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C O G N I T I V E  N E U R O S C I E N C E

Contrastive learning explains the emergence and 
function of visual category-selective regions
Jacob S. Prince1*, George A. Alvarez1, Talia Konkle1,2,3

Modular and distributed coding theories of category selectivity along the human ventral visual stream have long 
existed in tension. Here, we present a reconciling framework—contrastive coding—based on a series of analyses 
relating category selectivity within biological and artificial neural networks. We discover that, in models trained 
with contrastive self-supervised objectives over a rich natural image diet, category-selective tuning naturally 
emerges for faces, bodies, scenes, and words. Further, lesions of these model units lead to selective, dissociable 
recognition deficits, highlighting their distinct functional roles in information processing. Finally, these pre-identified 
units can predict neural responses in all corresponding face-, scene-, body-, and word-selective regions of human 
visual cortex, under a highly constrained sparse positive encoding procedure. The success of this single model 
indicates that brain-like functional specialization can emerge without category-specific learning pressures, as the 
system learns to untangle rich image content. Contrastive coding, therefore, provides a unifying account of object 
category emergence and representation in the human brain.

INTRODUCTION
Our ability to see and recognize objects, people, and the broader 
environment around us is supported by representations along the 
ventral visual stream (1–6). Foundational discoveries have charted 
regions with category-selective tuning, evident for a few categories: 
faces (7–10), bodies (11, 12), scenes (13–15), and visually presented 
words (16–18). That is, recorded responses in single units and voxels 
respond systematically more on average to the neurons’ preferred 
category (e.g., images of faces), with only weak responses to other 
categories. The properties of these regions and the pressures guiding 
their emergence has been the subject of intense study for decades 
(19–31). What is the nature of the tuning in these regions that sup-
ports the selective responses across images? In addition, are these 
category-selective regions better understood distinctly from each 
other and the representation of other categories, or as interrelated 
regions that are part of a broader visual representational scheme?

A prominent view of these brain regions is as distinctive, inde-
pendent, functional modules (3, 19, 32–36). Category-selective re-
gions only exist for a few domains and are thus hypothesized to be 
different from other visual categories in some important way. For 
example, for faces, bodies, and scenes, these categories may have 
particular ecological relevance and may emerge through built-in 
specialized architectures, supporting domain-specialized tasks such 
as face individuation (20, 37–39). For the case of word selectivity, 
perhaps extensive visual training and a need to interface with long-
range connectivity to language regions lead to the emergence of 
regions such as the visual word-form area (40–42). Brain regions 
with selectivities for different categories are typically studied in 
depth by different communities and are assumed to have very 
different kinds of visual feature tuning from one another, related 
purely to their distinct domains (e.g., face-specialized, body-specialized, 
scene-specialized, and word-specialized). Some of the strongest 
evidence for the modularity of these regions comes from selective 

deficits following brain damage (43–50) or other forms of causal 
perturbation such as transcranial magnetic stimulation (51–53), 
electrical microstimulation (54), and pharmacological inactivation 
(55); see (56) for review. In this way, modular frameworks specify a 
“labeled-line” type of visual representation (57), where, for example, 
a neuron’s highly selective firing rates to face images are a direct in-
dicator of its functional role in face processing.

However, modular accounts are restricted to explaining the rep-
resentation of a few specific visual categories. Empirical evidence 
shows that not all visual categories have clustered areas of highly 
selective tuning along the ventral stream (58–60), leaving unspeci-
fied how all other categories are represented. Distributed coding ac-
counts are the prominent alternative framework, where the relevant 
category information is assumed to be encoded in the activation 
pattern of the large-scale neural population (2, 61–63). Under this 
view, across the population of neurons, both high and low responses 
are critical to signal category information (much like how both 1’s 
and 0’s encode information in a binary code). These accounts some-
times assume the underlying visual feature tuning of units in 
object-responsive cortex is either fairly generic [e.g., geons or other 
building-block–like contours that apply to many categories to some 
degree; (64)] or that the tuning of any one unit may not be particu-
larly interpretable without the context of the full population code 
(5). This latter perspective is a key element in untangling theories, 
which tend to de-emphasize the interpretation of the response prop-
erties of local units or features, in favor of studying the broader ge-
ometry of the population (65). The strongest empirical evidence for 
a distributed representational account comes from the pervasive 
category information present across regions of high-level visual cor-
tex (2, 6, 60, 62, 66–68). For example, both face and non-face catego-
ries can be decoded from both face-selective regions and non-face 
selective regions (2, 69). However, it is debated whether this exten-
sive decodable information is all functionally relevant for recogni-
tion behavior (70–73).

These modular and distributed representational accounts have 
continued to develop in parallel, each contributing to a set of em-
pirical puzzle pieces that constrain our understanding of category 
selectivity along ventral visual cortex. To date, it remains unclear 
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the extent to which these theories are compatible or opposed. For 
example, one possibility is that there may simply be two modes of 
representation in the visual system, where a few special categories 
have more domain-specialized tuning and localist readout schemes, 
while all others have more generic tuning with accompanying dis-
tributed readout schemes. However, further pieces of empirical and 
computational evidence hint at a deeper unifying relationship be-
tween categories with selective regions and the representation of 
other objects—for example, based on their systematic topographic 
relationships on the cortical surface (23, 25, 28, 74–76). Along these 
lines, here, we offer an updated account of category-selective re-
gions, which provides specific insight into both the nature of their 
feature tuning and their function in the context of information 
readout.

To do so, we leverage a particular kind of deep convolutional 
neural network model (DNN) to operationalize this unifying per-
spective. Specifically, we used self-supervised instance-level contras-
tive learning objectives (77, 78) to train a standard DNN architecture 
over a large, rich set of natural images (79, 80). The contrastive 
learning objective does not prioritize any special categories over 
other object categories, nor does it even presuppose object catego-
ries at all. Instead, these self-supervised contrastive models learn to 
represent every experienced image distinctly from every other im-
age in an embedding space [while being similar to itself under some 
transformations; see also (81–84)]. As a consequence, these models 
develop emergent category-level representations: Images with simi-
lar visual characteristics tend to come from similar categories and 
thus are naturally routed through the hierarchy to nearby locations 
in the representational space.

A key property of contrastive objectives, relevant for the work 
here, is that the nature of the learned features is intrinsically diet-
dependent. This notion of “diet” refers to the range of content de-
picted in the input samples that ultimately govern a model’s learned 
features. For example, training a contrastive model that experiences 
only images of faces will yield feature tuning that aims to discrimi-
nate among face image content [e.g., (85, 86)]. Training the model 
over a richer visual diet, like the ImageNet dataset used here, will 
provide learned features that aim to discriminate among all 1.2 million 
images [e.g., (81)]. The set of training images in contrastive models 
is critical for determining the nature of the learned feature tuning. 
An important related point is that the set of units within a layer, as a 
whole, must jointly represent the entire input space. Therefore, the 
feature tuning of any single unit is influenced not just by the learn-
ing diet but also by the tuning of other units in the same layer. In 
these ways, the feature tuning of each unit in contrastive networks is 
meaningfully linked to both the scope of visual input and the tuning 
of other units within and across layers.

Leveraging these contrastive self-supervised models, the aim of 
the present work is to provide a possible computational explanation 
of the emergence and function of category-selective tuning, with pure-
ly domain-general learning constraints. We show that a contrastive 
DNN model has emergent category-selective units, which lead to se-
lective and dissociable recognition deficits when lesioned, and which 
can predict the high-dimensional response structure of diverse category- 
selective regions in the human brain. We further introduce a sparse 
positive-weighted voxel encoding scheme, which reflects a more con-
strained linking procedure between biological and artificial neural 
network responses, under the hypothesis that the tuning directions of 
single model units (and neurons) are key for signaling image content. 

Broadly, we argue that category-selective regions are facets of a rich, 
diet-dependent, contrastive feature space. To propose a mechanistic 
account for these signatures, we introduce the concept of positive 
routing through hierarchical population codes, where units with dif-
ferent tuning serve to channel different content through successive 
stages into an increasingly untangled latent space.

RESULTS
Category-selective tuning emerges in models without 
category-specialized mechanisms
We first examined whether a contrastive DNN trained without any 
category-specific architectural motifs or task objectives would show 
emergent category-selective signatures that mirror those observed 
in the human ventral visual stream. Note that our use of the term 
“category selectivity” throughout is specifically referring to the cat-
egories (domains) of faces, bodies, scenes, and visual word forms, 
following the well-characterized category-selective regions of the 
ventral stream.

We used a popular self-supervised learning objective [Barlow 
Twins; (77)] to train a standard deep convolutional neural network 
model architecture [AlexNet; (79)] using the ImageNet dataset (80). 
Barlow Twins attempts to minimize the difference in latent space 
between different augmentations of an image, outputting a high-
dimensional embedding of maximally independent dimensions. 
Although the Barlow Twins algorithm is sometimes described as 
energy or covariance based rather than contrastive (87), it effective-
ly functions as contrastive with respect to encoding dimensions, 
yielding representations that distinguish between instances [see Ma-
terials and Methods; (88, 89)].

To test for emergent category-selective tuning in the self-supervised 
model, we designed procedures to mirror the localization of category-
selective regions in the human ventral visual stream in typical func-
tional magnetic resonance imaging (fMRI) experiments. Specifically, 
we recorded the activations of every model unit in response to the 
same localizer image set (90) used to identify category-selective re-
gions in the Natural Scenes Dataset (NSD) (91) and then performed a 
statistical contrast to identify nonoverlapping sets of model units that 
were selective for faces, bodies, scenes, and words (Fig. 1A; see Materi-
als and Methods). This procedure was run separately for every layer of 
the model, treating pre- and post-rectified activations as distinct com-
putational stages.

With this localizer procedure, we were able to identify small 
groups of category-selective units in each layer with either robust 
face selectivity, place selectivity, body selectivity, or word selec-
tivity [false discovery rate (FDR) corrected, P < 0.05; mean unit 
t value for faces = 9.29 ± 4.47 SD; scenes = 8.86 ± 3.34; bodies = 
7.38 ± 2.17; and words = 8.12 ± 2.74]. The overall proportions 
of selective units tended to significantly increase across the model 
hierarchy [Spearman correlation coefficient (r) = 0.81 between layer 
index and total proportion of selective units; see figs.  S1A and 
S3A]. The relative strengths of these units’ selectivities also in-
creased significantly as a function of depth (Spearman r =  0.92 
between layer index and the mean localizer t value within all se-
lective units; see fig. S2A). Further, note that, even in a single layer 
(e.g., fc6), it was possible to find different units with selectivity 
for each domain (Fig. 1B). Thus, distinct category-selective units 
emerge in the context of a single population code, as operation-
alized by a hierarchical layer.
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We next tested whether the units’ selectivities generalized to an 
alternate standard localizer image set. This independent probe set 
consisted of 400 total images of faces, bodies, scenes, words, and ob-
jects and differed in both low-level image statistics (e.g., color instead 
of grayscale) and high-level image content (e.g., containing diverse 
object types instead of only cars and guitars in the “object” category). 
We observed that the selective units maintained their high responses 
to preferred stimuli (see Fig. 1C and fig. S3B), suggesting that their 
category-selective tuning is robust and not dependent on a specific 
probe image set, as is also the case in the human brain. Thus, emergent 
category-selective tuning is found in a self-supervised DNN model.

Do these signatures of category selectivity depend strongly on the 
specifics of the localizer method? We tested an alternate procedure, 
this time identifying units whose mean response to the preferred cat-
egory is at least two times higher than the mean response to each of 
the non-preferred categories (92). In some layers, this 2:1 approach 
proved slightly more conservative than the t test method, while in oth-
ers, it was more lenient (fig. S3A). However, the selective units arising 
from these two procedures showed highly similar mean activation 
profiles when probed with independent localizer images (fig. S3B).

Does category-selective tuning emerge in models trained with 
other related objectives? In an AlexNet model trained with a different 
contrastive learning objective [instance-prototype contrastive learn-
ing (IPCL); (78); see Materials and Methods], we again observed 

units across the model with robust selective tuning for each domain, 
although fewer units selective for bodies (fig. S1B). Further, an AlexNet 
model trained using a supervised 1000-way ImageNet classification 
objective also showed emergent category-selective tuning for the do-
mains of interest (fig. S1C). Note that the 1000-way supervised objec-
tive is also richly contrastive in nature (81, 93); its goal is to learn a 
highly discriminative feature space that can distinguish among many 
different subordinate categories. However, here, we place particular 
focus on the results of self-supervised contrastive models, for their 
broader capacity to learn over arbitrary visual inputs without labels, 
and their added inferential purchase: With self-supervised contrastive 
models, we can definitively state that no category-level objectives are 
required for category-selective tuning to emerge.

Finally, because prior reports have indicated that units with face-
selective tuning can emerge even in untrained networks (94), we 
also localized category-selective units in a randomly initialized 
AlexNet architecture (Fig. 1B and fig. S1D). We found that there 
were substantially fewer than in trained networks (e.g., 14.6% versus 
35.7% of total layer fc6 units selective for either faces, bodies, scenes, 
or words in untrained versus trained models), the strength of these 
units’ selectivities was far weaker (e.g., fc6 mean t value across do-
mains = 6.6 versus 13.4; fig. S2A), and their response properties did 
not generalize to the independent probe set (fig. S2B). These results 
jointly suggest that training (i.e., visual experience) is necessary for 

A C

B

Fig. 1. Emergent category selectivity in a self-supervised DNN. (A) Localizer procedure for identifying category-selective units in the self-supervised model. (B) Pie 
charts summarize proportions of model units selective for faces, bodies, objects, scenes, and words in model layers conv1 to conv5 and fc6 (enlarged). (C) Responses in 
model layer fc6 to the color probe set of face, body, scene, word, and object stimuli. n = 80 images per domain. Layer fc6 units (y axis) are sorted according to their selec-
tivities as defined using the independent localizer stimuli. The 400-dimensional activation profile of each unit is z-scored for purposes of visualization. Images containing 
identifiable human faces are masked.
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DNN features to develop reliable selectivities for these high-level 
domains of interest.

In summary, the fMRI-inspired localizer procedure was able to 
identify category-selective DNN units in self-supervised contrastive 
models. These results demonstrate that units with category-selective 
tuning to faces, bodies, scenes, and words can emerge as a general 
consequence of contrastive learning over a rich natural image diet 
(as reflected in the ImageNet stimulus set). We emphasize that no 
categorical, semantic, or other domain-specific learning pressures 
were involved in training these models.

Lesioning category-selective units yields dissociable, 
predictable deficits
Next, we examined the functional role these category-selective DNN 
units have for image recognition. Neurophysiological evidence has 
shown that dissociable recognition deficits arise from perturbation 
of category-selective areas along the ventral visual stream (45, 53, 54), 
supporting the idea that they reflect distinct functional modules 
[e.g., (3, 7)]. If these selective units are also acting as functional 
modules within the contrastive DNN, then lesioning the units with 
face selectivity (i.e., setting their activations to 0) should yield a very 
different profile of recognition deficits than lesioning the units with 
scene selectivity. Alternatively, these category-selective units may be 
tuned arbitrarily in the layer’s feature space and show no clear func-
tional dissociations with respect to the model’s recognition behavior 
when lesioned.

To explore the impact of lesioning category-selective model units, 
we first needed to instantiate a readout mechanism to measure the 
object recognition capacity of the DNN. Note that the self-supervised 
model is trained only to learn features that discriminate any image 
view from any other view. How is category information read out 
from this rich visual feature space? Traditional practices and theo-
retical frameworks have focused on linear separability of object 
classes across the full population code (i.e., in the penultimate lay-
er), which is assessed by learning a set of fully connected readout 
weights for each category (a distributed readout scheme). However, 
here, we constrained this procedure by adding sparsity regulariza-
tion (L1 penalty) to the readout weights. This approach operational-
izes a view where category information can be accessed without 
requiring connections between every neuron in the population and 
each category node. We offer that this readout method provides a 
more theoretically constrained and biologically plausible connectiv-
ity motif (see Discussion). Note that all results below hold with the 
standard, more flexible fully connected readout method.

This regularized linear readout function was trained for 10 ep-
ochs on top of the penultimate layer embedding (relu7; frozen back-
bone), and we then measured the baseline recognition accuracy for 
each of the 1000 ImageNet categories (see Fig. 2A). Averaging across 
categories, the mean top-5 classification accuracy was 61.5 ± 20.3% 
SD. The learned readout weights were extremely sparse (85.4% of 
weights with absolute magnitude < 0.001 versus 5.4% from unreg-
ularized readout with the same hyperparameters), with only a negli-
gible resulting drop in top-5 accuracy of −0.95% compared to 
unregularized readout.

We next carried out the main lesion experiments. Specifically, we 
lesioned all of the face-selective units across the model’s relu layers 
(or body-selective units, or scene-selective units, etc.) and measured 
the change in recognition accuracy for each ImageNet category after 
each type of lesion.

To what degree did these distinct lesions produce dissociable 
deficits? To answer this question, we computed the 1000-dimensional 
cost profiles for each lesion as the difference between unlesioned 
and lesioned top-5 accuracies for each category. Then, we compared 
these cost profiles between all pairs of lesions. The cost profiles were 
broadly unrelated and, in some cases, negatively related: For exam-
ple, the face-versus-scene cost profile correlation was r = −0.21, the 
face-versus-word correlation was r = −0.08, and the average corre-
lation between domain pairs was r = 0.02 ± 0.13 SD (see fig. S5, B 
and C). Thus, it is clear that these different groups of category-
selective units have dissociable causal involvement in the recogni-
tion of different ImageNet categories.

Which ImageNet categories suffered the greatest recognition defi-
cits for each type of lesion (Fig. 2B)? It was not obvious a priori which 
categories would be most affected by each lesion type, especially as 
ImageNet lacks explicit “face,” “body,” “scene,” and “word” categories, 
and the ImageNet database was not used in the unit-localization pro-
cedure in any way. We observed that lesions to face-selective units led 
to the strongest deficits for several dog breed categories, as well as 
object categories containing people, such as “seat belt” and “cradle”; 
body-selective unit lesions led to the strongest deficits for animals 
and articles of clothing; scene-selective unit lesions led to deficits 
for certain place categories and large object categories; and word-
selective unit lesions led to deficits in recognizing insect categories, as 
well as objects such as “padlock,” “wallet,” and “dust jacket” (see fig. S4 
for detailed summary of the most affected categories per lesion). To 
quantify the strength and selectivity of these deficits, we measured 
the degree of impairment for the top 10 categories most affected by 
each lesion type. We used a cross-validation procedure (see Materials 
and Methods) to guard against circularity, ensuring that separate im-
ages were used to first identify the sensitive categories and then to 
quantify their lesioning deficits. We observed striking multi-way dis-
sociations; for example, the top 10 categories most affected by lesion-
ing face units (mean impact: −53.2% top-5 accuracy) were broadly 
unaffected by lesions to scene-units (mean impact: +2.4% top-5 ac-
curacy), with similar trends for the other domains (Fig.  2C and 
fig. S5A). These analyses underscore the distinct functional roles that 
these selective units play within the deep neural network.

The observed impairments bear promising relation to existing 
findings. For example, fMRI studies have shown that animal images 
elicit a moderate-to-high response in face-selective regions, and that 
large object categories elicit moderate-to-high responses in scene-
selective regions (3, 27, 95). Intriguingly, the occipital word-form 
area has also been shown to exhibit stronger responses to insects 
compared to other object classes like chairs or cars (96). The fact 
that our word-unit lesions highlight insect categories may simply 
be due to the relative scarcity of letter and word content within 
ImageNet. However, the link between our results and those in (96) 
hints at another possibility: Early experience with thin-lined objects 
(such as insects) could act as a scaffold for the later formation of let-
ter and word representations. These results set the stage for deeper 
inquiry into whether causal perturbations of category-selective re-
gions in biological visual system show similar profiles of graded 
deficits over these images, or, whether they are more specific to a few 
privileged categories.

Is there a way to predict which ImageNet categories will be most 
affected by each lesion? We hypothesized that if a category drives a 
set of units substantially during normal operation, then its recogni-
tion should be substantially impaired when those units are lesioned. 
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That is, we hypothesized that higher activation would be a reliable 
indicator of greater functional involvement within the network. To 
test this idea, we examined whether the ImageNet categories that 
most activated the face-selective units were also the hardest to rec-
ognize after lesioning (and similarly for all the other domains). We 
first calculated the mean activation for each of the 1000 ImageNet 
categories without lesions, by averaging the activations of the 50 
validation set images per category within a given group of selective 
units. Then, after lesioning those units, we took each category and 
computed how much its recognition accuracy (again assessed using 
the validation set) changed due to the lesion. The relationship be-
tween these changes in accuracy and the pre-lesion activity levels 
is plotted for each lesion type in Fig. 2D. We observed consistent 
negative correlations (mean r = −0.57 ± 0.08 SD)—the more an 
ImageNet category activated a group of category-selective units, the 
more difficult it was to recognize that category after lesioning. This 
effect held across layers; see fig. S6A. The strength and consistency 

of this relationship implies that positive activation magnitude is a 
reasonably reliable indicator of functional relevance.

As a key control analysis, we tested the impact of lesioning ran-
domized groups of units. The entire procedure was repeated, this time 
targeting randomized indices of units that were numerically matched 
to the size of category-selective subsets in each relu layer. In this re-
gime, we no longer observed meaningful variation in the degree of 
recognition deficits across categories. As a result, the correlations 
between activation magnitude and subsequent deficits after lesion-
ing dropped to near zero (fig.  S6B). Thus, systematic deficits for 
some categories over others only occur when lesioning cohesive sets 
of similarly tuned units across the layers.

We also verified that these relationships between activation and 
recognition deficit were not tied to the specifics of our localizer and 
lesioning methods. We repeated the analysis using face-selective 
units chosen via the 2:1 response ratio method, finding equally 
strong relationships between unit activations and lesion impact 

A B

C

D

Fig. 2. Impact of lesioning category-selective units on object recognition behavior. (A) Procedure for measuring object recognition deficits from lesions to category-
selective units in the self-supervised model. Baseline top-5 recognition accuracy is assessed via sparse readout from relu7 features. Recognition deficits reflect the drop in 
categorization accuracy following lesions to category-selective units from each domain. (B) Top four categories with greatest recognition deficits are shown for lesions to 
face-, scene-, body-, and word-selective units. Plotted exemplars are chosen from the ImageNet validation set and labeled with drop in top-5 accuracy between baseline 
and lesioned validation passes. (C) Bar graphs show the mean (± SEM) change in top-5 accuracy over the top 10 categories most affected by lesions to the selective units 
of each domain. (D) Relationship between category activation and lesioning cost for face-, body-, scene-, and word-selective units. Dots reflect the 1000 ImageNet catego-
ries. The x axis shows mean activation levels for each category (layer relu6 plotted) from the unlesioned model. The y axis shows change in top-5 accuracy after lesioning. 
Colored points reflect the top 10 categories most affected by lesions to each domain. Y values are jittered (values drawn from normal distribution; mean, 0; SD, 0.5%) to 
enhance visibility of the results. Photo credit: Images in (B) are samples from the public ImageNet validation set, and those containing human faces are masked.
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(Pearson r = −0.61 for both localizer methods; fig. S7, A and B). 
Similar trends were observed when lesioning just the top 1% of most 
face-selective units from each relu layer (r = −0.54; fig. S7C) and 
when targeting only the face-selective units of layer relu6 (r = −0.60; 
fig. S7D). Last, to more directly test for a causal link between selec-
tive units across the model hierarchy, we silenced only face-selective 
units from layers relu1 through relu5 (leaving subsequent layers un-
perturbed). Then, we measured the activation levels to the color 
probe localizer images in layer relu6 and observed a strong decrease 
in activation to face images relative to the other categories (fig. S8A). 
The same trends held for the other domains (fig. S8, B to D), sug-
gesting that these similarly tuned groups of units have a meaningful 
functional link across the DNN layers. Overall, these analyses show 
that predictable recognition deficits arise from targeting groups of 
similarly tuned units, regardless of their specific locations within 
the model.

These lesion experiments have two key implications. First, these 
results demonstrate that functionally dissociable deficits can occur 
even with a domain-general contrastive objective, and within a gen-
eral architecture (with no prespecified modular pathways or branches). 
Our results imply that, during training, the model weights effective-
ly form separable routes through the layer hierarchy, directing dif-
ferent kinds of image content to separable locations in the final 
embedding space. Second, these analyses reveal a link between a 
unit’s activation magnitude and its functional relevance in recogni-
tion behavior. We hypothesize that this is partially a consequence of 
the relu nonlinearity, where information propagates from layer to 
layer through positive activation only.

Linking model and brain tuning with sparse positive 
encoding constraints
All experiments conducted so far have focused on a DNN model, 
identifying units with category-selective tuning, and charting their 
dissociable functional roles. How similar are the representations in 
these category-selective model units to the category-selective regions 
of the brain? We next test the hypothesis that these pre-identified 
sets of model units from a single contrastive model can capture the 

response profiles and representational geometries of the classic category- 
selective regions. This departs from many prior approaches, which 
typically focus on only one category (e.g., only faces or only scenes), 
often using category-specialized feature models [e.g., models that 
apply only to faces; (97–100)], and, from approaches that train sepa-
rate end-to-end DNN models to predict each brain region of interest 
(ROI) independently (30). Instead, here we test the hypothesis that the 
nature of the feature tuning across all category-selective regions can be 
understood jointly, within a single model, as a consequence of contras-
tive feature learning over a rich image diet, in order to distinguish all 
kinds of visual content.

While most standard approaches model each brain voxel as a linear 
combination of all features from a DNN layer, we instead fit encoding 
models for each category-selective region using only the subsets of 
DNN units with corresponding selectivity (e.g., only face-selective units 
are used for modeling face-selective regions; Fig. 3A). Further, we im-
pose a second constraint on the encoding procedure, requiring that all 
learned encoding weights be sparse and positive (Fig. 3B). Thus, for ex-
ample, face-selective voxels can only be fit using a minimal positively 
weighted combination of face-selective model units. These added 
forms of regularization strongly enhance the interpretability of the link-
ing function (101).

We introduce the sparse positivity constraint on the encoding 
weights to help ensure that the learned tuning directions between 
model units and voxels are relatively aligned and in correspondence with 
each other. Positivity is important, as for example, scene-selective 
and face-selective voxels often have negatively correlated response 
profiles; standard linking procedures (e.g., linear regression) can ap-
ply negative weights to scene-selective DNN units to adequately 
model face-selective voxels (see figs. S11 and S12). Sparsity is also 
important, to pressure toward as close to a one-to-one alignment 
between the learned tuning in models and voxels/neurons as possi-
ble, and to reduce the amount of feature remixing that happens 
through the linking procedure. In a way, here we have already im-
plemented a hard sparsity constraint by restricting our voxel-wise 
encoding models to include only a small prespecified set of units 
from the layer. However, there are many face-selective voxels and 
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Fig. 3. Sparse positive-weighted encoding models of category-selective ROIs. (A) Schematic of the brain-model encoding procedure. DNN units and ROI surface 
vertices with corresponding selectivity are mapped to one-another via positive weighted linear regression, and weights are regularized to be sparse (L1 penalty). (B) Im-
pact of the positive weight constraint. In predicting a given brain vertex (e.g., from FFA, shaded red), DNN units with anticorrelated tuning directions to the target (e.g., 
from scene-selective units, dark green) cannot contribute to encoding fits.
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face-selective units, so the additional L1 regularization pushes for an 
even tighter alignment between voxel tuning and DNN units. To-
gether, these constraints help operationalize the underlying theory 
of the contrastive account, where the tuning directions of a DNN are 
meaningfully oriented in the population space, and correspond to 
the tuning evident across high-level visual cortex.

Category-selective units account for representational 
signatures of category-selective ROIs
For our encoding analyses, we used the open-source NSD (91), tar-
geting a set of 11 category-selective regions (fig. S9A). These include 
three face-selective areas: fusiform face area 1 (FFA-1), fusiform face 
area 2 (FFA-2), and the occipital face area (OFA); three body-
selective areas: extrastriate body area (EBA), fusiform body area 1 
(FBA-1), and fusiform body area 2 (FBA-2); two scene-selective 
areas: parahippocampal place area (PPA) and occipital place area 
(OPA); and, three regions selective for visual word forms (hereaf-
ter referred to as “word-selective” areas): visual word form area 1 
(VWFA-1), visual word form area 2 (VWFA-2), and the occipital 
word form area (OWFA). All analyses were performed separately for 
each individual subject. For each voxel in each region, we fit a regu-
larized (sparse positive-weighted) encoding model from the pre-
identified model units in each layer with corresponding selectivity, 
using data from 1000 training images. Using an independent set of 
1000 validation images, we then ran a within-subject cross-validation 
procedure to identify the most predictive layer (see Materials and 
Methods). Finally, we used these voxel-wise encoding models to 
generate predicted activations to a test set of 515 images that was 
shared across subjects (fig. S9B).

Our two key outcome measures were the correlation between the 
predicted and measured univariate response profiles (515 images) and 
multivariate representational dissimilarity matrices (RDMs; 132,355 
pairwise comparisons). Thus, NSD offers a substantially richer char-
acterization of item-level representational structure in each region 
than has previously been possible (although there are also clear limita-
tions of this test set; see Discussion).

Figure  4 shows results for a primary set of four ROIs (FFA-1, 
PPA, EBA, and VWFA-1) for both univariate response profiles and 
multivariate RDMs. We found that the face-, scene-, body-, and 
word-selective model units each accounted for substantial structure 
in their corresponding brain regions for both univariate responses 
(e.g., eight-subject mean best-layer r = 0.58 for FFA-1, r = 0.69 for 
PPA, r = 0.48 for EBA, and r = 0.28 for VWFA-1) as well as multi-
variate responses (e.g., eight-subject mean best-layer r = 0.47 for 
FFA-1, r = 0.46 for PPA, r = 0.45 for EBA, and r = 0.41 for VWFA-
1). Here, we plot the results from the best-fitting layer; however, we 
note that units from several mid-to-high layers achieved compara-
ble levels of prediction; these results are not highly dependent on the 
choice of one model layer (see figs. S11 and S12 for layer-wise results 
showing similar prediction outcomes across the full set of 11 ROIs; 
fig.  S13 for indices of the top-predicting layers). Further, these 
results hold in parallel analyses conducted in AlexNet trained on 
the IPCL objective, as well as on the category-supervised objective 
(fig. S10). Thus, the category-selective feature tuning that naturally 
emerges in a contrastive model is able to well predict the rich and 
graded brain response structure of all category-selective regions.

We also observe that the most predictive groups of DNN units 
are nearly always those with matched selectivity to the neural ROI 
(e.g., face-selective units predicting FFA and scene-selective units 

predicting PPA; figs. S11A and S12A). Critically, this alignment aris-
es only as a consequence of the sparse positive encoding procedure—
when repeating our analyses using unregularized linear regression, all 
domain-selective subsets are able to achieve reasonably high predic-
tion levels (figs. S11B and S12B). Thus, sparse positive regularization 
is necessary to preserve a meaningful analogy between model and 
brain tuning directions during the encoding procedure, by preventing 
the arbitrary reorientation of DNN tuning directions in modeling 
brain data (101).

Will any feature model be able to predict these brain data? We 
considered the category-selective units in untrained models, as well 
as two models of lower-level image statistics (GistPC and Gabor fea-
tures; see Materials and Methods). Across the 11 ROIs, these three 
feature models achieved substantially lower prediction levels than 
the contrastive DNN unit subsets for both univariate (paired t test of 
within-subject differences, 31 of 33 tests significant, Bonferroni cor-
rected P < 0.001) and multivariate comparisons (29 of 33 tests sig-
nificant). These simpler models accounted for virtually no structure 
of the brain region RDMs.

Finally, we tested whether a feature space designed specifically for 
face recognition might also show similar (or even better) emergent 
fits to face-selective brain regions. We trained an AlexNet model to 
perform supervised 3372-way face recognition using the VGGFace2 
dataset [(102); see Materials and Methods]. The later stages of this 
model can be understood as operationalizing a face-specialized fea-
ture space, with feature tuning optimized solely for face identity 
discrimination across variations in viewpoint, lighting, and expres-
sion. The trained VGGFace model achieved high accuracy at multi-
way face individuation [∼84% top-1 accuracy; linear support vector 
machine (SVM) trained on penultimate layer activations to held-out 
identities from the test set]. We used the sparse positive mapping 
procedure to fit encoding models from the full activation matrix 
of each layer to each subject’s face-selective voxels (FFA-1, FFA-2, 
and OFA).

The face-recognition model features were less predictive than the 
face-selective subsets of the contrastive model (FFA-1: mean, r = 0.32 
versus 0.58 for univariate prediction and r =  0.16 versus 0.47 for 
RDM prediction; the same trend held in FFA-2 and OFA: paired t 
test, statistically significant for all comparisons; Bonferroni corrected 
P < 0.0014; Fig. 4, A and B, red). This empirical result is consistent 
with other work comparing face-trained versus ImageNet-trained 
models (29, 78, 103, 104). Thus, not just any rich feature space can cap-
ture the representational structure of these regions—the face-selective 
tuning emerging in the contrastive feature space is both distinctive 
from other feature models and better for matching these brain data.

Overall, these results demonstrate that pre-identified unit sub-
sets from a single DNN model can predict the response structure of 
11 diverse category-selective regions, capturing both their univari-
ate tuning over hundreds of natural images and their multivariate 
similarity structure over hundreds of thousands of pairwise com-
parisons.

Visualizing the emergence of 
category-selective representation
This set of computational and empirical results offers a unifying ac-
count of category-selective regions for faces, bodies, scenes, and words, 
as distinct facets of an integrated population code. Self-supervised con-
trastive learning over a rich image diet naturally yields rich discrimina-
tive, diet-dependent features. These features are not “about” any one 
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category—the learning is entirely self-supervised and does not presup-
pose categories. Instead, the set of all features in a layer work together 
to differentiate all kinds of content. By implication, that model units 
learn robust face, body, scene, and word selectivity implies that these 
categories have image statistics that are particularly distinctive in the 
space of natural image views. Further, this tuning arises gradually across 
the hierarchical stages (fig. S1), effectively routing images from their 
(tangled) pixel-based representation to increasingly distinctive and sep-
arable parts of the population code.

To provide a graphical intuition for this progressive untangling 
of implicit category information, Fig. 5 traces the representational 
similarity of a small probe set of images from four categories, across 
several hierarchical processing stages of the contrastive model (conv1, 

conv3, conv5, and fc7; Fig. 5A; see Materials and Methods). Each 
dot reflects an image, where images that are far apart in each multi-
dimensional scaling (MDS) plot reflects the degree that they evoke 
more distinct activation patterns across the units in a layer. Early 
stages show a more “tangled” population code where images from 
different categories are intermixed, while later stages show clearer 
emergent separability of these categories.

Figure 5B aims to help convey how different category-selective 
tuning emerges within the same layer. The population code from the 
relu6 layer is plotted for a probe set of eight categories (105), along 
the first two principal components (PCs) derived from model re-
sponses to the ImageNet validation set. In this low-dimensional pro-
jection, images of faces, buildings, and bodies naturally have distinctive 

A

B

Fig. 4. Representational correspondence between model and brain. Encoding results for predicting univariate response profiles (A) and multivariate RDMs (B) are 
summarized for the eight NSD subjects (dots), for each DNN and low-level image statistic model. Plotted values reflect best-layer correlations, as defined using cross-
validation (see Materials and Methods). Shaded regions show the range of subject-specific noise ceilings computed over the data from each ROI. Significance is assessed 
using paired t tests over subject-wise prediction levels between the AlexNet Barlow Twins model and each other candidate model. Horizontal bars reflect significant ef-
fects favoring the Barlow Twins model; Bonferroni corrected, P < 0.001.
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unit activations from each other as evidenced by their separable 
clustering. We then took the pre-identified face, building, and object- 
selective model units (from the initial localizer procedure) and projected 
them into the PC space, indicated by arrows. This visualization helps 
clarify that units with particular tuning are key for enabling im-
ages of faces, bodies, or scenes to separate from all other images in 
the model’s representational space. Localizing these units with a 
statistical contrast (e.g., faces > objects) is akin to selecting units 
through a decision boundary in this PC space. These are illustrat-
ed with schematic dashed lines in the visualization, highlighting 
how category-selective units are different facets of this single, uni-
fied population code.

DISCUSSION
The category-selective regions of visual cortex and their relationship 
to each other and the surrounding occipitotemporal cortex (OTC) 
have been the subject of intense debate [e.g., (2, 3)]. Here, we present 
an updated computational-empirical account of category-selective 
tuning along the human ventral visual stream. We show that deep 
neural network models with contrastive objectives, trained over a rich 
image diet without any labels or category-specific pressures, naturally 
learn features with emergent category-selective tuning. Further, these 
emergent model features yield functionally dissociable deficits when 
lesioned, revealing that implicit modularization naturally arises from 
very general learning constraints. Finally, the category-selective fea-
ture tuning learned across these model units can predict the neural 

response structure of all corresponding category-selective regions to 
hundreds of natural images—e.g., predicting face-selective regions 
better than a model trained solely on face images. On the basis of 
these results, we present a unifying contrastive coding account of 
category selectivity in the brain, arguing that regions like FFA and 
PPA arise as an emergent consequence of contrastive learning over a 
rich natural image diet, where positive routing of information along 
a feature hierarchy implicitly untangles the categorical structure of 
visual input.

A contrastive coding alternative to modular and distributed 
coding frameworks
How are categories represented in the late stage of the ventral visual 
stream? Modular coding frameworks typically assume that regions 
tuned to faces, bodies, scenes, and words have distinct features, spe-
cialized for tasks within their specific domains, and that these tun-
ing properties are unrelated to those of other category-selective regions 
and the surrounding cortex (32). At the other extreme, distributed 
coding frameworks typically assume that the entire large-scale cor-
tical area is involved in coding for each category, where all regions 
contribute toward representing all categories through distributed 
patterns of activity (2). Here, drawing on our results, we present an 
alternative account where high-level category information is repre-
sented with a “contrastive code.” This alternative framework makes 
distinctive commitments regarding (i) the nature of the feature tun-
ing in selective regions and (ii) their functional involvement for 
reading out category information.

BA

Fig. 5. Low-dimensional projection of category-selective axes in a contrastive feature space. (A) Image trajectories through the Barlow Twins model hierarchy are 
assessed using a probe image set with 30 images from each of four categories (105). Each dot reflects the embedding of a single image within a given layer. Only layers 
conv1, conv3, conv5, and fc7 are included (left to right); each connected sequence of dots shows the hierarchical trajectory of a single image’s feature representations 
through these four layers in MDS space (see Materials and Methods). (B) Low-dimensional schematic of category-selective regions in two-dimensional PC space of layer 
relu6, computed using the ImageNet validation set (see Materials and Methods). Feature representations from the same set of probe stimuli as (A) are plotted in this PC 
space; each image is a dot. Four additional image categories from the same localizer set are plotted: bodies (pink), phones (yellow), cars (orange), and chairs (sky blue). 
Tuning vectors of the top 25 most selective units for faces (red), scenes (dark blue), and objects (light blue-gray) are projected into the PC space; arrows connect the origin 
of the space to the projection of each selective unit. Images containing identifiable human faces are masked.
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First, what does the contrastive coding framework offer about the 
nature of the tuning in high-level visual cortex? Our account of fea-
ture tuning in these regions draws on the principles of contrastive 
learning objectives, where the learned features are directly determined 
by the set of visual inputs that must be differentiated. By implication, 
because the feature tuning is necessarily dependent on the learning 
diet, the learned selectivities also reflect the scope of the visual input, 
even in the absence of category supervision. Learning contrastive fea-
tures from the ImageNet diet necessarily involves learning to distin-
guish finely among over 1 million images depicting a broad range of 
content. As these contrastive features become progressively more 
untangled over the hierarchy, they become increasingly selective for spe-
cific image distinctions. This allows us to identify units with category- 
selective tuning using the same category localization procedures 
applied in classic neuroimaging experiments. For instance, we dem-
onstrate that face-selective units “point to” a specific part of this high- 
level, contrastive feature space where face images cluster, distinct 
from the feature directions selective for scenes, bodies, and words. In 
this way, the precise nature of these contrastive features aligns more 
with distributed coding theories, because the tuning of any single re-
gion fundamentally depends on the tuning across the rest of the 
population, which collectively works to segregate and distinguish the 
entire range of visual input.

Second, what does the contrastive coding framework offer about 
how category information is read out of a contrastive feature space? 
Within distributed coding frameworks, the information is assumed 
to be spread across the entire population (like a bar code) and thus 
must be extracted through fully connected linear readout. In a con-
trastive space, however, although the features are part of a shared 
population code, we show that recognizing individual categories 
does not require fully connected readout. That is, our implementa-
tion of a sparse readout module for category recognition demon-
strates that connections to only a small subset of contrastive features 
can support recognition of any particular category. In this way, we 
propose that readout from a contrastive code aligns more closely 
with modular theories, as further demonstrated by the selective and 
dissociable deficits that arise when lesioning different units. In essence, 
only a critical subset of units are causally linked to the functional 
recognition of each category, and these relationships are predictable 
from high activation levels.

The success of sparse readout from a contrastive feature space 
has important theoretical implications. This result clarifies that a 
middle position between modular and distributed frameworks is 
actually possible, challenging the extreme inference that, because 
there cannot be a neuron for every category in the limit (the grand-
mother cell hypothesis), the code thus must be fully distributed and 
read out in a fully-connected manner. Further, from a biological 
plausibility perspective, sparse readout requires markedly fewer 
connections at the interface between a high-level visual feature bank 
and a cognitive categorical representation. Finally, theoretically, 
sparse-regularized readout offers an alternative, more constrained, 
measure of information evident in a population code than the cur-
rent standard of linear readout [(5, 106); see (107, 108) for review].

Implications of contrastive feature tuning and visual diet
Core to our theory is the idea that the tuning of category-selective 
neurons in the human brain is fundamentally tied to the statistics of 
visual experience. We leverage models trained on the ImageNet da-
tabase, which, while not aiming to be a representative sample of 

human visual experience, has enough scale and diversity for catego-
ry selectivity for faces, bodies, scenes, and words to emerge. Yet, 
there are subtle differences between the models and brain data that 
might stem from the image diet. For instance, human OTC has ex-
tensive areas dedicated to body representation (EBA), but our model 
develops very few units with emergent body selectivity, possibly be-
cause the ImageNet visual diet may lack the variety in body pose and 
social interactions needed to capture the full spectrum of body-
relevant features present in human OTC [e.g., (109–114)]. These 
points of divergence are now easier to study with the introduction of 
datasets like EcoSet (115) and SAYCam [infant head-cam data, 
(116)], which reflect more ecologically valid visual experiences, as 
well as controlled non-ecological image sets [e.g., with all faces 
blurred; (117)]. Broadly, this contrastive coding framework lays the 
groundwork to implement direct manipulations of image diet varia-
tion, keeping architecture and contrastive learning objective con-
stant, to identify which aspects of visual experience are critical to 
account the feature tuning found in high-level visual cortex (116, 
118–123). Identifying more ecologically relevant training diets may 
also support the discovery of previously unidentified selectivities 
and content distinctions within OTC, in a data-informed manner.

In the current study, we test a key visual diet manipulation, com-
paring the feature tuning in models that receive a diverse ImageNet 
diet versus models that only learn to discriminate face identities. We 
find that the responses of face-selective brain regions to natural im-
ages are better captured by models trained on a more varied image 
set [see also (29)]. However, here we have not directly tested wheth-
er brain response variation within face image sets is also better ac-
counted for by the features of the ImageNet-trained model. On one 
hand, some evidence suggests that this will not hold. For example, in 
studies of DNN recognition behavior, Dobs et al. (124) have shown 
that models trained only for supervised object categorization (where 
faces are one category among others) fail at fine-grained face recog-
nition; specific face-identity training is required to accurately clas-
sify individual identities [see also (125)]. Given these computational 
findings and considering that face discrimination is a presumed 
function of FFA, it is possible that models will require face-specific 
learning pressures to capture between-face response variation in 
face-selective brain regions.

On the other hand, we predict that contrastive learning over a diet 
encompassing both a variety of face identities and object classes should 
naturally learn features capable of discriminating all these inputs from 
one another—both differentiating faces from each other and faces from 
other objects—without needing additional face-specific learning pres-
sures. This remains an open empirical question. Further suggestive 
evidence comes from studies measuring neural responses to diverse 
face stimuli in face-selective regions and comparing the predictive ca-
pacity of different DNN models. For instance, Vinken et al. examined 
the responses of face-selective neurons in nonhuman primates to a 
large set of face (n = 447) and non-face object stimuli (n = 932), ob-
serving that responses were better predicted by models trained on 
ImageNet than by those trained solely on faces (104). Chang et  al. 
(126) observed a similar pattern when studying primate face patch re-
sponses to 2100 face images. Moreover, in analyzing groups of 
face-selective neurons recorded intracranially from 33 human 
patients, Grossman et al. (127) found that ImageNet features more 
closely matched brain RDMs than VGGFace features for stimulus sets 
containing only faces. Hence, outstanding questions persist regard-
ing (i) whether contrastive learning can achieve individual face 
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recognition without the need for further mechanisms and (ii) whether 
domain-general contrastive models can accurately fit brain responses 
of face-selective units when tested with stimuli designed to rigorously 
probe face identity information.

More generally, this same caveat extends beyond face-selective 
areas to our broader conclusion that all category-selective regions are 
part of a unified contrastive feature space, whose feature tuning can 
be explained without the need for category-specialized pressures. Are 
the 515 test images from the NSD dataset used here sufficiently rep-
resentative of natural images to fully support the claim? NSD images 
do provide a varied array of natural image content, offering the ben-
efit of not skewing toward a particular representational hypothesis, 
and reflecting the most extensive probe set of these human category-
selective regions to date. However, we fully recognize that more fo-
cused tests of the contrastive feature space are warranted, using new 
or complementary datasets containing many individual face images, 
body images, or visually presented word images.

Model-to-brain linking with sparse positive constraints
Our experiments involve two different uses of sparsity: sparse read-
out (for ImageNet categorization) and sparse positive linking con-
straints. These have different motivations. Sparse readout is focused 
on the internal structure of the model, dictating how one layer inter-
acts with another. This is guided by biological considerations, such 
as the need for constraints on the number of “wires” or connections 
required for successful readout. On the other hand, sparse positive 
encoding constraints deal with the relationship between two sys-
tems: one artificial and one biological. In this case, the objective is to 
naturally align tuning curves with minimal remixing and reweight-
ing of the input data.

We next discuss the rationale for this constrained linking proce-
dure between deep neural network units and brain measurements. 
Linear encoding models are the current standard approach for relat-
ing unit tuning in a deep neural network to voxel or neuron respons-
es. That is, each voxel (or neuron)’s tuning is modeled as a positively 
and negatively weighted combination of all features in a DNN layer 
(103, 128–131) or, in some cases, across multiple layers (132). Such 
methods reflect the popular theoretical assumption that the geome-
try of the feature space is the key determinant of downstream infor-
mation readout. When considering only the geometry of a space, 
uniformly rotating all the units’ tuning directions does not affect the 
information that can be linearly decoded from the population. How-
ever, such rotations would certainly affect which information gets 
routed from one layer to the next (because only positive activations 
travel forward in a relu network). Thus, because standard linear en-
coding procedures allow for arbitrary rotations of tuning directions, 
they are agnostic to the functional role of tuning (i.e., selectivity) 
within the broader system [see (133–135) for review].

In contrast, our sparse positive linking method operationalizes 
the idea that tuning directions are critical to the function of the sys-
tem, drawing upon evidence from human neuropsychology [e.g., 
(56)], primate electrophysiology [e.g., (136)], and the lesioning re-
sults presented here. How does sparse positive regularization priori-
tize the role of tuning directions? Sparsity (L1 penalty) promotes 
minimal feature remixing, as it permits only a select few features 
from the training set to combine and predict the tuning of each tar-
get voxel (or neuron). The fact that we restrict encoding of each 
category-selective region to DNN units with matched selectivity in-
troduces an even stronger sparsity constraint, requiring a direct 

correspondence between the tuning of selective units in the DNN 
and selective voxels in the ventral stream. The positivity constraint 
plays a complementary role, limiting the degree to which the sparse 
encoding weights can rotate or “flip” DNN unit feature directions to 
map onto brain tuning profiles. Allowing negative encoding weights 
can lead to counterintuitive and undesirable outcomes, such as scene- 
selective units achieving high predictivity for (anticorrelated) face-
selective ROIs, a phenomenon that we document in figs. S11 and 
S12 and in a separate manuscript (101). Together, these sparsity and 
positivity constraints strongly limit the complexity of the mapping 
function, providing a more coherent, theoretically informed approach 
for studying brain alignment.

A unifying account of visual category selectivity
We have shown that diverse category-selective signatures arise within 
neural networks trained on rich natural image datasets, without the 
need for explicit category-focused rules. Our findings help reconcile 
the long-standing tension between modular and distributed theories 
of category selectivity. Drawing on modular viewpoints, we offer that 
category-selective regions play a privileged role in processing certain 
types of visual categories over others. We show that domain-specific 
mechanisms are not necessary to learn these functional subdivisions. 
Rather, they emerge spontaneously from a domain-general contras-
tive objective, as the system learns to untangle the visual input. At the 
same time, our results provide a computational basis for the hallmark 
observation of distributed coding theories: that pervasive category 
information is decodable across high-level visual cortex. This wide-
spread decodability is a direct consequence of contrastive learning, 
since the emergent tuning in one region shapes and structures the 
tuning in other regions. However, this does not imply that all parts of 
the population are causally involved in recognizing all visual entities. 
Distributed representation does not entail distributed functional 
readout. In recognizing these key distinctions, our contrastive coding 
framework provides a unifying account of category selectivity, offer-
ing a more parsimonious understanding of how visual object infor-
mation is represented in the human brain.

MATERIALS AND METHODS
Models
Our main analyses involved a standard AlexNet architecture, modi-
fied to have group-norm rather than batch-norm operations, which 
we have found helpful to stabilize self-supervised model training 
[following (78)]. The model was trained on the ImageNet dataset us-
ing the self-supervised Barlow Twins objective, with the same train-
ing procedures and hyperparameters used in (77). The goal of the 
Barlow Twins objective is to reduce redundancy in the neural net-
work’s learned representations while preserving the informativeness 
of its features. In brief, the learning algorithm involves measuring 
the cross-correlation matrix between the embeddings of two identi-
cal networks fed with distorted versions of a batch of image samples, 
with the objective to make this matrix close to the identity.

Although the Barlow Twins objective has been described as ener-
gy- or covariance-based rather than contrastive (87), the objective 
function emphasizes distinctions across dimensions within a batch 
and is thus contrastive with respect to dimensions of encoding. The 
equivalences between these classes of self-supervised algorithms have 
been extensively validated by studying the properties of their gradi-
ents (88) and their generalization behavior (89). For our purposes, 
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the important point is that the Barlow Twins algorithm yields repre-
sentations that distinguish between instances.

For supplementary analyses examining a similar contrastive ob-
jective function, we used a model trained with instance-prototype 
contrastive learning [IPCL, (78)]. This self-supervised model also 
uses an AlexNet architecture but integrates group normalization 
layers. A forward pass involves creating five augmentations per im-
age, passing them through the DNN backbone, and projecting them 
into a 128-dimensional L2-normed embedding space. The learning 
objective includes two components: driving the embeddings of aug-
mented views toward their average representation, and simultaneously 
encouraging these representations to differ from those of recently 
encountered items.

For comparison between self-supervised and category-supervised 
feature spaces, we used the default TorchVision AlexNet model trained 
with supervised loss on ImageNet. For comparison with a super-
vised face recognition model, we used another AlexNet variant trained 
on the VGGFace2 dataset (102). This large-scale dataset contains 
over 3.3 million images of more than 9000 individuals, capturing 
diverse identity variations. The VGGFace-trained model was trained 
using cross-entropy loss and SGD for 100 epochs, adopting the de-
fault image transformation scheme.

DNN localizer procedure
The DNN localizer procedure involved defining category-selective 
units within each layer of the network by analyzing responses to dif-
ferent categories of images in a localizer image set. Primary analyses 
relied on the grayscale vpnl-fLoc localizer image set (90), which 
contains 288 stimuli for each of the face, scene, body, object, and 
character (word) categories, plus 144 additional scrambled stimuli. 
Different spatial locations in convolutional layers were treated as 
different units; there was no activation pooling involved in identify-
ing selective units. Face-selective units were identified by comparing 
activations in response to face images against activations in response 
to images from each non-face category (bodies, scenes, objects, 
words, and scrambled). Each comparison involved a two-sample t 
test for each neuron, yielding a t-map and corresponding p-map re-
flecting relative preference for faces versus each non-face category. 
A FDR threshold was calculated and applied to define “selective” 
face-preferring neurons for each domain comparison. The intersec-
tion of these neuron groups was then identified to define the final set 
of face-selective units within a layer. This process was repeated for 
scene-, body-, and word-selective units, ensuring no overlap among 
groups due to preference requirements.

The robustness of the localizer procedure was evaluated qualita-
tively by examining responses in layer fc6 to an independent color 
probe set that maintained the same categorical domains (n =  80 
stimuli per category), to test for high activations to the preferred 
stimuli in the corresponding subsets of selective units. To quantify 
these effects, the generalizability of selectivity estimates was assessed 
by comparing the t values from the initial localizer procedure with 
those derived from repeating the same procedure using the color 
probe images. The degree of generalization was reflected in the ex-
tent to which the selective units identified using the initial proce-
dure also showed large-magnitude positive t values in response to 
the independent probe set. The same generalization analysis was 
also conducted on an untrained AlexNet Barlow Twins model.

We tested a second method for identifying category-selective units, 
by identifying those with a mean response to the preferred category 

that was at least two times higher than the mean response to each of 
the non-preferred categories independently. Because this metric de-
rives from fMRI scenarios that compare the (positive) visually evoked 
response levels of different localizer categories, here, we only compute 
it within the relu layers of the DNN. We compared this “2:1 ratio” 
method to the default “t test + FDR” method by measuring the over-
lap of selective unit indices by layer (intersection over union).

Lesioning DNN selective units
This analysis aimed to understand the effect of perturbing groups of 
DNN units that are selective for each domain (e.g., faces or scenes) 
on recognition performance. Before introducing any lesions, the mod-
el’s baseline recognition accuracy was measured by appending a lin-
ear readout layer to the relu7 model layer and training it for 10 epochs 
on ImageNet categorization. The readout weights were initialized fol-
lowing a normal distribution, with all other trainable parameters fro-
zen. Training was performed using the entire ImageNet training set 
and with a batch size of 512. To promote sparsity, an L1 penalty was 
applied (λ = 10 × 10−6). A OneCycle learning rate schedule was used, 
with the following hyperparameters: max_lr = 0.05, initial_lr = 0.001, 
and pct_start = 0.3. After the training phase, recognition accuracy 
was assessed using the ImageNet validation set, and top-5 accuracy 
was used for all subsequent analyses.

To quantify the effect of lesions targeting a specific domain, a 
masking procedure was used to “lesion” the target selective units in 
relu layers 1 to 7, setting their output activations to zero. The indices 
of the lesioned units for each domain were those identified as 
category-selective in the DNN localizer procedure. After lesioning, 
the model’s recognition performance was again evaluated, without 
any further training to assess recovery of category performance. The 
“lesioning cost profile” (reflecting drops in category-wise recogni-
tion accuracy) was computed as the difference in top-5 accuracy 
between pre- and postlesion ImageNet validation passes. For our 
main analyses, all units identified as selective with the t test + FDR 
localizer procedure were lesioned. In supplementary analyses, we 
tested the impact of several alternative lesioning schemes: (i) target-
ing all units identified as selective with the 2:1 ratio method; (ii) 
targeting only selective units in layer relu6; and (iii) targeting only 
the top 5% or 1% of selective units within relu layers, ranked by their 
selectivity, rather than the full set of units identified using the local-
izer procedure.

We sought to identify the k categories most affected by lesions to 
face-, body-, scene-, and word-selective units, and measure how 
those categories were affected by lesioning. Critically, ImageNet 
does not contain explicit face or word categories, so there is no di-
rect correspondence between the localizer-defined units and par-
ticular ImageNet classes. Accordingly, we relied on cross-validation 
to first identify the subset of k categories most affected by each le-
sion (using half of the images from each category of the ImageNet 
validation set), and then, to independently measure the degree of 
recognition deficit in each of them (using the held-out half of the 
validation images). This step helps guard against circularity, by en-
suring that our estimates of lesioning deficits are not strongly tied to 
the particular images used to identify the most affected categories. 
Beyond examining these subsets of categories, we also compared the 
full 1000-dimensional cost profiles between each pair of domain-
targeted lesions, using Pearson similarity.

We tested whether activation levels within each group of se-
lective units at baseline could predict subsequent recognition deficits 
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following perturbation. To do so, we computed the correlation 
between each layer’s 1000-dimensional category activation profile 
(prelesion) and the lesioning cost profile for each of the face-, scene-, 
body-, and word-unit lesions. These relationships were assessed across 
our different methods for identifying selective units and implement-
ing lesions.

Finally, we tested the causal impact of lesioning early-layer units 
on the degree of selectivity observed in higher layers. To do so, we 
measured the change in activations to the color probe localizer set in 
model layer relu6, after applying lesions to selective units from each 
domain in only model layers relu1 to relu5. This analysis was repeated 
twice: once using all units identified as selective in the t test + FDR 
procedure, and once using only the top 5% of selective units in each 
of layers relu1 to relu5.

Relating category-selective regions in models and brains
We investigated whether category-selective units in the DNN could 
explain the high-dimensional response structure in diverse category-
selective brain regions. We used the NSD [n = 8; (91)], containing 
measurements of responses to over 70,000 unique stimuli from the 
Microsoft Common Objects in Context (COCO) dataset (137). We 
implemented a sparse positive-weighted encoding procedure to map 
between selective units and brain ROIs with corresponding selectivi-
ties, taking into account both univariate and multivariate response 
signatures.

For our analysis, we focused on a subset of the dataset (16,515 
stimuli; eight subjects × 2000 total subject-specific stimuli split equal-
ly between the training and validation sets, and a shared 515-stimulus 
test set). These stimuli, presented during a long-term visual recognition 
task, were viewed three times by each subject over the course of the 
experiment. We analyzed data from 11 category-selective ROIs from 
OTC, defined using an independent localizer procedure. These in-
cluded face-selective regions (FFA-1, FFA-2, and OFA), scene-selective 
regions (PPA and OPA), body-selective regions (EBA, FBA-1, and 
FBA-2), and word-selective regions (VWFA-1, VWFA-2, and OWFA). 
The same localizer stimuli were used to identify category-selective 
units in our DNN models.

BOLD responses in NSD were estimated using the GLMsingle tool-
box (138). Our analyses involved the dataset preparation in subject-native 
surface space. We accounted for potential session-to-session instabil-
ity in the distributions of responses by z-scoring the 750-dimensional 
within-session response profiles of each surface vertex, before extract-
ing responses to the training, validation, and testing stimuli. The data 
from repeated instances of each stimulus were then averaged, and we 
implemented a reliability-based voxel selection procedure (139) to se-
lect vertices with stable response structure. We used noise ceiling 
signal-to-noise ratio [NCSNR; (91)] as our reliability metric and in-
cluded only voxels with NCSNR > 0.3. Surface vertices from the same 
ROI across the two hemispheres (e.g., left-hemisphere PPA and right-
hemisphere -PPA) were concatenated before further analysis.

Our constrained encoding procedure involved modeling each 
brain vertex as a linear combination of features from a DNN layer, 
using only DNN units with corresponding selectivity (e.g., only 
face-selective units were used for modeling FFA and OFA). All en-
coding weights were required to be sparse (L1 penalty) and positive. 
See (101) for further description of this encoding procedure. For 
the VGGFace model, these constraints only differed in that the 
entire layer’s features were used for encoding. We conducted an 
additional set of analyses in the trained Barlow Twins model, 

comparing matched-selectivity encoding models to those with 
mismatched selectivities (e.g., comparing face-unit prediction of 
FFA against predictions derived from scene-, body-, and word-
selective units).

Activations were extracted from each DNN model for each train-
ing, validation, and test COCO stimulus at each distinct layer of the 
network from conv3 onward. We used sklearn’s Lasso function to fit 
each L1-regularized encoding model, enforcing non-negativity of 
the encoding weights using the “positive” input argument. A Lasso 
α value of 0.1 was used for all encoding fits in the ImageNet and 
VGGFace-trained models, and a value of 0.001 was used for encod-
ing models from the untrained model; further tuning of these hy-
perparameters did not meaningfully influence our results.

Once an encoding model was fit, we then predicted the response 
of every ROI vertex to each image for the validation and test images, 
and computed two model-predicted outputs for comparison to the 
true brain responses: the ROI mean univariate response profile 
and the multivariate similarity structure [“veRSA”; (78, 103)]. In 
determining maximal model-brain correspondence, our key met-
rics were reported from the best-fitting layer to a given brain region. 
To identify this layer, we first calculated the univariate and veRSA 
correlations (Pearson r) between model predictions and actual brain 
data for all layers using the validation set. Then, the layer with the 
highest correlation was separately selected for the univariate and 
multivariate metrics. Using the independent test set of 515 stimuli, 
final univariate and veRSA correlations were then computed for the 
selected layers, providing an independent measure of the maximum 
correspondence between the model and brain region.

To test whether basic image statistic models were able to capture 
representational structure in the category-selective ROIs, we addi-
tionally computed encoding fits for Gabor and GistPC feature spac-
es. Gabor features were extracted in a 16 × 16 grid over the original 
images (425 × 425 pixels) at four different scales, with 12, 8, 6, and 4 
oriented Gist per scale, respectively (140). This procedure yielded a 
flattened feature dimension of 7680. GistPC model features were ex-
tracted by taking the first 50 PCs of this Gabor feature matrix. The 
encoding procedures were identical to those described above for the 
DNN models.

We estimated noise ceilings for each target brain ROI to provide 
a context for model performance results. We used a recently intro-
duced method based on generative modeling of signal and noise, 
termed GSN (141), which estimates multivariate Gaussian distribu-
tions characterizing the signal and noise structure of each ROI from 
each subject. Distinct noise ceilings for the univariate and RSA anal-
yses were calculated through Monte Carlo simulations. This process 
involved first generating a noiseless 515-dimensional univariate re-
sponse profile (or a 515 × 515 RDM) from the inferred signal distribu-
tion. These profiles (or RDMs) were then correlated with counterparts 
constructed from noisy measurements. The latter were generated by 
adding samples from the estimated signal and noise distributions, 
thereby effectively simulating the realistic observational conditions. 
The range of estimated noise ceilings for the eight subjects is plotted 
separately for each outcome metric and each brain region.

Low-dimensional visualization of hierarchical contrastive 
feature spaces
To map the hierarchical evolution of category-selective tuning, we 
visualized the gradual emergence of categorical structure in the 
Barlow Twins model using a compact image set of eight object 
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categories: faces, buildings, bodies, cats, hammers, phones, cars, 
and chairs (105). Each category contained 30 examples, with equal-
ized overall luminance and contrast levels across the 240 images, 
achieved via the SHINE toolbox.

For our hierarchical visualization, we focused on responses to 
faces, buildings, hammers, and cats in model layers conv1, conv3, 
conv5, and fc7. We initially condensed the activation data for each 
layer (120 images × n_features) via principal components analysis 
(PCA) into a 10-component matrix (120 images × 10 PCs). These 
were subsequently merged into one matrix (480 images × 10 PCs), 
enabling the analysis of each image’s “representational trajectory” 
through the model (142). Using Pearson dissimilarity, we then con-
structed a “meta-RDM” to encapsulate the pairwise similarity of all 
image features across all layers (480 images × 480 images). The meta- 
RDM served as input to MDS, yielding a two-dimensional (2D) pro-
jection of the entire representational geometry (480 images × 2 MDS 
dimensions).

This 2D representation was then lifted into a 3D visualization. 
Here, embeddings from disparate layers were grouped into different 
x-axis positions, symbolizing the progression from conv1 to fc7. The 
result was a 3D scatter plot where each dot signifies an input image, 
connected by lines to indicate its trajectory through the model lay-
ers. The proximity between dots within each layer’s MDS space re-
flects the similarity of their corresponding embeddings in DNN 
feature space.

To demonstrate the demarcation of category-selective regions 
within this feature space, we created another low-dimensional visu-
alization using the full set of 240 probe images. We first performed 
2D PCA on 4096-dimensional layer relu6 activations computed for 
a subset of the ImageNet validation set (2000 total images; 2 per 
category) and then projected the relu6 response vectors for each of 
the 240 probe stimuli into this 2D space, with dots color coded by 
category.

Last, we aimed to visualize the tuning directions of category-
selective units within this low-dimensional projection. Using the 
output of the DNN localizer procedure [vpnl-fLoc image set; (90)], 
we identified the indices of face-, scene-, and object-selective units 
in layer relu6 of the Barlow Twins model. We then depicted the oriented 
tuning vector of each of the 25 most selective units for these three do-
mains. This was accomplished by creating a one-hot 4096-dimensional 
vector denoting the index of the unit and computing its dot product 
with the (4096, 2)-dimensional PCA component matrix from the 
ImageNet validation stimuli. A constant scaling factor of 2.5 × 104 
was applied to each one-hot vector before multiplication for visual-
ization purposes. This ensured the resultant tuning vector’s magni-
tude laid meaningfully onto the image data points in PC space, 
without altering the relative angles of the different tuning vectors.

Supplementary Materials
This PDF file includes:
Figs. S1 to S13
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