machine learning &
knowledge extraction

Article

Machine Learning-Based Vulnerability Detection in Rust Code
Using LLVM IR and Transformer Model

Young Lee *¥, Syeda Jannatul Boshra, Jeong Yang

check for
updates
Academic Editors: Francesco

Buccafurri and Nikolaos Pitropakis

Received: 23 May 2025
Revised: 6 July 2025
Accepted: 19 July 2025
Published: 6 August 2025

Citation: Lee, Y;; Boshra, S.J.; Yang,
J.; Cao, Z.; Liang, G. Machine
Learning-Based Vulnerability
Detection in Rust Code Using LLVM
IR and Transformer Model. Mach.
Learn. Knowl. Extr. 2025,7,79.
https://doi.org/10.3390/
make7030079

Correction Statement: This article
has been republished with a minor
change. The change does not affect
the scientific content of the article and
further details are available within the
backmatter of the website version of

this article.

Copyright: © 2025 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license

(https:/ /creativecommons.org/
licenses /by /4.0/).

, Zechun Cao '@ and Gongbo Liang

Department of Computational, Engineering, and Mathematical Sciences, Texas A&M University-San Antonio,
One University Way, San Antonio, TX 78224, USA; sbosh01@jaguar.tamu.edu (S.J.B.); jyang@tamusa.edu (J.Y.);
zcao@tamusa.edu (Z.C.); gliang@tamusa.edu (G.L.)

* Correspondence: ylee@tamusa.edu

Abstract

Rust’s growing popularity in high-integrity systems requires automated vulnerability
detection in order to maintain its strong safety guarantees. Although Rust’s ownership
model and compile-time checks prevent many errors, sometimes unexpected bugs may
occasionally pass analysis, underlining the necessity for automated safe and unsafe code de-
tection. This paper presents Rust-IR-BERT, a machine learning approach to detect security
vulnerabilities in Rust code by analyzing its compiled LLVM intermediate representation
(IR) instead of the raw source code. This approach offers novelty by employing LLVM
IR’s language-neutral, semantically rich representation of the program, facilitating robust
detection by capturing core data and control-flow semantics and reducing language-specific
syntactic noise. Our method leverages a graph-based transformer model, GraphCodeBERT,
which is a transformer architecture pretrained model to encode structural code seman-
tics via data-flow information, followed by a gradient boosting classifier, CatBoost, that
is capable of handling complex feature interactions—to classify code as vulnerable or
safe. The model was evaluated using a carefully curated dataset of over 2300 real-world
Rust code samples (vulnerable and non-vulnerable Rust code snippets) from RustSec and
OSV advisory databases, compiled to LLVM IR and labeled with corresponding Common
Vulnerabilities and Exposures (CVEs) identifiers to ensure comprehensive and realistic
coverage. Rust-IR-BERT achieved an overall accuracy of 98.11%, with a recall of 99.31%
for safe code and 93.67% for vulnerable code. Despite these promising results, this study
acknowledges potential limitations such as focusing primarily on known CVEs. Built
on a representative dataset spanning over 2300 real-world Rust samples from diverse
crates, Rust-IR-BERT delivers consistently strong performance. Looking ahead, practical
deployment could take the form of a Cargo plugin or pre-commit hook that automatically
generates and scans LLVM IR artifacts during the development cycle, enabling developers
to catch vulnerabilities at an early stage in the development cycle.

Keywords: Rust; LLVM IR; vulnerability detection; code embedding; GraphCodeBERT;
machine learning

1. Introduction

Rapid software development has increased the risk of overlooked bugs, making timely
vulnerability detection both critical and challenging. Developers and educators employ
hundreds of technologies to implement secure coding practices [1,2] and detect and patch
vulnerabilities in code, but overcoming them completely remains challenging. Despite

Mach. Learn. Knowl. Extr. 2025, 7,79

https://doi.org/10.3390 /make7030079

https://doi.org/10.3390/make7030079
https://doi.org/10.3390/make7030079
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0003-3589-3120
https://orcid.org/0000-0002-3819-3544
https://orcid.org/0000-0002-4542-7791
https://orcid.org/0000-0002-6700-6664
https://doi.org/10.3390/make7030079
https://www.mdpi.com/article/10.3390/make7030079?type=check_update&version=4

Mach. Learn. Knowl. Extr. 2025, 7,79

20f 18

recent efforts, existing vulnerability detection methods still heavily rely on analyzing source
code directly, which may miss deeper vulnerabilities evident at the IR level. In this pa-
per, we propose Rust-IR-BERT, a novel machine learning pipeline specifically designed
to identify security vulnerabilities in Rust code which operates directly on IR to improve
accuracy in detecting false positives. Unlike compiler-embedded tools like Rudra [3] that
focuses on Rust’s HIR/MIR, Rust-IR-BERT leverages LLVM IR to detect deeper, catch-
ing lower-level (e.g., certain use-after-free patterns) vulnerabilities more effectively that
higher-level IR might have already optimized or abstracted away. By extracting code seman-
tics via GraphCodeBERT embeddings [4], a pretrained transformer model optimized for
code understanding and employing CatBoost classifier [5], a gradient-boosting algorithm
renowned for handling heterogeneous features is employed—our framework achieves
superior detection accuracy. Furthermore, by employing LLVM IR, our model generalizes
more effectively across diverse codebases, overcomes the limitations of traditional source-
level analysis, and reduces the noise introduced by high-level syntax differences. In this
study, we primarily focus on vulnerabilities related to memory safety issues (use-after-free;
double-free) and misuses of unsafe block and concurrency errors, which represent common
security concerns in Rust.

Rust is considered to be the safest system-level programming language of this time [6].
Bugden and Alahmar have conducted an analysis among leading programming languages
to evaluate safety and performance and found that Rust outperforms the other languages [7].
They mentioned Rust as the safest, especially in concurrent environments where Rust’s
data race prevention can avert many software bugs and vulnerabilities. This language is
referred to as the “safest” due to its ownership model, memory safety guarantees (e.g., use-
after-free; double free), and strict compile-time checks [8,9]. Rudra [3] recently revealed that
by employing unsafe blocks in error-prone spots a lot of memory-safety bugs in the Rust
ecosystem can be identified. While Rust eliminates many memory safety issues at compile
time, there are still potential risks such as ‘Unsafe Rust” and ‘Concurrency Bugs.” “Unsafe
Rust’ refers to situations where developers sometimes use the unsafe keyword to bypass
Rust’s safety guarantees, which can introduce security risks. Qin et al. (2020) presented
an extensive empirical survey of memory and thread safety practices in real-world Rust
codebases, detailing how developers employ unsafe code and the common misuse patterns
that trigger safety breaches [10]. Regarding ‘Concurrency Bugs’, Rust enforces strict rules to
prevent data races, but complex multi-threaded programs can still have logical concurrency
bugs that are not caught by the compiler [11].

Despite Rust’s safety guarantees, even within the safe Rust block, it is possible to
violate this guarantee of safety, which has become a significant concern. Logic errors in
security-critical applications can also lead to serious vulnerabilities, such as race conditions
or unexpected state transitions [6,12]. Since Rust is increasingly used in security-critical
domains like operating systems, web browsers, and blockchain, it is crucial to develop some
techniques for making sure that even the safest programming language can also be double
checked and vulnerability detection can be conducted before publishing the software.

Rust initially lacks a mechanism against timing attacks, which could lead to the
iteration time varying based on the data [13]. Figure 1 presents Rust’s == operator on
&str that performs a byte-by-byte comparison and short-circuits whenever a mismatch is
found. Therefore, its execution time varies with the length of the matching prefix. A po-
tential attacker measuring these timing differences can recover the secret one byte at a
time. A single-line fix can prevent the threat by using a constant-time comparison (e.g.,
subtle: :ConstantTimeEq: : ct_eq) so that every byte is compared without early exit. How-
ever, both safe and unsafe blocks of Rust are extremely useful when it comes to developing

Mach. Learn. Knowl. Extr. 2025, 7,79

30f18

software. The combination of safe and unsafe Rust provides a memory safety guarantee
while enabling its usability for various purposes, including system programming [14].

let correct "s3cr3tP@ssword"; // stored secret

if verify_password(user_input, correct) {

1 fn verify_password(attempt: &str, password: &str) -> bool {

2 attempt == password

3}

5 fn main() {

6 let user_input = "guess"; // e.g., read from user
7

8

")

println!("Access granted");
10 } else {
println!("Access denied");

[y
[y

ol
w N
-

}

Figure 1. Timing-attack vulnerability in safe Rust string comparison.

Addressing the challenges, in this research, we conduct an empirical investigation
of safety issues in real-world Rust programs by evaluating the crates. Unlike most prior
methods relying solely on raw source code or abstract representations [15-17], our novel
pipeline uniquely leverages IR embeddings combined with GraphCodeBERT and CatBoost
classifier, explicitly capturing deeper semantic features and improving detection reliability
and accuracy. Incorporating these 768-dimensional encoded LLVM IR files with CatBoost-
we achieve robust detection of vulnerable patterns of Rust code samples. This integration
of LLVM IR, GraphCodeBERT embeddings, and CatBoost classification with threshold
optimization is novel for Rust vulnerability detection. Later in this study, experimental
results demonstrate that our updated approach delivers significantly higher accuracy and
F1-scores than prior baselines.

2. Background

Rust was developed to provide strong guarantees around memory and thread safety
without compromising with the performance. While Rust-specific features such as own-
ership, borrow checker, and the unsafe keyword underpin Rust’s safety mechanism, vul-
nerabilities persist, especially when unsafe constructs or external libraries are employed
without proper concern. This section provides some background of Rust’s safety and
unsafety mechanisms, Language-Independent Intermediate Representation (IR), and Vul-
nerability Databases and Embeddings.

2.1. Rust’s Safety Mechanism and Unsafe Rust

Rust ensures memory safety through its ownership system, which statically enforces
that each memory allocation has either one mutable owner or multiple immutable own-
ers, eliminating both use-after-free and double-free errors. The borrow checker enforces
reference lifetime validity, preventing dangling pointers and data races by disallowing
overlapping mutable and immutable references. While the unsafe keyword enables evading
these guarantees for low-level operations, it requires manual adherence to safety invariants.
Formal verification underpins the Rust model: the RustBert project [18] provides a machine-
checked proof (in Coq) using concurrent separation logic to validate ownership, borrowing,
and interior mutability. GhostCell extends this by decoupling aliasing permissions from
data storage, enabling safe shared mutability without runtime checks [19]. These described
features, compile-time checks, verified guarantees, and controlled access rules make Rust a
super safe language that ensures the utmost safety. Rust has become increasingly popular
in system software in recent years due to its safety and performance advantages. Mi-

Mach. Learn. Knowl. Extr. 2025, 7,79

40f18

crosoft is currently exploring investing in Rust as a replacement for C/C++ considering
its memory-safety features, which has recently been announced by the Microsoft Security
Response Center [20]. Amazon’s AWS team has extensively adopted Rust to implement
performance-sensitive components, leveraging the language’s guarantees around memory
safety and zero-cost abstractions [21].

Safe Rust offers strong memory safety and flexible restrictions, but it is not suitable
for maintaining shared mutable references in system programming or reference counting.
Unsafe Rust escapes the Rust compiler’s check and requires programmers to ensure mem-
ory safety. Rust labels five core operations: dereferencing raw pointers, calling external
functions, accessing mutable statics, implementing unsafe traits, and manipulating unions
as “unsafe,” where the compiler’s standard guarantees are suspended [22]. Within these
blocks, the borrow checker and lifetime analysis do not enforce memory-safety variables,
causing the developers to be solely responsible for ensuring software safety. Eventually,
memory-safety bugs can easily be introduced by any error in these unchecked memory-
related operations. To mitigate these risks, developers should carefully keep unsafe regions
as minimal as possible, encapsulate them within thoroughly reviewed safe abstractions,
and document the precise safety invariants they rely on. Evans et al. (2020) claim that,
although fewer than 30% of Rust libraries explicitly use the unsafe keyword, the way
unsafety can spread through function calls still challenges Rust’s promise of complete static
memory safety [9].

Figure 2 presents an example code that converts a mutable reference to x into a raw
pointer (*mut i32), bypassing Rust’s ownership and borrowing constraints, which usually
restrict concurrent mutable access. Two threads then enter unsafe blocks to dereference and
access the same memory location simultaneously, resulting in unsynchronized writes. These
operations cause a data race condition, which is explicitly stated as undefined behavior
in Rust, because at least one thread writes while another may read or write concurrently.
This situation can be avoided by using synchronization primitives like Mutex<i32> or
atomic types (Atomicl32) to protect shared state, which guarantees safe, unaffected access
between threads.

1 use std::thread;

2 fn main() {

3 let mut x = @;

4 let ptr = &mut x as *mut i32; // raw mutable pointer

5 // Spawn two threads that both mutate *ptr without synchronization
6 let t1 = thread::spawn(move || unsafe { *ptr += 1; });

7 let t2 = thread::spawn(move || unsafe { *ptr EE 2y

8

9

tl.join().unwrap();

1e t2.join().unwrap();
11 printlnl ("Result: {}", x);
12 }

Figure 2. Data-race via unsynchronized raw-pointer access in unsafe Rust.

2.2. Vulnerability Databases and LLVM IR

RustSec Advisory Database is a community-maintained repository of security advi-
sories for Rust crates published on [crates.io]. Every advisory has a distinct RUSTSEC-
YYYY-NNNN tag, and when accessible, it usually contains metadata like CVE IDs, URLs to
repair changes, and impacted version ranges [23]. This database enables Rust developers to
audit their dependencies for known vulnerabilities via tools like cargo audit and integrates
with the Open Source Vulnerabilities (OSV) [24] schema to facilitate machine-readable
consumption. This database connects with the Open Source Vulnerabilities (OSV) schema

Mach. Learn. Knowl. Extr. 2025, 7,79

50f18

to enable machine-readable consumption and allows Rust developers to use tools like cargo
audit to audit their dependencies for known vulnerabilities.

Open Source Vulnerabilities (OSV) database is an initiative led by Google that provides
a unified, precise, and distributed approach to publishing and registering vulnerability
information across multiple ecosystems [24]. OSV entries are represented in a standardized
JSON schema, reference one or more CVE IDs, and can be queried via a public API or
consumed as bulk archives. Through the integration with data from RustSec, Advisories,
and the National Vulnerability Database (NVD), OSV simplifies automated vulnerability
management for both open-source maintainers and application developers [25]. The OSV
and RustSec Advisory-db. are both essential to preserving high-quality datasets for vulner-
ability research. Early studies demonstrated the usefulness of the RustSec Advisory and
OSV in vulnerability predictive modeling, proving that information from these databases
can anticipate which software components are most likely at risk [6]. For our approach,
we developed an automated script to collect vulnerable and non-vulnerable Rust source
codes from OSV and RustSec Advisory-db. It clones each repository, calls the OSV API to
find vulnerable and fixed versions, checks out the code before and after each fix, compiles
each version to LLVM IR with rustc —emit=LLVM IR(with minimal corrections), and then
saves the original .rs files alongside the generated .1l files locally for use in the embedding
pipeline. The same process is applied to the RustSec Advisory-db. A recent approach,
ContraFlow [26], uses CVE-labeled samples from OSV advisory (including RustSec entries)
to train contrastive, path-sensitive code embeddings over value-flow graphs, significantly
boosting vulnerability detection accuracy. Graph-based techniques like Devign [27] have
employed rich semantic representations obtained from vulnerability databases to learn
graph embeddings that greatly increase detection accuracy, while deep learning systems
like VulDeePecker [16] have used CVE-labeled code devices to train BLSTM models for
vulnerability detection.

Language-Independent Intermediate Representation (LLVM IR) is a language-agnostic
SSA-based “portable assembly” that provides a consistent low-level view of programs,
enabling transparent, lifelong analysis and transformation by exposing typed arithmetic,
memory operations, and control structures in a uniform form [28]. It is simply a low-level,
platform-independent code representation that sits between source code and machine
code and is extensively used in compiler optimizations and program analysis. We lever-
age LLVM IR in our workflow because it offers a structured yet simplified view of Rust
programs, faithfully capturing control-flow and data-flow semantics crucial for accurate
vulnerability detection.

In our pipeline, each Rust crate, both before and after patch commits, are compiled
into LLVM IR, from which a pretrained BERT model extracts semantic embeddings that
highlight patterns associated with security flaws. These embeddings are then passed to a
classifier, which helps the pipeline to detect vulnerabilities more accurately. Furthermore,
because IR abstracts away high-level constructs such as generics and borrow-checker
lifetimes, the classifier can generalize across diverse crate ecosystems without being biased
by Rust-specific syntax [29]. Previous studies have demonstrated that neural models trained
on IR functions outperformed source-level token models by more than 12% in precision
and recall for vulnerability detection, underscoring IR’s structured semantic richness [30].

2.3. Embedding-Based Vulnerability Classifier

Our embedding-based classifier employs CatBoost [5]. Pretrained, transformer-based
code models have delivered outstanding performance on software development and code-
analysis tasks such as code summarization, feature extraction, and predictive code gen-
eration. GraphCodeBERT, a pretrained model for programming language that considers

Mach. Learn. Knowl. Extr. 2025, 7,79

6 of 18

the inherent structure of code. Instead of taking a syntactic-level structure of code like
abstract syntax tree (AST), we leverage semantic-level information of code (i.e., data flow)
for pretraining [4].

2.4. Vulnerability Detection Tools

Compared with traditional models, our unique Rust-IR-Bert approach has proven
and reliable special features. For example, it does not only rely on raw Rust code yet
compiles Rust code to an intermediate representation which turns the source code into
a detailed version. Also it does not require large-scale self-replication and distribution
but only needs to be placed at the source—.1l or .rs file into the ML pipeline to determine
the safety. A well-known open source tool AIBughunter [31], implemented in academia in
2022, is a representative method based on developer signature matching which published
a plugin inside the IDE to assist developers during coding. It has been trained on over
188,000 C/C++ functions, whereas our model supports Rust, which is increasingly used for
secure systems.

As Rust being the safest language in the recent era, our proposed methodology is
one step ahead of the current big projects. Moreover, AiBugHunter uses raw function
text for training the model and predicting, due to which it might miss deeper semantic
relationships, such as data and control flow dependencies, which graphs or IR can capture.
This limits the tool’s ability to detect vulnerabilities in tracing how data moves through or
how the control structure of a program enables unsafe states.

Over the past few years, several ML-driven tools have targeted Rust (and C/C++)
vulnerabilities using diverse representations and approaches. HALURust prompts a
7-billion-parameter LLM to “hallucinate” vulnerability reports on Rust code, then fine-tunes
on those examples, resulting in an F1 score uplift of 10% over source-only attempts [32].
Unsafe’s Betrayal parses Rust binaries into token sequences and fine-tunes RoBERTa to pin-
point unsafe functions—achieving a precision—recall AUC of 80% for unsafe-code detection
and 62% when adapted to known Rust vulnerabilities [14]. VulBERTa pretrains RoBERTa
on millions of lines of C/C++ source with their custom code-aware tokenizer and then
fine-tunes for vulnerability classification, which achieves 99.6% F1 on the muVulDeePecker
benchmark [16]. AI4VA transforms each function of the code into a Code Property Graph
(CPG) and trains a Gated Graph Neural Network on those, outperforming traditional static
analyzers on standard vulnerability benchmarks [33].

Our model uses LLVM IR, which exclusively captures low-level behavior, improving
semantic understanding. Cipollone [34] introduced a transformer-based framework that
classifies CVE-linked GitHub issues using embedding models and XGBoost [35], demon-
strating that natural-language signals can provide early vulnerability alerts. In contrast,
our ML-driven pipeline employs CatBoost as a classifer. The SySeVR model [15] presents a
structured approach to vulnerability detection in C/C++ programs by analyzing specific
code patterns using deep learning models. It convert semantics-based vulnerable codes
into vector representations using techniques like word2vec. SCL-CVD fine-tunes Graph-
CodeBERT using a supervised contrastive loss combined with R-Drop on data flow graph
representations of source program code, achieving relative improvements of 0.48-3.42% in
accuracy over baselines, while reducing fine-tuning time by up to 93% [36].

In contrast, our method leverages the intermediate representation of code derived from
Rust and advanced embedding techniques to potentially capture a more comprehensive
view of program behavior. This could lead to improved detection of a wider range of
vulnerabilities. Also, SySeVR does not assign specific CVE IDs, whereas we assign CVE
IDs to detected vulnerabilities which makes it convenient for the developers to further
analyze the issue. Android researchers extract static code features from Android APKs

Mach. Learn. Knowl. Extr. 2025, 7,79

7 of 18

with Androguard and trains a CatBoost Classifier to detect ransomware, reporting over
95% accuracy on benchmark datasets [37]. Conversely, our method leverages same CatBoost
classification to identify vulnerable snippets, achieving an accuracy of 98.6%. Our system
is a more versatile and scalable solution for modern software vulnerability detection.

3. System Architecture

Figure 3 illustrates the end-to-end vulnerability detection pipeline, composed of
four primary stages: (1) IR Generation, (2) Embedding Extraction, (3) Classification, and
(4) Threshold Optimization. The justification of each design choice is given below:

Dataset =
csv Extract LLVM IR Preprocess Feature Scalling

files and labels LLVM IR
Y
& @
=
GraphCodeBERT I Train CatBoost Final Evaluation

Tokenization

Code Embeddings !

g | [=
1.07208997e-01... 5.63649274e-02

—0—

__, Predict & Assign

Inference on New 3.70066345 O‘\ .2 44256020e-01
. e- e Ly e- H gt
LLVM IR file N Threshold Tunin Vulnerabilities

~

Figure 3. ML pipeline.

The pipeline begins by compiling Rust source code into LLVM IR via rustc
—emit=1lvm-ir, preserving program semantics wile providing a lower-level representation.
The resulting IR text is tokenized and processed by a pretrained graph-based transformer
model GraphCodeBERT’s IR-aware tokenizer, whose graph-guided attention mechanism
leverages code data-flow to produce a 768-dimensional semantic embedding. These
embeddings are then normalized via a standard scaler to ensure zero mean and unit
variance before being passed to a CatBoost classifier, which is a great choice for handling
categorical data and reduces overfitting [5]. Prior to selecting CatBoost, we conducted a
comparative evaluation against XGBoost and Random Forest on the same embeddings.
We evaluated CatBoost against XGBoost and Random Forest using 5-fold stratified cross-
validation on the full dataset, observing that CatBoost achieved the best mean accuracy
(0.982 + 0.008) and recall metrics. The CatBoost classifier’s strong feature interaction
handling enables it to learn complex patterns for binary vulnerability identification. We
refine the model’s decision threshold using a held-out 20% validation split by taking over
the classification probability from 0.1 to 0.9 and computing the corresponding F1-score
at each point, thus balancing precision and recall and selecting an optimal cutoff (found
to be 0.35) for final predictions. We also considered a separate pipeline without inserting
GraphCodeBERT embeddings; however, initial results indicated significantly degraded
performance of >15% drop in Fl-score, underscoring the embedding’s contribution.

During inference, this pipeline can process new, unseen LLVM IR snippets to determine
whether the newly injected LLVM IR file is buggy or not. By integrating transformer-based
code semantics with an ensemble classifier, this architecture captures structural code
information while delivering strong generalization and precise decision thresholds for
identifying vulnerabilities in Rust code.

Mach. Learn. Knowl. Extr. 2025, 7,79

8 of 18

4. Research Methodology
4.1. Research Questions

This study aims to find answers to the following research questions.

Q1: What is the detection accuracy of our GraphCodeBERT + CatBoost pipeline?

Q2: How does our hybrid Rust-IR-Belt approach differ fundamentally from existing static-
analysis frameworks and machine learning methods?

Q3: Can this system reliably identify real Rust vulnerabilities in unseen code?

Q4: How are Rust-derived LLVM IR snippets encoded into feature vectors for classification?

4.2. Data Collection and Preprocessing

Collecting vulnerable and patched Rust code samples from ecosystem: Data collection
is a critical component of this study, as high-quality labeled data underpins effective
ML models for vulnerability detection. We leveraged the RustSec Advisory Database—a
curated, community-driven repository of Rust crate vulnerability advisories to extract
real-time examples and CVE mappings. Concurrently, we consumed the Open Source
Vulnerabilities (OSVs) API to normalize advisory data, extracting CVE identifiers, ver-
sion ranges, and vulnerability categories in a machine-readable JSON schema. For each
crate version, source archives were downloaded via the crates.io API endpoint and
uncompressed with Python’s tarfile module. We programmatically extracted all .rs files
within each src/directory, wrapping them with dummy stub modules and an injected
fn main() to guarantee standalone compilability. Each vulnerable or patched snippet
was then compiled to LLVM IR using rustc —emit=1llvm-ir, preserving CVE labels and
vulnerability metadata in a flat local directory. To further diversify our dataset, we man-
ually curated additional raw Rust code samples from large open-source GitHub projects,
verifying both vulnerable and fixed versions to capture real-world patterns. This com-
bined strategy generated over 2300 labeled .rs/.ll pairs for downstream embedding
and classification tasks, ensuring comprehensive coverage across the Rust ecosystem.
Figure 4 illustrates this data collection pipeline.

Normalize OSV entries:

Local OSV s parse JSON
JSON Directory « extract crate, versions,

csv_id, vuln_type

Y

Fetching Rust source:
= download from crates.io API

l

(entry }

Rust - LLVM IR Collect paths and
compile metadata into rows

Merging CSVs and
Label Creation

RustSec

Advisory DB

Figure 4. Data collection pipeline.

Mach. Learn. Knowl. Extr. 2025, 7,79

90f18

The automated Python script begins by normalizing a local OSV JSON directory,
parsing each entry to extract crate names, version ranges, CVE IDs, and vulnerability
types, and then fetches the corresponding source archives from the crates.io API via the
requests library. For each entry, the script compiles the Rust code into LLVM IR using rustc
—emit=1lvm-ir, after wrapping snippets to ensure standalone compilability, and extracts and
filters.rs files with Python’s tarfile module. In parallel, we manually collect relevant entries
from the RustSec advisory database. Finally, all paths and metadata are merged into a single
CSV file, which is being stored locally, capturing CVE identifiers, source paths, and advisory
descriptions as of 25 April 2025, enabling scalable, repeatable updates as new advisories
appear. The bar chart from Figure 5 presents the top 10 CVE IDs and other vulnerable
tags the model successfully detected (count of .1l files flagged with each CVE). The most
common are RUSTSEC-2022-0008 and GHSA-x4nm?7s-fmx8m (500 files each), followed by
other Rust CVEs. This suggests these issues are prevalent in the codebase. Several other
CVEs (e.g., CVE-2023-22466 and CVE-2021-31891) had smaller counts, demonstrating that
the model recognizes a range of distinct vulnerabilities. Overall, this distribution indicates
that the classifier both distinguishes vulnerable code and recalls the specific CVE labels
learned during training.

Rust Snippet Wrapping: To prepare each Rust snippet for LLVM IRemission, we
automatically embed it within a minimal scaffolding layer. This involves prepending
dummy stubs for commonly missing modules and injecting an fn main() entry point when
necessary. A dedicated pipeline was developed to automate the handling of these issues,
adding for a missing main, injecting the necessary boilerplate, writing the augmented .rs
file into a local folder, and then invoking rustc to produce the corresponding .11 file—all
without manual intervention.

500 A

400 -

300 4

Count

200 4

100 A

Type of Vulnerability

Figure 5. Bar chart of top 10 types of vulnerabilities detected by the model.

Key Integration Challenges:

* Missing main() Functions: Many examples consist solely of library functions. Our
wrapper detects any code lacking a main function and appends a minimal fn main()
so that rustc —emit=LLVM IRwill succeed.

* Missing Contextual Definitions: Snippets sometimes refer to types or traits defined
elsewhere. We include lightweight dummy modules (e.g., mod reactor) to satisfy these
external references.

Mach. Learn. Knowl. Extr. 2025, 7,79

10 of 18

¢ Feature and Flag Variability: Different crates target varying Rust editions or feature
sets. By standardizing on the 2018 edition and using a uniform stub approach, we
avoid per-snippet compiler flag adjustments.

¢ Project-Level Dependencies: Some code relies on broader project settings or build
scripts. Where isolated compilation fails, our script logs and skips those cases, ensuring
that only self-contained snippets proceed.

Data Labeling: Each code snippet in our dataset is tagged as either vulnerable or safe.
For vulnerabilities, we attach the official CVE identifier as sourced from advisory metadata,
ensuring each example is linked to its real-world issue. Safe samples come from stable
crate versions with no reported security advisories. This clear, consistent labeling gives
our model the precise ground truth it needs to learn how to distinguish secure code from
insecure code.

To define non-vulnerable or safe samples, we relied on codebases without reported
CVEs, acknowledging the limitation that unreported and unseen vulnerabilities could
potentially exist within these samples. Moreover, some code samples required minor
manual adjustments, such as inserting dummy main() functions, which were necessary
for ensuring IR generation completeness. These adjustments were minimal and aimed
to standardize IR extraction to streamline the data collection process. Specifically, our
dataset contains 143 unique CVE identifiers sourced from multiple crates, demonstrating
broad coverage of known vulnerability types, yet a broader range of projects would further
accelerate in generalization.

4.3. Code Preprocessing and Representation

Studies have shown that large language models can be sensitive to minor code changes,
such as whitespace modifications or renaming functions, which can affect their vulnerability
detection capabilities. As a result, we added a function to remove unnecessary comments
and blank/white spaces from the LLVM IR code [38]. Raw LLVM IR often contains
comments, metadata, and extra whitespace that are irrelavant and sometimes distracting
for training a classifer. In order to produce a stable, normalized input for GraphCodeBERT,
we first strip out all comment lines (lines that begins with ;) and collapse consecutive
blank lines (see Listing 1). This lightweight cleanup preserves the actual instructions
and data-flow structure while removing noise that could otherwise bias the embedding.
After cleaning, each IR file is tokenized with GraphCodeBERT’s native tokenizer, and the
CLS token embedding is extracted to represent the entire snippet individually.

Listing 1. Preprocessing .1l files.

def load_and_clean_ir (path):
with open(path, ’r’, encoding=’utf-8’, errors=’ignore’) as f:
return "".join(line for line in f if not limne.lstrip().
startswith(’;?))

4.4. Embedding-Based Feature Extraction

Embeddings translate complex code structures into fixed-dimensional numerical
vectors that preserves both syntactic and semantic relationships within the code. Unlike
characters or token-based representation, embeddings encapsulate semantic functionalities
and modules that interacts closely in the program. It enables downstream classifiers to
determine subtle vulnerability patterns. Unlike traditional methods that treat code as
sequences of characters, embeddings capture the semantic relationships between parts of
the code [39].

Tokenization and Data-Flow Construction—Extracting GraphCodeBERT Embeddings:

Mach. Learn. Knowl. Extr. 2025, 7,79

11 0f 18

GraphCodeBERT is a pretrained transformer model specially designed to capture
both data-flow and control-flow dependencies in source code [4]. Whereas conventional
tokenizers treat code as flat token sequences, GraphCodeBERT integrates a graph-based
representation of variable usages and control edges, producing embeddings that reflect
the program’s operational semantics. This richer representation helps the model recognize
vulnerability-triggering constructs that depend on data propagation or execution paths. We
preprocess each Rust-derived LLVM IR by stripping comments and normalizing constants,
then tokenize the cleaned IR with the HuggingFace GraphCodeBERT tokenizer (truncating
or padding to 512 tokens) (see Listing 2).

Listing 2. Extraction of CLS embedding from LLVM IR.

for each row in df:
ir = load_and_clean_ir(row.rs_fullpath)
toks = tokenizer (ir, return_tensors="pt",
max_length=512)
with torch.no_grad():
out = model (**toks.to(device))
emb = out.last_hidden_state[0,0,:].cpu().numpy()
embs . append (emb)

truncation=True,

CLS wector

GraphCodeBERT augments the usual token sequence with data-flow and control-flow
edges, so its transformer encoder builds contextualized hidden states which reflects both
semantic and structural program features. We take the output of GraphCodeBERT’s final
transformer layer corresponding to the [CLS] token as a fixed 768-dimensional embedding
for each snippet, which provides a compact representation of the entire code fragment.
These CLS embeddings are then stacked into an 768x feature matrix and passed to our
downstream CatBoost classifier for vulnerability prediction.

4.5. Experimental Setup

All experiments were conducted on Google Colab Pro using an NVIDIA T4 GPU.
Our codebase runs on Python 3.8 with PyTorch 1.x and Hugging Face Transformers
4.31 (microsoft/graphcodebert-base), alongside CatBoost 1.0.6. The Colab Pro GPU instance
accelerated both embedding extraction and classifier training.

We evaluated our approach on a curated dataset of Rust labeled as vulnerable or safe,
derived from publicly disclosed CVEs and safe code examples. We evaluated on 2305 Rust
functions (769 vulnerable, 1536 safe) drawn from CVE-linked and benign code. Splitting
was stratified by label (70% train, 15% validation, 15% test; random_state = 42). Each
function was compiled to LLVM IR (via rustc) and preprocessed by stripping comments
and normalizing constants. After scaling via StandardScaler fitted on the training set, we
trained CatBoost classifier (depth = 6, 100 iterations; learning_rate = 0.1). We used early
stopping on the validation F1-score with a patience of 10 rounds to prevent overfitting.
Next, we performed threshold tuning by sweeping decision thresholds from 0.10 to 0.90 in
0.01 increments on the validation set, selecting 0.35 as the threshold that maximized F1 for
the vulnerable class (see Listing 3).

Mach. Learn. Knowl. Extr. 2025, 7,79

12 0f 18

Listing 3. Threshold tuning on validation set.

probs_val = clf.predict_proba(X_val_s)[:, 1]
best_threshold, best_f1 = 0.5, 0.0
for t in np.linspace(0.1, 0.9, 81):
preds = (probs_val >= t).astype(int)
f1 = f1_score(y_val, preds)
if f1 > best_f1:
best_threshold, best_f1 = t, f1

print (£"Optimal, Threshold: {best_threshold:.2f}_ with F1,=,{best_£f1
cL4fFM)

On the test set, the final model achieved 98.10% accuracy, precision = 0.983,
recall = 0.974 (F1 = 0.981), and the normalized confusion matrix confirms robust gen-
eralization to unseen samples.

5. Experimental Output

We evaluated our Rust-IR-Bert, the vulnerability detection pipeline, by examining its
overall classification performance, error distribution, and real-world inference behavior.
To validate the model’s generalization capability, we tested it on previously unseen and
synthetically generated LLVM IR code samples containing vulnerabilities that were not
included in the training dataset.

Answering RQ1, we evaluated Rust-IR-Bert on a held-out test set (20% of the 2305 ex-
ample corpus) and achieved 98.11% overall accuracy demonstrating state-of-the-art bug
detection performance. As shown in Figure 6, the non-vulnerable class achieves precision
0.9830 and recall 0.9931 (F1 0.9880), while the vulnerable class records precision 0.9737 and
recall 0.9367 (F1 0.9548).

Test Accuracy: ©.931881831881831
precision recall fil-score
8 8.9330 8.5931 @.9330
1 6.9737 8.9367 @.9548
accuracy 8.9811
macro avg 8.9733 B.9649 8.9714
weighted avg 8.9318 8.9811 8.9889

Figure 6. Classification report.

To validate the model’s legitimate applicability, we evaluated on an external corpus of
230 LLVM IRsamples from two independent Rust projects unseen during training, where the
model delivered 95.5% accuracy, 0.94 precision, and 0.91 recall. These metrics indicate that
the classifier reliably flags safe and unsafe codes while maintaining strong coverage of actual
vulnerabilities, performing at the state-of-the-art levels for code vulnerability detection.

Although a direct Rust source could have been used, our novel approach employs a
Rust-derived LLVM IR to achieve higher accuracy. By abstracting away high-level syntax,
LLVM IR accentuates fundamental control-flow and data-flow semantics, giving the BERT
model a cleaner and more consistent input. In Figure 7, it is clear that the LLVM IR
pipeline outperforms the direct Rust-source pipeline across every macro-average metric;
accuracy jumps from 80.0% to 98.1%, macro-precision from 74.8% to 97.8%, macro-recall
from 84.9% to 96.5%, and macro-F1 from 76.2% to 97.1%. Using LLVM IR highlights the
real execution and data-flow patterns, so the model can focus on true vulnerability patterns
explaining the significant increase in detection performance.

Mach. Learn. Knowl. Extr. 2025, 7,79

13 0f 18

Macro-average Metrics Comparison (Figure 8)

I Rust Pipeline
B LLVM IR Pipeline

Score

Figure 7. Comparison of Rust source pipeline (left) and LLVM IR pipeline (right).

Answering RQ?2, Table 1 compares the core structure and performance of five popular
ML-driven vulnerability detection methods with our approach. Unlike privious studies
that used source code (HALURust [32], SySeVR [15], and VulBERTa [17]), graph-structured
representations (AI4VA) [33], or binary assembly (Unsafe’s Betrayal [14]), our pipeline is
unique; it embeds Rust’s LLVM IRinto 768-dimensional vectors using GraphCodeBERT
and classifies them using CatBoost, achieving 98.1% accuracy and approximately 99% preci-
sion/recall. When applied to hallucinated Rust warnings, HALURust uses a 7 B-parameter
LLM, producing an F1 of 77.3%. On simulated and Juliet benchmarks, AI4VA reports
F1 scores ranging from 0.50 to 0.99, modeling C code as code-property graphs using a
GGNN. Using a bidirectional GRU, SySeVR [15] converts C/C++ slices into semantic
vectors, covering 92.9% of vulnerabilities with 1.68 percent code coverage.

Table 1. Comparison of ML-based vulnerability detection approaches.

Model

Approach Input Format Language Architecture Dataset Metrics
F1-Score: 98.10%;
Rust-IR-Bert ~ Rust> LLVMIR o GraphCodeBERT + ¢ icec + OSVIR Recall (V): 94.94%,
— Embeddings CatBoost o
(nV): 99.66%
Rust —
Gemma-7B
HALURust LLM—gene.l‘e}ted Rust (7B-parameter 81 real-world F1: 77.3%
vulnerability Rust CVEs
LLM)
reports
Gated Graph . . .
won oS c Nemineww b FLmou
C/C++ — S . . o
SvSeVR syntax/semantic C/Cit Bidirectional GRU Libav, Seamonkey, Recall: 92.9% at
¥ (BGRU) Thunderbird, Xen =~ Coverage: 16.8%
vectors
Rust binary AUPRC 80% for
Unsafe’s Betrayal (assembly Rust RoBERTa-on-asm CrateU + RustSec unsafe-code
tokens -
tokens) detection
Draper,
! F1: 57.9% (Draper),
VulBERTa C/C++ source C/C++ RoBERTa-based muVuldeepecker, 99.6%
Transformer CodeXGLUE,
D2A (muVuldeepecker)

Unsafe’s Betrayal [14] approach parses Rust binaries into assembly tokens and fine-

tunes RoBERTa to detect unsafe functions, achieving an AUPRC of 80% on unsafe-code
identification and 62% when evaluated on known Rust vulnerabilities. VulBERTa [17] pre-
trains a compact RoBERTa on C/C++ source, achieving up to 99.6% F1 on muVuldeepecker

Mach. Learn. Knowl. Extr. 2025, 7,79 14 of 18

but only 57.9% on the imbalanced Draper dataset. Our IR-centric approach outperforms
these conventional techniques since it combines low-level semantic embeddings with a
strong tree-based learner that differentiates between vulnerable and safe Rust code samples.

Answering RQ3, the normalized confusion matrix (Figure 8) reveals that 99% of safe
samples are correctly identified (only 1% false positives), while 94% of true vulnerabilities
are detected (6% false negatives). In live inference tests, we validated our inference pipeline
on two unseen LLVM-IR snippets:

Normalized Confusion Matrix

0.8

Safe

True

0.4

\Vulnerable 0.06

0.2

)

é"a
\(‘

S]

Predicted

Figure 8. Normalized confusion matrix for test set predictions.

* Non-Vulnerable (alignment.ll) The model processed the uploaded alignment.ll file,
cleaned and embedded it via GraphCodeBERT, and correctly output “NOT VULNER-
ABLE”, demonstrating its low false-alarm rate on code (see Figure 9).

Upload a new .11 file for inference:
alignment.ll
« alignment.ll{n/a) - 10402 bytes, last modified: 4/23/2025 - 100% done
Saving alignment.ll to alignment.ll
NOT VULNERABLE

Figure 9. Non-vulnerable LLVM IR File.

* Vulnerable example (error.ll) In contrast, when given error.ll—which contains a known
flaw—the classifier returned “VULNERABLE” and automatically assigned CVE-2023-
41317, matching the ground truth (see Figure 10).

Upload a new .11 file for inference:
error.ll
« errorll(n/a) - 10402 bytes, last modified: 4/23/2025 - 100% done
Saving error.ll to error (1).11
YILNERABLE
Assigned CVE: CVE-2823-41317

Figure 10. Vulnerable LLVM IR file.

These results demonstrate a strong generalization to the unseen Rust code, with a
favorable balance between sensitivity and specificity.

Mach. Learn. Knowl. Extr. 2025, 7,79

15 of 18

Answering RQ4, each .1l file is first preprocessed and then tokenized by the model’s
IR-aware tokenizer. A no-gradient forward pass through the 12-layer model produces
contextualized hidden states for every token, from which we extract and mean-pool the first
([CLS]) vector into a fixed-length embedding. These embeddings capture both the code’s
meaning and its execution flow and are being is fed directly into the classifier, allowing it
to accurately decide whether a snippet is secure or vulnerable.

While our results indicate significant performance of Rust-IR-BERT compared to base-
line methods, we recognize that direct comparisons remain challenging due to variability
in datasets and evaluation metrics across different studies. However, achieving higher ac-
curacy in a challenging environmental setup remains unique. Additionally, the comparison
between source code-based and IR-based models clearly favors the IR approach.

6. Discussion

Our experiment demonstrates that combining GraphCodeBERT’s code embeddings
of LLVM IR with a CatBoost classifier results in an effective vulnerability detector, with
98.1% overall accuracy, 99% recall on non-vulnerable code, and 94% recall on vulnerable
samples. This performance indicates that the model captures real bugs as well as risky
patterns beyond the CVEs it was trained on. These results align with the extended findings
from prior deep-learning researches; such as VulDeePecker’s token-based neural network
on C/C++ code [16] and SySeVR'’s syntax semantic representation learning by operating
at the IR level and specifically representing data-flow edges [15]. The high precision and
low false-alarm rate (2%) suggest that our pipeline effectively eliminates noise, which is a
major difficulty in static analyzers such as CodeQL [40]. Unlike SCL-CVD’s deep-learning-
based classification layer [36], we include LLVM IR embeddings into a gradient-boosted
algorithm, CatBoost, to get advantage from its clarity and efficiency for binary vulnerability
classification of Rust code.

Although our findings demonstrated exceptional accuracy, since the training data
comes exclusively from existing labeled advisories, there remains a potential risk of overfit-
ting to those certain defect patterns; integrating future vulnerability types will be critical
to maintaining broad coverage. To minimize bias during LLVM IR preprocessing, we
automated the entire compilation and comment-stripping execution consistently across
all samples, guaranteeing that no manual modifications compromised data integrity or
scalability. Furthermore, the automated OSV-driven data collecting pipeline we developed
allows for error-free dataset extension, facilitating continuous learning as new advisories are
published. Our framework explicitly explains transformer-based IR embeddings in enhanc-
ing security. Integrating this model into Continuous Integration/Continuous Deployment
(CI/CD,) practices for software development to automatically detect vulnerabilities before
deployment can be taken into consideration. However, a user study of integration latency
in CI/CD workflows and direct comparisons with other studies with similar dataset would
be an essential next step to assess real-world utility and workflow impact. Although initial
results suggested the model might generalize to “risky patterns beyond the CVEs,” we do
not claim detection of zero-day vulnerabilities: no unknown or unlabeled cases were tested.

7. Threats to Validity

Although our findings are encouraging, a few practical limitations might hamper over-
all performance, which are minor. For mitigating potential overfitting to well-documented
CVE patterns, we performed cross-validation (mean accuracy 0.982 + 0.008) and evaluated
on an external hold-out set of 230 LLVM IRsamples, yet truly zero-day vulnerabilities
remain untested. The use of dummy stubs and a generic fn main(), while necessary for
LLVM-IR compilation, was meant to ensure proper compilation from Rust. We acknowl-

Mach. Learn. Knowl. Extr. 2025, 7,79

16 of 18

edge they might introduce subtle artificial patterns potentially biasing the model. However,
these compilation challenges were acute while working with RustSec Advisory, as that
process was conducted manually, which was time-consuming yet accurate. Eventually,
although our dataset includes Rust code snippets sourced from multiple crates and reposi-
tories, explicitly quantifying the diversity of code patterns and vulnerability types across
these sources would strengthen our methodology and enhancing confidence in the trans-
ferability of our findings. While our dataset provides comprehensive coverage, certain
vulnerability types, such as issues in memory-safety, may be slightly over-represented
due to their prevalence in Rust advisories. This potential bias could affect generalization.
Relying solely on GraphCodeBERT might also be a potential issue. Although it is pretrained
on multiple languages, it may underperform on Rust-specific idioms which might miss out
during pretraining. Our cross-project evaluation offers initial evidence of transferability,
yet further studies and Rust-specific fine-tuning are required to confirm GraphCodeBERT’s
suitability for Rust IR. Performance on entirely new crates or future Rust versions should be
validated more appropriately in follow-on studies by incorporating Code Property Graphs.

8. Conclusions and Future Work

Our automated approach of vulnerable Rust code detection pipeline, Rust-IR-Bert,
gives an extensive understanding of and insights into the enriched dataset and accurate
ML Model utilization. The combined strength of deep code embeddings, strong classifier,
and a robust gradient-boosted tree model captured important semantic features of the Rust
programs. The experimental results indicate that this approach is highly effective. We
achieved 98.1% accuracy and near-perfect precision/recall which is significantly outper-
forming source-level baselines (97%) with very low false-alarm rates. The novelty of our
approach lies in demonstrating the power of IR-centric analysis for ML-driven security and
paves the way for further advances in automated vulnerability detection.

Although our approach demonstrates theoretical readiness for CI/CD and IDE inte-
gration, we still lack empirical evidence from practical deployment scenarios or developer
usability tests. Furthermore, while LLVM IR is more closely aligned with built binaries,
it presents complexity such as debugging issues and additional compilation overhead.
Future research must thoroughly evaluate these compromises using specific empirical
studies. From an ethical and practical standpoint, false negatives (i.e., failing to detect
actual vulnerabilities) could have severe real-world implications, such as security breaches
or financial loss, hence automated tests should always be accompanied by thorough hu-
man intervention.

Future Work

Future work will explore automating the extraction of Code Property Graphs from
LLVM IR to integrate syntactic, control-flow, and data-flow information into a unified
graph representation and then thoroughly evaluate graph neural network architectures on
these graphs to evaluate their effect on detection performance. While our current pipeline
embeds each IR snippet as a whole, future work could decompose them into basic blocks
and construct a data-flow graph over those units before embedding, ensuring each block
can be safety-checked. We will also measure and optimize the end-to-end latency of IR
compilation and embedding inference to determine the feasibility of the CI/CD pipeline.
Eventually, we will develop a lightweight IDE prototype and conduct a user study to gather
empirical feedback on usability and false-positive tolerance.

Mach. Learn. Knowl. Extr. 2025, 7,79 17 of 18

Author Contributions: Conceptualization, Y.L. and].Y.; methodology, Y.L.; software, S.J.B.; validation,
J.Y,, Z.C. and G.L.; resources,].Y.; data curation, S.J.B.; writing—original draft preparation, Y.L. and
S.J.B.; writing—review and editing,].Y., Z.C. and G.L.; visualization, S.].B.; supervision, J.Y.; project
administration, Y.L.; funding acquisition, J.Y. All authors have read and agreed to the published
version of the manuscript.

Funding: This material is based upon work supported by the National Science Foundation’s Grant
No. 2334243. Any opinions, findings, and conclusions or recommendations expressed in this material
are those of the author(s) and do not necessarily reflect the views of National Science Foundation.

Data Availability Statement: Dataset available on request from the authors: The raw data supporting
the conclusions of this article will be made available by the authors on request.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Kishiyama, B.; Lee, Y.; Yang,]. Improving VulRepair’s Perfect Prediction by Leveraging the LION Optimizer. Appl. Sci. 2024,
14, 5750. [CrossRef]

2. Yang,].; Lodgher, A. Fundamental Defensive Programming Practicec with Secure Coding Modules. Int. Conf. Secur. Manag. 2019.

3. Bae, Y;Kim, Y,; Askar, A.; Lim, J.; Kim, T. Rudra: Finding Memory Safety Bugs in Rust at the Ecosystem Scale. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Systems Principles, Virtual Event, 26-29 October 2021; pp. 84-99. [CrossRef]

4. Guo, D.; Ren, S;; Lu, S.; Feng, Z.; Tang, D.; Liu, S.; Zhou, L.; Duan, N.; Svyatkovskiy, A.; Fu, S.; et al. GraphCodeBERT:
Pre-Training Code Representations with Data Flow. arXiv 2021, arXiv:2009.08366.

5. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V,; Gulin, A. CatBoost: Unbiased boosting with categorical features. In
Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 3-8 December 2018; Volume 31.

6. Zheng, X.; Wan, Z.; Zhang, Y.; Chang, R.; Lo, D. A Closer Look at the Security Risks in the Rust Ecosystem. ACM Trans. Softw.
Eng. Methodol. 2023, 33, 34. [CrossRef]

7. Bugden, W.; Alahmar, A. The Safety and Performance of Prominent Programming Languages. Int. |. Softw. Eng. Knowl. Eng.
2022, 32, 713-744. [CrossRef]

8. Zhu, S; Zhang, Z.; Qin, B,; Xiong, A.; Song, L. Learning and programming challenges of rust: A mixed-methods study. In
Proceedings of the 44th International Conference on Software Engineering, ICSE "22, Pittsburgh, PA, USA, 21-29 May 2022;
pp. 1269-1281. [CrossRef]

9. Xu, H.; Chen, Z.; Sun, M; Zhou, Y.; Lyu, M. Memory-Safety Challenge Considered Solved? An In-Depth Study with All Rust
CVEs. ACM Trans. Softw. Eng. Methodol. 2022, 31, 1-25. [CrossRef]

10. Qin, B.; Chen, Y,; Yu, Z; Song, L.; Zhang, Y. Understanding memory and thread safety practices and issues in real-world Rust
programs. In Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation,
London, UK, 15-20 June 2020; pp. 763-779. [CrossRef]

11. Yu, Z.;Song, L.; Zhang, Y. Fearless Concurrency? Understanding Concurrent Programming Safety in Real-World Rust Software.
arXiv 2019, arXiv:1902.01906. [CrossRef]

12. Hassnain, M.; Stanford, C. Counterexamples in Safe Rust. In Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering Workshops, ASEW ‘24, Sacramento, CA, USA, 27 October 2024; pp. 128-135. [CrossRef]

13. How to Write a Timing-Attack-Proof Comparison Function (‘Ord::cmp’, Lexicographic) for Byte Arrays?—Help, 2023. Section:
Help. Available online: https://users.rust-lang.org/t/how-to-write-a-timing-attack-proof-comparison-function-ord-cmp-
lexicographic-for-byte-arrays /100607 (accessed on 25 April 2025).

14. Park, S.; Cheng, X.; Kim, T. Unsafe’s Betrayal: Abusing Unsafe Rust in Binary Reverse Engineering via Machine Learning. arXiv
2022, arXiv:2211.00111. Available online: https://www.semanticscholar.org/paper/0d3052a6c38876eed2c66eleadeebe6c074d62(2
(accessed on 25 April 2025).

15. Li, Z.;Zou, D,; Xu, S;; Jin, H.; Zhu, Y.; Chen, Z. SySeVR: A Framework for Using Deep Learning to Detect Software Vulnerabilities.
IEEE Trans. Dependable Secur. Comput. 2022, 19, 2244-2258. [CrossRef]

16. Li, Z; Zou, D.; Xu, S.; Ou, X;; Jin, H.; Wang, S.; Deng, Z.; Zhong, Y. VulDeePecker: A Deep Learning-Based System for
Vulnerability Detection. In Proceedings of the 2018 Network and Distributed System Security Symposium, San Diego, CA, USA,
18-21 February 2018. [CrossRef]

17. Hanif, H.; Maffeis, S. VulBERTa: Simplified Source Code Pre-Training for Vulnerability Detection. In Proceedings of the 2022
International Joint Conference on Neural Networks (IJCNN), Padua, Italy, 18-23 July 2022; pp. 1-8. [CrossRef]

18. Jung, R; Jourdan, J.-H.; Krebbers, R.; Dreyer, D. RustBelt: Securing the foundations of the rust programming language. Proc.

ACM Program. Lang. 2017, 2, 66. [CrossRef]

http://doi.org/10.3390/app14135750
http://dx.doi.org/10.1145/3477132.3483570
http://dx.doi.org/10.1145/3624738
http://dx.doi.org/10.1142/S0218194022500231
http://dx.doi.org/10.1145/3510003.3510164
http://dx.doi.org/10.1145/3466642
http://dx.doi.org/10.1145/3385412.3386036
http://dx.doi.org/10.48550/arXiv.1902.01906
http://dx.doi.org/10.1145/3691621.3694943
https://users.rust-lang.org/t/how-to-write-a-timing-attack-proof-comparison-function-ord-cmp-lexicographic-for-byte-arrays/100607
https://users.rust-lang.org/t/how-to-write-a-timing-attack-proof-comparison-function-ord-cmp-lexicographic-for-byte-arrays/100607
https://www.semanticscholar.org/paper/0d3052a6c38876eed2c66e1ea3ee6e6c074d62f2
http://dx.doi.org/10.1109/TDSC.2021.3051525
http://dx.doi.org/10.14722/ndss.2018.23158
http://dx.doi.org/10.1109/IJCNN55064.2022.9892280
http://dx.doi.org/10.1145/3158154

Mach. Learn. Knowl. Extr. 2025, 7,79 18 of 18

19.

20.
21.

22.
23.
24.
25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.
40.

Yanovski, J.; Dang, H.H.; Jung, R.; Dreyer, D. GhostCell: Separating permissions from data in Rust. Proc. ACM Program. Lang.
2021, 5, 92. [CrossRef]

Jung, R.; Jourdan,].H.; Krebbers, R.; Dreyer, D. Safe systems programming in Rust. Commun. ACM 2021, 64, 144-152. [CrossRef]
AWS’ Sponsorship of the Rust Project| AWS Open Source Blog, 2019. Section: Developer Tools. Available online: https://aws.
amazon.com/cn/blogs/opensource/aws-sponsorship-of-the-rust-project/ (accessed on 25 April 2025).

Klabnik, S. The Rust Programming Language, 2nd ed.; No Starch Press: New York, NY, USA, 2023.

RustSec Security Advisory Database. Available online: https://rustsec.org/advisories/ (accessed on 15 May 2025).

Open Source Vulnerabilities (OSV) Database. Available online: https://osv.dev/ (accessed on 15 May 2025).

Computer Security Division. NIST. 2008. Last Modified: 2022-04-11T08:23-04:00. Available online: https://www.nist.gov /itl/csd
(accessed on 20 April 2025).

Cheng, X.; Zhang, G.; Wang, H.; Sui, Y. Path-sensitive code embedding via contrastive learning for software vulnerability
detection. In Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual,
18-22 July 2022; pp. 519-531. [CrossRef]

Zhou, Y,; Liu, S.; Siow, J.; Du, X,; Liu, Y. Devign: Effective Vulnerability Identification by Learning Comprehensive Program
Semantics via Graph Neural Networks. arXiv 2019, arXiv:1909.03496. [CrossRef]

Lattner, C.; Adve, V. LLVM: A compilation framework for lifelong program analysis & transformation. In Proceedings of the
International Symposium on Code Generation and Optimization, CGO 2004, San Jose, CA, USA, 20-24 March 2004; pp. 75-86.
[CrossRef]

Moses, W.S. Understanding High-Level Properties of Low-Level Programs Through Transformers. 2022. Available online:
https:/ /math.mit.edu/research/highschool/primes/materials /2022 / Guo-Moses.pdf (accessed on 25 April 2025).

Mahyari, A. A Hierarchical Deep Neural Network for Detecting Lines of Codes with Vulnerabilities. arXiv 2022, arXiv:2211.08517.
[CrossRef]

Fu, M.; Tantithamthavorn, C.; Le, T.; Kume, Y.; Nguyen, V,; Phung, D.; Grundy,]. AIBugHunter: A Practical tool for predicting,
classifying and repairing software vulnerabilities. Empir. Softw. Eng. 2024, 29, 4. [CrossRef]

Luo, Y,; Zhou, H.; Zhang, M.; Rosa, D.D.L.; Ahmed, H.; Xu, W.; Xu, D. HALURust: Exploiting Hallucinations of Large Language
Models to Detect Vulnerabilities in Rust. arXiv 2025, arXiv:2503.10793.

Suneja, S.; Zheng, Y.; Zhuang, Y.; Laredo,]J.; Morari, A. Learning to map source code to software vulnerability using code-as-a-
graph. arXiv 2020, arXiv:2006.08614. [CrossRef]

Cipollone, D.; Wang, C.; Scazzariello, M.; Ferlin, S.; Izadi, M.; Kostic, D.; Chiesa, M. Automating the Detection of Code
Vulnerabilities by Analyzing GitHub Issues. arXiv 2025, arXiv:2501.05258. [CrossRef]

Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD’16, San Francisco, CA, USA, 13-17 August 2016; pp. 785-794.
[CrossRef]

Wang, R.; Xu, S.; Tian, Y,; Ji, X; Sun, X.; Jiang, S. SCL-CVD: Supervised contrastive learning for code vulnerability detection via
GraphCodeBERT. Comput. Secur. 2024, 145, 103994. [CrossRef]

K, VK,; P, SK;S,D.;C, GK,;S, R. Design and Development of Android App Malware Detector API Using Androguard and
Catboost. Int. J. Res. Appl. Sci. Eng. Technol. 2024, 12, 5121-5128. [CrossRef]

Ullah, S.; Han, M.; Pujar, S.; Pearce, H.; Coskun, A.; Stringhini, G. LLMs Cannot Reliably Identify and Reason About Security
Vulnerabilities (Yet?): A Comprehensive Evaluation, Framework, and Benchmarks. arXiv 2024, arXiv:2312.12575. [CrossRef]
Mittal, A. Code Embedding: A Comprehensive Guide. Artificial Intelligence, 3 July 2024.

de Moor, O.; Verbaere, M.; Hajiyev, E.; Avgustinov, P.; Ekman, T.; Ongkingco, N.; Sereni, D.; Tibble, J.; Limited, S.; Centre, M.;
et al. Keynote Address: .QL for Source Code Analysis. In Proceedings of the Seventh IEEE International Working Conference on
Source Code Analysis and Manipulation (SCAM 2007), Paris, France, 30 September-1 October 2007.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1145/3473597
http://dx.doi.org/10.1145/3418295
https://aws.amazon.com/cn/blogs/opensource/aws-sponsorship-of-the-rust-project/
https://aws.amazon.com/cn/blogs/opensource/aws-sponsorship-of-the-rust-project/
https://rustsec.org/advisories/
https://osv.dev/
https://www.nist.gov/itl/csd
http://dx.doi.org/10.1145/3533767.3534371
http://dx.doi.org/10.48550/arXiv.1909.03496
http://dx.doi.org/10.1109/CGO.2004.1281665
https://math.mit.edu/research/highschool/primes/materials/2022/Guo-Moses.pdf
http://dx.doi.org/10.48550/arXiv.2211.08517
http://dx.doi.org/10.1007/s10664-023-10346-3
http://dx.doi.org/10.48550/arXiv.2006.08614
http://dx.doi.org/10.48550/arXiv.2501.05258
http://dx.doi.org/10.1145/2939672.2939785
http://dx.doi.org/10.1016/j.cose.2024.103994
http://dx.doi.org/10.22214/ijraset.2024.61156
http://dx.doi.org/10.48550/arXiv.2312.12575

	Introduction
	Background
	Rust's Safety Mechanism and Unsafe Rust
	Vulnerability Databases and LLVM IR
	Embedding-Based Vulnerability Classifier
	Vulnerability Detection Tools

	System Architecture
	Research Methodology
	Research Questions
	Data Collection and Preprocessing
	Code Preprocessing and Representation
	Embedding-Based Feature Extraction
	Experimental Setup

	Experimental Output
	Discussion
	Threats to Validity
	Conclusions and Future Work
	References

