
A Mechanized First-Order Theory of Algebraic
Data Types with Pattern Matching
Joshua M. Cohen # Ñ

Princeton University, NJ, USA

Abstract
Algebraic data types (ADTs) and pattern matching are widely used to write elegant functional
programs and to specify program behavior. These constructs are critical to most general-purpose
interactive theorem provers (e.g. Lean, Rocq/Coq), first-order SMT-based deductive verifiers (e.g.
Dafny, VeriFast), and intermediate verification languages (e.g. Why3). Such features require layers
of compilation - in Rocq, pattern matches are compiled to remove nesting, while SMT-based tools
further axiomatize ADTs with a first-order specification. However, these critical steps have been
omitted from prior formalizations of such toolchains (e.g. MetaRocq). We give the first proved-sound
sophisticated pattern matching compiler (based on Maranget’s compilation to decision trees) and
first-order axiomatization of ADTs, both based on Why3 implementations. We prove the soundness
of exhaustiveness checking, extending pen-and-paper proofs from the literature, and formulate a
robustness property with which we find an exhaustiveness-related bug in Why3. We show that many
of our proofs could be useful for reasoning about any first-order program verifier supporting ADTs.

2012 ACM Subject Classification Software and its engineering→ Semantics; Theory of computation
→ Logic and verification

Keywords and phrases Pattern Matching Compilation, Algebraic Data Types, First-Order Logic

Digital Object Identifier 10.4230/LIPIcs.ITP.2025.5

Supplementary Material Software: https://github.com/joscoh/why3-semantics/tree/itp25
[12], archived at swh:1:dir:31808a21d5034756c3c2d3fc11b22697aaf6eee9

Funding This research was supported in part by National Science Foundation grant CCF-2219757.

Acknowledgements I would like to thank Philip Johnson-Freyd, Andrew W. Appel, and the anony-
mous reviewers for their suggestions and feedback.

1 Introduction

Algebraic data types form the backbone of functional programming languages; with recursion
and exhaustive pattern matching, they enable elegant, concise, and type-safe functions over
all kinds of list- and tree-like data. Reasoning about such functions requires only simple
induction, and many proof assistants (e.g. Rocq, Lean, Isabelle) make heavy use of functional
programming and induction. For instance, Rocq and Lean are implementations of the
Calculus of Inductive Constructions (CIC), which extends the Calculus of Constructions with
inductive types. But even SMT-based tools which target simpler first-order logic without
induction still want to allow reasoning about ADTs, pattern matching, and/or recursive
functions at the source level (see §2) – e.g. Dafny [28], VeriFast [22] and Frama-C [24]
for C, Gobra [43] for Go, and Creusot [17] for Rust. In fact, these facilities are so useful
that many intermediate verification languages upon which these deductive verifiers are built
also include such features – both Why3 [10] (the back-end of Frama-C and Cruseot) and
Viper [34] (the back-end of Gobra) have support for ADTs; Why3 additionally includes
pattern matching and recursion. These SMT-based tools must axiomatize recursive types
into first-order formulas. The exact set of axioms may vary; they typically include assertions
of injectivity, disjointness, inversion, and non-circularity.

© Joshua M. Cohen;
licensed under Creative Commons License CC-BY 4.0

16th International Conference on Interactive Theorem Proving (ITP 2025).
Editors: Yannick Forster and Chantal Keller; Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jmc16@princeton.edu
https://joscoh.github.io/
https://orcid.org/0000-0002-9555-8781
https://doi.org/10.4230/LIPIcs.ITP.2025.5
https://github.com/joscoh/why3-semantics/tree/itp25
https://github.com/joscoh/why3-semantics/tree/itp25
https://archive.softwareheritage.org/swh:1:dir:31808a21d5034756c3c2d3fc11b22697aaf6eee9;origin=https://doi.org/10.5281/zenodo.15838909;visit=swh:1:snp:eb7de80ce7ad282da1b64dafeea97454bc2f8111;anchor=swh:1:rel:95ec4913f8d066f491fc6864223ddc5539e2eefb;path=/joscoh-why3-semantics-14cabf2/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics
https://www.dagstuhl.de

5:2 A Mechanized First-Order Theory of Algebraic Data Types with Pattern Matching

Similarly, while complex, nested, and simultaneous pattern matches are very useful at
the source level, they must be compiled to simpler patterns in the underlying logic. In Rocq,
this compilation is performed by the front-end, so the user sees the compiled version when
printing a term. In SMT-based tools, this compilation occurs when ADTs are axiomatized;
the resulting compiled matches can be replaced with let-bindings and case analysis. ML and
Haskell compilers must also eliminate pattern matching; many schemes have been studied
and implemented [32, 27, 26]. The underlying algorithms are broadly similar in all these
cases, though the correctness proofs depend on the setting – eager, lazy, or purely logical.

It is vital that these compilation steps are sound or else a verifier could “prove” something
false. This is especially important because ADTs and their semantics are central to many
verifiers, enabling many useful constructs (pattern matching, recursive functions, inductive
predicates) while relying on subtle checks to provide guarantees of well-foundedness (e.g. strict
positivity, termination checking, pattern matching exhaustiveness). Despite the centrality
of these features, existing verifier formalizations often omit them. Neither Featherweight
VeriFast [23], a formalization of a core subset of VeriFast, nor a proof-producing version
of Viper [16] include ADTs, though the underlying tools do. Meanwhile, the MetaRocq
formalization of CIC within Rocq [39] includes only simple patterns, assuming that Rocq’s
front-end has already done the pattern matching compilation.

A key difficulty is in specifying the semantics against which to prove such compilation
steps correct. Cohen and Johnson-Freyd [14] addressed this by giving a Rocq formalization
of the semantics of the Why3 logic (we will refer to this semantics as Why3Sem), which
includes (mutually recursive) ADTs and pattern matching. Using Why3Sem, we take a
key step towards filling this formalization gap by giving a mechanized proof of the Why3
pattern matching compiler and ADT axiomatization. Many of our results and methods
are not specific to Why3 and would extend to other similar systems provided they had an
appropriate formal semantics. In particular, we make the following contributions:
1. We give the first verified implementation of a sophisticated, general-purpose pattern

matching compiler (based on the technique of Maranget [32]).
2. We use this compiler to implement exhaustiveness checking for Why3Sem, prove several

results about the correctness and robustness of such matching (which extend proofs in
the literature), and discover an exhaustiveness-related bug in Why3.

3. We use this to give the first mechanized proved-sound first-order axiomatization of ADTs.

2 Background

Verification of Imperative Programs

Reasoning about functional programs is critical even in imperative settings. To manage
the complexity of functional-correctness proofs about imperative programs, one frequently
separates the proof into three steps: (1) defining a functional model of an imperative program,
(2) proving that the imperative program refines the functional model, and (3) proving desired
high-level properties of the model. Thus, the low-level details – proving validity of pointers,
absence of overflow, etc – are kept separate from the mathematical reasoning about the
domain of interest. This approach has been successful at scale in a variety of domains. For
instance, the VST [2] program logic for C in Rocq has been used to verify programs in
cryptography [3], error-correcting codes [15], and numerical methods [41]; the functional
correctness proofs use pure Rocq reasoning while VST handles the C-specific obligations.
Dafny, a first-order, SMT-based verification-aware programming language, supports reasoning
about both functional and imperative programs, and a similar layered approach enabled
verification of distributed systems in Ironfleet [20] and a large-scale authorization engine used

J. M. Cohen 5:3

in production at AWS [11]. Other efforts involve a combination of tools; in the VerifiedSCION
project [37], the Gobra verifier is used for the imperative proofs, while the functional model
proofs were completed in Isabelle. It is therefore critical that even imperative verifiers enable
users to write and reason about functional programs; hence, support for features like ADTs
and pattern matching is widespread among verifiers for both functional and imperative
languages.

Why3 and its Semantics

Why3 is a verification framework serving as a target for many front-ends (e.g. C, Rust)
and supporting multiple back-end solvers, including SMT solvers (e.g. Z3, CVC5, Alt-
Ergo) and proof assistants (e.g. Rocq, Isabelle). Its logic [18] extends first-order logic with
polymorphism, ADTs, pattern matching, recursive functions, and inductive predicates. This
logic is broadly similar to those implemented by other SMT-based verifiers including Dafny
and VeriFast and is compiled to logics for back-end solvers via transformations. In this paper,
we are primarily concerned with two such transformations: compile_match, which compiles
pattern matching to simple patterns, and eliminate_algebraic, which axiomatizes ADTs.

Why3Sem[14, 13] is a formal semantics for this Why3 logic in Rocq. It includes a deep
embedding of Why3 types, patterns, terms, formulas, and definitions, as well as a formalized
type system and a Tarski-style (denotational) semantics, in which Why3 terms and formulas
are interpreted as objects in Rocq’s logic. Why3Sem explicitly encodes recursive definitions
as well-founded Rocq objects (e.g. ADTs as W-types [33]) but is designed so that users
only need a set of higher-level properties about such recursive definitions, not the complex
encodings.

Terms and formulas are given semantics under a particular interpretation of types (J·Kτ)
and function/predicate symbols (J·Kλ) and under a particular valuation (v) of type and
free term variables (unlike [14], we disambiguate interpretations via superscripts). These
interpretations must be consistent with the declared recursive definitions; for instance, for
each ADT a (ignoring polymorphism for simplicity), the following must hold:
1. Injectivity: for constructor c, if JcKλ(t1) = JcKλ(t2), then t1 = t2.
2. Disjointness: for constructors c1 and c2, if Jc1Kλ(t1) = Jc2Kλ(t2), then c1 = c2.
3. Given x of type JaKτ , there is a function find(x) that gives constructor c and arguments

t1 such that x = JcKλ(t1) (called find_constr_rep in Rocq).
4. A generalized induction principle over any mutual ADT m (not needed for this work).

Terms (J·Kt
v) and formulas (J·Kf

v) are interpreted in the natural way, with most Why3
logical constructs mapping to their Rocq counterparts (e.g. Jf1 ∧ f2Kf

v = Jf1Kf
v ∧ Jf2Kf

v). The
most interesting and relevant case is for pattern matching (Figure 1), which proceeds in several
steps. First, match_val_single or Jp, τ, dKp (we will generally omit τ) matches a pattern p of
type τ against d, returning an optional map of newly bound variables and their valuations
(we use a monadic notation for the as-pattern case – “;” is a bind operator that propagates
None). The constructor case is the most complex: if the type is an ADT, it uses find to
determine if the constructor matches and recursively checks the arguments using the row
matching Jps, tys, dsKR. A pattern match is evaluated (match_rep or Jt, psKps

v) by iterating
through the pattern-term list ps until a match is found, interpreting the corresponding term
under v extended with the new bindings. If no such pattern is found, a default value is
returned (all Why3 types are inhabited). Our work extends Why3Sem with an exhaustiveness
check, making the default case unreachable. Finally, a pattern match term has the semantics
(the formula case is similar):

Jmatch t with ps endKt
v = Jt, psKps

v

ITP 2025

5:4 A Mechanized First-Order Theory of Algebraic Data Types with Pattern Matching

Jxτ , τ, dKp = Some{x→ d}
J_, τ, dKp = Some ∅

Jp1 | p2, τ, dKp = if isSomeJp1, τ, dKp then Jp1, τ, dKp else Jp2, τ, dKp

Jp as xτ , τ, dKp = m1 ← Jp, τ, dKp; return (m1 ∪ {x→ d})
Jc(ps), τ, dKp = if τ has ADT type a(tys)

then let (c1, a1) = find(d) in
if c = c1 then Jps, tys, a1KR else None

else None
J[], [], []KR = Some ∅

Jp :: ps, τ :: tys, d :: dsKR = m1 ← Jp, τ, dKp; m2 ← Jps, tys, dsKR; return (m1 ∪m2)

orep v a o1 o2 = match o1 with | Some m→ Some JaKt
m∪v| None → o2 end

Jt, []Kps
v = default

Jt, (p, t1) :: psKps
v = orep v t1 Jp, JtKt

vKp Jt, psKps
v

Figure 1 Semantics for matching patterns (J·Kp), rows (J·KR), and pattern-lists (J·Kps
v).

match l1 , l2 with
| [], [] → x1

| [_], _ → x2

| _ :: _, _ → x3

| [], _ :: _ → x4

end


nil nil x1

cons(_, nil) nil x2
cons(_, _) _ x3

nil cons(_, _) x4



Figure 2 A simultaneous pattern match and the corresponding pattern matrix.

3 An Algorithm for Compiling Pattern Matches

The problem of compiling pattern matches to simpler constructs like decision trees is well-
studied (§10), particularly for ML and Haskell compilers. Why3’s pattern matching compiler
is based on pattern matrix decomposition and is very similar to the techniques of Le Fessant
and Maranget [27] and Maranget [32], which form the basis of the algorithm used in the
OCaml compiler. We describe Why3’s algorithm in detail, discuss its termination (§4), prove
its soundness (§5), detail how it is used to implement exhaustiveness checking (§6), and
describe an exhaustiveness bug we discovered in Why3 (§7). Though we implement the exact
algorithm found in Why3, the technique is quite general and many of our proofs could be
reused in other contexts.

As is standard [27, 32], we view the (simultaneous) pattern match as a matrix P (Figure 2
shows an example); we will refer to the last column in the matrix as “actions” (in our
case, terms or formulas). Patterns consist of variables, wildcards, constructors, disjunctions,
and as-patterns; we will show later that we can assume the first column contains only
wildcards and constructors. We then define two decompositions (Figure 3): specialization for
constructor c (S(c, P)) and the default matrix (D(P)). Specialization gives the remaining
matrix if the term in the first column is an instance of constructor c; it removes all non-c
constructors from the matrix, replaces c with its k arguments, and replaces a wildcard with
k wildcards. The default matrix gives the result assuming that t does not match any of the
constructors appearing in the first column.

J. M. Cohen 5:5

Pattern pj,1 Row of S(c, P)
c(q1, . . . , qk)

(
q1 . . . qk pj,2 . . . pj,n aj

)
c′(ps), c ̸= c′ None

_
(
_ k. . . _ pj,2 . . . pj,n aj

)
Pattern pj,1 Row of D(P)

c(ps) None
_

(
pj,2 . . . pj,n aj

)
Figure 3 Definition of matrix decompositions S(c, P) and D(P) on row

(
pj,1 · · · pj,n aj

)
.

compile(ts, P)

1. If P is empty (no rows), return “Non-exhaustive”.
2. Otherwise, if ts is empty, then return the first action in P .
3. Otherwise, let ts = t :: tl. Simplify the matrix P so that the first column only

consists of constructors and wildcards. There are 3 cases:
a. If there are no constructors in the first column, return compile(tl, D(P)).
b. Otherwise, if t = c(al) for constructor c, if c is in the first column, return

compile(al ++ tl, S(c, P)),1 else return compile(tl, D(P)).
c. Otherwise, let base be [] if all constructors for the ADT occur in the first column

and [_→ compile(tl, D(P))] otherwise. Then construct list ps as follows: for
each constructor c in the first column, add c(vs) →compile(vs ++ tl, S(c, P)),
where vs are fresh variables. Return match t with ps ++ base end.

Figure 4 Compiling pattern matrix P and term list ts (++ is concatenation).

With these decompositions, we can define the compile algorithm (Figure 4). We demon-
strate compile on the example of Figure 2, which includes both nested and simultaneous
matching. The first column contains both constructors; the specialized matrices are:

P1 := S(nil, P) =
(

nil x1
cons(_, _) x4

)
P2 := S(cons, P) =

(
_ nil nil x2
_ _ _ x3

)
l1’s constructor is unknown, so applying Step 3c results in the following partial match:

match l1 with |[] → compile([l2], P1) | y1 :: y2 → compile ([y1; y2; l2], P2) end

We focus on the first case. P1 again contains both constructors; the specialization matrices
are P3 := S(nil, P1) =

(
x1

)
and P4 := S(cons, P1) =

(
_ _ x4

)
. Expanding gives:

match l2 with
| [] → compile([], (x1)) | y3 :: y4 → compile ([y3; y4], (_ _ x4)) end

Each case can be simplified easily. The first compile evaluates to x1 by Step 2, while the
second evaluates to x4 by repeated applications of Step 3a. The P2 case is broadly similar;
we omit the details but show the full compiled pattern match:

match l1 with
| [] → match l2 with | [] → x1 | y3 :: y4 → x4 end
| y1 :: y2 → match y2 with | [] → x2 | y5 :: y6 → x3 end
end

1 The Why3 implementation (and our Rocq one) reverses al (and likewise vs in Step 3c and the q1 . . . qk

in the constructor case for S(c, P)). We show the non-reversed version for simplicity.

ITP 2025

5:6 A Mechanized First-Order Theory of Algebraic Data Types with Pattern Matching

This example also demonstrates how the algorithm checks exhaustiveness. Suppose we
had not included the last case in the original pattern match (x4). Then, P1 (i.e. S(nil, P)) is(
nil x1

)
, and the first match again results in compile(l2, P1). Here we are again in Step 3c,

but we find that S(cons, P1) is empty, triggering Step 1 and causing the compilation to fail.
Now we fill in implementation details missing from Figure 4. The simplify transformation

removes all non-constructor, non-wildcard patterns from the first column. It expands
disjunctions and replaces variables at the outer level with let-bindings in the action column
(it does not expand within constructors). Note that p represents the rest of the columns in
the matrix, t1 is the first matched term, and ++ again represents concatenation (i.e. gluing
matrices together):

Row of P Row(s) of simplify(P)(
c(al) p a

) (
c(al) p a

)(
_ p a

) (
_ p a

)(
(q1|q2) p a

)
simplify

(
q1 p a

)
++ simplify

(
q2 p a

)(
x p a

) (
_ p let x = t1 in a

)(
p1 as x p a

)
simplify

(
p1 p let x = t1 in a

)
Our implementation, consistent with Why3, computes simplify, D, and all S matrices in a
single pass, but we prove equivalence with a version that allows us to reason separately and
assume the matrix is simplified when considering S and D.

Why3 implements the check in Step 3c that all ADT constructors appear in the first
column in 2 ways: either the caller provides a function to retrieve the list of constructors for
an ADT or compile relies on metadata from the constructor function symbols. The former
requires more information but is useful for reporting unmatched cases (which we do not
consider). We prove the two equivalent in any well-typed context.

4 Termination of compile

The first difficulty with formalizing compile is proving termination – the function recurses
on non-structurally-smaller matrices S(c, P) and D(P). A termination argument is very
tricky, as the matrix both expands (in simplify and in the wildcard case for S(c, P)) and
contracts (in D(P) and the constructor case of S(c, P)). Thus, several natural candidates
for decreasing measures (e.g. the total size of the patterns in the matrix) fail. To build
intuition, we first consider the case when there are no disjunctions. Here, we can almost use
the total matrix size as a measure. The only complication is that the S(c, P) case would not
decrease unless the constructor size decreases by enough to offset the additional k wildcards.
However, this wildcard increase can be statically bounded, so we could set the constructor
size appropriately. Therefore, a version of compile that first expanded all disjunctions
terminates. We lift this to the general case by considering the total size of the fully expanded
matrix (which is never actually computed), parameterized by the constructor increase.

More formally, we give the definition of the full expansion of a pattern matrix (EM (P))
in Figure 5. The difficult case is for constructor patterns: we must expand the entire row
of arguments, which involves concatenating all the resulting expansions of each pattern
in the row. We then define a size function | · |n on patterns, pattern-lists, and pattern-
matrices, where n is a parameter describing the extra fuel added to the constructor case:
|c(ps)|n = n +

∑
p∈ps |p|n. To give a suitable upper bound, we let m be the largest number

of arguments that any constructor in the matrix P takes. In the worst case, every row in the
matrix but one starts with a wildcard, causing m new wildcards to appear per row. Thus,
the total amount of measure added is bounded by len(P ′) ∗ m, where len(P ′) is the number

J. M. Cohen 5:7

Ep(_) = [_]
Ep(x) = [_]

Ep(p|q) = Ep(p) ++ Ep(q)
Ep(p as x) = Ep(p)
Ep(c(ps)) = ++

ps′∈ER(ps)
[c(ps′)]

ER([]) = [[]]
ER(p :: ps) = ++

p′∈Ep(p),ps′∈ER(ps)
[p′ :: ps′]

EM (P) = ++
r∈P

[ER(r)]

Figure 5 Expansion of patterns (Ep), rows (ER), and pattern matrices (EM).

Jal, []KM
v = None

Jal, (r, t) :: rsKM
v = orep v t Jal, rKR Jal, rsKM

v

Figure 6 Semantics of pattern-matrix matching (matches_matrix).

of rows of the current matrix P ′. Since P ′ is created via calls to simplify, we can upper
bound len(P ′) by len(EM (P)). We let b(P) = len(EM (P)) ∗ m. The full termination metric
is then |EM (P)|b(P)+1. Proving that compile terminates according to this measure involves
4 key steps:
1. We show that simplification does not change full expansion: EM (simplify(P)) = EM (P).
2. We show the default case decreases: ∀n, |EM (D(P))|n < |EM (P)|n. This is not too hard

to show, as either constructors or wildcards are removed when constructing D.
3. For the specialization case, we show that if constructor c appears in the first column of P

and takes k arguments, |EM (S(c, P))|n + n ≤ |EM (P)|n + len(EM (P)) ∗ k. This proof is
complex, as we must reason about the nested expansions for constructors.

4. Finally, since (b(P) + 1) depends on P , we show monotonicity: if n ≤ m, |P |n ≤ |P |m.
We also show that b does not decrease: b(D(P)) ≤ b(P) and b(S(c, P)) ≤ b(P).

We combine these results to prove that compile terminates. However, none of this was
specific to compile – we effectively proved that any algorithm based on pattern matrix
decomposition terminates via this metric. More sophisticated algorithms [32, 27] follow the
same basic structure but with additional optimizations (e.g, not always examining the first
column, swapping columns, data structure sharing, etc); this termination metric should
suffice in these settings with almost identical proof.

We implement compile in Rocq using Equations [40] and this size metric. Our function
is parametric in the action type, constructor-finding method, and a flag governing Step 3b
(see §7), returning an option that is None if the match is non-exhaustive.

5 Soundness of compile

We want to prove the semantic correctness of compile. To state this theorem, we first define
the semantics of matching against a pattern matrix (Jal, P KM

v), which builds on pattern- and
row-matching (Figure 1). Namely, Jal, P KM

v (Figure 6) iterates through each row until it
finds a match (with J·KR), then evaluates the matched action under the valuation v extended
with the new bindings (this reduces to match_rep for a single-column matrix). We define
JtsKT

v to be the (heterogeneous) list generated by JtKt
v for each t in ts (recall that JtKt

v is the
interpretation for terms under valuation v). Then the correctness theorem is:

ITP 2025

5:8 A Mechanized First-Order Theory of Algebraic Data Types with Pattern Matching

▶ Theorem 1. Let tms be a term-list, let P be a pattern matrix, and let v be a valuation.
Suppose that tms and P are well-typed.2 Also suppose that there are no names in common
between the free variables of tms and the pattern variables of P . Then, if compile tms P =
Some t, then JJtmsKT

v , P KM
v = Some JtKt

v.

In other words, if compile succeeds and produces term t, then the pattern match succeeds
and results in a term semantically equivalent to t. The proof involves many pieces.

First, we prove that simplify preserves the semantics. Note that a row beginning
with a disjunction becomes multiple rows in the simplified matrix; we must prove that the
semantics of the resulting matrix is equivalent to that of the original row. Additionally,
since simplify transforms variable patterns into let-bindings, this changes a simultaneous
binding into an iterated one, causing problems if variable names overlap. For example, given
match y, z with | x, y → f x y end, the result should be equivalent to f y z. However,
simplify gives let y = z in (let x = y in f y x), equivalent to f z z. To avoid this, we
require the condition on variable names in Theorem 1. Then we prove:

▶ Lemma 2. Assume that t :: ts and P have no variable names in common. Then
JJt :: tsKT

v , simplify t P KM
v = JJt :: tsKT

v , P KM
v

Next, we reason about the matrices D(P) and S(c, P), assuming that the input matrix
is simplified and well-typed. First, we define the notion “term t is semantically equiva-
lent to c(al)” (i.e. JtKt

v = JcKλ(al)) for constructor c in ADT a; we call this predicate
tm_semantic_constr. Then we prove that, given any term t of ADT type a, we can find
the constructor c and arguments al such that tm_semantic_constr t c al; this is a direct
consequence of find_constr_rep (§2). We prove that, if term t is semantically equal to
c(al), matching t against pattern c(ps) is the same as matching al against ps:

▶ Lemma 3. Suppose tm_semantic_constr t c al. Then Jc(ps), JtKt
vKp = Jal, psKR.

The proof is straightforward, relying on the definition of J·Kp and the injectivity and disjoint-
ness of constructor interpretations (§2). Similarly, we then prove that if tm_semantic_constr
holds of a different constructor, then the term does not match:

▶ Lemma 4. Suppose c ̸= c’ and tm_semantic_constr t c al. Then Jc′(ps), JtKt
vKp = None.

Along with some additional lemmas about concatenation of pattern-rows, we now have all the
pieces to prove the D and S cases. Recall that D(P) is intended to represent the remaining
pattern match if the term t does not match any constructor in the first column of P . We
prove this property in 2 parts: either t has ADT type and matches a constructor that does
not appear in the first column or t does not have ADT type:

▶ Lemma 5. Suppose tm_semantic_constr t c al but c does not appear in the first column
of pattern matrix P . Then JJt :: tsKT

v , P KM
v = JJtsKT

v , D(P)KM
v .

▶ Lemma 6. Suppose t does not have ADT type. Then JJt :: tsKT
v , P KM

v = JJtsKT
v , D(P)KM

v .

The proofs are simple; the first follows by Lemma 4, while the second uses the fact that there
can be no constructors in the first column by typing. Next, recall that S(c, P) is intended to
represent the remaining pattern match if the term t matches constructor c. Unlike D, the
remaining match is not just the rest of the rows; rather, we must first match the arguments
of the c-patterns. The formal statement is:

2 We omit typing details for brevity. For the purposes of this paper, well-typing ensures that all sizes are
consistent and that constructors in patterns have the correct ADT type. For typing details, see [13].

J. M. Cohen 5:9

▶ Lemma 7. Suppose tm_semantic_constr t c al. Then JJt :: tsKT
v , P KM

v =
Jal ++ JtsKT

v , S(c, P)KM
v .

We reason by induction on P . In the case where the first row starts with c(ps), we split the
pattern-row concatenation, using Lemma 3 to reason about the c(ps) match. The case where
the first row starts with c′(ps) (c ̸= c′) is similar; we use Lemma 4. Lastly, in the wildcard
case, we prove that matching a row against all wildcards gives Some ∅. With this, we have
all the pieces we need for the proof of Theorem 1. The full proof is quite complex; we give a
sketch of an interesting case.

Proof. We want to prove that, for any valuation v, JJt :: tsKT
v , P KM

v = Some JtmKt
v. Step 3a

uses Lemmas 5 and 6 depending on t’s type; we focus on Step 3c. t must have ADT type, so
we can find a constructor c and arguments al such that tm_semantic_constr t c al holds.
Furthermore, by the definition of compile, we know that JtmKt

v = match_rep t (ps ++ base),
where ps and base are defined as in Figure 4. We consider 2 possible cases:
1. Assume c appears in the first column of P . Then, we can split ps into ps1 ++ (c(vs) →

compile(vs ++ ts)) ++ ps2 such that c does not appear in the patterns in ps1 or ps2 (we
ignore the option return type for simplicity, as we assume all recursive calls succeed).
Recall that match_rep works by iterating over the pattern list until a match succeeds.
By Lemma 4, no pattern in ps1 matches t. The first successful match is therefore against
the c(vs) term: we simplify first by invoking Lemma 3 and then by noting that since vs

are variables, each inner match succeeds. The resulting valuation m maps vs → al. Thus,
letting tm1 be such that compile(vs ++ ts) = Some tm1, we have that JtmKt

v = Jtm1Kt
m∪v.

By the induction hypothesis, we have that JJvs ++ tsKT
m∪v, S(c, P)KM

m∪v = SomeJtm1Kt
m∪v.

Finally, we note (after splitting the concatenation in J·KT) that JvsKT
m∪v = al, since m

maps vs → al. The vs variables are fresh (and hence do not appear in ts or S(c, P));
therefore JtsKT

m∪v = JtsKT
v and so the desired equality holds by Lemma 7.

2. If c does not appear in the first column of P , nothing in ps matches by Lemma 4; therefore
JtmKv = match_rep t base. Crucially, base cannot be empty since there is at least one
constructor not present in the first column of P . Thus, there must be a wildcard to
match – the complete result follows from Lemma 5 and the induction hypothesis. ◀

Our work is the first machine-checked proof of such a compilation scheme based on pattern
matrix decomposition. Maranget [32] gives a brief pen-and-paper correctness argument for
similar scheme against a more restrictive syntactic definition of matching, discussed below.

6 Pattern Matching Exhaustiveness

An exhaustiveness check follows as an immediate corollary of Theorem 1.

▶ Corollary 8. Under the assumptions of Theorem 1, if JJtmsKT
v , P KM

v = None, then compile
tms P = None.

In other words, if there is an interpretation such that the match is semantically non-exhaustive,
then compile will correctly fail (return None). However, this is a fairly weak specification:
compile could always return None and satisfy Theorem 1 (and hence Corollary 8).

It is worthwhile to compare and contrast this with existing pen-and-paper proofs of a
virtually identical scheme to prove non-exhaustiveness by Maranget [31]. Maranget discusses
two versions of exhaustiveness checking: for ML-like call-by-value languages and for Haskell-
like lazy languages. The theorems can be summarized as, “the exhaustiveness check on
pattern matrix P of types tys returns “non-exhaustive” iff there is a value list vs of type

ITP 2025

5:10 A Mechanized First-Order Theory of Algebraic Data Types with Pattern Matching

tys such that vs does not match P” (where matching is defined as a syntactic relation on
value-vectors). The difference is that lazy values also include an unknown value Ω and the
exhaustiveness check must be generalized by a disambiguating predicate.

By contrast, our setting is purely logical, not evaluation-based. Why3’s logic does not
have any notion of values, and terms can include free variables or uninterpreted symbols.
This means that unlike the syntactic match relation in Maranget’s theorems (defined over
values), we can only reason about matching semantics under a particular interpretation and
valuation. However, once an interpretation/valuation are fixed (and we reason semantically
rather than syntactically), the setting becomes similar to the call-by-value one. But there is
still a crucial difference: uninterpreted symbols can be interpreted as any constructor; such
ambiguity is not present for values.

Similarly, lazy matching is distinct from our setting. Here, Maranget’s proofs require a
monotonicity property so that a failing match will continue to fail as values are partially
evaluated. This relies on an ordering relation on values such that Ω is smaller than all
others. Once again, our setting has no such ordering, partial evaluation, or monotonicity,
but if we reason semantically and quantify over interpretations, we can recover similar
concepts. For example, we can re-interpret the ordering relation as denoting the existence
of an interpretation that produces semantic equality (e.g. v ≤ w ⇐⇒ ∃I, JvKt

I = JwKt
I).

This satisfies similar properties – non-constructor terms are “smaller” than all constructors
while different constructors are incomparable – but it would be very inconvenient to reason
about. Therefore, we can view our proofs as broadly similar to (both of) Maranget’s but
significantly simpler when reasoning in a purely logical setting where the meaning of terms
is given by a particular interpretation rather than by (full or partial) evaluation.

It would be possible to state and prove the reverse direction of Maranget’s theorem
translated to our setting: if compile returns None, there is an interpretation I and term
list ts that does not match (JJtsKT

I , P KM
I = None). Equivalently, if matching succeeds for

all interpretations and for all terms of the correct type, then compile returns Some. We do
not formally prove such a result (soundness is sufficient for our applications), though we
do need a weaker version – if the pattern match is simple (consisting only of wildcards and
constructors applied to variables) and “obviously” exhaustive (either all constructors in an
ADT are present or there is a wildcard), then compile always succeeds. Note that many
programs in practice fall into this category (e.g. many standard functions on lists and trees).

7 Robustness of compile

While Why3 includes exhaustiveness checking, Why3Sem previously omitted it. We fix this
by adding a check to the Why3Sem type system, requiring that for any term or formula
match t with ps end, compile [t] ps is Some (where ps becomes a single-column matrix).
Since compile produces a pattern match in Step 3c, we must prove that this match itself
passes the exhaustiveness checker. We prove this by showing that compile produces simple,
obviously exhaustive patterns.

The larger difficulty is to show that the existing functions over Why3 terms that preserve
typing also preserve the exhaustiveness check. Writing such a theorem is surprisingly difficult;
such functions modify the term list (e.g. for substitution and rewriting), the term and pattern
types (for type substitution), the action type (when axiomatizing recursive functions), and the
variables in the pattern matrix (for α-conversion). In the end, we need a generic robustness
theorem to show that exhaustiveness checking still succeeds under such changes. Of course
the conditions cannot be too permissive: changing the pattern matrix arbitrarily clearly does

J. M. Cohen 5:11

not preserve exhaustiveness; neither does changing the types so that a constructor match no
longer succeeds. In the end, the latter turns out to be the trickier condition to formalize,
as we need to ensure that an ADT type cannot be transformed into a non-ADT type. We
encode this as an asymmetric relation ty_rel. We finally require that the two pattern matrices
have the same “shape” – they are equal up to changing variable names.

We will state such a robustness theorem shortly, but unfortunately it does not hold
of Why3’s compile. If we allow the term list to change arbitrarily, a check that succeeds
due to Step 3b may then fail. For example, given match [1] with | [x] → x end and the
equality H: [1] = y, if one rewrites with H, the resulting term fails the exhaustiveness checker
and Why3 crashes with a fatal error. While rewriting in such a “backwards” manner is
unlikely in practice, this non-robustness also rules out potential optimizations like constant
subexpression elimination. This is a bug in Why3 which we reported.3

One possible fix is to remove Step 3b of compile. This is the common approach to
exhaustiveness checking (e.g. in Rocq and OCaml). But Why3 uses this step to compile
simultaneous matching, implemented via tuples. Instead, we parameterize compile by a flag
simpl_constr indicating whether Step 3b is used. In our Rocq development, we prove the
soundness of compile for both versions. For exhaustiveness checking, we set simpl_constr
to false, so that a robustness theorem (Theorem 9) holds; for compilation, simpl_constr
should be true to make the resulting patterns as simple as possible for the eventual SMT
queries. We discuss the connection between the two versions of compile in §8.4. Here, we
give the full robustness theorem.

▶ Theorem 9. For any pattern matrices P1 and P2, any term lists tms1 and tms2, and any
type lists tys1 and tys2, suppose the following conditions hold:

P1 and P2 have the same dimensions and each corresponding pattern pair has equivalent
“shapes” (but P1 and P2 need not have the same action type),
tms1 and tms2 have the same length (which equals the length of tys1 and tys2),
If simpl_constr holds, then each corresponding pair of terms in tms1 and tms2 are
related by t_fun_equiv,4 and
Each corresponding pair of types in tys1 and tys2 satisfies ty_rel.

Then if exhaustiveness checking succeeds (i.e. compile returns Some) on P1, tms1 and tys1,
then exhaustiveness checking will succeed on P2, tms2, and tys2.

The proof is similar to Theorem 1; we prove the cases for simplify, S, D, and compile.

8 A Sound First-Order Axiomatization of ADTs

8.1 Axiomatizing ADTs
Figure 7 shows an example of an ADT-related goal in Why3: it defines the list datatype,

the length function, and a proof goal involving these definitions. To compile this to first-order
logic for SMT solvers, the recursive types, recursive functions, and pattern matching must
be eliminated. We do not focus on the elimination of recursive functions here (though we do
prove such a step sound); this transformation replaces length with its unfolding axiom.

The elimination of ADTs (eliminate_algebraic) can be viewed as a 3-step process: first,
the compile_match transformation uses compile to reduce everything to simple patterns.
Then, the ADT types and constructors are replaced by abstract symbols as new abstract

3 https://gitlab.inria.fr/why3/why3/-/issues/903
4 t_fun_equiv is a relation that rules out the backwards rewriting case; we omit the precise definition.

ITP 2025

https://gitlab.inria.fr/why3/why3/-/issues/903

5:12 A Mechanized First-Order Theory of Algebraic Data Types with Pattern Matching

type list ’a = Nil | Cons ’a (list ’a)
function length (l: list ’a) : int =

match l with | Nil→ 0 | Cons _ r→ 1 + length r end
goal foo: ∀ l: list ’a.

(length (match l with | Nil→ Nil | Cons x t→ t end)) ≤ length l

Figure 7 ADT example in Why3.

function symbols and axioms are introduced. Lastly, all pattern matches are eliminated
using the newly introduced function symbols. Figure 8 shows possible outputs to the
transformation; we describe each part in turn. Projections describe how to extract the
arguments of a constructor; there is a projection symbol and axiom for each argument of
each constructor. The selector function axiomatizes (simple) pattern matches; it returns the
corresponding argument for the constructor matched. The indexer function describes which
constructor an ADT instance belongs to. The disjointness axioms assert that constructors
are distinct, and the inversion axiom states that all elements of ADT type are equal to a
constructor applied to the corresponding arguments (expressed via projections). We note
that Why3 does not generate all of these axioms every time, and some are only needed in
certain situations (e.g. the indexer axioms imply disjointness). Nevertheless, we prove all
the generated axioms sound to cover all possible cases.

The elimination of pattern matches (rewriteT/rewriteF in Why3) is less standard.
If the pattern match occurs in a term (as with the goal foo), the match is transformed
into an expression using the selector function, with arguments given by the projections.
If the pattern match occurs in a formula (as with length, which becomes length_def),
match t with | c(a) → f ... becomes either ((∀ a. t = c(a) → f) ∧ ...) or ((∃ a, t =
c(a) ∧ f) ∨ ...) depending on the polarity of the formula in which the match appears
(we prove the two equivalent).

Of course, this is not the only possible ADT axiomatization. Dafny uses a broadly similar
encoding [28], with projections and indexers, as well as axioms defining an order on ADTs
(used as a guard on recursive calls, rather than the static checks in Why3). Sniper [9, 8],
a tool to transform Rocq goals into first-order SMT ones (see §10), generates injectivity,
disjointness, and inversion axioms. Other first-order axiomatizations of ADTs for SMT
solvers [6, 38] provide isf functions indicating which constructor the element belongs to
(rather than the indexers of Why3) and may also include non-circularity axioms (e.g. that
l <> Cons x l). Methods for eliminating pattern matching differ more widely. Why3, as
we have seen, uses a selector axiom in some cases and directly generates formulas in the
others. Dafny turns pattern matches into nested if-expressions, with one case per constructor.
Sniper relies on Rocq’s built-in simplification to automatically simplify the pattern match
per constructor.

8.2 Proving Soundness

Soundness is a statement about transformations (steps in the Why3 compilation pipeline) over
proof tasks, consisting of a context Γ, a set of assumptions ∆, and a goal g. A transformation
may produce many proof tasks; soundness states that if all the resulting tasks are valid, so
was the original one. Validity (Γ, ∆ ⊨ g) means that the assumptions ∆ imply the goal g

under all full interpretations – those consistent with defined types, functions, and predicates.
To prove a transformation sound, we must prove that if Γ′, ∆′ ⊨ g′, then Γ, ∆ ⊨ g, where

J. M. Cohen 5:13

type list ’a
function Nil : list ’a
function Cons ’a (list ’a) : list ’a
(∗ P r o j e c t i o n s ∗)
function cons_proj_1 : list ’a→ ’a
function cons_proj_2 : list ’a→ list ’a
axiom cons_proj_1_def : ∀ u1 u2. cons_proj_1 (Cons u1 u2) = u1
axiom cons_proj_2_def : ∀ u1 u2. cons_proj_2 (Cons u1 u2) = u2
(∗ S e l e c t o r ∗)
function match_list : list ’a→ ’b→ ’b→ ’b
axiom match_list_cons : ∀ z1 z2 u1 u2.

match_list (Cons u1 u2) z1 z2 = z1
axiom match_list_nil : ∀ z1 z2. match_list Nil z1 z2 = z2
(∗ I n d e x e r ∗)
function index_list : list ’a→ int
axiom index_list_cons : ∀ u1 u2. index_list (Cons u1 u2) = 0
axiom index_list_nil : index_list Nil = 1
(∗ D i s j o i n t n e s s ∗)
axiom cons_nil : ∀ u1 u2. Cons u1 u2 <> Nil
(∗ I n v e r s i o n ∗)
axiom list_inversion : ∀ u.

u = Cons (cons_proj_1 u) (cons_proj_2 u) ∨ u = Nil

axiom length_def : ∀ l. (l = Nil→ length l = 0) ∧
(∀ u1 u2. l = Cons u1 u2→ length l = 1 + length u2)

goal foo: ∀ l. length (match_list l Nil (cons_proj_2 l)) ≤ length l

Figure 8 Result of axiomatizing ADTs and eliminating pattern matching.

primes represent the transformation result. In particular, we must show that for every full
interpretation I over Γ, if I ⊨ ∆, then I ⊨ g. We do this by constructing a translated
interpretation I ′ over Γ′ and showing:

▶ Property 1. I ′ is a full interpretation for Γ′.

▶ Property 2. If I ⊨ ∆, then I ′ ⊨ ∆′.

▶ Property 3. If I ′ ⊨ g′, then I ⊨ g.

For a rewriting transformation (compile_match and rewriteF) we must show that the
rewrite preserves the semantics – we need both directions of the implication for Properties 2
and 3. Meanwhile, for the full eliminate_algebraic, we must show how to construct the
interpretation I ′ and then prove that this satisfies the added axioms. Proving the result
well-typed is also tricky – the context, the declared symbols, and the defined ADTs change
substantially – but we do not give the details. In the following, we briefly describe the various
parts of the proof: (1) defining the new interpretation I ′ and proving the added axioms
satisfied, (2) compiling and eliminating pattern matches, and (3) putting it all together to
prove soundness.

8.3 Defining the Interpretation
We are given an interpretation I and ADT a. Since I is full, it correctly interprets a so the
properties of §2 hold. We describe how to interpret each newly added symbol in turn. First,
an indexer symbol i is interpreted as follows: given semantic arguments al (a heterogeneous

ITP 2025

5:14 A Mechanized First-Order Theory of Algebraic Data Types with Pattern Matching

Definition indexer_interp {m a} (al: arg_list ...):=
(∗ Cast head o f a l to ADT type ∗)
let x := indexer_args_eq a al ... in
let (c1 , _) := find_constr_rep m a x in
(∗ F ind i n d e x o f c1 i n a ’ s c o n s t r u c t o r l i s t ∗)
dom_cast ... (Z. of_nat (index c1 (adt_constr_list a))).

Figure 9 Interpretation of indexer symbols.

list of elements of the interpretations of the argument types of i), the first type argument
of i is a, so the first (only) element of al has type JaKτ (here we ignore polymorphism for
simplicity) – call this element x. find_constr_rep gives c1 and al1 such that x = Jc1Kλ(al1).
The interpretation simply returns the index of c1 in the list of constructors of a. We show a
simplified Rocq definition (without dependent type obligations) in Figure 9.

Projection symbols are similar. This time, given the ith projection symbol p of construc-
tor c and semantic arguments al, we again know that the only element of al is an ADT
type and again use find_constr_rep to get c1 and al1 such that x = Jc1Kλ(al1). If c = c1,
then the interpretation returns the ith argument of al1; otherwise, it returns some default
argument.

The selector is a bit more complicated. The selector symbol for ADT a takes in n + 1
arguments, where n is the number of constructors of a (there are additional complications
due to polymorphism which we again omit for simplicity). Given selector semantic arguments
al, we again know that the first element of al is an ADT type and use find_constr_rep
to get the constructor c (the arguments are irrelevant here). Then, we find the index i of c

within a’s constructor argument list and return the (i + 1)st argument of al – this encodes the
idea that the selector should return its (i + 1)st argument when called on the ith constructor.

We note that this approach extends to any first-order axiomatization we might want to
give. For example, interpretations for isf predicates, which determine if an ADT element
belongs to a given constructor, would be almost identical to those of indexers but would
return a boolean rather than the index. More interestingly, we could use a similar approach to
interpret Dafny’s well-foundedness axioms (e.g. l < x :: l). Rather than find_constr_rep,
we would use the well-founded relation adt_smaller defined in Why3Sem that denotes
structural inclusion and is used to prove the termination of Why3’s recursive functions.

We construct I ′ by using the appropriate definitions for all of the new function symbols,
ensuring that the newly added symbols do not overlap. Proving that I ′ satisfies the added
axioms is quite straightforward (though dependent types add some complications) and only
relies on properties of constructor interpretations. For example, to prove the inversion
axiom, we use find_constr_rep to identify the input argument’s constructor, then prove
the clause in the disjunction corresponding to this constructor by unfolding the definitions of
the projection interpretations and relying on injectivity and disjointness of constructors.

8.4 Compiling and Eliminating Pattern Matches

The transformation that eliminates complex and nested patterns, compile_match, walks
over the given term or formula and calls compile (§3) on each pattern match. The main
property we need is semantic equivalence, which follows from Theorem 1. Recall that this
theorem states that if compile gives Some, then the result is semantically equivalent. Thus,
we must show that all calls to compile succeed (give Some). We know by typing that all

J. M. Cohen 5:15

pattern matches are exhaustive, but after changing the exhaustiveness checker to satisfy
robustness (§7), the exhaustiveness check and the version of compile used in compile_match
differ on the value of simpl_constr. Therefore, we show a correspondence between the two
versions, proving that our new exhaustiveness check is more restrictive than the old one:

▶ Theorem 10. Given pattern matrix P and term lists tms1 and tms2 such that everything
is well-typed, if the exhaustiveness check succeeds on tms1 and P when simpl_constr is
false, then the exhaustiveness check succeeds on tms2 and P when simpl_constr is true.

The proof follows by induction, where the interesting case unsurprisingly occurs when the
matched term is a constructor and thus one check is in Step 3b (of Figure 4), while the
other is in Step 3c. Here, we use the stronger exhaustiveness check to know that every
constructor’s compilation (using S(c, P)) succeeds; therefore, the particular one needed also
succeeds. This is not obvious, as the two checks operate over different term lists – fresh
variables and the constructor application arguments (hence we generalize the theorem to
allow different term lists). The full semantic equivalence result for compile_match requires
an additional α-conversion to satisfy the unique-name hypothesis of Theorem 1.

In fact, we need more information about compile_match for the pattern matching elimina-
tion functions rewriteT/F: the resulting pattern matches are simple, obviously exhaustive,
and organized such that each pattern match consists of a nonempty list of unique constructors
applied to variables, optionally followed by a wildcard. As an implicit corollary, this proves
that every Why3 term, no matter how sophisticated the pattern match, can be reduced to
an equivalent term consisting only of these very restricted matches.

Proving the correctness of the pattern matching elimination (rewriteT/rewriteF) is
quite tricky, requiring simultaneous reasoning about two contexts (the old context Γ, and
the new, ADT-less context Γ′) and two interpretations (I over Γ and I ′ over Γ′). We
omit the full proof, but we give a brief sketch of the main ideas in the term pattern
matching case. Here, match t with | ... c(vs) → e ... | _ → d end is rewritten into
(match_foo t ... (let vs := projs t in e) ... d ...) where the (i + 1)st argument of
match_foo is an iterated let expression binding vs to the projections if the ith constructor
c appears in the match as c(vs) and is d otherwise. Note that this rewriting relies on the
fact that compile_match has already been run and thus all patterns are simple. This is
extremely helpful for the proof: the uniqueness of constructors allows us to reason about
pattern matching largely syntactically rather than by unfolding the (recursive) definition
of Jp, dKp. In particular, on matched term t, if tm_semantic_constr t c al holds, we prove
that if c(vs) → e appears in the pattern match, then match_rep evaluates to JeKt

vs→al

(and otherwise match_rep evaluates to JdKt). We then reason by cases: either the matched
term’s constructor appears in the pattern match or not. In both cases, we simplify with the
corresponding lemma and prove the equivalence.

Finally, we complete the proof of soundness as described in §8.2. Proving Properties
1 and 3 is straightforward using the semantic equivalence of rewriteF. We almost proved
Property 2; however, rewriteF is also run on the newly added axioms. We show that
this rewrite has no semantic effect on formulas without pattern matches or constructor
applications.

9 Discussion

We have endeavored to keep our proved-correct implementations of compile_match and
eliminate_algebraic as close as possible to their Why3 counterparts. These have proven
useful in practice, both in Why3 itself and in tools like EasyCrypt [7] which supports

ITP 2025

5:16 A Mechanized First-Order Theory of Algebraic Data Types with Pattern Matching

ADTs, pattern matching, and recursive functions by compiling to Why3. While compile
and compile_match are virtually identical to the Why3 implementation, our version of
eliminate_algebraic differs from the Why3 version slightly (it is stateless and requires all
types in a mutual block to be axiomatized or kept) but produces similar output.

Furthermore, we note that our proofs could extend to other solvers and settings. As we
discussed in §8, we could follow a nearly identical approach for other ADT axiomatizations.
Our pattern matching compiler is quite general: it already allows arbitrary term-like action
types, the termination proofs would be useful for any matrix-decomposition-based method,
and the proofs of soundness could be refactored to remove dependence on Why3Sem (though
it is crucial that the semantics for pattern matching behaves like match_rep). We note also
that our proofs do not rely on axioms beyond those already present in Why3Sem (classical
logic, functional extensionality, and indefinite description); other than UIP, these axioms are
only needed to define Why3Sem and thus our proofs would suffice in intutitionistic settings.

10 Related Work

Pattern Matching Compilation

Pattern matching compilation is a well-studied problem. Augustsson [4] presents a simple
compilation scheme, introducing (implicitly) some of the ideas of the matrix-decomposition
approach. Laville [26] and Maranget [30] study lazy pattern matching; the latter introduces
the S and D matrices and gives pen-and-paper proofs of the main compilation steps from
pattern matrices to decision trees. These techniques are extended by Le Fessant and
Maranget [27] and Maranget [32] to develop further heuristics and optimizations for efficient
matching. Maranget [31] studies the problem of exhaustiveness checking (and useless clause
identification) and proves the matrix-decomposition-based exhaustiveness check correct.

By contrast, there is very little prior work about mechanizing the proofs of such compilation
schemes. Tuerk et al. [42] implement a pattern matching compiler for the HOL proof assistant
using a non-decision-tree approach that aims to produce patterns closer to handwritten
versions. The authors do not prove the compilation correct but extend CakeML’s [25]
proof-producing code generator to show that the compiled match in CakeML preserves the
semantics of the compiled HOL match. CakeML itself provides a simple verified pattern
matching compiler and restrictive exhaustiveness checker. It is quite limited; CakeML cannot
prove the following match exhaustive:

match l with | [] → _ | [x] → _ | x :: t → _ end

The CertiCoq [1] verified compiler from Rocq to C does not prove anything about non-simple
patterns, relying on Rocq’s front-end to compile patterns before reification. It is based on
the MetaRocq [39] formalization of Rocq, which makes the same assumption.

ADT Axiomatization

First-order axiomatizations of ADTs are common to support ADT theories within SMT
solvers [6, 38] as well as in SMT-based verification tools which include higher-level reasoning
support (e.g. Dafny [28]). Other tools (e.g. Viper[29] and Gobra [43]) include ADTs as
syntactic sugar for the derived axioms and do not include any complex pattern matching.

There is also little prior work proving the soundness of such axiomatizations. Sniper [9, 8]
is a tool that turns certain Rocq goals into first-order formulas to enable use of SMT solvers;
it axiomatizes ADTs and eliminates pattern matches (which have already been compiled

J. M. Cohen 5:17

by Rocq’s front-end). This approach is certifying: it provides tactics to generate Rocq
definitions and assertions (by reifying to MetaRocq) as well as proof scripts to prove that
the assertions hold. Such proofs are generally quite simple, since one can use Rocq’s built-in
mechanisms for simplifying pattern matches and performing case analysis on inductive types.
This approach is better suited for Rocq but would not extend to SMT-based systems like
Why3 or Dafny, which cannot reason about ADTs except via axiomatization and translation
to SMT. Furthermore, we give a certified, rather than certifying, implementation, proving
soundness once and for all.

Soundness of Intermediate Verification Languages

There are several recent efforts to prove the soundness of IVLs. Parthasarathy et al. [36] gives
a formal semantics and certifying procedure (in Isabelle) for the Boogie [5] IVL, a simple
imperative language with assertions in first-order logic. Parthasarathy et al. [35] extend this
with a certifying translation from the Viper IVL to Boogie. This translation is concerned
with separation logic rather than with a functional assertion language. Darndinier et. al. [16]
extend this further by connecting to a verified frontend language. Featherweight VeriFast [23]
gives semantics and a certifying implementation for a subset of the VeriFast separation logic
verifier; though VeriFast includes ADTs and recursive functions, Featherweight VeriFast
does not. Herms [21] proves sound an early version of Why3 that did not include recursive
types or functions. Garchery [19] validates some logical Why3 transformations; focusing
primarily on propositional transformations and an induction principle over integers. Cohen
and Johnson-Freyd [14] prove the soundness of Why3’s axiomatization of inductive predicates
and elimination of let-bindings with Why3Sem.

11 Conclusion

We have presented a sophisticated, real-world pattern matching compiler and exhaustiveness
checker along with a first-order axiomatization of ADTs, the first such implementations
mechanized and proved sound in a proof assistant. These features and compilation steps
are critical in enabling powerful assertion languages that allow users to express elegant,
functional specifications amenable to logical reasoning. Proved-correct implementations make
it possible to retain these advantages while ensuring that the verifier is foundationally sound.
Additionally, since our transformations are computable functions within a proof assistant,
they could be directly connected to higher level language semantics (e.g. CompCert) or
verifiers (e.g. VST) to improve automation without compromising soundness guarantees.

References

1 Abhishek Anand, Andrew W. Appel, Greg Morrisett, Zoe Paraskevopoulou, Randy Pollack,
Olivier Savary Belanger, Matthieu Sozeau, and Matthew Weaver. CertiCoq: A Verified
Compiler for Coq. In CoqPL’17: The Third International Workshop on Coq for Programming
Languages, Paris, France, January 2017.

2 Andrew W. Appel. Program Logics for Certified Compilers. Cambridge University Press,
Cambridge, 2014. doi:10.1017/CBO9781107256552.

3 Andrew W. Appel. Verification of a Cryptographic Primitive: SHA-256. ACM Transactions on
Programming Languages and Systems (TOPLAS), 37(2):7:1–7:31, April 2015. doi:10.1145/
2701415.

ITP 2025

https://doi.org/10.1017/CBO9781107256552
https://doi.org/10.1145/2701415
https://doi.org/10.1145/2701415

5:18 A Mechanized First-Order Theory of Algebraic Data Types with Pattern Matching

4 Lennart Augustsson. Compiling Pattern Matching. In Jean-Pierre Jouannaud, editor, Func-
tional Programming Languages and Computer Architecture, pages 368–381, Nancy, France,
1985. Springer. doi:10.1007/3-540-15975-4_48.

5 Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A Modular Reusable Verifier for Object-Oriented Programs. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods
for Components and Objects, pages 364–387, Amsterdam, Netherlands, 2006. Springer. doi:
10.1007/11804192_17.

6 Clark Barrett, Igor Shikanian, and Cesare Tinelli. An Abstract Decision Procedure for
Satisfiability in the Theory of Recursive Data Types. Electronic Notes in Theoretical Computer
Science, 174(8):23–37, June 2007. doi:10.1016/j.entcs.2006.11.037.

7 Gilles Barthe, François Dupressoir, Benjamin Grégoire, César Kunz, Benedikt Schmidt, and
Pierre-Yves Strub. EasyCrypt: A Tutorial. In Alessandro Aldini, Javier Lopez, and Fabio
Martinelli, editors, Foundations of Security Analysis and Design VII: FOSAD 2012/2013
Tutorial Lectures, pages 146–166. Springer International Publishing, Bertinoro, Italy, 2014.
doi:10.1007/978-3-319-10082-1_6.

8 Valentin Blot, Denis Cousineau, Enzo Crance, Louise Dubois de Prisque, Chantal Keller,
Assia Mahboubi, and Pierre Vial. Compositional Pre-processing for Automated Reasoning in
Dependent Type Theory. In Proceedings of the 12th ACM SIGPLAN International Conference
on Certified Programs and Proofs, CPP 2023, pages 63–77, Boston, USA, January 2023.
Association for Computing Machinery. doi:10.1145/3573105.3575676.

9 Valentin Blot, Louise Dubois de Prisque, Chantal Keller, and Pierre Vial. General Automation
in Coq through Modular Transformations. In Proceedings of the Seventh Workshop on Proof
eXchange for Theorem Proving, Pittsburgh, United States, July 2021. doi:10.4204/EPTCS.
336.3.

10 François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Why3:
Shepherd Your Herd of Provers. In Boogie 2011: First International Workshop on Intermediate
Verification Languages, page 53, Wrocław, Poland, 2011.

11 Aleks Chakarov, Jaco Geldenhuys, Matthew Heck, Michael Hicks, Sam Huang, Georges-
Axel Jaloyan, Anjali Joshi, K. Rustan M. Leino, Mikael Mayer, Sean McLaughlin, Akhilesh
Mritunjai, Clement Pit-Claudel, Sorawee Porncharoenwase, Florian Rabe, Marianna Rapoport,
Giles Reger, Cody Roux, Neha Rungta, Robin Salkeld, Matthias Schlaipfer, Daniel Schoepe,
Johanna Schwartzentruber, Serdar Tasiran, Aaron Tomb, Emina Torlak, Jean-Baptiste Tristan,
Lucas Wagner, Michael W. Whalen, Remy Willems, Tongtong Xiang, Tae Joon Byun, Joshua
Cohen, Ruijie Fang, Junyoung Jang, Jakob Rath, Hira Taqdees Syeda, Dominik Wagner,
and Yongwei Yuan. Formally Verified Cloud-Scale Authorization. In 2025 IEEE/ACM 47th
International Conference on Software Engineering (ICSE), pages 2508–2521, Ottawa, Canada,
April 2025. IEEE Computer Society. doi:10.1109/ICSE55347.2025.00166.

12 Joshua M. Cohen. Proof Artifact for “A Mechanized First-Order The-
ory of Algebraic Data Types with Pattern Matching”. Software, swhId:
swh:1:dir:31808a21d5034756c3c2d3fc11b22697aaf6eee9 (visited on 2025-09-08). URL:
https://github.com/joscoh/why3-semantics/tree/itp25, doi:10.4230/artifacts.
24696.

13 Joshua M. Cohen. A Foundationally Verified Intermediate Verification Language. PhD thesis,
Princeton University, United States – New Jersey, 2025.

14 Joshua M. Cohen and Philip Johnson-Freyd. A Formalization of Core Why3 in Coq. Proceedings
of the ACM on Programming Languages, 8(POPL):60:1789–60:1818, January 2024. doi:
10.1145/3632902.

15 Joshua M. Cohen, Qinshi Wang, and Andrew W. Appel. Verified Erasure Correction in Coq
with MathComp and VST. In Sharon Shoham and Yakir Vizel, editors, Computer Aided
Verification, pages 272–292, Haifa, Israel, 2022. Springer International Publishing. doi:
10.1007/978-3-031-13188-2_14.

https://doi.org/10.1007/3-540-15975-4_48
https://doi.org/10.1007/11804192_17
https://doi.org/10.1007/11804192_17
https://doi.org/10.1016/j.entcs.2006.11.037
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1145/3573105.3575676
https://doi.org/10.4204/EPTCS.336.3
https://doi.org/10.4204/EPTCS.336.3
https://doi.org/10.1109/ICSE55347.2025.00166
https://archive.softwareheritage.org/swh:1:dir:31808a21d5034756c3c2d3fc11b22697aaf6eee9;origin=https://doi.org/10.5281/zenodo.15838909;visit=swh:1:snp:eb7de80ce7ad282da1b64dafeea97454bc2f8111;anchor=swh:1:rel:95ec4913f8d066f491fc6864223ddc5539e2eefb;path=/joscoh-why3-semantics-14cabf2/
https://github.com/joscoh/why3-semantics/tree/itp25
https://doi.org/10.4230/artifacts.24696
https://doi.org/10.4230/artifacts.24696
https://doi.org/10.1145/3632902
https://doi.org/10.1145/3632902
https://doi.org/10.1007/978-3-031-13188-2_14
https://doi.org/10.1007/978-3-031-13188-2_14

J. M. Cohen 5:19

16 Thibault Dardinier, Michael Sammler, Gaurav Parthasarathy, Alexander J. Summers, and
Peter Müller. Formal Foundations for Translational Separation Logic Verifiers. Proceedings of
the ACM on Programming Languages, 9(POPL):20:569–20:599, January 2025. doi:10.1145/
3704856.

17 Xavier Denis, Jacques-Henri Jourdan, and Claude Marché. Creusot: A Foundry for the De-
ductive Verification of Rust Programs. In Adrian Riesco and Min Zhang, editors, Formal
Methods and Software Engineering, pages 90–105, Berlin, Germany, 2022. Springer International
Publishing. doi:10.1007/978-3-031-17244-1_6.

18 Jean-Christophe Filliâtre. One Logic to Use Them All. In Maria Paola Bonacina, editor,
Automated Deduction – CADE-24, pages 1–20, Lake Placid, New York, 2013. Springer.
doi:10.1007/978-3-642-38574-2_1.

19 Quentin Garchery. A Framework for Proof-carrying Logical Transformations. In Proceedings
of the Seventh Workshop on Proof eXchange for Theorem Proving, volume 336, pages 5–23,
Pittsburgh, United States, July 2021. doi:10.4204/EPTCS.336.2.

20 Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno, Michael L.
Roberts, Srinath Setty, and Brian Zill. IronFleet: Proving practical distributed systems
correct. In Proceedings of the 25th Symposium on Operating Systems Principles, pages 1–
17, Monterey, California, USA, October 2015. Association for Computing Machinery. doi:
10.1145/2815400.2815428.

21 Paolo Herms. Certification of a Tool Chain for Deductive Program Verification. PhD thesis,
Université Paris Sud - Paris XI, January 2013.

22 Bart Jacobs, Jan Smans, Pieter Philippaerts, Frédéric Vogels, Willem Penninckx, and Frank
Piessens. VeriFast: A Powerful, Sound, Predictable, Fast Verifier for C and Java. In
Mihaela Bobaru, Klaus Havelund, Gerard J. Holzmann, and Rajeev Joshi, editors, NASA
Formal Methods, pages 41–55, Pasadena, California, USA, 2011. Springer. doi:10.1007/
978-3-642-20398-5_4.

23 Bart Jacobs, Frédéric Vogels, and Frank Piessens. Featherweight VeriFast. Logical Methods in
Computer Science, Volume 11, Issue 3, September 2015. doi:10.2168/LMCS-11(3:19)2015.

24 Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski.
Frama-C: A software analysis perspective. Formal Aspects of Computing, 27(3):573–609, May
2015. doi:10.1007/s00165-014-0326-7.

25 Ramana Kumar, Magnus O. Myreen, Michael Norrish, and Scott Owens. CakeML: A verified
implementation of ML. ACM SIGPLAN Notices, 49(1):179–191, January 2014. doi:10.1145/
2578855.2535841.

26 Alain Laville. Implementation of lazy pattern matching algorithms. In H. Ganzinger, editor,
ESOP ’88, pages 298–316, Nancy, France, 1988. Springer. doi:10.1007/3-540-19027-9_20.

27 Fabrice Le Fessant and Luc Maranget. Optimizing pattern matching. In Proceedings of the Sixth
ACM SIGPLAN International Conference on Functional Programming, pages 26–37, Florence,
Italy, October 2001. Association for Computing Machinery. doi:10.1145/507635.507641.

28 K. Rustan M. Leino. Dafny: An Automatic Program Verifier for Functional Correctness.
In Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial
Intelligence, and Reasoning, pages 348–370, Dakar, Senegal, 2010. Springer. doi:10.1007/
978-3-642-17511-4_20.

29 Alessandro Maissen. Adding Algebraic Data Types to a Verification Language. Technical
report, ETH Zurich, April 2022.

30 Luc Maranget. Compiling lazy pattern matching. In Proceedings of the 1992 ACM Conference
on LISP and Functional Programming, LFP ’92, pages 21–31, San Francisco, USA, January
1992. Association for Computing Machinery. doi:10.1145/141471.141499.

31 Luc Maranget. Warnings for pattern matching. Journal of Functional Programming, 17(3):387–
421, May 2007. doi:10.1017/S0956796807006223.

ITP 2025

https://doi.org/10.1145/3704856
https://doi.org/10.1145/3704856
https://doi.org/10.1007/978-3-031-17244-1_6
https://doi.org/10.1007/978-3-642-38574-2_1
https://doi.org/10.4204/EPTCS.336.2
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1145/2815400.2815428
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.1007/978-3-642-20398-5_4
https://doi.org/10.2168/LMCS-11(3:19)2015
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1145/2578855.2535841
https://doi.org/10.1007/3-540-19027-9_20
https://doi.org/10.1145/507635.507641
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1007/978-3-642-17511-4_20
https://doi.org/10.1145/141471.141499
https://doi.org/10.1017/S0956796807006223

5:20 A Mechanized First-Order Theory of Algebraic Data Types with Pattern Matching

32 Luc Maranget. Compiling pattern matching to good decision trees. In Proceedings of the 2008
ACM SIGPLAN Workshop on ML, ML ’08, pages 35–46, Victoria, British Columbia, Canada,
September 2008. Association for Computing Machinery. doi:10.1145/1411304.1411311.

33 Per Martin-Löf. Constructive Mathematics and Computer Programming. In L. Jonathan
Cohen, Jerzy Łoś, Helmut Pfeiffer, and Klaus-Peter Podewski, editors, Studies in Logic and
the Foundations of Mathematics, volume 104 of Logic, Methodology and Philosophy of Science
VI, pages 153–175. Elsevier, January 1982. doi:10.1016/S0049-237X(09)70189-2.

34 Peter Müller, Malte Schwerhoff, and Alexander J. Summers. Viper: A Verification Infrastruc-
ture for Permission-Based Reasoning. In Barbara Jobstmann and K. Rustan M. Leino, editors,
Verification, Model Checking, and Abstract Interpretation, pages 41–62, St Petersburg, Florida,
USA, 2016. Springer. doi:10.1007/978-3-662-49122-5_2.

35 Gaurav Parthasarathy, Thibault Dardinier, Benjamin Bonneau, Peter Müller, and Alexander J.
Summers. Towards Trustworthy Automated Program Verifiers: Formally Validating Transla-
tions into an Intermediate Verification Language. Proceedings of the ACM on Programming
Languages, 8(PLDI):208:1510–208:1534, June 2024. doi:10.1145/3656438.

36 Gaurav Parthasarathy, Peter Müller, and Alexander J. Summers. Formally Validating a
Practical Verification Condition Generator. In Alexandra Silva and K. Rustan M. Leino,
editors, Computer Aided Verification, pages 704–727. Springer International Publishing, 2021.
doi:10.1007/978-3-030-81688-9_33.

37 João C. Pereira, Tobias Klenze, Sofia Giampietro, Markus Limbeck, Dionysios Spiliopoulos,
Felix A. Wolf, Marco Eilers, Christoph Sprenger, David Basin, Peter Müller, and Adrian
Perrig. Protocols to Code: Formal Verification of a Next-Generation Internet Router, May
2024. doi:10.48550/arXiv.2405.06074.

38 Amar Shah, Federico Mora, and Sanjit A. Seshia. An Eager Satisfiability Modulo Theories
Solver for Algebraic Datatypes. Proceedings of the AAAI Conference on Artificial Intelligence,
38(8):8099–8107, March 2024. doi:10.1609/aaai.v38i8.28649.

39 Matthieu Sozeau, Yannick Forster, Meven Lennon-Bertrand, Jakob Nielsen, Nicolas Tabareau,
and Théo Winterhalter. Correct and Complete Type Checking and Certified Erasure for Coq,
in Coq. Journal of the ACM, 72(1):8:1–8:74, January 2025. doi:10.1145/3706056.

40 Matthieu Sozeau and Cyprien Mangin. Equations reloaded: High-level dependently-typed
functional programming and proving in Coq. Proceedings of the ACM on Programming
Languages, 3(ICFP):86:1–86:29, July 2019. doi:10.1145/3341690.

41 Mohit Tekriwal, Andrew W. Appel, Ariel E. Kellison, David Bindel, and Jean-Baptiste
Jeannin. Verified Correctness, Accuracy, and Convergence of a Stationary Iterative Linear
Solver: Jacobi Method. In Intelligent Computer Mathematics: 16th International Conference,
CICM 2023, pages 206–221, Cambridge, UK, September 2023. Springer-Verlag. doi:10.1007/
978-3-031-42753-4_14.

42 Thomas Tuerk, Magnus O. Myreen, and Ramana Kumar. Pattern Matches in HOL:. In
Christian Urban and Xingyuan Zhang, editors, Interactive Theorem Proving, pages 453–468,
Nanjing, China, 2015. Springer International Publishing. doi:10.1007/978-3-319-22102-1_
30.

43 Felix A. Wolf, Linard Arquint, Martin Clochard, Wytse Oortwijn, João C. Pereira, and Peter
Müller. Gobra: Modular Specification and Verification of Go Programs. In Alexandra Silva
and K. Rustan M. Leino, editors, Computer Aided Verification, pages 367–379. Springer
International Publishing, 2021. doi:10.1007/978-3-030-81685-8_17.

https://doi.org/10.1145/1411304.1411311
https://doi.org/10.1016/S0049-237X(09)70189-2
https://doi.org/10.1007/978-3-662-49122-5_2
https://doi.org/10.1145/3656438
https://doi.org/10.1007/978-3-030-81688-9_33
https://doi.org/10.48550/arXiv.2405.06074
https://doi.org/10.1609/aaai.v38i8.28649
https://doi.org/10.1145/3706056
https://doi.org/10.1145/3341690
https://doi.org/10.1007/978-3-031-42753-4_14
https://doi.org/10.1007/978-3-031-42753-4_14
https://doi.org/10.1007/978-3-319-22102-1_30
https://doi.org/10.1007/978-3-319-22102-1_30
https://doi.org/10.1007/978-3-030-81685-8_17

	1 Introduction
	2 Background
	3 An Algorithm for Compiling Pattern Matches
	4 Termination of compile
	5 Soundness of compile
	6 Pattern Matching Exhaustiveness
	7 Robustness of compile
	8 A Sound First-Order Axiomatization of ADTs
	8.1 Axiomatizing ADTs
	8.2 Proving Soundness
	8.3 Defining the Interpretation
	8.4 Compiling and Eliminating Pattern Matches

	9 Discussion
	10 Related Work
	11 Conclusion

