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a b s t r a c t

Imitation learning (IL) is a popular method used to train machine learning models that are capable
of acting on their environment based on expert examples. Two types of IL models are inverse
reinforcement learning (IRL) and behavioral cloning (BC). Models trained under IRL traditionally
perform better than those trained under BC due to compounding covariate shift associated with the
latter, which typically requires algorithms such as DAGGer to help compensate for this. More recently,
however, deep learning architectures with increased generalization performance have been developed,
which may help to alleviate the problem of compounding covariate shift and allow researchers to
take advantage of the simplicity of BC. Despite these developments, recent studies on BC in sub-scale
autonomous robots employ relatively primitive convolutional networks without such tools as batch
normalization and skip connections, and it is difficult to judge their networks’ performance relative
to others due to drastically different training and testing conditions. Here, we examine how an array
of artificial neural networks, chosen to reflect more recent architectural choices available, behave in
a highly controlled IL task – navigating around a small, indoor racetrack – upon being embedded in
a sub-scale RC vehicle as an end-to-end steering system. For our main findings, we report the lap
completion rate and path smoothness of each network under the exact same conditions as it controls
the vehicle on the track. To supplement these findings, we also measure each network’s bias toward
the distribution of the training actions and develop a method to highlight regions of a given input
image that are deemed ‘important’ to a given network. We observe that most of the more recent
neural networks perform reasonably well during testing, as opposed to the more primitive networks
which did not perform as well. For these reasons and others, we identify VGG-16 and AlexNet – out
of the networks tested here – as attractive candidate architectures for such tasks.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Imitation learning (IL) is a common paradigm used to train
utonomous robotic vehicles in recent years. Under the IL um-
rella there exist two common approaches: ‘inverse reinforce-
ent learning’ (IRL) [1,2] and ‘behavioral cloning’ (BC) [3]. IRL
ttempts to learn a reward function under which an expert’s
ehavior is optimal. This approach prioritizes entire trajecto-
ies over others [4], and, thus, has been shown to be relatively
mmune to compounding covariate shift [5,6], in which devia-
ions between the training and test set accrue as an autonomous
obot’s trajectory becomes increasingly different from the ex-
ert’s trajectory it was trained on. One disadvantage of this class

∗ Corresponding author.
E-mail address: mteti@fau.edu (M. Teti).
ttps://doi.org/10.1016/j.robot.2021.103780
921-8890/© 2021 Elsevier B.V. All rights reserved.
of models, however, is that they are typically susceptible to er-
roneously attributing certain instantaneous actions as stemming
from a long-term goal, particularly when there is a long time
horizon. Furthermore, when training IRL models, care must often
be taken to prevent the model from converging on degenerate
solutions, which can lead to catastrophic failures.

BC, which is an alternative class of IL models that predates IRL,
uses supervised learning in order to associate states and actions
as provided by an ‘expert’. While relatively simple to train [4],
models trained under BC are highly vulnerable to the problem
of compounding covariate shift. Typically, these models show a
failure to generalize from the human-generated dataset to the
novel trajectories, leading to poor performance at test time. As a
result, deployed BC typically relies on methods such as Dataset
Aggregation (DAGGer) [6], or one of its variants, in which the

expert watches the learner perform the task for some brief time

https://doi.org/10.1016/j.robot.2021.103780
http://www.elsevier.com/locate/robot
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http://crossmark.crossref.org/dialog/?doi=10.1016/j.robot.2021.103780&domain=pdf
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hile recording its preferred action at every timestep for the
earner to train on later [7]. Of course, DAGGer requires substan-
ially more supervision than standard BC which can significantly
ncrease training time and effort.

Of these two classes of IL models, IRL models typically outper-
orm BC models due to BC’s compounding covariate shift problem,
nd, as a result, IRL has steadily become the more popular IL
lgorithm in recent decades. Over roughly the same timeline, ar-
ificial neural networks (ANNs) – particularly Deep Convolutional
eural Networks (DCNNs) – have become an extremely popu-
ar machine learning algorithm for image classification, feature
xtraction, object detection, and reinforcement learning, among
thers. Consequently, most recent instantiations of IL use a DCNN
nder an IRL framework, and, thus, DCNNs trained under a BC
ramework are relatively scarce. However, larger, more complex,
nd more powerful networks that are capable of increased gen-
ralization and representational ability have been developed over
he last few years. These modern architectures (e.g. Inception,
GG, ResNet, etc.) may exhibit an increased ability to generalize
o new inputs and, possibly as a result, decreased susceptibility
o the problem of compounding covariate shift which plagued
arlier models trained under BC. This would allow those devel-
ping IL systems in autonomous robots to take advantage of the
implicity of BC for certain tasks and may warrant a second look
t the BC paradigm.
Implementations using an ANN trained under BC to map sen-

or data (e.g. frames captured by a forward-facing camera) to a
teering value in a real-world robot are few in number1 [3,8–
3]. These implementations exhibited good driving performance,
ut all of them reported the performance of just a single hand-
esigned ANN of relatively primitive design (we discuss this
ore thoroughly in Section 2). These custom ANNs used in these
tudies were presumably designed for the particular environment
nd task at hand, which differed drastically between studies. As
result, it is difficult to get an accurate assessment of how an
rchitecture deployed in one study performed relative to that
n another. Therefore, we set out to perform a systematic com-
arison among contemporary models in an autonomous task,
omething that we have yet to find reported in the literature on
ehavioral cloning in robotics. In addition, it is unknown how
ell more recent architectures (e.g. VGG, ResNet, Inception, etc.)
ight perform while controlling a sub-scale robot, particularly in

elation to competing architectures, or how specific architectural
hoices that are currently available (e.g. batch normalization, skip
onnections, etc.) influence this performance.
In contrast, the present study, which is intended to com-

lement these previous works, observed how each architecture
erformed in the exact same conditions, which should allow for
more accurate estimate of each one’s behavior relative to the
thers and provide insight into what particular factors of the
nvironment influence this behavior. Specifically, we investigate
he performance of several state-of-the-art neural network ar-
hitectures in a basic imitation learning task in which a small,
ndoor robot is trained to successfully complete a lap on a simple
ath using the input from a monocular camera. The models were
rained on steering decisions of human operators who navigated
he track. This simple paradigm allowed us to compare behavior
n a highly controlled setting with clear metrics of performance,
omething that has been lacking in much of the literature. We
ompared several performance metrics – including lap comple-
ion rate, path smoothness, and input pixel importance – of
ultiple network architectures, which were chosen to reflect

1 Although [3] and [8] employ full-scale vehicles, the networks used were
rained via behavioral cloning and the task was similar to other previous works
entioned. Therefore, we believe they are relevant enough to include here.
2

the diverse types of architectures employed in recent years (as
well as some older ones). We employed a straightforward BC
approach to training the models; the critical variable was the
choice of learning architecture. These included: (1) a three hidden
layer fully-connected network, (2) a simple convolutional neural
network (CNN) with two convolutional/pooling layers followed
by two fully-connected layers, (3) AlexNet, [14], (4) a version
of VGG-16 [15] with a slightly reduced number of filters in
each layer, (5) Inception-V3 [16], (6) a version of the ResNet
architecture [17] which we refer to as ResNet-26, and (7) a Long
Short-TermMemory (LSTM) network [18]. The details of each net-
work are described below in detail. Each network’s architecture,
as well as the training procedure and videos of each network
steering the vehicle autonomously over different trials can be
viewed at https://github.com/mpcrlab/DNN_Rover.

A sub-goal of the current study was to determine how dif-
ferent types of image modalities compare to each other in end-
to-end training of an autonomous robotics system. For example,
how helpful is it to include color information, which typically
includes more information than grayscale? To assess this, we
included three input types used as training and test data for the
different models: (1) single grayscale video frame, (2) single color
video frame, and (3) the current grayscale video frame plus sev-
eral grayscale video frames from previous timepoints, concate-
nated along the channel dimension (which we term ‘framestack’
throughout the rest of this report) as input to each different
network. These three input classes were chosen to determine
whether spatial, color, or temporal information is more useful for
such tasks, a consideration when designing low-power, smaller
systems that may not be able to afford to utilize all three fea-
ture modalities. The framestack approach provides a method for
including temporal sequence information in a simpler manner
than typical approaches, such as recurrent neural networks. This
allowed us to test the role of temporal information, as [12]
recommend in the conclusion of their study, without modifying
the structure of the network relative to the other input types.

2. Related work

The development of an autonomous robot that can learn,
end-to-end, from human driving behavior has been a highly
sought goal for decades. Here, we discuss some of the significant
historical developments toward this goal. The ALVINN project
of Pomerleau [3] in the late 1980s was the first encouraging
example of such a vehicle. They used an ANN, consisting of a
single, fully-connected hidden layer to map inputs from a camera
and laser range finder to a continuous steering angle. This model
was used to successfully drive a full-sized vehicle on limited
road conditions, a remarkable achievement for its time, though
at a very slow speed for public roads. This was probably due to
the limited computing resources available at that time, which
also influenced the size of the ANN they were able to use. In
addition, the ALVINN project, and some others to follow, did not
include detailed analysis of the vehicle’s behavior/performance
and instead simply showed the vehicle driving on various roads.

The next significant contribution was LeCun et al.’s [9] early
2000s DARPA Autonomous Vehicle, or DAVE, a sub-scale, radio-
controlled (RC) car that was trained with human driving data
to output a discrete left, right, or forward steering direction
given an input from two forward-facing cameras. The goal of
this project was to develop a vehicle that could navigate au-
tonomously through outdoor terrain containing many different
obstacles using a CNN that consisted of four hidden layers. Similar
to the current study, their vehicle was designed to perform three
discrete actions at a constant speed: move forward, turn left, and
turn right. However, similar to the ALVINN project, the goals of

https://github.com/mpcrlab/DNN_Rover
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AVE were to determine whether it was possible for any neural
etwork to successfully navigate a vehicle, rather than compar-
ng different architectures. The project was ultimately deemed
nsuccessful on the terrain tests, as the vehicle had difficulty
avigating through previously unseen environments and coping
ith noisy sensor data. This is likely due to the fact that the
NN used in DAVE – although larger and more advanced than
hat used in ALVINN – was still extremely small in comparison
o contemporary models. Lecun et al. do not report any results
oncerning DAVE’s performance in the actual obstacle course af-
er training, only the classification scores from the validation set.
s a result, it is difficult to assess their network’s efficacy in a BC
etting where the vehicle’s actions are changing the subsequent
nputs.

Building on the work of [9], Bojarski et al. [8] developed DAVE-
, a full-scale vehicle equipped with their PilotNet CNN [19],
hat took in input images from three forward-facing cameras and
utput a continuous steering angle. PilotNet, which consisted of
ive convolutional layers followed by three fully-connected layers,
as designed by empirically trying different layer configurations
nd observing the relative performance on the training set [19].
fter PilotNet was trained, it was first tested on videos collected
rom the vehicle, and once it passed these simulation tests, it was
eployed in the vehicle on the road. To analyze the performance
f their network on the road, they computed the percent of
ime out of total time driven the vehicle was being controlled
utonomously (i.e. a human was not intervening), which they
stimate at approximately 98%. They also utilized the method
eveloped in [20] to illustrate the most salient portions of a
iven input image in determining steering angles. While the
erformance and behavior of DAVE-2 was investigated more fully
han that of ALVINN and DAVE, the level of analysis of driving
erformance was limited to a simple measure of successful and
nsuccessful driving, based on the determination of the human
perator.
Pan et al. [10] used a sub-scale RC car to compare driving

ehavior of ‘online’ (training with DAGGer) vs ‘batch’ (training
ithout DAGGer) training of a custom CNN, which mapped input

mages and current wheel speeds to a steering angle and throttle
alue. The vehicle was trained and tested on the same oval-
haped dirt track, and the authors reported the average number
f times it was able to complete one minute of driving around
he track out of the total number of test runs. The online train-
ng methods all achieved 100% success rates, while the batch
ethods all did significantly worse. This study was similar to the
urrent approach in that it included a controlled investigation
nto two different training algorithms. The critical difference is
hat Pan et al. report the performance of a single, custom ANN
rained with DAGGer vs. without DAGGer, while we report the
erformance of multiple different ANNs under the same train-
ng regime and with the hope of providing insight into specific
rchitectural choices that influenced the robot’s performance.
More recently, Codevilla et al. [11] deployed a sub-scale ve-

icle controlled by a CNN in different urban environments. As
n [9] and the present study, the vehicle was capable of per-
orming three discrete actions. The network used in this work
as composed of 8 convolutional layers followed by two fully-
onnected layers. It was trained to map input images from three
orward-facing cameras, as in [8], to a discrete steering direc-
ion and a throttle value. In parallel to this CNN, two separate
ully-connected networks took as input sensor measurements
e.g. wheel speeds, acceleration, etc.), as well as a ‘command’ vec-
or which represented short-term goals. The outputs of the CNN
nd the two fully-connected networks were then combined into
single feature vector and sent to three further fully-connected

ayers to determine the appropriate action. Since the main contri-
ution of this work was to introduce the concept of the command
3

vector, the results reported compare the performance relative to
different methods of incorporating this vector into the network
under the same conditions as the training set.

The work of Toromanoff et al. [12] was designed to observe the
performance of a DCNN – inspired by the network in [8] and of
similar architecture – as it controlled a full-scale vehicle around
a custom test track containing obstacles. Like the work of [3]
and [8], the DCNN was designed to output a continuous steering
angle from an input image, which they obtain with a single
fisheye camera. Before deploying the DCNN in the vehicle on the
test track, they performed multiple tests on a simulation until
adequate performance was reached. They also performed two sig-
nificant experiments using this simulation regarding the quality
of training data used to train their DCNN. Namely, they observe
the effect the bias present in the label distribution (i.e. most
steering angles are very small due to the vehicle traveling straight
an inordinate amount of the time) has on the DCNN’s ability to
control the vehicle once trained, and they observe how effectual
bagging – averaging the weights of networks each trained on
different datasets – can be on the simulation task as well. Upon
testing the DCNN in the vehicle on the test track, they reported
that the DCNN was very sensitive to the camera calibration and
performed poorly at first, but, after adjusting for this, the vehicle
was successfully driven on a few private roads. To conclude,
they speculate that more recent advancements in ANNs, such as
batch normalization, skip connections, and temporal inputs, could
possibly be utilized in future work to increase the performance of
their network. Like many of the other studies discussed above, no
analysis of the driving behavior on the actual track was provided;
only performance on the simulation was reported — which evi-
dently differed greatly from the actual conditions, judging by the
initial performance on the track relative to the simulation. The
current study emphasizes the need for a controlled, systematic
investigation into the behavior of such algorithms when they are
embedded in actual vehicles, not just in simulation.

Most recently, Chowdhuri et al. [13] used a sub-scale RC
vehicle to develop a multi-modal, multi-task DCNN, which they
call Z2Color. Their network, which consisted of two convolution-
max pooling-batch normalization layers followed by two fully-
connected layers, was designed to take as input 4 images – one
current and one past image from two forward-facing cameras
– and output a throttle value and continuous steering angle.
The main contribution of this work was to incorporate different
behavioral priors into the decision-making process of the DCNN
so that the steering/throttle value that was output would depend
on that behavioral prior. To evaluate their Z2Color network’s
performance while controlling the vehicle in different suburban
and offroad environments, they use the same metric as in [8]
and report 92.68% average autonomy on these tests vs. 84.27%
autonomy for the multi-task network they built upon.

Every one of the DNNs used in these previous works could be
considered primitive in at least one way. For example, all of these
used a much more shallow DNN than what would be considered
standard at the time of their development. Furthermore, DNN lay-
ers such as batch normalization and skip connections, which are
considered standard in current DNNs, were used by one [13] and
none of the studies above, respectively. This alone is not neces-
sarily an issue, as the networks employed performed reasonably
well in their respective tests. However, it is unknown whether
more recent network architectures containing these types of tools
would have performed better or would not have needed ad-
ditional training algorithms such as DAGGer to reach adequate
performance, as none of these studies tested their architecture
against standard ones. For example, the network used by Chowd-
huri et al. [13] contained only two convolutional layers and two

fully-connected layers, which was small even compared to the
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Fig. 1. The track used to train and test each network. The vehicle was trained
and tested on its ability to navigate the track successfully in the direction
indicated by the white arrows. The four test positions are indicated by the red
circles, and the vehicle is contained within the green box. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

rest of the studies highlighted here, yet, this network seemed to
obtain similar or better performance than many of the others.
Perhaps this might be due to the inclusion of batch normalization
layers into the network developed in that study, as no other
study described above used that technique, or perhaps it was
due to their use of DAGGer, which some of the other studies
did not use. Before building more complex and elaborate control
algorithms/networks centered around a particular architecture –
as was done in some of the studies above – it is first necessary
to investigate how different types of network architectures will
behave relative to other architectures while performing the same
exact task.

3. Methods

3.1. Experimental setup

To test each network architecture in an autonomous navi-
ation task, we used a 3.56 m × 2.34 m L-shaped foam race-
rack [21] and a Brookstone Rover 2.0 [22] (Fig. 1). Each
40 × 320 color video frame (Fig. 2) collected by the vehicle’s
ingle, built-in camera (which was set to collect 30 frames per
econd) was sent over Wi-Fi2 to a computer running Ubuntu
8.04 with two GeForce GTX 1080 TI GPUs, 16GB of DDR4 DRAM,
nd an Intel(R) Core(TM) i5-6500 CPU (Fig. 3).

.2. Training protocol

To create a supervised dataset on which to train each network,
ultiple people drove the vehicle a single direction around the

rack (Fig. 1). We recorded each video frame along with the action
left pivot, right pivot, forward, or backward – the human per-

ormed at that frame. The dataset, which totaled approximately
50,000 frames and their respective labels, was composed of a
alidation dataset of ∼7000 frames, which was taken from a
ompletely separate test run than those used in training, and a

2 To ensure that latency was not an issue, the round-trip time was monitored
hroughout this study, and it was typically within 15–30 ms, exceeding 35 ms
ccasionally.
4

Fig. 2. A sample frame from the vehicle’s camera taken approximately from its
position in Fig. 1. The top frame was taken under the high-light condition, and
the bottom was taken under the low-light condition. As can be seen in these
images, the vehicle’s camera was very narrow and could only capture the scene
directly in front of it, which added difficulty to the task. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 3. A diagram of the setup. The robot sent its camera images to the GPU
workstation, where each image was input to the model to obtain the output
steering action, which was sent back to the robot.

training dataset of ∼243,000 frames. The validation set was used

to test the network every 100th training iteration.
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Each network was tested and trained on these same validation
and training sets for 6000 training iterations. The number of
training iterations was chosen such that slower-learning net-
works would have sufficient training time to learn while still
controlling for the number of training iterations, as many net-
works converged well before this point but did not overfit (as
determined by the relation between the training and validation
loss curves over training). Each training iteration began with a
random video frame and the subsequent 79 video frames (80 in
total) from the training set.

Once the batch was randomly chosen from the training set,
each frame was cropped by removing the top 110 rows (making
the images 130 × 320 × 3 pixels) like in [12], and further
operations were performed depending on the image processing
method being employed. These operations are described below:

3.2.1. Grayscale
For the video frames in the grayscale method, each frame

was made grayscale and instance normalization [23] was subse-
quently employed on each individual frame.

3.2.2. Color
For the color class, instance normalization [23] was used on

each color frame.

3.2.3. Grayscale framestack
Each video frame in this method began with the same op-

erations as in the grayscale class. Each framet in the batch was
then paired with the framet−5 and framet−15 along the channel
dimension. The human action at framet was used as the label
for the framestack training example. The intervals were chosen
empirically by trying many different values and observing how
well the trained vehicle navigated the track. These intervals are
likely dependent, at least to some extent, on the frame rate of
the camera(s), as well as the top speed of the vehicle. There is
some existing research in which temporal correlations in video
data were exploited in a similar manner [24].

After performing the appropriate operations, each image was
copied, and white noise was added to each of the copies,3 such
that the network would get both an unaltered and noisy ver-
sion of the same image with the same label in a single training
batch. The peak signal-to-noise ratio (PSNR) was computed over
500 random frames and their noise-augmented counterparts, and
the average for each frame was 10.0 dB. The batch was then
sent to the neural network to continue the training iteration.
Each network’s weights were optimized using Tensorflow’s Adam
optimizer and a learning rate of 3e-5.

3.3. Architectures tested

We tested seven different models, described below. (A descrip-
tion of each model’s layer architecture is included in Table 2). For
the CNNs besides ResNet-26, these were initialized with random
values from a uniform distribution without scaling variance as
described in [25], and weights in all fully-connected layers were
initialized with random values taken from a truncated normal
distribution as in [26]. The weights in the convolutional filters
in ResNet-26 were initialized with random values such that the
variance of the inputs would be constant as in all other networks’
convolution layers, but, instead of taking these values from a
uniform distribution, they were taken from a truncated normal
distribution as in [27]. A weight decay [28] of 0.001 was employed

3 We also tried to augment each data batch by flipping each image with
espect to the vertical axis and changing the label accordingly, but this caused
he vehicle’s movement to be less continuous and its accuracy worse.
5

in all convolution and fully-connected layers. Dropout [29] of
fully-connected nodes, which is used to reduce overfitting, was
utilized in all networks except ResNet-26 with different dropout
probabilities depending on the architecture, as described in more
detail below. The output layer of every network consisted of four
fully-connected nodes and a softmax activation function [30].

3.3.1. Fully-connected network
Perhaps the most basic deep artificial neural network, the

fully-connected network consists of the input layer, three hidden
layers, and the output layer. The input layer contains 124,800
input nodes for color images (130 × 320 × 3). Each hidden layer
ontains 64 nodes, which are each connected to every node in
he previous and subsequent layers, with a hyperbolic tangent
ctivation function [31], ℓ2 regularization [32], and weight decay
f 0.001 [28]. Each layer of the network has a dropout probability
f 0.5 during training and 0.0 for testing.

.3.2. 2-layer CNN
This architecture is perhaps one of the simplest convolutional

etworks, with just two convolutional layers and two fully-
onnected hidden layers. ℓ2 regularization [32] is used in both
onvolution layers. After each convolution layer, 2 × 2 max pool-
ng [33,34] with stride 2 and local response normalization [14],
hich encourages sparsity, were applied. Dropout was used on
oth fully-connected layers with a probability of 0.5 for training
nd 0.0 for testing.

.3.3. Alexnet
The AlexNet architecture, which was developed around 2011

y Krizhevsky et al. [35] and is rather simple by contemporary
tandards, consists of five convolutional layers followed by two
ully-connected layers. The overall architecture was hand-tailored
o the ImageNet dataset [36], and Krizhevsky et al. note that
lterations to it, such as removing a single convolutional layer,
esulted in a significant drop in accuracy. AlexNet uses max
ooling after the first two convolution layers and local response
ormalization, which allows nodes in different feature maps but
t the same spatial location to compete based on their activa-
ions. The result of this is that the features become decorrelated,
nd it has also been shown that this layer helps regularize the
eights. Dropout was used in both fully-connected layers with a
robability of 0.5 during training and 0.0 during testing.

.3.4. VGG-16
The VGG architecture [15] attempts to address the issue of

hoosing different stride and filter sizes based on a particular
ataset by using a stride of one and a filter size of 3 × 3 for
ll convolution layers. Thus, this style of architecture reduces the
umber of hyper-parameters – despite its greater depth – than
lexNet by stacking ‘‘building blocks of the same shape . . . which
ncreases simplicity and reduces the chance of over-adapting the
rchitecture to a specific dataset’’ [37]. The VGG-16 architec-
ure contains 13 convolutional layers overall, with max-pooling
ayers following the 2nd, 4th, 7th, 10th, and 13th layers. VGG-
6, like AlexNet, also features two fully-connected hidden layers
mmediately before the output layer, but, unlike AlexNet, these
ayers use a rectified linear activation function. Each of these
ully-connected layers use a dropout probability of 0.5 during
raining and 0.0 during testing. This architecture is rather large
n terms of the number of parameters even by today’s standards.
ere, for ease of computation, we slightly reduce the number of
ilters and nodes in the convolutional and fully-connected layers,
espectively.
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.3.5. Inception-v3
In contrast to the VGG-style architectures, the Inception ar-

hitecture [16,38,39] contains hand-crafted topologies with many
arying hyper-parameters while still exhibiting low model com-
lexity [37]. These architectures, including Inception-V3, which
e use here, all operate on the principle of splitting the feature
ap outputs of certain layers into multiple different streams of
perations (represented by the dashed lines in Table 2) and sub-
equently merging their outputs together via concatenation. This
etwork also employs global average pooling after the last convo-
utional layer before the fully-connected output layer. Dropout is
pplied to the feature vector produced by global average pooling
ith a probability of 0.4 during training and 0.0 during testing.

.3.6. Resnet-26
The ResNet architecture [17] builds off of the splitting/merging

trategy of the Inception architectures and the simple, block-
emplate style of VGG nets. These networks are composed of
‘residual blocks’’, where a template of convolutions is repeated
set number of times, and after each repetition, the features

hat served as input to that specific repetition are added to the
utput of the repetition. After every convolutional layer, batch
ormalization [40] and a rectified linear activation function [41]
re applied to the output (except when adding the identity of
he previous block, in which the activation function comes after
he addition). Like Inception-V3, this network uses global average
ooling on the last convolutional layer, which helps to reduce the
umber of weights drastically without loss of performance. The
odel complexity, measured in FLOPs and number of parameters,
f ResNets is extremely low relative to other CNNs (Table 2).

.3.7. LSTM
Each node in a typical LSTM network has four gates: input,

utput, and input modulation which use the sigmoid activation
unction as in [42], and the forget gate which uses the hyperbolic
angent activation function [31]. These gates work in conjunction
ith each other to help regulate which information enters the cell
tate, which is able to hold long-term dependencies, and a hidden
tate, which captures the short-term dependencies. The typical
nput for such networks is an m × n matrix, where each row is
he next timestep in the data and each column is a dimension
n those timesteps. Here, we treat each image as this matrix, as
hough the rows of the image are the timesteps with 320 × 3
dimensions for color and grayscale framestack images and 320
dimensions for grayscale images. We do this by concatenating the
input channels along the column dimension.4 The network we
use here has two hidden LSTM layers each containing 500 nodes,
where each layer is essentially comprised of four fully-connected
layers representing each gate. Each node in the first of these
hidden layers outputs a sequence of hidden states corresponding
to the number of time-steps (image rows), whereas each node
in the second hidden layer returns one output for the whole
sequence it was given.

3.4. Testing protocol

After each network completed training, it was then used to
control the vehicle autonomously at a constant speed around the
track. To measure the performance of each network, the vehicle
was placed at four different positions around the track (Fig. 1)
and driven autonomously by the respective network for 10 trials
at each position, totaling 40 test trials per network. The reason
for starting the vehicle at four separate positions on the track

4 It is worth noting that we initially attempted concatenation along the row
imension with poor results.
6

was to ensure that the performance was not dependent on a
single, arbitrary starting position, as our pilot trials indicated that
the vehicle’s trajectory around the track was often distinct up to
some degree when the vehicle was set to start at one position vs
another, even when the same network was controlling it.

Every time the testing position was changed (every 10 trials),
the vehicle’s batteries, which were new and unused at the start
of this research, were replaced with fully-charged ones. A camera,
which was fixed to the ceiling and faced down toward the track,
was used to film each test run. Along with this video, the time
of each trial was taken, and it was recorded whether the vehicle
successfully completed a single lap or not. A trial was ended when
one of four circumstances occurred: (1) the vehicle completed
a lap and made it back to its starting position, (2) the vehicle
turned around and went the wrong direction three times in
the same trial (most models eventually turned back around and
righted themselves when this occurred), (3) the vehicle hit the
wall and/or became stuck, or (4) the vehicle became stuck in an
oscillatory back-and-forth motion without making net progress
on the track for 10 consecutive seconds.

Using the protocol above, each network was tested in two
separate test trials. The first testing trial, which we hereafter
refer to as Lighting Tests, was designed to isolate performance
differences based only on differences in brightness, which is
important for autonomous robots. During the Lighting Tests, the
same track shape that was used in the training data was also used
in the testing phase, but five of the ten trials at each position were
performed under a high-light condition (all lights on; Fig. 2, top)
and five with a low-light condition (one-third of the lights on,
Fig. 2, bottom).5

In the second testing trial, which we term Lighting and Object
Tests, each network was tested under the same protocol but
only using the input image method that enabled it to obtain the
best performance in the Lighting Tests (e.g. grayscale, color, or
framestack). During these tests, the entire layout of the room
was rearranged (such that different objects were in the vehicle’s
point-of-view but beyond the track’s walls). The track was also
configured in an oval shape instead of the L-shape, four diverse
objects (pictured in Fig. 4) which were not present in the training
data were placed randomly on the track,6 and a different vehicle
of the same make and model of the training vehicle was used.
Finally, just as in the Lighting Tests, five trials were under a
high-light condition and five under a low-light condition. For
each of these test trials, a random number generator was used
to determine (1) the number of objects placed on the track, (2)
how far along the lap each object should be placed, (3) where
each object was positioned relative to the middle of the path, and
(4) how much the object was rotated. All of these parameters
regarding object placement were consistent across all networks
tested. This test phase was performed to try and capture the base
level of performance each network could achieve while operating
under relatively different conditions than what it was trained on.

Since our experiments are performed in an extremely con-
trolled environment, we are able to control these variables (e.g.
brightness levels, object placement, etc.) precisely and test each
model under the exact same conditions, which would have been
extremely difficult or even impossible in a typical outdoor setting.

3.5. Lap completion rate

To measure lap completion rate, or success rate, during the
testing phases, we use the equation,

lap completion rate =
# of trials with lap completed

40
(1)

5 The training dataset contained only a mid-light condition.
6 During training no objects were placed on the track.
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Fig. 4. The four objects used in the second testing trial of this research.

This was used as the primary metric to determine how each
etwork performed on this task.

.6. Path analysis

To further explore each network’s effect on the vehicle’s path,
e used the videos taken by the ceiling camera and employed an
bject-tracking algorithm to determine the location of the center
f the vehicle during every trial in the Lighting Tests.7 These

coordinates were used to indicate where the vehicle had traveled
over its 40 trials and its location at each timestep during each
trial.

One metric that may be used to compare autonomous perfor-
mance across different models is the smoothness of the trajec-
tory. In autonomous robots, a smoother path is generally prefer-
able in terms of the efficiency of a vehicle. In addition, path
smoothness could effect our measures of performance as well as
low path smoothness may cause a given network to become more
susceptible to compounding covariate shift because greater path
fluctuations may increase the chance that the vehicle will enter
into a novel path. Alternatively, lack of smoothness could result
in compounding covariate shift, as a vehicle that has entered into
a novel path will likely exhibit less smooth driving behavior as it
is forced to predict the steering angle from a novel image.

To this end, we developed a metric which we show can be
interpreted as the smoothness of a trajectory given the coor-
dinates obtained with the object-tracking algorithm, which we
refer to as lateral movement (as it is not a strict measure of
smoothness). This method uses using visual information because
our vehicle did not support the addition of an accelerometer
(although it could easily be modified to measure smoothness
from an accelerometer), and, since our vehicle was designed to
operate indoors, we were able to affix a camera to the ceiling
and capture the entire path. First, we manually determined the
coordinates at the center of the entire path along the track, which
served as a reference to measure the position of the vehicle as it
traversed the track. Next, the points along the vehicle’s trajectory
were ordered by the timestep in which they were captured by the
overhead camera. The euclidean distance between the center of
the vehicle and the minimum distance to the reference path was
then calculated at each timestep. Finally, we calculated the mean
absolute difference between the distance value at each timestep

7 We did not film the Lighting and Object Tests.
 N

7

t and that from timesteps t − 1 through t − 30, which indicates
how much the vehicle’s path fluctuated side-to-side during this
time. We choose to look 30 frames back because the overhead
camera’s frame rate was 30 fps, which meant that these lateral
movements were computed over one second intervals. We chose
this interval – which corresponded to about 0.6m of movement
– because it was short enough that it would capture sharp side-
to-side movements, and it would not capture natural drift over
longer distances. Since we are taking the difference between
the distance from reference (essentially how much the vehicle
changed laterally) at time t and that over the recent past, an
abrupt change in lateral position in a short time span would cause
this metric to be higher. Conversely, if the vehicle’s position did
not change very much laterally over the recent past, this value
would be lower.

3.7. Pixel importance

In order to gain further insight into the observed differences
between tested models, we assessed which portions of the im-
age each model deemed more important in order to make its
behavioral decisions. To do so, we utilized a novel method loosely
based on [43] in which we systematically ‘flipped’ the values
of each pixel value in the input images, one by one, and ob-
served the corresponding difference in the model outputs com-
pared to the unaltered image. This serves to determine what
pixels/regions of the image were more important in the net-
work’s classification. This method bears some similarity to other
recently developed methods designed to make neural networks
more interpretable — often using methods such as deconvolu-
tional layers [44] or layer-wise relevance propagation (LRP) [45].
However, these other methods do not generalize well to all neural
network architectures and their results are not always readily
interpretable [46]. The method introduced here provides a simple
and easily interpretable method for localizing the information in
images across all models. The procedure was performed over 50
randomly-selected images from the validation set and consisted
of five steps: (1) preprocess and perform inference on a given
test image and record the output layer values and the action
with the highest output value, (2) loop through every pixel in
the image and maximally flip its value (i.e. pixel values ≥128
ere given the value 0 and those <128 were given the value
55), (3) perform preprocessing and inference on the image with
he altered pixel, and (4) calculate the MSE between the output
ayer values associated with the altered image and the unaltered
mage and record it along with the altered pixel’s location. We use
he MSE for each pixel location in step 4 to create a heatmap in
he image space that illustrated how important each pixel of the
mage was in changing the output. During each iteration of the
oop, we also record whether the flipped pixel at the respective
ocation caused the network to output a different action than
hen it was given the unaltered image.
In a separate calculation from the heatmap generation, we

eport the mean softmax probability of the chosen action given
000 random, unperturbed input images. This allowed us to
oughly observe how easy it might have been to change a par-
icular network’s output action when the perturbed images were
nput.

.8. Pruning analysis

When developing modern DCNNs with the intent of embed-
ing them into mobile or edge applications, the power con-
umption and size of the network is of great concern due to
he resource constraints of current edge processors (e.g. FPGA,

VIDIA Jetson, etc.). As a result, various methods of decreasing
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Fig. 5. Each network’s validation loss over training with single grayscale frame (top), single color frame (middle), and grayscale framestack (bottom) as input. (For
nterpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
he size and latency of trained networks have been developed,
uch as weight quantization and/or pruning, designing more ef-
icient networks, and knowledge distillation (for a recent review,
ee [47]). Recent evidence indicates that it is often possible to
rune the vast majority of a network’s weights with a minor loss
n performance, and these pruned sub-networks can typically be
dentified even before any training [48] or after training without
he need for retraining once the network is pruned [49]. Here,
e use the Triangular pruning method proposed in [49] to prune
ach network that was tested in the Lighting and Object Tests.
e choose Tmin and Tmax such that the difference in validation

ccuracy was≤5% and the maximum change in any output node’s
oftmax activation did not change by more than a value of 0.2 on
verage over the validation set when each network was given the
ame image. By ensuring the output layers are similar between
he pruned and un-pruned network when given the same images,
his method also resembles knowledge distillation techniques,
here a smaller model is made to approximate the outputs of
larger model. Thus, we were able to find the sub-network that
as ‘‘driving’’ the output of the original network.

.9. Action bias

One factor that is influential on generalization ability is the
bility of a network to avoid overfitting the training set. This is
ade more difficult when the frequencies of the labels – steering
ctions is in this case – in the training set are very unbalanced
e.g. the forward action appeared much more often than any other
ction in the training set). To address this, Toromanoff et al. [12]
ntroduced a method of randomly discarding different percent-
ges of the straight steering angles to make the dataset more
alanced. Here, we do not take any preventative measures to help
elieve this massive imbalance, as we would like to understand
hether certain networks are able to handle this imbalance and
chieve relatively good generalization performance without such
easures. To this end, we examined the bias weights of the
utput layer compared against the actual distribution of labels in
he dataset. The bias weight of a node can be thought of as the
ode’s output in the absence of any external input, either through

eroed-out weights or inputs. By looking at these bias weights of

8

the output layer (where each node represents a certain steering
action), we were able to observe how active each of these nodes
would be (i.e. how likely it would be for a certain action to be
predicted relative to the other actions) before any input was sent
through the network. Ideally, the distribution of these four output
bias weights should not be too similar to the distribution of the
actions in the training set. If they were, this could be a possible
indication that the network overfit to the training set and, thus,
would have trouble generalizing to an environment or path with
a different distribution of actions.

3.10. Inference rate

Finally, we observe the average number of inferences per
second each network performed on images of the size we use.
This was calculated by sending 1000 images – which were already
loaded in an array in Python – sequentially to the network to
predict the action, obtaining the elapsed time over all images,
and dividing by 1000. This procedure was performed five times
for each network, and the average of these five trials is reported.
This method was intended to isolate just the latency introduced
by the model, so the predicted actions were not used to steer the
vehicle and input frames were not collected by the camera.

4. Results

4.1. Validation performance

Fig. 5 shows the validation loss of each model over the entire
course of training for each of the three input types. For the
single grayscale frame and single color frame conditions (top and
middle), all of the models converged to moderate losses except
for the fully-connected network, which yielded a loss that was ap-
proximately 2× higher upon model convergence than all others.
For the grayscale framestack input (bottom), the four contem-
porary CNNs show significantly reduced loss upon convergence
compared with the three other models.

The confusion matrices computed from the validation set did
not differ very dramatically between models, with the exception
of the fully-connected network and 2-layer CNN (Fig. 6). One
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Fig. 6. Confusion matrices computed from the validation set.

thing that stands out in these confusion matrices is that in all
networks the highest mis-classified pair of actions was when the
ground truth action was ‘‘left’’ and the predicted action was ‘‘for-
ward’’, which is probably due to the high class imbalance between
the two. During training, we did not place much emphasis on

the validation accuracy because the validation set was made with

9

several different drivers, many of whom had a different driving
style/strategy. This meant that there were certain points on the
track (often the turns) which different drivers handled differently,
and, as a result there were validation images that were roughly
the same but had different ground truth actions.

By observing the t-SNE [50] embeddings of each network’s last
hidden layer activations when given images from the validation
set, there appears to be a good degree of variability between
networks regarding the separation between classes (Fig. 7). For
example, the embeddings for each action were highly overlapping
with respect to the fully-connected network and 2-layer CNN,
while in Inception-V3, LSTM, and ResNet-26 there was a moder-
ate amount of separation. Finally, AlexNet and VGG-16 exhibited
the most separation between classes.

4.2. Lap completion rate

4.2.1. Lighting tests
Fig. 8 (top) presents the lap completion rate (i.e. the per-

centage of trials in which the lap was completed) across all of
the tested architectures during the Lighting Tests. Overall, the
convolutional neural networks and LSTM vastly outperformed the
fully-connected network. Within the contemporary CNNs, most of
them achieved reasonably good success rates (∼95%) with at least
one data type, with the exception of ResNet-26. However, only
AlexNet, trained on single color video frames, achieved a perfect
success rate over 40 trials. VGG-16 was found to be the most
robust to the input class, as its lap completion rate was equally
high for all three input image types.

Across the different data types, the color single frame yielded
the best overall performance across models while the grayscale
framestack yielded dramatically worse performance across most
models.

4.2.2. Lighting and object tests
The success rates achieved by each network in the Lighting

and Object Tests were much lower than those in the Lighting
Tests (Fig. 8, bottom). AlexNet exhibited the best success rate
during this phase, completing 55% of the 40 laps, followed by
VGG-16 which completed 45% of the 40 test laps (Fig. 8, bottom).

ResNet-26 only completed 25%, or 10, of its test laps.
Fig. 7. t-SNE representations of each network’s activations at the last hidden layer given random images from the validation set. Component 1 and Component 2
refer to the two t-SNE components the activations were mapped onto.
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Fig. 8. The success rate of each network during the Lighting Tests (top) and the
Lighting and Object Tests (bottom).

Table 1
Summary of spatial information analysis.
Network % Altered actions Output MSE Softmax Prob.

FC 0.00% 4.08× 10−6 0.80
2-layer CNN 0.07% 4.00× 10−4 0.84
AlexNet 2.11% 1.30× 10−3 0.91
VGG-16 2.11% 2.00× 10−3 0.92
Inception-V3 1.07% 6.30× 10−3 0.91
ResNet-26 0.64% 1.00× 10−3 0.85
LSTM 0.00% 9.87× 10−6 0.86

4.3. Validation loss and success rate

Figs. 9 and 10 show how the validation loss of a particular
odel was related to the performance in the Lighting Tests and
ighting and Object Tests, respectively. As can be seen, many
odel/input types with similar validation losses (those between

4 and .45) demonstrate widely variable success rates in both the
ighting Tests and the Lighting and Object Tests. For example,
nception-V3 trained on grayscale framestack input had the same
alidation loss as VGG-16 trained on the same input, but the
ormer’s success rate in the Lighting Tests was 50% and the latter’s
as 95%. Furthermore, AlexNet trained on single color frames
chieved perfect success in the Lighting Tests, yet this network
ad one of the worst validation losses (Fig. 9). Similar conclusions
or the Lighting and Object Tests can be drawn in Fig. 10, as
any of the same models (i.e. 2-layer CNN, LSTM, ResNet-26,
nd AlexNet) performed very differently despite having a similar
ean validation loss of ∼0.43.

.4. Path analysis

An illustration of representative paths taken by highlighted
etworks during a single trial can be seen in Fig. 11.
Fig. 12 depicts the results of our Lateral Movement analysis.

he fully-connected network and Inception-V3 had the high-
st mean lateral movement over all trials in the Lighting Test,
hile the LSTM and ResNet-26 exhibited the smallest lateral
ovement on average. VGG-16 and AlexNet, which were the
est-performing networks in both tests, as well as the 2-layer
10
Fig. 9. The success rate during the Lighting Tests as a function of the validation
loss achieved by each network (fully-connected network not shown).

Fig. 10. Success rate of each network in the Lighting and Object Tests as a
function of the validation loss achieved by each network.

CNN all exhibited moderate lateral movement on average, and
they are likely not significantly different judging by the error bars.

We were also able to observe how the vehicle’s lateral move-
ment over a given trial run (Fig. 13), and how it changed based on
the starting position. As is evident from these plots, many of the
models exhibited similar amounts of lateral movement in their
paths. The fully-connected network and Inception-V3 typically
traded off as the network with the highest lateral movement at
different points in time. Specifically, Inception-V3’s lateral move-
ment increased dramatically toward the end of the trials that
started at position 1, and it also exhibited much higher lateral
movement throughout the first half of trials beginning at position
3. It also appears that this was influenced by specific points on
the track, because Inception-V3’s fluctuations occur at relatively
confined timestep intervals, as opposed to those exhibited by the
fully-connected, which are typically higher over the entire trial.

4.5. Pixel importance

Table 1 illustrates the results of the pixel flipping analysis de-
scribed above. The action decisions of the two non-convolutional
networks – fully-connected and LSTM – were completely unaf-
fected by the flipped pixels (i.e. no pixel flip caused the net-
work to change its action decision). Regarding the convolutional
networks tested, the models that exhibited higher performance
in both the Lighting Tests and the Lighting and Object Tests
(i.e. AlexNet, and VGG-16) generally had more action decisions
changed due to flipped pixels. Furthermore, the MSE between the
output layers associated with the image containing the altered
pixel and the unaltered image showed a similar trend, as the
fully-connected and LSTM networks showed little difference. The
convolutional networks, on average, contained MSEs that were
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Table 2
A detailed description of the architecture of each network used in this research and its number of FLOPs and parameters.
Fully Connected 2-layer CNN AlexNet VGG-16 Inception-V3 ResN

64-d fc, tanh, L2
reg.

3 × 3, 32, relu, L2
reg.

11 × 11, 96, stride
4, relu

3 × 3, 45, relu 7 × 7, 64, stride 2, relu 7 ×

relu

dropout, 0.5 2 × 2 max pool,
stride 2

3 × 3 max pool,
stride 2

3 × 3 max pool,
stride 2

3 × 3 max pool, stride 2 3 ×

strid

64-d fc, tanh, L2
reg.

Local response
normalization

Local response
normalization

2 × 2 max pool,
stride 2

Local response normalization batch

dropout, 0.5 3 × 3, 120, relu 1 × 1, 64, relu resid

64-d fc, tanh, L2
reg.

3 × 3, 64, relu, L2
reg.

5 × 5, 256, relu 3 × 3, 120 3 × 3, 192 [
3
3dropout, 0.5 2 × 2 max pool,

stride 2
3 × 3 max pool,
stride 2

2 × 2 max pool,
stride 2

Local response normalization

4-d fc, softmax Local response
normalization

3 × 3, 384, relu 3 × 3, 200, relu 3 × 3 max pool, stride 2

3 × 3, 384, relu 3 × 3, 200, relu 1 × 1, 64, relu 1 × 1, 96, relu 1 × 1, 16, relu 3 × 3 max pool,
stride 1

resid

128-d fc, tanh 3 × 3, 256, relu 3 × 3, 200, relu 3 × 3, 128, relu 5 × 5, 32, relu 1 × 1, 32, relu [
3
3

dropout, 0.5 3 × 3 max pool,
stride 2

2 × 2 max pool,
stride 2

Concatenate channels

256-d fc, tanh Local response
normalization

3 × 3, 450, relu 1 × 1, 128, relu 1 × 1, 128, relu 1 × 1, 32, relu 3 × 3 max pool
stride 1

dropout, 0.5 3 × 3, 450 3 × 3, 192, relu 5 × 5, 96, relu 1 × 1, 64, relu resid

4-d fc, softmax 4096-d fc, tanh 3 × 3, 450, relu Concatenate channels [
3
3

dropout, 0.5 2 × 2 max pool,
stride 2

3 × 3 max pool, stride 2

4096-d fc, tanh 3 × 3, 450, relu 1 × 1, 192, relu 1 × 1, 96, relu 1 × 1, 16, relu 3 × 3 max pool,
stride 2

dropout, 0.5 3 × 3, 450 3 × 3, 208, relu 5 × 5, 48, relu 1 × 1, 64, relu Glob

4-d fc, softmax 3 × 3, 450, relu Concatenate channels 4-d f

2 × 2 max pool,
stride 2

1 × 1, 160, relu 1 × 1, 112, relu 1 × 1, 24, relu 3 × 3 max pool
stride 1

3500-d fc, relu 3 × 3, 224, relu 5 × 5, 64, relu 1 × 1, 64, relu

dropout, 0.5 Concatenate channels

3500-d fc, relu 1 × 1, 128, relu 1 × 1, 128, relu 1 × 1, 24, relu 3 × 3 max pool
stride 1

dropout, 0.5 3 × 3, 256, relu 5 × 5, 64, relu 1 × 1, 64, relu

4-d fc, softmax Concatenate channels
1 × 1, 112, relu 1 × 1, 144, relu 1 × 1, 32, relu 3 × 3 max pool

stride 1

3 × 3, 288, relu 5 × 5, 64, relu 1 × 1, 64, relu

Concatenate channels

1 × 1, 256, relu 1 × 1, 160, relu 1 × 1, 32, relu 3 × 3 max pool
stride 1

3 × 3, 320, relu 5 × 5, 128, relu 1 × 1, 128, relu

Concatenate channels

3 × 3 max pool, stride 2

1 × 1, 256, relu 1 × 1, 160, relu 1 × 1, 32, relu 3 × 3 max pool,
stride 1

3 × 3, 320, relu 5 × 5, 128, relu 1 × 1, 128, relu

Concatenate channels

1 × 1, 384, relu 1 × 1, 192, relu 1 × 1, 48, relu 3 × 3 max pool,
stride 1

3 × 3, 384, relu 5 × 5, 128, relu 1 × 1, 128, relu

Concatenate channels

Global avg. pool

4-d fc, softmax

8.0× 106 params 2.17× 107 params 7.30× 107 params 1.02× 108 params 6.74× 106 params 1.46

5.60× 107 FLOPs 5.46× 108 FLOPs 2.42× 109 FLOPs 1.87× 1010 FLOPs 2.84× 109 FLOPs 1.06
780
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uch greater than the fully-connected-based networks. Although
he convolutional networks had more actions altered when given
ltered images, the output softmax probability in these networks
as much higher on average, indicating that these networks were
ore ‘confident’ in their outputs.
Fig. 14 depicts representative examples of some of the

eatmaps constructed for single images using the MSE values
or each pixel when flipped. Although VGG-16 (Fig. 14, top left)
nd AlexNet (Fig. 14, top right) had the most action decisions
ffected by flipped pixels per image on average, these pixels
ended to lie in a very confined region of the image. This was
ot true for the LSTM (middle left) or the 2-layer CNN (middle
ight), as the information they attended to was fairly distributed,
lthough the 2-layer CNN was affected more by pixels that did not
orrespond to ‘useful’ features of the scene (e.g. objects outside
f the track or parts of the room’s wall such as the rubber
aseboard). One important observation is that the heatmaps gen-
rated with ResNet-26 were often localized to features peculiar
o this particular track and setup (i.e. the pink color of the track’s
alls on the turns) while for the other convolutional networks
i.e. AlexNet, VGG-16, and Inception-V3) this occurred less often.
his indicates that the ResNet-26 architecture would likely be
ess able to generalize to new tracks and/or settings, which is in
ontrast to these other networks whose heatmaps are localized
n more general features such as the ground in front of them or
he edge where the floor meets the track wall.

.6. Pruning analysis

The distribution of each network’s weights before pruning was
erformed can be seen in Fig. 15 while Fig. 16 shows the per-and
ost . We observed the highest amount of pruning with VGG-16
67% pruned) and the lowest with the Fully-Connected network
21%). There was a generally positive relationship between the
umber of weights pruned and the original number of weights in
network, although Inception-V3 and ResNet-26 had around 50%
f their weights pruned despite their low number of weights to
egin with. By looking at Fig. 16, there does not seem to be much
f a correlation between the number of weights in the network
either pruned or unpruned) and the success rate of a given
etwork. For example, VGG-16 and AlexNet had the most weights
nd performed the best, but the 2-layer CNN and fully-connected
etwork had the second and third most weights, respectively, but
ere lower-performing networks.

.7. Action bias

While AlexNet and VGG-16, which exhibited good perfor-
ance relative to others, had output bias weight distributions

hat were relatively distinct from the distribution of actions in the
raining set, so did the 2-layer CNN and fully-connected network,
hich did not perform as well 17. On the other hand, Inception-
3 trained on color images had a distribution that was relatively
imilar to the action distribution in the training set when com-
ared to other networks, although it appeared less similar than
he Inception-V3 network trained on framestack inputs and at
ost as similar as the Inception-V3 network trained on grayscale

rames. For example, the output bias weights for the ‘forward’ and
right’ nodes in the Inception-V3 network using grayscale inputs
ere closer to the proportions of ‘forward’ and ‘right’ actions,
espectively, in the training set than they were in the Inception-
3 network using color inputs. In the ResNet-26 network, the
ias weight corresponding to the ‘forward’ output node was much
igher than the other bias weights in this layer (and most similar
o the proportion of ‘forward’ actions in the training set), even

hen compared to most other networks. Overall, these results

12
illustrate that examination of the output bias weights is one
possible way to identify overfitting for applications where the
training label distribution is highly-skewed such as this one, but
it is obviously not the only predictor of overfitting, as there are
many possible causes of this.

4.8. Inference rate

The Fully-Connected network was able to perform the most
inferences s-1 by far (729.83 inferences s-1 for color images;
Fig. 18), while the LSTM performed just 18 inferences s-1 on
images with three channels. Generally, the larger, more advanced
networks exhibited decreased inference rates than the smaller,
more primitive ones as would be expected (with the exception
of ResNet-26 due to its relatively efficient architecture).

5. Discussion

Recent work on autonomous vehicles using ANNs trained un-
der BC indicates that compounding covariate shift might not be
as great a problem for larger ANN architectures or ones that use
more recent developments like batch normalization. Inspired by
these findings, the current study presents the first systematic
assessment and comparison of multiple neural network models
in an experimentally-controlled BC autonomous steering task.
Overall, we observe that a network’s performance on these tests is
influenced by a combination of different factors, specifically path
smoothness and output bias. We also find that a given network’s
performance is not closely related to the shear number of weights
in the network, indicating that more specific architectural choices
may have more of an impact. Below, we first discuss some more
general observations from our experiments and delve into their
possible causes before examining each network individually in an
attempt to provide some insight into each one’s performance.

5.1. Framestack inputs exhibit high complexity

One of the main, and somewhat surprising, observations is
that the framestack data did not improve performance but ac-
tually impaired it. We believe that this poor performance may
be due to the fact that a stack of three frames may carry more
complexity than a single frame or three color channels, which
may require networks to have greater representational ability. To
test this, we calculated the Structural Similarity Index (SSIM) [51]
— which is commonly used as a measure of image similarity —
between each channel in the color images and each channel in
the framestack images respectively, averaged the three, then took
the average over 1000 random images. The average SSIM between
color image channels was 0.94, and the average SSIM between
framestack channels was 0.68. Therefore, it is possible to conclude
that the gray framestack images performed poorly relative to the
other image types, and extremely poorly in some of the simpler
networks, because the channels in this type of image are not as
correlated as those in color images, adding complexity. This is due
to the fact that it is impossible to drive exactly the same as in the
training dataset, meaning the past frames will never be exactly
the same as those the network was trained on, and the network
will need to generalize even further to overcome this. This is
why the confusion matrices given framestack inputs are not much
worse than those using the other inputs, but the performance on
the track given these inputs is far worse. Furthermore, this is also
why most of the more recent, contemporary networks perform
better than the fully-connected network and 2-layer CNN when
using these inputs. In future work, CNN-LSTM networks could
be used to compare different architectures on spatio-temporal
inputs rather than by using the framestack approach we used
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Fig. 11. Each pane shows the path of the vehicle as it was driven by the listed model during a single trial of the Lighting Test. Mean trajectory fluctuation numbers
were computed with the method described in the trajectory fluctuation methods.
t
m

Fig. 12. Mean lateral movement of each network tested in the Lighting and
Object Tests as defined in Section 3.6. The error bars represent standard errors.

here. This would probably lead to better performance on this
input type because the temporal patterns will be learned on
the features extracted by the CNN as opposed to the raw input
images.

5.2. Fully-connected and 2-layer CNN

Given the architecture, size, and validation loss/accuracy of
his network (as illustrated by its loss curve and confusion ma-
rix), its poor performance is not particularly surprising. This
etwork’s confusion matrix indicates that it often predicted a
teering action of left or right at points when it was supposed
o go straight, which would either cause it to turn completely
round and start going the wrong direction, hit the wall, or travel
n a path with decreased smoothness (all three of which would
reatly increase the chance of a failed trial). Furthermore, Fig. 7
ndicates that the last hidden layer’s activations were completely
verlapping for all classes. Based on these results, it is rather
bvious that the fully-connected architecture here did not contain
he necessary size/complexity capable of performing reasonably
ell at this task. Specifically, the extreme bottleneck from the
 a

13
Fig. 13. Lateral movement (as calculated via the procedure outlined in 3.6) over
the track length for all trials in the Lighting Tests. Shaded areas represent 95%
confidence intervals. The data is plotted with ggplot’s loess function [52].

input layer to the first hidden layer probably led to high in-
formation loss and decreased generalization ability, something
which has been studied in bottleneck autoencoders [53]. In [8,
10–12], and [13] this bottleneck (i.e. the ratio of nodes in the
flattened fully-connected layer to those in the fully-connected
layer) was around 1, 50, 137,8 1, and 5, respectively, while in this
architecture, it was 1950.

8 This network not only took in raw images, but low-dimensional represen-
ations in a parallel stream. It is possible the network may have learned to rely
ore on the low-dimensional representation than the raw image, which would
llow for a higher bottleneck, but this was not examined.
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Fig. 14. Representative heatmaps depicting how much each pixel, when maximally flipped, changed the output of the network. The three heatmaps in the left
column were created using the same image where the desired action was forward and the networks displayed are VGG-16 (top), LSTM (middle), and Inception-V3
(bottom). The three in the right column were all created from an image which had a desired action of right, and the networks displayed are AlexNet (top), 2-layer
CNN (middle), and ResNet-26 (bottom). Each individual heatmap’s values were scaled between 0 and 255, so intensities cannot be compared between heatmaps
here. Note: the black shape present in the top right corner in the three heatmaps in the left column was an object placed outside of the track and not related to
the heatmap generation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
The 2-layer CNN architecture’s performance was around av-
erage or better regarding many of the observed metrics – in-
cluding validation loss/accuracy, lateral movement, pixel flipping,
and Lighting Test success rate – despite being relatively small
and shallow compared to most other networks. One observation
which stands out is the wide disparity between its performance
on the Lighting Tests and that on the Lighting and Object Tests.
This network has some similarities to the fully-connected net-
work, both in terms of the number of parameters (Fig. 16) but
also in the information flow within it. With just two convolutional
layers, the first fully-connected layer in this network – which
contained 128 nodes – received a tensor of size 32 × 64 × 64
or 131,072 when flattened). This extreme bottleneck was of size
024, and, like the fully connected network, it most likely lead
o high information loss. The network was able to overcome this
ottleneck (and its effects) in the presence of different lighting
onditions, but it appeared to be too drastic to allow for good
erformance in the Lighting and Object Test. Furthermore, the
ottleneck in this network and the fully-connected network were
imilar, but the one present in this network was less severe due
o the sizes of the pre and post layers where the bottleneck
ccurred, as well as the fact that the inputs to the post layer were
iltered by two convolutional layers in this network as opposed to
aw input values as in the fully-connected network. This probably
fforded the 2-layer CNN additional performance – relative to the
ully-connected network – during the Lighting Tests, and it might
xplain why these two networks exhibited very similar behavior,
oth quantitatively (number of flipped pixels that altered an
ction, mean softmax probability, and Lighting and Object Test
uccess rate) and qualitatively (focusing on irrelevant regions in
he heatmaps).

.3. Alexnet and VGG-16

The AlexNet and VGG-16 architectures were the two highest
erforming networks in both the Lighting Tests and the Lighting
nd Object Tests, and their behavior was very similar in many
ther ways as well. Architecturally, these two networks most
losely resemble DCNN architectures used in recent studies under
n imitation learning paradigm (e.g. [8,10–13]). Specifically, the
14
Fig. 15. Weight distributions of each network in the Lighting and Object Tests.

Fig. 16. The number of weights in the un-pruned networks and the cor-
responding pruned networks which were used in the Lighting and Object
Tests.

architectures used in these studies contain more than a few layers
but not a large number of layers by any means, do not use skip
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Fig. 17. The bias weights of each network’s output layer, and the actual
istribution of the training dataset’s labels (top). The backward action was not
ncluded due to its very low frequency relative to the other actions. The bias
eights were normalized here such that for each network they added up to 1,
nd the networks are shown in descending order of performance starting from
he top. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)

Fig. 18. The number of inferences each network was able to perform on color
images. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
15
connections or global average pooling, and have at least two
(often a few more) fully-connected layers. Even though AlexNet
and VGG-16 were very similar in many ways, VGG-16 contained
almost 30 million more parameters, yet it achieved worse success
rates in the tests, despite performing significantly better in image
classification tasks [54]. We identify three key differences be-
tween these two networks which help explain this performance
difference. First, the VGG-16 network we use here contains relu
non-linearities in the fully-connected layers, whereas the AlexNet
network uses tanh. The relu non-linearity has been shown to
accelerate the training process because it does not produce satu-
rating neurons [35], but it has also been shown to lead to ‘dead’
neurons. This could be problematic for VGG-16 because dead
neurons in the fully-connected layers would prohibit the gradient
from back-propagating throughout the rest of the network. We
used a relatively small learning rate, which would have helped
to lessen the chance of dead neurons, but this phenomenon
may have played some role in VGG-16’s performance. Another
important difference between the two architectures is the size of
the bottleneck between the last convolutional layer and the first
fully-connected layer, as discussed previously. The bottleneck in
AlexNet was 2.5, and that in VGG-16 was 5.14. While these are
both well within the range of those observed in the previous
studies, it is quite possible that this conferred an advantage on
AlexNet in this task. One final difference is that AlexNet employs
local response normalization in addition to weight decay (as
described in Section 3.3) while VGG-16 only uses weight decay.
Local response normalization helps to decorrelate and regularize
the features of a given layer, which likely explains why AlexNet
was able to perform better with fewer filters and layers. Fig. 15
illustrates that AlexNet and VGG-16 had very similar weight
distributions, except that the tail of VGG-16’s distribution ex-
tended much farther out, which could indicate some degree of
overfitting.

5.4. Inception-v3 and resnet-26

The Inception-V3 architecture obtained above average success
rates on both test phases, even with a relatively low number of
parameters. One behavior to note is this network’s high lateral
movement relative to the other networks (Fig. 12). Given that
this network exhibited similar behavior to the best-performing
networks (i.e. AlexNet and VGG-16) regarding validation loss/
confusion matrix, mean softmax probability, and heatmap ap-
pearance, why, then, does this network exhibit such extreme
path fluctuations and worse performance on the Lighting and
Object Tests? We believe this is because Inception-V3 employs
a global average pooling layer followed by the linear classifier.
This is desirable in image classification networks, where the goal
is to detect if there is an object anywhere in the image, but
in tasks such as robotic applications which involve navigating
through environments that are often complex, it is detrimental
because it essentially causes the loss of all spatial information
and, thus, introduces added difficulty onto the classifier in trying
to predict the correct steering action. In fact, the authors are
not aware of any recent works which use a sub-scale, remote-
controlled vehicle in an end-to-end autonomous driving/steering
task (e.g. [8,10–12], etc.) that also use a global average pooling
layer. Instead, they use multiple fully-connected layers between
the final convolutional layer and the linear classifier. Previously,
the limitations of global average pooling have been discussed by
Szegedy et al. [16] and Yang et al. [55] – albeit briefly and without
empirical evidence, who point out global average pooling’s diffi-
culties when applied to transfer learning scenarios. Conversely,
in robotic applications where compounding covariate shift is an
issue and the task involves navigation, the reason to use fully-
connected layers in place of global average pooling has not been
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tated explicitly until this report. Finally, we would note that the
nception-V3 network trained on single color images obtained
ne of the higher lap completion rates in both the Lighting
ests and the Lighting and Object Tests, but unlike the other top
erformers AlexNet and VGG-16, this network experienced only
bout half of the altered actions as these other networks in the
ixel-flipping experiment. It is possible that this is due to the
lobal average pooling layer, but future studies will be needed
o fully understand this phenomenon, perhaps in the context of
dversarial examples.
Despite exhibiting above average validation performance and

ecreased lateral movement, the ResNet-26 network was one
f the worst-performing networks with respect to most other
etrics, which is initially surprising given that this architecture

s often used in many state-of-the-art image classification, object
egmentation/detection, and image generation networks. Similar
o the Inception-V3 network, this poor performance is likely due
o the fact that ResNet-26 uses global average pooling, which
ould cause a loss of spatial information. As a result, both net-
orks had large bias weights corresponding to the forward node,
hich may have been an attempt to deal with the loss of spatial

nformation by taking advantage of the action imbalance in the
raining set. ResNet-26 often used the pink color of the track’s
alls on the turns as a cue to turn (as discussed in Section 4.5),
hich is one possible indication that it may have overfit to the
raining dataset and would not be able to generalize to new tracks
ery well (for example those without a pink-colored border on
he turns). One major difference between the Inception-V3 and
esNet-26 architectures is the number of convolutional filters
n each network, particularly in the last convolutional layer be-
ore global average pooling. In the Inception-V3 architecture, this
umber was 1024, and in the ResNet-26 architecture, it was just
28. This would not only have caused Inception-V3 to have a far
reater representational capacity, but its feature vectors would be
ore separable with respect to different classes due to the shear
ifference in the number of features, as we observed in Fig. 7. This
ay be why Inception-V3 was able to obtain a higher success rate

han ResNet-26 despite its much more extreme path fluctuations.
ossible future studies might include observing how the number
f feature maps in the layer preceding global average pooling
ffects driving performance, if the addition of a fully-connected
ayer after global average pooling and before the linear classifier –
s Szegedy et al. [16] recommend for transfer learning – is able to
ncrease performance, or how the ResNet architecture performs
ith global average pooling vs with a fully-connected layer in its
lace.

.5. LSTM

The LSTM network performed around average regarding most
f the metrics – including success rates – despite exhibiting a
elow average confusion matrix. One interesting result was this
etwork’s superior performance on the grayscale inputs com-
ared to the color frames, something not seen in other networks.
his may be explained quite simply with the aid of Fig. 18. On
mages the same size and type as those coming through the
ehicle’s camera, the LSTM used here was only able to perform
8 inferences s-1 on images with three channels, such as the
ingle color frame and the gray framestack, but for the single
ray image, it was able to perform 60 inferences s-1. Since the
ehicle operated at 30 FPS during the course of this research, it
as impossible for the LSTM using color and framestack inputs
o produce inferences fast enough, which probably caused the
etwork to miss frames.
Given the fact that this network and the fully-connected net-

ork both use only fully-connected layers, it is at first surprising
16
why their performance is so different in many ways. One reason
this might be the case is that in this network the rows of the
image are treated as timesteps, which means that each node is
responding to each row at a time until it has reached the bottom
of the image. In this way, it is similar to a convolutional network
with a 1 × 320 filter (at least in the grayscale image), except that
he hidden activation is determined via various gating mecha-
isms as opposed to a weighted sum followed by an activation
unction and/or normalization. We believe that this allowed the
STM to perform better than the fully-connected network, as it
as able to incorporate information in the input locally and had
smaller bottleneck.

. Conclusion

This work consists of the first experimentally-controlled com-
arison of multiple deep learning architectures, trained under BC,
hile they control the steering of a vehicle. We found that most
f the more recent and advanced architectures that were tested
erformed well, contrary to the more primitive networks, which
llustrates that they are able to generalize enough to overcome
ompounding covariate shift introduced by BC, even under differ-
nt lighting changes and when tasked to avoid obstacles, despite
ot being trained to do so. Furthermore, the higher perform-
ng networks showed more consistency in their path between
rials and also converged onto similar paths as the other high-
erforming networks, and they also exhibited much smoother
aths within trials. Specifically, the AlexNet architecture is an
ttractive candidate for such tasks, as it was the best perform-
ng network on both test phases, had a very consistent and
mooth path relative to the others, showed low bias toward the
raining label distribution, and was able to be pruned signifi-
antly without much loss of accuracy or change in output values.
verall, we identify the bottleneck between convolutional and
ully-connected layers, use of global average pooling, and use
f normalization as critical architectural features in determining
ehavior in tasks such as this. It is evident from these findings
hat architectural features that perform well on strict classifi-
ation tasks may not necessarily be best suited for IL tasks (as
thers have previously pointed out), and, as these networks are
ncreasingly deployed in IL systems capable of acting on their en-
ironment, it is crucial that we keep this in mind when designing
hem. We hope this work helps to motivate further studies aimed
t examining how subtle architectural differences may influence
riving behavior when they are embedded in physical vehicles
n more complex environments. Finally, we hope that these ex-
erimental results help to complement previous results obtained
n real-world settings, and we also note that further confirmation
f these insights is necessary in more complex settings, which we
eave to future work.
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