, the Chicago River, Wolf Lake, Lake Calumet, and the Sanitary and
Ship Canal. Helicopter units can cover incidents in any district. Incidents were assigned a;; for
helicopter units equal to those for patrol, and similar to marine units, all part two offenses were
given no priority for helicopter units.

Table 1: Constraint values by police unit type

Type Py K; Qjt
Patrol 2192 1 per beat 9/beat
Transit 65 0 1/beat
Mounted 27 0 8/district
K9 13 0 1/district
Marine 7 0 1/district
Helicopter 2 0 1/district
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Figure 4: Patrol units allocated among 22 police districts in Chicago. Incident priority displayed
as heat map.
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Figure 5: The allocation of different types of police units among districts. Pie symbols show the
proportion of total facilities (excluding patrol) located in each district.

5. Discussion, Limitations, and Potential Extensions

Fundamentally, the purpose of generating models of these types is to permit practitioners —
police decision-makers or staff — to explore alternative deployment designs. These models allow
them to experiment with different data (e.g., alternative numbers of police units of different
types, alternative station capacities, or alternative demands for police services). Police can
experiment with different numbers of units (increasing or decreasing units by type) to determine
if additional coverage can be achieved, or the extent to which coverage will be foregone if units
are removed/unfunded. These experiments can reflect the uncertainties that are inherent in police
operations. Police planners know that they are subject to changes in the police operations
environment due to changing budget restrictions, changing availability of police resources such
as during police union actions or serious illness among police officers, and changing demand
circumstances (e.g., during special events or natural or man-made disasters), including the
seasonal changes in demand that have been well documented in the criminological literature.
Along those lines, the models presented here seek to increase that planning flexibility.

The models presented here are intended as a general framework to illustrate the potential for
spatial optimization to inform the allocation of law enforcement resources. The MTD-MCLP
accommodates targeting multiple types of police interventions at specific locations. This is
important, as a primary constraint on police operations is the need to prioritize how, and to what
degree, different types of calls or incidents are responded to. The objective for the MTD-MCLP
was to maximize coverage of incident locations associated with three types of police



interventions. The alternative covering constraints in (7) can be used to prioritize the level of
police activity assigned to specific types of crimes, criminal organizations, routine duties, or
during temporary changes in police workloads.

The MTD-MCLP could also accommodate many other modeling considerations in the context of
police operations. The problem instances of the MTD-MCLP presented above employed the use
of beat-level neighborhood sets, meaning a potential facility location sited in a particular beat is
assumed to provide a protective or deterrent effect to nearby incidents. This method differs
slightly from the classic MCLP in that neighborhood sets are usually designed using a user-
defined service distance, wherein all facilities within the service distance of a demand may
provide coverage of that demand. Work has already begun on spatial optimization formulations
that can accommodate allocating multiple facilities, at a single location, while considering spatial
deterrence using distance-decay. In the context of police operations, the number and types of
available units can be highly variable, and targeting specific locations or types of incidents may
be of greater priority than maximizing coverage over the study area. In that case, the
neighborhood set of any demand i would be user-defined based on the specific operational
context, and the objective function would aim to maximize coverage of specific types of
interventions.

The MTF-MCLP can be used to allocate different types of units, resources, or assets among
police districts. The MTF-MCLP aims to maximize coverage of incidents within districts, while
maintaining minimum levels of police presence throughout the study area. The demand for, and
availability of, police resources can be highly dynamic. For example, major events or emergency
situations can necessitate the redirection of first response resources to the affected districts, while
routine maintenance or other budget or equipment shortages can reduce the number of available
units. The MTF-MCLP can be made to encourage new or alternative spatial allocations of units
among districts by simply updating the capacity and minimum allocation parameters. Further, the
objective of the MTF-MCLP aims to maximize coverage of incidents with the most appropriate
type of facility. In the problem instance presented above, each district was assigned a minimum
number of each type of unit, although not all types of units can be located in all districts. For
example, patrol, mounted, and transit units can provide coverage to the same set of incident
types, although those incidents will be of lower priority than the value assigned for more
specialized units. Similarly, while patrol units can be located in any district, mounted and transit
units are limited to those districts where the specialized function takes place (e.g., near transit
stations or the waterfront). In this way, the allocation of a more specialized unit in a particular
district can influence the number of patrol units available to other areas.

Moreover, models such as these reflect the changing nature of policing. There is increased
specialization within police forces, with specific training limited to a relatively small percentage
of the entire force. In the context of large urban policing, these specialized police services need
to be positioned so that their effectiveness in responding to appropriate calls for police services is
maximized. The costs associated with establishing these units at stations with the equipment
necessary to efficiently operate further argues for the use of planning tools such as these models
in the decision-making process.



This effort to increase flexibility in operations planning is incremental, however. Police
operations — particularly in large urban areas — represent a complex system that is unlikely to be
captured by any single model. While this work builds on previous models there are still many
elements of police operations that have not yet been captured. In one sense these current
deficiencies represent limitations of the current body of work, in another sense they represent
opportunities for future research and application. As examples, the current models do not
consider equity among police responders. That is, neither the number or the severity of calls that
may need response for a particular station have been considered in the current literature, even
though such equity is a serious concern for police officers and their labor representatives.
Moreover, the current modeling standards do not accurately capture the level of flexibility that
police planners have in altering their operations, including the location of facilities and
personnel.

Even though there is much work to be done in this area, the research presented here attempted to
move the research frontier forward. The ultimate goal is to provide an increasing diversity of
quantitative planning tools that can generate results that can be integrated with insights from
police and policy makers that cannot be readily quantified in order to produce the best holistic
outcomes for the police and the population they serve.
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