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Abstract

Meta-analysis (MA), a powerful tool for synthesizing reported results, is

influential in ecology. While ecologists have long been well-informed on the

potential problems associated with nonindependence in experimental work

(e.g., pseudoreplication), they have, until recently, largely neglected this issue

in MA. However, results used in MAs are likely much more similar when they

come from the same locality, system, or laboratory. A simple and common

form of nonindependence in MA arises when multiple data points, that is,

observed effect sizes, come from the same paper. We obtained original data

from 20 published MAs, reconstructed the published analyses, and then, for

14 that had not accounted for a paper effect, used three approaches to evaluate

whether within-paper nonindependence was a problem. First, we found that

“nonsense” explanatory variables added to the original analyses were statisti-

cally significant (p < 0.05) far more often than the expected 5% (25%–50% for

four nonsense variables). For example, the number of vowels in the first

author’s name had a significant effect 50% of the time. Second, we found that

an added dummy variable, which was randomly assigned at one of two levels,

was statistically significant an average of 38% of the time, far exceeding the

expected 5%. Even after including a random paper effect in the analyses, there

was still an excess of significant results, suggesting that the within-paper

nonindependence was more complex than modeled with the random paper

effect. Third, we repeated the original MAs that did not include random paper

effects (n = 14 MAs) but added a random paper effect to each revised analysis.

In 12 out of the 14 MAs, an added random effect was statistically significant

(indicating group nonindependence that was not accounted for in the original

analyses), and often the original inferences were substantially altered. Further,

incorporating random paper effects was not a sufficient solution to

nonindependence. Thus, problems resulting from nonindependence are often

substantial, and accounting for the problem will likely require careful

Scott D. Peacor and Chao Song are co-first authors that contributed equally.

Received: 22 January 2025 Revised: 14 October 2025 Accepted: 22 October 2025

DOI: 10.1002/ecy.70269

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided

the original work is properly cited.

© 2025 The Author(s). Ecology published by Wiley Periodicals LLC on behalf of The Ecological Society of America.

Ecology. 2025;106:e70269. https://onlinelibrary.wiley.com/r/ecy 1 of 15
https://doi.org/10.1002/ecy.70269

https://orcid.org/0000-0002-5334-7775
https://orcid.org/0000-0001-8225-4490
https://orcid.org/0000-0002-3494-6641
https://orcid.org/0000-0003-1918-7904
mailto:peacor@msu.edu
http://creativecommons.org/licenses/by/4.0/
https://onlinelibrary.wiley.com/r/ecy
https://doi.org/10.1002/ecy.70269
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecy.70269&domain=pdf&date_stamp=2025-12-08


consideration of the details of the potential dependence among observed effect

sizes. MAs that do not properly account for this problem may reach

unwarranted conclusions.
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INTRODUCTION

Given its promise to increase the rigor of data synthesis,
the use of meta-analysis (MA) has grown in influence in
science (Gurevitch et al., 2018; Hoffmann et al., 2021;
Vrieze, 2018), with the number of published ecological
MAs increasing rapidly since their early use in the 1990s
(Gurevitch et al., 2018; Lortie, 2014; Vrieze, 2018). Many
papers published in major ecological journals cite multi-
ple MAs both as background and when relating new
results to existing knowledge. As a result, ecological MAs
influence our understanding of diverse topics including
the effects of global climate change on disease risk
(Mahon et al., 2024), invasive ants on animal diversity
(Tercel et al., 2023), pollination on agricultural services
(Gazzea et al., 2023), and marine protected areas on
biodiversity (Hollitzer et al., 2023). Thus, much of ecol-
ogy, as well as the application of ecology to manage-
ment and policy, is guided by syntheses informed by
MA. Clearly, any method with such widespread influ-
ence ought to be based on sound and well-tested meth-
odology. Nevertheless, problems with the application
of MA in ecology have been recognized (Chamberlain
et al., 2012; Nakagawa et al., 2023; Osenberg
et al., 1999; Pappalardo et al., 2023; Yang et al., 2023).

One potential challenge with the application of MA is
nonindependence in which a MA uses multiple data points
(i.e., observed effect sizes) from the same “group”—paper,
laboratory, taxon, or site, which might not be independent
(Koricheva & Gurevitch, 2014; Nakagawa et al., 2017;
Noble et al., 2017). If nonindependence within groups is
ignored (a form of pseudoreplication: Hurlbert, 1984), it can
lead to poor estimates of average effect sizes, undermine the
validity of inferences, and lead to unwarranted conclusions
(Nakagawa et al., 2022; Noble et al., 2017; Song et al., 2020,
2022). Indeed, ecologists are keenly aware of the poten-
tial problem of nonindependence in experiments.
Generally, independence in experiments is achieved by ran-
domly assigning experimental units to treatments. However,
despite ecologists’ appreciation of nonindependence in
experimental ecology (e.g., Hurlbert, 1984 has been cited
>10,000 times), attention to nonindependence in early eco-
logical MAs was largely ignored. Indeed, until recently, com-
monly used MA software in ecology (e.g., MetaWin

[Rosenberg et al., 2000] which is still in use, but less com-
monly today) could not accommodate random group effects
or otherwise account for nonindependence. This left some
meta-analysts reaching for ad hoc solutions that have been
shown to be insufficient (Song et al., 2020).

Over the past two decades, publications in the ecologi-
cal literature have introduced methods to account for
nonindependence, giving the impression that ecologists
are increasingly accounting for this issue. Phylogenetic
nonindependence was one of the first forms that ecologists
attempted to address, and this early work highlighted
the potential problems associated with unaccounted-
for nonindependence (e.g., Chamberlain et al., 2012;
Hoeksema et al., 2010; Lajeunesse et al., 2013; Morales &
Traveset, 2009). Subsequently, the development of additional
methodologies and software was used to address other forms
of nonindependence (Hedges et al., 2010; Nakagawa
et al., 2022; Pustejovsky & Tipton, 2018; Viechtbauer, 2010;
Yang et al., 2024). Since simulations have demonstrated that
accounting for nonindependence caused by group effects,
when they exist, can lead to more valid inferences
(Nakagawa et al., 2022; Song et al., 2020), the increased
implementation of methods to account for nonindependence
is a positive step. However, the uptake of these methods has
been less than ideal. The most complete and recent review of
this issue (Pappalardo et al., 2023) reported on two types of
potential nonindependence that could arise when extracting
>1 effect size from a primary publication: (1) within-study:
the same data were used for calculating more than one
observed effect size, and (2) study-level: different data were
used although the effects might still be nonindependent due
to other similarities (e.g., sharing common methodological
biases or coming from the same geographic locality). They
found that 65% of the 96 ecological MAs in their dataset
acknowledged and attempted to address the within-study
source (generally by averaging or subsampling to use just
one observed effect that used common data), but only 14%
acknowledged and addressed the study-level source of
nonindependence. These sources of nonindependence are
particularly problematic, as they may arise whenever the
number of observed effect sizes exceeds the number of source
papers, which Pappalardo et al. (2023) found to occur in 95
out of 96MAs, with many MAs reporting more than five
times more effect sizes than papers.
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Despite the recognition of the problem posed by
nonindependence, we still do not know the magnitude of
the problem in ecological MAs. Is nonindependence little
more than an esoteric statistical issue with little real con-
sequence to the results of an MA? Our own discussions
with meta-analysts in recent years have suggested that
many view the problem in this way, implicitly assuming
that group effects are negligible or that the occurrence of
multiple effects within groups is uncommon and not
influential (and thus can be ignored without compromis-
ing the conclusions). Further substantiating this observa-
tion, MAs performed without accounting for group
effects (or without sensitivity analyses of the potential
group effects) continue to be published, and older
published MAs that did not account for group effects con-
tinue to be highly cited. Thus, ecologists as a community
appear to have faith in the inferences drawn from MAs
that overlook nonindependence. Clearly, we desire rigor-
ous approaches, but rigor and exactitude are often traded
off with the expediency of not accounting for
nonindependence.

Here, we examine the consequences of that trade-off
and evaluate the magnitude of the error that results from
ignoring nonindependence. We focus on a particularly
common type of group effect: nonindependence of
observed effect sizes from the same paper (Song
et al., 2020). Within-paper nonindependence could arise
from many factors (Noble et al., 2017), which could
include random factors that influence actual (“true”)
effect sizes, as well as factors that only influence the
observed effect size (herein we use actual effect size, and
for short, effect size, to refer to the effect that would be
seen if infinite data were available, as distinct from the
observed effect size which incorporates observation error,
reflecting that the true effect size is not directly observed).
For example, when a paper yields >1 observed effect size,
those often are for the same species (or closely related
species) or from the same locale (or a limited geographic
region). Thus, they would tend to have correlated true
effect sizes. Furthermore, because the same author(s)
often designed and executed the experiments, the effects
likely were influenced by methodological similarities.
Observed effect sizes might also have come from the same
experiment but at different levels of another treatment
(e.g., in cross-factored designs), a case where random
influences on true effect sizes and the observation errors
might both contribute to nonindependence. Multiple
observed effect sizes might also have been taken from the
same experiment, but represent different response met-
rics (e.g., biomass or growth rate to represent productiv-
ity). If these responses are measured from the same set of
organisms, they might have shared a common control
(and thus some of the same data might have been used in
the calculation of the observed effect sizes). Regardless of

whether factors influenced the actual effect size, or just
the observation process, or both, in all these cases, we
would expect that observed effect sizes will be more simi-
lar when taken from the same paper. Therefore, we focus
on paper effects rather than other groupings
(e.g., geographic region, phylogeny, effects from the same
laboratory or closely related laboratory) because it is
likely a very common source of nonindependence, it is a
tractable grouping, and it is the simplest grouping for us
to examine. Because within-paper effects are just one
source of nonindependence, identifying the magnitude of
paper effects is a conservative evaluation of the overall
problems associated with nonindependence—problems
are likely to be even more profound than what we iden-
tify. Thus, while we focus on a particular type of
nonindependence, our goal is to examine the influence
of the potential effects of nonindependence generally,
and we use within-paper nonindependence as one exam-
ple of a larger issue.

METHODS

Overview

We used three approaches to examine and elucidate the
influence of within-paper nonindependence. All three
approaches were based on published MAs, using the orig-
inal data, and applying the same analytical methods as
the authors, albeit with specified modifications germane
to our approach. Using published data was critical to our
message, as the nature of the data will influence the
effect of within-paper nonindependence (e.g., Song
et al., 2020), and our goal was to evaluate the error in typ-
ical ecological analyses. Being able to repeat the original
analyses also was important, as it conserved the original
approach of the authors.

In our first approach, we tested if nonsense binary cate-
gorical variables (e.g., 0 or 1) assigned to source papers
(e.g., based on two groupings of the number of vowels in
the first author’s given name) yielded a significant effect.
We separately tested four nonsense categorical variables.
In our second approach, we tested the significance of the
effect of a binary categorical variable, whose level was
assigned randomly to all observed effect sizes in a source
paper, thus guaranteeing that its level was unrelated to the
actual effect size. This mimics the reality that most obser-
vations from the same source paper end up in the same
category defined for a MA. While the second approach is a
formal analysis, we include the first approach (which is
not) because our experience when communicating our
results is that the first approach is more intuitive and more
attention-grabbing, which, given the purpose of our overall
exercise to bring attention to the issue, is desirable. For
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both these cases, there should be no effect of the nonsense
or randomly assigned binary variables, but we hypothe-
sized that nonindependence could cause too many false
significant results (more than the nominal 5% for a 0.05
level test). We suspected this because multiple effect sizes
from the same source paper would tend to be similar, and
these similar values would all end up in the same level of
the binary variables. This would lead to an underestima-
tion of residual error variance, and thus too many signifi-
cant results. We repeated the first two approaches after
incorporating a simple random paper effect to evaluate
whether this widely used approach was sufficient to
resolve any issues of within-paper nonindependence iden-
tified by the first two approaches.

In our third approach, we added a random paper
effect to the original statistical model to see how that
altered the significance (p-value) of the moderator cate-
gorical variable evaluated in the original MA, and
whether the random paper effect was significant. We
included this third approach because it is a widely used way
ecological MAs attempt to account for nonindependence
within papers. Although there are sophisticated and
targeted model-based ways to address some of the various
forms of within-paper nonindependence, they require speci-
fication of variance–covariance relationships among the
effect sizes for each original paper, which are substantially
more challenging to implement.

Data collection method

Our goal was to acquire 20 MA papers representative of
those used in the broader ecological literature, and to use
those papers to quantify the level of error associated with
ignoring within-paper nonindependence. We searched
Web of Science’s “All Databases” for papers with the topic
“meta-analysis” or “metaanalysis” that were published in
2018, and that were in the following research areas: biodi-
versity conservation, parasitology, evolutionary biology,
plant sciences, forestry, marine biology, freshwater biol-
ogy, environmental sciences, ecology, or zoology. We fur-
ther refined the search to include only “article” or
“review” document types. This search returned 3277
papers from journals with a broad focus on basic ecology
questions, such as Ecology Letters and system-specific
journals, such as the Canadian Journal of Soil Science. We
then examined the abstracts of the papers returned from
this search and excluded papers that did not perform a
MA or did not fall within the fields of ecology or evolution.
Therefore, for example, we included MAs investigating the
effects of biocontrol in agricultural systems or the
responses of microbial communities to an intervention like
CO2 enrichment, but we excluded MAs of medical trials of

drug effects on gut microbiomes/parasite loads and agri-
cultural studies that only measured the effect of an agricul-
tural technique on crop yield. In the second screening
step, we chose papers in chronological order, examined
the full paper, and continued until we obtained 20 papers
that fit all of the following criteria: (1) met our previous
criteria; (2) weighted observed effect sizes (i.e., by inverse
variance, sample size, or other measure of study quality);
(3) explicitly tested for differences in mean effect sizes
among multiple groups (i.e., evaluated if heterogeneity in
effects was explained by at least one categorical moderator
variable); (4) provided data necessary to reconstruct the
analyses (either via an online supplement or in response
to our request for the data); and (5) able to approximately
reconstruct the statistical results reported in each paper or
(in one case) ascertain through interactions with authors
that our analysis was what the authors had intended to
implement, but was not what they had actually conducted.
When there was more than one analysis of moderators
from each paper, we used the one that yielded the lowest
p-value for the test of the moderator. While this approach
will select for lower p-values, it nevertheless led to a large
range from p < 0.0001 to p = 0.91 and tended to focus on
the effects that were most pronounced and thus influen-
tial. About half of the MAs provided the data they used as
supplementary material. For those that did not, we
requested the data from the authors to avoid any bias due
to potential differences between publications that provided
data and those that did not. In all but two cases, authors
provided the data. In all, our approach required screening
abstracts of 1700 papers, then examining 165 full papers
that passed the first screening step. A PRISMA diagram is
provided in Appendix S1: Figure S1.

Of the 20 MAs that met our criteria, 5 included a ran-
dom effect for paper in the original analysis. Our original
intention to use the data from papers that included a ran-
dom effect of paper and then remove that effect from the
original analysis proved too difficult: for example, due to
the difficulty in interpreting the methodology used.
Therefore, we used papers that did not include a random
paper effect. One of the 15 MAs that did not include a
paper effect summarized data for the same sites over mul-
tiple papers to calculate individual observed effect sizes,
thus making it impossible to connect an observed effect
size to a single paper. Analyses and results subsequently
reported in the main text of the paper are based on the
14 remaining MAs.

Effects of nonsense variables

We evaluated the potential problem posed by within-paper
nonindependence by examining the influence of nonsense
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variables that used the same data and statistical methodol-
ogy as the published MAs. The methodological agreement
was assured either by using the code provided in the origi-
nal paper (and associated archives) or through helpful dis-
cussion with the authors of the MA until we could
reconstruct their original results (in one exception neither
us nor the authors could reproduce the original analysis,
but the authors agreed that our analysis was what they
had intended). We divided the observed effect sizes (for
each of the 14 MAs) into two groups according to easily
generated “nonsense” variables tied to the source paper
from which they came. This assigning of all the observed
effect sizes in a paper to a single nonsense variable mim-
icked the common situation where all or most observed
effect sizes within the same paper end up being assigned
the same level of a moderator (i.e., a fixed effect) in the
MA. The nonsense variables were chosen so that there
would be no plausible connection between their values
and the effect size. We chose four nonsense variables,
rather than just one, as a check that results did not depend
on “bad luck” for the single choice (i.e., where the non-
sense variable was associated with a variable that had an
effect, even though we cannot envision how this associa-
tion might arise). The four nonsense categorical variables
(each of which took two values) were as follows: the parity
(i.e., even or odd) of the publication year, the parity of the
number of letters in the first author’s last name, the first
initial of the first author (whether it was in the first, or sec-
ond, half of the alphabet), and the percentage of vowels in
the author’s last name (less or more than 33%). For each
nonsense variable separately, we then added it to the origi-
nal statistical model as an additional fixed effect, thus
obtaining a set of 14 p-values for the effects of each non-
sense variable. If a nonsense variable had no effect and the
statistical model is correct, the resulting p-values should
be drawn from a uniform distribution (from 0 to 1). For
each nonsense variable, we tested for departures of the
p-values from the expected uniform distribution using a
Kolmogorov–Smirnov (KS) test.

We repeated this analysis using a model that also
included a random paper effect to determine whether this
common approach to address nonindependence fully
mitigated any issues with statistical inferences. That is,
for each of the four nonsense variables, for each of the
MAs, we included a random paper effect as well as
the nonsense variable, assumed to be drawn indepen-
dently from a normal distribution with a mean of zero. If
an excess of low p-values for the nonsense variables were
fully alleviated by adding a random paper effect (e.g., the
proportion of significant nonsense variable effects should
have been reduced to about 0.05), this would suggest that
including a random paper effect was an adequate solu-
tion for within-paper nonindependence.

Effects of a random dummy variable

We applied a resampling procedure to our compiled set
of 14 MAs that, like the nonsense variable analysis, used
the same data and same methodology as the published
MA studies. During each iteration of our resampling, for
each of the 14 MAs included in that resample, we added
a dummy variable (i.e., a categorical variable with two
levels) to the original statistical model, with level
assigned randomly to a group (so all observed effect sizes
taken from the same group had the same level). These
groups were defined by the combination of paper and the
level of the focal categorical factor (moderator) being
analyzed in the original MA. Most of the MAs (12 out of
14, Table 1) had just one categorical moderator. For the
two MAs with more than one focal moderator, we
selected the factor with the lowest p-value in the original
analysis. In most cases, these groups were equivalent to
paper because all the observed effect sizes from a source
paper fell in the same level of the categorical variables. In
a few cases, a source paper yielded observed effect sizes in
more than one category of the moderator. Because we
assigned the dummy variable to groups randomly, the null
hypothesis of no effect of this new “moderator” was true.

In our resampling procedure, we repeatedly took
bootstrap samples (3000 iterations). Each bootstrap sam-
ple included 14 MAs chosen randomly (with replace-
ment) from the 14 MAs we compiled. This resampling
procedure accounted for random variation among the
MAs and treated the compiled set of 14 MAs as represen-
tative of a larger population about which we wished to
make inferences. Each bootstrap sample provided
14 p-values associated with the null hypothesis that the
two levels of the dummy variable had the same mean
effect size. As noted above for nonsense variables, the
resulting p-values should be drawn from a uniform distri-
bution (from 0 to 1), and we tested for such departures
for each bootstrap sample using a KS test. If each set of
the 14 p-values conforms to a uniform distribution from
0 to 1, we expect 5% of the KS tests to be significant at
the 5% level. We thus examined the proportion of signifi-
cant KS tests to evaluate the overall evidence for
nonindependence. We constructed the CIs of the
proportion of significant KS tests based on a normal
approximation to the binomial distribution (i.e., v = p(1
− p)/3000). The extent to which the mean proportion
exceeded 0.05 quantifies the extent to which Type I errors
are inflated across the original MAs. As with the non-
sense variables, we then assessed if any problems were
alleviated by incorporating a random paper effect.

We further examined two characteristics of the MAs
that we expected might influence the results. First, we
expected that papers with lower reported p-values
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(as reported by the study authors) might produce a
higher proportion of significant effects for the dummy
variable, because strong within-paper nonindependence,
if not accounted for, contributes to the significance in the
original paper. Second, we expected that MAs with more
studies (i.e., observed effect sizes) per paper would have a
higher proportion of erroneously significant effects of the
dummy variable because, all else equal, we expected the
departure from independence would be stronger when
more of them came from the same paper.

We then evaluated if the problem of non-
independence in the original MAs was alleviated by
accounting for within-paper nonindependence by adding
a random paper effect to the statistical model used to
test the random dummy variables. That is, using the
same 3000 MA datasets created by randomization we
now applied a statistical model that added a random
paper effect as well as the dummy variable, similar to
what we did when adding a random paper effect to the
analyses of nonsense variables, and for the same reasons.

The randomization approach we used to examine
nonindependence may seem more complicated than neces-
sary, and for completeness we explain here the evolution
of our approach that clarifies the need for a complex
approach. The complex approach evolved from simpler
approaches we considered, but later found problematic.
Originally, we tried a procedure in which we randomly
assigned each paper to a level of the dummy variable, and
tested for an effect of the dummy variable. We discovered
that this seemingly appealing procedure led to artifactual
nonindependence because “paper” was often conflated
with factors included in the original MAs. We also initially
explored an approach focused on individual MAs and the
proportion of times the dummy variable was significant
for that MA. However, in trial simulations we found that
this procedure would produce average p-values signifi-
cantly above or below 0.05 for specific MAs, even without
nonindependence or other violations of the model. The
problem was that the null distributions for statistical tests
apply to repeated sampling. A single given set of data will

TAB L E 1 Properties of the 20 meta-analyses (MAs) initially identified.

Paper ID
RPE in original

analysis No. papers No. studies
Average no.

studies per paper
Maximum no.

studies from a paper No. moderators

53 No 38 215 5.7 36 1

2 No 47 95 2.0 12 1

82 No 32 106 3.3 6 1

120 No 20 134 6.7 16 1

511 No 35 229 6.5 32 1

695 No 99 353 3.6 31 1

759 No 26 92 3.5 16 1

1365 No 46 811 17 61 3

1307 No 65 199 3.1 12 1

1180 No 60 162 2.7 10 1

952 No 31 325 10 72 1

1185 No 69 415 6.0 28 2

674 No 17 36 2.1 10 1

639 No 24 202 8.42 84 1

585 Noa 8 31 NA NA 1

272 Yes 96 294 3.1 16 2

282 Yes 108 774 7.2 48 3

303 Yes 27 98 3.6 14 1

628 Yes 6 38 6.33 13 1

424 Yes 7 18 2.6 6 1

Note: Paper ID can be used to find the original MA publication (see Appendix S1: Table S1). “No. papers” is the number of papers and studies (i.e., individual
observed effect sizes) used in the original MA. “No. moderators” is the number of variables influencing effect size in the MA model.
Abbreviations: RPE, random paper effect. NA, not applicable.
aFor Study 585, the “No” entry for “RPE in original analysis” indicates that the original analysis could not be modified to include a paper effect because the
observed effect sizes used in the analysis were averages combined across source papers.
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not be perfectly representative of the underlying distribu-
tions, and shuffling the samples around will not mimic
repeated new sampling, especially for a MA with few stud-
ies. Thus, we had to develop the more complex simulation
approach presented here.

Effect of the random paper effect in the
original analyses

To further elucidate the influence of ignoring within-paper
nonindependence, we modified the original analyses of the
14 published MAs by including a random paper effect to
account for within-paper nonindependence of studies. This
is the same model we used above, except that no random or
nonsense variable was used. We evaluated the degree to
which including the paper effect influenced p-values by
looking at the ratio of the p-value with and without the ran-
dom paper effect. In some cases, we could not exactly repro-
duce the p-value reported in the original paper, and in one
case there was a substantial departure (Table 2). However,
based on discussions with the authors, the analytic
approach we took closely approximates what they did (or in
one case intended to do).

RESULTS

Effects of nonsense variables

For all four nonsense variables, the distribution of the
14 p-values deviated significantly from a uniform distribu-
tion (KS tests all p < 0.05). Indeed, across the four nonsense
variables, from 4 to 7 of the 14 MAs (i.e., 28%–50%) found
the nonsense variable to be significant, a result that substan-
tially and significantly exceeded the null expectation of 0.7
MAs (i.e., 5% of the 14 MAs: Figure 1). Thus, for example,
the length of the first author’s name and whether a paper
was published in an odd or even year had a significant effect
50% and 35% of the time, respectively. Adding a random
paper effect reduced the number of MAs that detected a sig-
nificant moderator effect to 0–5 (or 0%–36% of the 14 MAs),
and while the proportion exceeded 0.05 in three of the four
cases, the CIs overlapped 0.05 in three of the four cases.
Thus, adding a random paper effect greatly reduced Type I
error (falsely detecting a significant effect of a nonsense
moderator), but it did not eliminate the problem.

Effects of a random dummy variable

When we tested the effect of a random dummy
variable (moderator), a majority of the 3000 distributions

(75.5% [95% CI: 73.9%–77.0%]) deviated significantly from
a uniform distribution, with an overrepresentation of
p-values below 0.05, as seen in three of the four examples
illustrated (Figure 2 top). The average percentage of the
14 MAs in any given realization that declared the ran-
domly assigned dummy variable significant (p < 0.05)
was 38.2% (95% CI: 37.8%–38.7%; Figure 2 bottom),
which exceeded the expected percentage of 5%. Thus, a
high percentage of MAs using the same methodology and
data as that in the originally published MA yielded a sig-
nificant result when a random dummy variable was
assigned to each group.

Again, including a random paper effect in the MA
reduced, but did not eliminate, the problem of inflated
significance (Figure 3): for example, we still observed sig-
nificant results (i.e., p < 0.05), more frequently than 5%
of the time. The percentage of realizations with signifi-
cant departure from a uniform distribution was 16.3%
(95% CI: 15.0%–17.7%), which although considerably
lower than when we did not incorporate a random paper
effect (75%), was still more than three times more com-
mon than expected (i.e., 5%). The average percentage of
the 14 MAs in any given realization that were significant
(p < 0.05) was reduced to 12.7% (95% CI: 12.4%–13.1%)
from 38%.

A priori, we hypothesized that the propensity of a
MA to yield false significant p-values in tests of the
dummy variable could be negatively related to the
p-value in the original analysis, given the same factors
might influence both. In addition, we hypothesized that
the propensity of false significant effects would be more
pronounced if the papers in the MA included more
observed effect sizes per paper, because the existence of
larger groups should, all else being equal, lead to a
larger influence of group nonindependence. We did not,
however, see any significant relationships between the
average proportion of significant effects and either of
these variables, both in our repeat of the original ana-
lyses and after a random paper effect was added to
those analyses (all p > 0.1, Figure 4). The influence of
including a random paper effect is further seen in the
generally lower proportion of times a particular MA
had a significant dummy variable effect, when a ran-
dom paper effect was included (Figure 4, compare right
column to left).

Effect of the random paper effect in the
original analyses

In general, including a random paper effect led to large
proportional increases in the p-value of the original tests
in the MA, with the increase being more than 30-fold in
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9 of 14 cases (Table 2). Of the 5 papers with a p-value ini-
tially in the range of 0.001–0.05, 4 switched after incorporat-
ing a random paper effect from significant to nonsignificant
(i.e., p > 0.05). That is, four out of those five papers would
have yielded a qualitatively different inference had the
authors accounted for nonindependence by including a ran-
dom paper effect. Whereas some increase in p-values with
the addition of a random group effect is expected due to a
loss of 1 df, and thus statistical power, this cost should be
rather small. In addition, in 12 of the 14 cases and all 9 cases
with a 30-fold change in p-values, the paper effect itself was
significant (Table 2). Thus, results indicate a large influence
of paper effects across the studies.

DISCUSSION

Our analysis revealed that nonindependence introduces a
profound effect on MA results, making the inferences of

many studies that did not account for nonindependence
problematic. We found that nonsense treatment variables
assigned to a paper were significant far too often
(e.g., 28%–50% instead of 5%). For example, assigning a
moderator based on the percentage of vowels in the first
author’s name led to a significant effect of that moderator
50% of the time. Of course, any real effect of these non-
sense variables is by design, nonsensical, but illustrates
the problem in a way we have found to be intuitive and
entertaining, and aids in drawing interest and concern
from ecologists. More formal analyses using a dummy
variable that was randomly assigned at the paper level,
which allows statistical analysis of deviations from expec-
tations, supports the results of the analyses based on non-
sense variables. The dummy treatment variable was also
significant too often (on average 38% instead of the
expectation for no effect of 5%). Thus, the excess fre-
quency of significant results must be tied to violations of
the statistical assumptions of the MAs we evaluated.

TAB L E 2 Summary analysis results for the 14 meta-analyses (MAs) that did not originally include random paper effects (RPEs) and

were used in our analyses.

Paper ID p reported p reproduced p with added RPE p for test of RPE Prop. sig. Prop. sig with RPE

53 <0.0001 1.9E-21 1.4E-06 <1E-33 0.707 0.082

2 <0.0001 0.66 0.67 0.77 0.011 0.015

82 <0.0001 <1E-33 0.0032 3.6E-08 0.805 0.066

120 <0.001 2.3E-28 2.6E-18 2.2E-10 0.644 0.165

511 <0.0001 <1E-33 <1E-33 <1E-33 0.997 0.783

695 < 0.0001 6.2E-50 0.0018 <1E-33 0.493 0.076

759 0.02 0.022 0.033 0.00043 0.069 0.030

1365 < 0.001 0.0056 0.20 <1E-33 0.548 0.106

1307 <0.001 0.044 0.070 0.0055 0.075 0.125

1180 0.007 0.0072 0.31 0.00042 0.082 0.0594

952 <0.001 2.3E-33 6.1E-12 0.0013 0.202 0.056

1185 <0.001 1.52E-23 4.6E-18 5.1E-15 0.352 0.052

674 0.0034 0.0034 0.89 8.5E-06 0.231 0.097

639 0.91 0.89 0.91 0.095 0.139 0.049

585 <0.01 2.53E-30 NA NA NA NA

272 <0.001 0.0043 NA NA NA NA

282 0.04 0.041 NA NA NA NA

303 0.023 0.023 NA NA NA NA

628 NR 0.16 NA NA NA NA

424 0.61 0.61 NA NA NA NA

Note: Paper ID can be used to find the original MA publication (see Appendix S1: Table S1). The “p reported” is the statistical significance of the focal
moderator (see text) as reported in the original MA publication, and “p reproduced” is the value for that test reproduced in our analyses (see text regarding
differences). The “p with added RPE” is the p-value for the test of the effect of the focal moderator after adding a RPE to a model that originally did not have
one. The “p-value for RPE” is the result of a likelihood ratio test for nonzero among paper variance, a test known to be conservative (i.e., tending to reject the
null hypothesis less than at the stated level when there is no paper effect) when testing for nonzero variances. “Prop. sig.” and “Prop. sig. with RPE” are the
proportion of randomization cases where the focal moderator was significant, without or with a RPE in the model, respectively (if there were no issues with the

statistical model, such as uncorrected nonindependence, these proportions should be 0.05). Abbreviations: NR, not reported. NA, not applicable.
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Because there should be no difference between the mean
effect sizes between groups defined by the random
assignment procedure, the results indicate that there was
nonindependence within papers. One potential way to
address the within-paper nonindependence is to use a
hierarchical model that explicitly incorporates a random
paper effect (Nakagawa et al., 2017, 2022; Song
et al., 2020). Indeed, when we modified the original ana-
lyses by incorporating random paper effects the percent-
age of randomizations that produced significant results
was much reduced, from 38% to 16%. This percentage,
however, remained substantially above the nominal level
of 5%. This greater than 3-fold inflation of Type I errors
even after incorporating a random paper effect represents
a serious statistical problem. Thus, simply incorporating
random paper effects as a routine omnibus solution is not
a sufficient solution to nonindependence.

Our study thus provides direct evidence supporting pre-
vious suggestions that unaccounted-for nonindependence is
a serious issue in MA (Nakagawa et al., 2017, 2022; Song
et al., 2020). Our analyses, based on actual ecological MAs,
rather than on simulations assuming nonindependence
(as in Nakagawa et al., 2022; Song et al., 2020), show that
nonindependence is sufficient to substantially distort eco-
logical inferences. Our results also support the view that
using hierarchical models, which incorporate random addi-
tive group effects (like a paper effect), is a powerful, but not
necessarily sufficient, tool to address some forms of

nonindependence (Nakagawa et al., 2017, Nakagawa
et al., 2022; Song et al., 2020, 2022).

The excess of low p-values that persisted even after
we incorporated a paper effect suggests that the form of
the paper effect causing issues was more complex in at
least some of the MAs than assumed in the hierarchical
model we applied, in which the random paper effect is
normally distributed with all studies within a paper being
equally correlated. More complex correlation structures
might arise if there are other groupings in addition to
paper (e.g., due to phylogenetic nonindependence). Thus,
while a paper effect might capture some of the influences
of other groupings (a single paper might focus on a single
clade), it probably does not capture all aspects. The obvi-
ous, but not easy, solution is to identify the important
groupings and include these in the analysis.

Another possibility is that observed effect sizes from a
single paper might not be equally correlated (which is
assumed by including paper as a random effect): for exam-
ple, because some effect sizes in a paper shared a control
while others did not, or because some effect sizes were
based on different variables measured from the same
experimental units, while others used different experi-
mental units (Nakagawa et al., 2017). This problem can
be addressed by incorporating a variance–covariance
matrix describing the correlations among effects
(Lajeunesse, 2011), or in some cases adopting a robust
variance estimation approach (Hedges et al., 2010;
Pustejovsky & Tipton, 2018). However, these approaches
are sufficiently complex that they may be inaccessible to
some analysts. In addition, while there are formulae
to determine some forms of covariance, there are
remaining challenges obtaining reliable empirical esti-
mates of covariance in many circumstances. Another
possibility is that the paper effect might be highly
non-normal so that sets of extreme observations com-
mon to a paper cannot be fully explained by normally
distributed paper effects. This would be a particular
issue when one or a few papers contribute a large num-
ber of consistently high (or low) observed effect sizes.

To some extent, Song et al. (2020) addressed the issue
of unequal correlations in their simulations and found
that incorporating an additive group effect was an effec-
tive solution. Their simulations, however, did not
consider extreme cases in which the correlations were
highly variable. We know of no evaluations of either
non-normal random group effects or highly variable cor-
relation structures. We suspect that many issues might be
ameliorated if the underlying groups or variables driving
correlations were identified and incorporated into ana-
lyses, although our results reflect that including only a
paper effect cannot fully resolve the issue. Thus, these
issues require further research.

F I GURE 1 Proportion (with CIs) of 14 meta-analyses (MAs)

for which the effect of a nonsense variable concerning the author’s
name or publication year (see Methods) was significant at the

p = 0.05 level without (blue, solid circle) and with (yellow-orange,

triangle) a random paper effect added to the analysis. CIs are Wald

CIs using a variance based on a binomial distribution.
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Thoughtful incorporation of potential correlation
structures is required to perform a valid MA on ecological
data (Lajuenesse, 2011; Nakagawa et al., 2017; Song
et al., 2020; this study). Because most MAs extract >1
observed effect size from each primary paper (Pappalardo
et al., 2023), one approach is to carefully consider the
study design of source papers contributing more than one
observed study, and to incorporate covariance structures
for each paper based on the study design for that paper
(Mengersen et al., 2013; Nakagawa et al., 2017; Noble
et al., 2017). One might also more carefully examine the
residuals and predicted random effects from a fitted model
to more rigorously evaluate model adequacy. Residual
analysis for models with random effects can be complex,
but evolving tools such as so-called one-step-ahead resid-
uals (Thygesen et al., 2017) are becoming more accessible
(e.g., implemented in the R package RTMB). Routine eval-
uation of whether results are sensitive to one or a small
number of studies should be a routine part of evaluating
the robustness of MAs.

Herein we evaluated the consequences of one general
type of nonindependence, namely that due to a paper

effect: that is, nonindependence in observed effect sizes
taken from the same paper. In their review of ecological
MAs Pappalardo et al. (2023) found that 95 out of
96 MAs included more effects than papers, with the most
extreme MA including 52 papers that yielded a total of
46,347 effects! Pappalardo et al. (2023) provide evidence
that as recently as 2019 only a small fraction of analyses
acknowledged and accounted for nonindependence at
the study level, a type of nonindependence one would
expect when there are multiple observed effect sizes
within groups (like papers). While we cannot refute the
possibility that there has been a recent trend to better
account for nonindependence, and in fact suspect this is
true, our own exposure to the literature confirms that
many studies still dismiss or ignore the issue.

Nonindependence from paper effects clearly under-
represents the general issue caused by nonindependence,
as there will also be nonindependence among effect sizes
taken from different papers. Indeed, phylogenetic MA
methods were developed to account for correlated
responses of closely related species, which is a factor that
operates among as well as within papers (Adams, 2008;

F I GURE 2 Frequency of p-values (top row) and significant results (bottom panel) for the test of the dummy variables. Top: Four

example (out of 3000) frequency distributions for realizations in the resampling analysis, with each example showing the distribution of

p-values for the 14 chosen meta-analyses (MAs). Bottom: The frequency distribution (of the 3000 realizations) of the proportion of the

14 MAs that were significant in each realization. The first dark bar in each panel in the top row gives the frequency of significant results,

and the dashed arrows from that bar to a bar in the bottom panel show which bar in the bottom panel the example in the top panel

contributed to. The solid and open triangles on the X-axis of the bottom panel demark the expected proportion (0.05) and the observed

(average) proportion (0.38), respectively.
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Chamberlain et al., 2012). Studies might more generally be
classified by their similarity due to factors other than taxo-
nomic relatedness of the studied species. One simple
example is that observed effect sizes from multiple papers
published by the same authors or by a related group of
authors (some of the same ones, or authors with shared
history) might be correlated because they used similar
methods or were done in similar systems or geographic
locations, hence having more similar true effect sizes.
Similarly, a primary paper might also report somewhat
redundant measures, such as growth rate and biomass of a
target species, and it is not uncommon for these to be used
to calculate multiple observed effect sizes. The general
approach used in phylogenetic MAs might be adapted and
have broader utility than is currently recognized. If the
attributes associated with each effect size (e.g., location,
investigator, organismal trait) could be used to define the
“distance” between each effect, then this measure of dis-
tance could take the place of phylogenetic distance, and
the basic tools used to incorporate phylogenetic correla-
tions into MA could be applied more generally.

Historically, one reason nonindependence was not
accounted for in past studies was likely due to the limited
development of hierarchical meta-analytic methods. For
example, the most widely used software during the 1990s
and 2000s was Metawin (Rosenberg et al., 2000), which

did not allow for hierarchical models (because those
methods had not yet been developed) nor did it discuss
other ways to attempt to address nonindependence.
Conceptual developments incorporating hierarchical ran-
dom effects and other error structures for MA were
slower than in the standard statistical arena, and thus
software also lagged behind. Fortunately, the most widely
used and currently available software for ecological MAs
(the R package metafor: Viechtbauer, 2010) allows for
hierarchical models and other correlated error structures,
as does other software, including packages specifically
developed for phylogenetic MA. However, despite the
advent of these tools, and while we think it likely that
there has been a recent trend to better account for
nonindependence, many studies still dismiss or ignore
the issue. Thus, there is an ongoing need for practitioners
to consider the possible forms of nonindependence that
might influence their MA data, and account for such cor-
relations in their analyses. This might be easier said than
done, and thus may require that many MA studies
include a statistician experienced with MA in their team.

Our randomization approach relied on the expected dis-
tribution of p-values from repeated sampling. Therefore, it
does not allow for rigorous evaluation of whether a specific
MA is problematic. However, we think there is some poten-
tial to use a simulation approach to identify potential prob-
lems with a particular individual analysis, and this would
provide a way to evaluate if changes made to address
potential within-paper nonindependence have adequately
addressed the problem. The meta-analyst will know the
details of the design (how many papers, how many
observed effect sizes for each paper, etc.) and can simulate
multiple meta-datasets based on these details and the
underlying statistical assumptions (and parameters esti-
mated when fitting the model). The analyst could then
evaluate, based on the simulations, what proportion of
random assignments to a dummy variable led to a signifi-
cant dummy variable effect. The distribution of these pro-
portions could be used as a null distribution for the
proportion found significant by randomization using the
actual data. If the observed proportion from randomiza-
tion was high relative to the null distribution, this would
indicate the specific MA remained problematic, whereas if
the randomization produced similar proportions that were
significant as in the simulations, this would suggest an
adequate solution had been found.

In our research and interactions with colleagues, we
have found the use of nonsense variables to be a valuable
means of communicating the problem posed by
nonindependence— showing that a meaningless variable
creates strong and spurious results resonates with most
ecologists. We are not the first to have used this device.
For example, pixel color from classic paintings overlain

F I GURE 3 As in Figure 2 (bottom) but with a random paper

effect. Frequency distribution over the 3000 realizations of the

proportion of significant dummy variables for the 14 meta-analyses

(MAs) in each realization, when a random paper effect was added

to the model. The solid and open triangles on the X-axis demark

the expected proportion (0.05) and the observed (average)

proportion (0.127), respectively.
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on species distribution maps predicted species distributions
as well as many of the best environmental models
(Fourcade et al., 2018). As is the case with nonindependence
in MA, the issues causing the problems with species distri-
bution models were already well established, but showing
intuitively that they mattered for real analyses had a pro-
found effect. Similarly, evaluating fitted models using ran-
domization has been widely applied in other contexts: for
example, in specifying ecological null models (Gotelli &
Urlich, 2012). As another example, random assignment of
species to functional groups has been used to evaluate the
effects of functional group diversity on ecosystem pro-
cesses, and this has shown that standard parametric

evaluations that assume known functional groups can be
misleading (Petchey, 2004; Wright et al., 2006). As we
found in our research, specifying appropriate null models
and randomization can be tricky, and simulations can
prove a useful tool to check what seems to be logical and
sound thinking (Gotelli & Urlich, 2012).

We have demonstrated that unaccounted-for non-
independence due to paper effects often has a large and
significant effect on the interpretation of ecological MAs.
Our focus has been on the need to account for paper
effects as well as other sources of nonindependence to
best examine the role of ecological moderators. However,
we caution that presumed nonindependence might arise

F I GURE 4 Proportions of cases where the dummy variable was significant calculated over all 3000 realizations for each of the

14 meta-analyses. In the top row these are plotted versus the p-value for the original meta-analysis test, and in the bottom row they are

plotted versus the average number of studies per source paper in each meta-analysis. The left column gives the proportion significant using

the model as reported in the original published meta-analysis (without a random paper effect) and the right column gives the proportion

significant for the modified model including a random paper effect.
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for sound ecological reasons. For example, if ecological
venue (e.g., size of experimental units, or lab vs. field
experiment) affects the outcome of studies, and venue is
similar within a group (e.g., a paper reports multiple
studies using the same venue), and the meta-analyst does
not incorporate venue as a moderator, the role of this
hidden moderator will appear as a “group effect.” Thus, if
correlated effect sizes are observed within groups
(e.g., via a paper effect), then investigators should clearly
think about what might be causing this similarity within
groups and if potential explanatory moderators might
resolve this effect. Such an approach would pay dividends
in two ways. First, it would reduce the magnitude of
nonindependence by explaining some of the shared varia-
tion, thus increasing power to detect the influences of
moderators that were originally of interest. Second, it
would improve ecological understanding by identifying
additional factors influencing a process. That said, eco-
logical systems and studies are unavoidably complex and
heterogeneous, so we suspect there will typically be
unknown factors causing similarities in observed effect
sizes within groups despite best efforts to ferret them out.

In conclusion, synthesis plays a large role in the field
of ecology (Pappalardo et al., 2023), as it does across the
sciences (Gurevitch et al., 2018; Hoffmann et al., 2021;
Vrieze, 2018). MA was proposed as a more rigorous
approach focused on observed effect sizes and exploring
causes for variation in those effects. However,
nonindependence remains an issue in ecological MA
(O’Dea et al., 2021; Pappalardo et al., 2023). We agree with
Nakagawa et al. (2017), who argued that results from stud-
ies (in the published literature or in the review process)
that appear to ignore or glibly dismiss potential issues of
nonindependence should be viewed critically. While it
may not be possible to reanalyze past MA publications
using more appropriate methods, previously published
MAs that did not account for or evaluate
nonindependence are likely to have overstated the
strength of evidence supporting their conclusions.
Nonindependence among observed effect sizes may be
more pervasive in ecological MAs than in MAs in some
other fields because of the large size and complex data
structure of many ecological MAs, and the large number
of ways in which nonindependence can arise. However,
nonindependence is a ubiquitous problem for research
synthesis in most research fields, and much work remains
to be done to better model and account for sources of
nonindependence. More generally, it is incumbent on
analysts to consider plausible violations of assumptions,
and in the face of evidence for such violations, the
analysts should adjust procedures. However, there is no
guarantee the adjustment will remove all issues with
nonindependence—as our evaluation of including random

paper effects demonstrate—and available diagnostics and
procedures will continue to evolve. One might only move
forward to publish an analysis if the potential statistical
issues can be convincingly argued to be unlikely to under-
mine the key results, and even so, conclusions need to be
constrained by carefully articulated caveats. This also sup-
ports the increasing calls for reproducible analyses and
accessible data so that data can be re-analyzed as new
tools and approaches become available. This is true not
only for primary studies but also in MAs.
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