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Abstract: Air quality assessments often require source apportioning of the air pollutants observed
at the receptor site. Conventional source apportionment models are subject to high uncertainties
due to the lack of accurate emission profiles of all the contributing sources and a limited number of
measurements at the receptor sites. Recent advances in the development and application of low-cost
PM2.5 sensors have facilitated the formation of a more robust database with greater numbers of
measurements per location and time. The main objective of this study is to combine a large database
of PM2.5 concentration records to records from low-cost sensors in Denver, Colorado, during January
2021. Using wind speed and wind direction at the receptors, we developed a visualization tool for
source tracing of PM2.5 with resulting statistical analyses and back-trajectory modeling. For this
purpose, a combination of in-house and existing packages of R scripts along with National Oceanic
and Atmospheric Administration (NOAA)’s trajectory model and climate and weather toolkits were
used. In general, the results show that the PM2.5 measurements obtained from such a network of
PM2.5 sensors incorporated with hourly wind field data, which are publicly available, can provide a
powerful screening tool to discover the transport pathways of PM2.5 before requiring costly source
apportionment approaches. The fraction of PM2.5 concentration detected by each sensor in regard
to wind direction and speed bins were quantified using this method. The results of cluster analysis
identified the area groups in respect to wind speed and wind direction bins, which shines a light on
how far and in which direction polluting sources are. Finally, the back-trajectory modeling outputs
illustrated the exact travel path of the PM2.5-laden air parcels of each day to each sensor.

Keywords: HYSPLIT; source apportionment; concentration mapping; cluster analysis; urban aerosol

1. Introduction

The inhalation of airborne fine particulate matter with an aerodynamic particle diame-
ter smaller than 2.5 µm (PM2.5) is associated with well-known respiratory and cardiovascu-
lar diseases [1–3]. PM2.5 is highly effective at penetrating the alveoli of the lungs. Alveoli
are tiny air sacs that cover the interior of the lung. Inhaled PM2.5 serves as a carrier of toxic
organic compounds (e.g., polycyclic aromatic hydrocarbons) and inorganic chemicals (e.g.,
heavy metals). Since gas exchange occurs at the alveoli, the heterogeneity of the PM2.5 com-
position contributes to the severity of adverse health impacts [4]. Compared to rural areas,
the toxicity of PM2.5 in urban areas affects a larger population and is more complex due to
the variety of PM2.5 polluting sources [5,6]. Statistical analysis by Santibañez et al. (2013)
on 5-year PM2.5 concentration data of Santiago, Chile showed that for every 10 µg/m3

rise in annual mean PM2.5 concentration, the risk of emergency hospital admissions due
to stroke increased by 1.29% [7]. A similar study by Shah et al. (2015) observed that on
average, the annual PM2.5 estimated in multiple Mediterranean cities demonstrated an
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increase of 10 µg/m3 and led to an increase of 0.51% (95% CI: 0.12–0.90%) in cardiovascular
admissions and 1.36% (95% CI: 0.23–2.49) in respiratory hospitalizations [8].

One of the first steps in the control and mitigation of PM2.5 concentrations in an
urban area is to identify the polluting sources. Various source apportionment methods
have been developed to quantify the contribution of each of the known sources to PM2.5
concentration in urban areas. Most of these models (e.g., chemical mass balance or positive
matrix factorization) require identifying the chemical composition of the PM2.5 samples
collected at receptor sites as well as the source profiles of the contributors [9]. The collection
of a sufficient mass of air pollutant samples for compositional analyses is expensive, labor-
intensive, and cumbersome. PM2.5 sampling stations that feed these source apportionment
models are scarce and consequently offer limited spatio-temporal resolution.

Alternatively, there is growing attention on utilizing source apportionment techniques
relying on statistical methods and back trajectory models [9–12]. Potential source contri-
bution function (PSCF) models use the residence time of air parcel trajectories travelling
from different starting points toward each receptor grid cell of a study area and estimate
the probability of the air parcel arriving to the grid cells from different sources based on the
meteorological trajectory pathways [13]. Although the PSCF models cannot apportion the
contribution of sources to the measured receptor data, when there are adequate numbers of
air parcels ending at a receptor grid cell, they obtain a reliable map of identified sources for
the entire receptor site [9]. It is hypothesized that the reliability of such source identification
maps improves with increasing the number of concentration measurement records in space
and time.

To assess this hypothesis, data recorded by a well-established network of low-cost
sensors monitoring ground-level (<10 m) PM2.5 was selected. Although the low-cost sensors
implement light scattering to estimate PM2.5 and therefore do not collect samples for further
laboratory analyses, such networks offer a screening tool for the source tracing of PM2.5 by
statistical analyses of the arriving air parcel trajectory and investigate their association with
wind speed/direction. Furthermore, the application of low-cost PM2.5 sensors (<$1500)
improves the spatial resolution of the concentration maps [14–16]. With growing interest
in air quality monitoring in metropolitan areas, these sensors can record concentrations
via a dense network of sensors with a time-resolution as small as one minute. Thus, the
resulting dataset of the ground-level PM2.5 concentrations obtains a refined and extensive
gridded concentration map of the receptor study area.

One month of continuous data measured by a low-cost PM2.5 monitoring network in
Denver was considered. In fact, as the capital and one of the fastest-growing metropolitan
areas in the United States, Denver was an excellent example for the purpose of the present
study. This PM2.5 monitoring campaign by the Colorado Department of Public Health &
Environment (DDPHE) in partnership with Denver Public Schools (DPS) started in 2018
and has since then launched dozens of PM2.5 sensors at selected public schools located in
regions with higher asthma rates and lower household incomes.

We propose that when there is a lack of source profile data to conduct conventional
source apportionment modeling, the transport pathways of the target air pollutant can
be explored using the increased number of recorded concentrations paired with the wind
field data. The PM2.5 concentrations at the receptors are then traced back using statistical
schemes coupled with a back-trajectory model to identify the PM2.5 origin for a certain
period at a target receptor site. The approach to this research is as follows: (1) the concentra-
tion data were mapped and temporal variations were visualized; (2) the hourly-averaged
ground-level concentration maps overlaid on the (a) corresponding wind vector fields with
a spatial resolution of 3 km × 3 km and (b) cluster analysis was performed to quantify
shares of each designated wind speed and wind direction group; and (3) back-trajectory
modeling was implemented to further refine the results of the statistical analyses.
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2. Methods
2.1. PM2.5 Monitoring Network

The low-cost PM2.5 monitoring network was composed of 24 Canary-S sensors devel-
oped by Lunar Outpost Inc., Arvada, CO, USA, with the temporal resolution of one minute
sampling periods. The Canary-S sensors utilized Plantower PMS5003 PM2.5 sensors utiliz-
ing laser beams to count passing airborne particles using their real-time reflectivity [17].
These sensors are programmed to convert the counts into mass-based PM2.5 concentration
in µg/m3. Any row of measurements with unrealistic values (i.e., temperature below 30 ◦C
or negative relative humidity and concentration) were omitted. Any sensor with more
than 20% of omitted entries was entirely excluded. The raw measurements of each sensor
were corrected using the calibration equation determined by deSouza et al. (2022) [17].
These calibration equations were derived from non-linear correction for environmental
parameters including dew point, temperature, and relative humidity in comparison to the
“true” PM2.5 concentrations measured in tandem by co-location of the instruments comply-
ing with the federal equivalent method, meaning designated by the USEPA as a reliable
method for monitoring PM2.5 concentrations [17]. The accuracy of the measurements using
Plantower5003 sensors is ±0.1 µg/m3 [18].

The concentration monitoring period spanned over the month of January 2021 (i.e.,
1 January 2021 at 00:00:01 to 31 January 2021 at 23:59:59). One month was found to be long
enough for statistical reliability yet short enough to avoid deterioration in the detection
accuracy as reported by deSouza et al. (2023) [19], which is a well-known caveat of using
low-cost sensors. The positioning of the low-cost sensors in regard to the counties in the
immediate vicinity of the city of Denver are displayed in Figure 1. The sensors are labeled
by CS followed by a number. Except for two sensors, one located in Arapahoe County
(i.e., CS21) and the other one in Jefferson County (CS12), all the other sensors were either
inside the city or the county of Denver. Across all the sensors, the pair of CS02 and CS03
sensors were only 236 m apart. Therefore, they were expected to record similar PM2.5
measurements.
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2.2. Wind Fields

The PM2.5 transport from the sources to the low-cost sensors is impacted by the
wind field (i.e., wind direction and speed at each grid point and time). In this study, the
ground-level wind speed and wind direction data were accessed from the High-Resolution
Rapid Refresh (HRRR) radar-assimilated database provided by the NOAA with a 3 km
grid resolution for each hour. The wind vector components of each grid cell accessed
via NOAA’s Weather and Climate Toolkit. The wind fields were adjusted for the map
projection of Lambert conformal conic using in-house R scripts.

2.3. Statistical and Clustering Analyses

Statistical analyses were conducted using a combination of in-house R scripts and the
modification of the openair package developed by Carslaw and Ropkins (2012) [20]. First,
hourly variations of the PM2.5 concentrations for the entire study area, presented as the
arithmetic mean of measurements, were plotted for each day of January 2021. Then, spatial
distributions of the PM2.5 concentrations averaged by day were mapped. After recognizing
the days and hours with elevated PM2.5 concentrations, 24h average wind fields for each
day were mapped.

In order to link the concentrations measured by the sensors to polluting sources, a
series of statistical analyses was conducted on the PM2.5 concentrations database and the
daily wind field. Various bivariate polar plots were developed by partitioning the hourly
wind speeds into 30 intervals and the wind direction into 10 degrees bins for the gridded
space ruled by the HRRR dataset, then superimposing that on the PM2.5 concentration maps
developed by kriging the hourly-averaged records for the entire study area. Specifically,
we evaluated the associations between the hourly directional contribution of each wind
speed bin and the PM2.5 concentration of the corresponding hour.

To identify elevated PM2.5 concentrations, originating from the same source, cluster
analysis on hourly PM2.5 concentrations and corresponding wind speed/direction bins
was conducted. The clustering model was constructed around the idea that receptors with
simultaneous spikes in PM2.5 concentrations might have the same contributing polluting
sources. Therefore, wind speed, wind direction, and recorded concentrations were used to
form similar clusters [21]. The clustering analysis of this study used k-means to partition
M datapoints (i.e., concentrations measured by each sensor) in N dimensions (i.e., wind
speed and wind direction) into K clusters. For any given number of clusters initially
input to the model, this iterative algorithm minimized the Euclidean distance between
the observations (i.e., set of the three hourly-averaged parameters of wind speed, wind
direction, and PM2.5 concentration records with equal weight) and centroids of each cluster
on a polar coordinate. Each observation was assigned to the cluster that had the closest
centroid. Finally, the positions of all the cluster centroids were re-calculated until no further
cluster centroid re-positioning was feasible. The determination of the optimal number of
clusters (K) was based on internal compactness measures using the total within the sum of
the squared Euclidian distance and silhouette index and taking the highest index as the
number of clusters [21].

2.4. Back-Trajectory Modeling

Back-trajectory analysis was used to explore differences in the air mass origins across
the clusters identified in the previous analysis and track them over time. For this purpose,
HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT), which is a Lagrangian
backward trajectory model developed by the Air Resources Laboratory of the National
Oceanic and Atmospheric Administration (NOAA-ARL), was implemented. This model
is widely used to trace the source points of a certain air pollutant at a regional scale and
beyond [22].

R programming script was developed to attribute hourly PM2.5 measurements by
the sensor with the time-matched air mass trajectories calculated by the NOAA HYSPLIT
model (version 5.2.1). Meteorological data were adopted from the Climate Forecast System
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Reanalysis (CFSR) provided by the National Center for Atmospheric Research. The starting
height of the trajectories was assumed to be 10 m above ground level. To link the arrival
time of each air mass to the recorded PM2.5 concentration by each receptor sensor, a four-
day back trajectory analysis for each day of January 2021 was performed. The geographical
center of the city of Denver was considered as the starting point of all the trajectories.

3. Results
3.1. Descriptive Analytics

Time-series of the recorded data by each sensor are shown in Figure 2. According
to these plots, except CS13, all the sensors demonstrated that the peak of the 24-h PM2.5
concentration took place on January 28th, with the maximum concentration of 50.4 µg/m3

recorded by CS07. The average of the 24-h maximum PM2.5 concentrations across all the
sensors on 28 January was 48.6 µg/m3. This day was the only day at which the 24-h PM2.5
concentration exceeded the USEPA’s National Ambient Air Quality Standard of 35 µg/m3.
During the 10-day period of 12 January and 21 January, the mean value of the daily PM2.5
concentrations, averaged over all sensors, did not exceed 12 µg/m3.

The heatmap of the hourly changes of the PM2.5 concentrations over the city of Denver
during January 2021, averaged across all the sensors, is depicted in Figure 3. 1 January had
elevated hourly PM2.5 concentrations between 4 to 9 a.m., which may be due to fireworks
and the transportation of the residents celebrating the New Year events. The public
schools in Denver were either closed during the first ten days of the month or running
virtually due to SARS-CoV-2-related restrictions. There were sporadic raises in the hourly
PM2.5 concentration on the morning of 11 January. Starting from 22 January, the hourly
PM2.5 concentrations rose during the daytime and reached a peak mean hourly PM2.5
concentration of 62 µg/m3 on January 28. The mean of the hourly PM2.5 concentration
reduced to values smaller than 10 µg/m3 in the late morning of January 30, which was
a Saturday, and remained low (as denoted by the navy color) throughout the rest of the
month. The average hourly PM2.5 concentration demonstrated two diurnal period peaks
between 6 and 9 a.m. (22% higher than the day mean) and between 6 and 9 pm (27% higher
than the day mean).

To gain a better insight into the potential causes of the temporal variability of hourly
PM2.5 concentrations, a time-series of daily temperatures of the Denver Metropolitan Area
during January 2021 was plotted by processing the hourly temperature data of NOAA’s
HRRR (see Figure 4). As seen, there was a dramatic decrease in the mean daily ground-
level temperature from 28 January with respect to 27 January (−10 ◦C vs. −3 ◦C). This
implies that the notable peak in hourly and daily PM2.5 concentrations on January 28th
may be attributed to the fossil fuel burned to compensate for the temperature drop and
thus heat residential and commercial buildings. As follows, this hypothesis is appraised by
comparing increasing or decreasing trends in the daily average plots of the other criteria air
pollutants (excluding lead) accessed from the Air Quality System database of the USEPA
for January 2021.

Spatial distributions of the 24-h PM2.5 concentrations at each sensor location for each
day of January 2021 were mapped in Figure 5a. The highest variability of the 24-h PM2.5
concentration occurred during the last week of January. The north central part of the study
area displayed the highest PM2.5 levels, which may be due to the vehicular traffic of daily
commuters to Boulder, Colorado. There was no significant difference between the daily
concentrations of the western half of the study area compared to the eastern half of the
study area. However, on average, there were 13% higher values of 24-h PM2.5 levels in the
northern half of the study area in respect to the southern half. The overall variability across
the sensors on each day was small (3–21%). Consistent with the previous plots, all the
sensors recorded a 24-h PM2.5 concentration below 8 µg/m3 from 14 January to 21 January.
Sensor CS13, positioned in Denver downtown near state administrative buildings such as
the US courthouse, was the only sensor behaving notably different from the others. This
sensor indicated elevated daily PM2.5 concentrations between 2 January and 4 January,
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which may be attributed to the higher vehicle traffic of residents going back to work after the
New Year holidays. However, this sensor showed the lowest concentration when compared
to all other sensors for the days after 22 January, signaling erroneous measurements due to
a circuit break, calibration requirement, or sensor inlet blockage. deSouza et al. (2022) also
reported intermittent power surge issues with CS13 in their sensor calibration study [17].
Therefore, recorded concentrations by Sensor CS13 were unreliable and were excluded in
future analyses of the study.
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The spatial distribution plots of the 24-h PM2.5 concentration on each day, based
on recorded levels by the USEPA’s air quality system (AQS), are displayed in Figure 5b.
Considering the entire Denver metropolitan area, the temporal trend provided by both sets
were similar. In other words, both the low-cost monitoring network and the USEPA’s AQS
indicated both the increasing and decreasing patterns summarized in Table 1. However, as
seen, during 12–21 January the AQS network reports higher values for the average 24-h
PM2.5 concentration that is opposite for all other days of the month. A higher standard
deviation of the daily PM2.5 concentration by the low-cost monitoring network during the
two key periods of 27–28 January and 29–31 January implies the high spatial variability of
the data, which is disguised in the USEPA’s AQS results. This highlights the significance of
having more monitors per unit area in an air quality analysis.

One should note that the AQS monitors are mainly located in the north and northwest
part of the area and therefore are blind to the daily spatio-temporal changes of PM2.5
concentrations in the majority of the Denver Metropolitan area.

The daily dominant wind directions overlaid on the heatmap of the 24-h PM2.5 con-
centrations of the entire study area are displayed in Figure 6. Arrows for each day on this
plot denote 24-h average vectors pointing towards the wind direction and scaled by the
ground-level wind speed over the city of Denver. 14 January showed the largest arrow for
the mean wind speed and had the highest average wind speed of 5.5 ± 2.8 m/s maxing
near the northwestern part of the area near Jefferson County. Although more than 95% of
the measured ground-level wind speeds at each grid cell of the study area during January
2021 were smaller than 4.8 m/s, a significant association (i.e., p-value < 0.05) between the
24-h wind speed and PM2.5 concentration, averaged over the entire area on the same day,
was observed. In contrast to the wind intensity, wind direction varied drastically by day.
During the last week of January, with an elevated daily PM2.5 concentration, the daily
prevailing winds mainly blew from north to south between 25 and 30 January, except for 29
January, on which the mean wind direction was from the southwest to the northeast. This
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implies that the main contributor to the relatively higher daily PM2.5 concentration came
from the northern part of Denver. One should note that the northerly wind also prevailed
on 14, 15, and 18 January, but it blew at a notably greater wind speed and (23–43% higher)
resulted in relatively low daily PM2.5 concentrations.
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Table 1. Generic trends in 24-h PM2.5 concentrations inferred from both monitoring networks within
the Denver metropolitan area.

Period 2021 Range via Low-Cost Monitoring Network
(Mean ± Standard Deviation, µg/m3)

Range via USEPA’s AQS Monitoring Network
(Mean ± Standard Deviation, µg/m3)

1 January 25.3 ± 2.0 15.2 ± 3.2

2–6 January 5.2 ± 4.9 4.4 ± 1.6

7–11 January 15.3 ± 3.9 10.6 ± 2.7

12–21 January 3.2 ± 2.1 4.3 ± 2.2

22–25 January 15.1 ± 5.4 12.3 ± 2.4

26 January 12.8 ± 2.5 9.2 ± 1.3

27–28 January 33.3 ± 11.7 28.5 ± 6.2

29–31 January 14.8 ± 10.7 9.0 ± 6.4
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3.2. Source Tracing by Statistical Analyses

The frequency of the elevated PM2.5 concentrations measured by each sensor, averaged
hourly and accounted for selected wind direction and speed bins, reveals that the majority
of the elevated PM2.5 traveled from the north/northeast. However, all five sensors located in
the southern part of the city had significant levels of PM2.5 transported from the southwest
(see Figure 7).
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concentration by each sensor.

One benefit of developing spatial maps of the PM2.5 clusters is to match these four
clusters with the limited number of USEPA AQS monitoring criteria air pollutants. As
seen in Figures 5 and 8, there were only a handful of AQS monitors in the northwest
part of the city. Therefore, the spatial distribution of each air pollutant on each day
cannot be assessed. Only SO2 levels were higher in the northwest part of the area at all
days. Similar to PM2.5, other air pollutants (excluding O3) demonstrated peak levels on
28 January. Elevated concentrations for the daily maximum SO2 during 26–28 January
signal an increase in emissions from coal fired power plants. Since both daily averages
of PM2.5 and PM10 concentrations peaked on 28 January, primary sources rather than
secondary organic aerosols are likely responsible for the airborne pollution. The daily
changes of O3 concentrations followed an opposite trend compared to the rest of the other
air pollutants. The opposite temporal trend of O3 and NO2 has also been observed by other
researchers monitoring urban areas [23–25], and is due to the diurnal variation of vehicular
traffic emissions, photochemical reactions, and meteorological parameters such as cloud
cover and precipitation changing the concentrations of the oxidative radicals and therefore
affecting sink and source patterns for NO2 and O3 [26]. The analysis of the Moderate
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Resolution Imaging Spectroradiometer (MODIS) on the National Aeronautics and Space
Administration’s Terra satellite and its Visible Infrared Imaging Radiometer Suite (VIIRS)
instrument revealed that there were two major fires in the south/southwest area of the
study on 27 January that justify the elevated CO and NO2 concentrations on 27 and 28
January based on CO and NO2 plots (Figure 8) increasing toward the south.
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The results of the cluster analysis are presented in Figure 9. Based on the clustering
criteria, four groups (labeled by C1 through C4) with similar trends in PM2.5 concentration
levels were identified. The samples grouped in Cluster C1 encompassed the southwest to
the center of the area. C1 had the highest daily average PM2.5 concentrations attributed
to the highest measurement records during the early morning hours of the weekdays,
potentially due to the inflow of vehicular traffic from Lakewood to downtown Denver.
On weekends, the west side of the city, covered by Clusters C1 and C2, was more PM2.5-
polluted than the other areas. The time-series plots of Cluster C3 in the northeastern part of
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the study area (the furthest from downtown) correlated to those receptors with the highest
concentrations in the morning time (until 6 am during workdays). Located in the northwest
part of the area, Cluster C4 was composed of receptors with PM2.5 concentrations resulting
from the highest wind intensity. Compared to the other clusters, this cluster had the lowest
concentrations on the workdays.
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Figure 9. Identified clusters in regard to temporal trends in PM2.5 concentration levels based on the
wind field.

On days with greater daily average PM10 concentrations and relatively lower daily
average PM2.5 concentrations (e.g., 7 January and 22 January as seen in the first row of plots
in Figure 8), the PM10 concentrations are relatively high while the PM2.5 concentrations are
not. Therefore, there is a considerable fraction of airborne coarse particles with aerodynamic
diameters between 2.5 and 10 µm. This implies that the PM2.5 pollution in the northwest
part of the area, corresponding to Cluster C4, may be formed from tire abrasions on the
pavement, resuspension of the road dust as the traffic moves, or wind-blown soil [27,28].
Valerino et al. (2017) analyzed the chemical composition of the PM2.5 samples collected in
Golden, Colorado, and in agreement with the present findings, demonstrated that organic
matter comprised about 75% of PM2.5 [29]. Similar results were drawn by Dutton et al.,
2010 [30] during the Denver Aerosol Sources and Health study wherein their 5.5-year
campaign of PM2.5 samples over Denver, they speciated the samples to be 86% organic.
This fraction included SOA and was relatively stable through all weekdays. The rest of
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the PM2.5 samples of their study comprised heavy metals and reduced significantly over
the weekend.

3.3. Source Tracing by Back Trajectories

The four-day back trajectories of ground-level air parcels resulting from the HYSPLIT
model for all low-cost sensor input as receptors and for each day of January 2021 are
depicted in Figure 10. The back-trajectory lines of the first few days after the new year
with relatively high PM2.5 concentrations were stipulated to be regional. As discussed, the
overall PM2.5 pollution averaged over the city of Denver during the later part of January
2021 was reduced, which emanated from the north/northeast. The back-trajectory lines
implied that the main sources of PM2.5 in the last week of January 2021, which was the
most PM2.5 polluted period in this study, might have travelled from the northwest as a
long-range transport. This observation matches with the daily average wind direction of
the last week of January 2021, during which north-to-south winds were dominant except
on January 29 (see Figure 6).
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4. Limitations

The meteorological data used in the modeling are based on the HRRR model. The
data records presented by HRRR are recorded on an hourly basis and represent snapshots
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of the calculated conditions at those times over 3 km by 3 km horizontal grids. Since all
low-cost sensors are located at approximately the same height, the vertical spread of the
PM2.5 concentration cannot be determined. Consequently, vertical shear and the impact of
the mixed layer that depends on the meteorological data and are integrated into NOAA’s
HYSPLIT model were ignored. PM2.5 concentration records at various heights for the
same location are required for leveraging that feature and reducing the uncertainties of
the model.

The meteorology modeling system of HYSPLIT runs could be replaced by the Weather
Research and Forecasting (WRF) that can provide temporal resolution as high as one
minute (i.e., comparable to the temporal resolution of the low-cost sensors) and tailored
for month-long studies. In this study, we were limited to apply CFS with a coarser time
resolution of 6 h due to computational cost limitations.

5. Conclusions

The application of a dense network of low-cost sensors in air quality monitoring of
megacities and metropolitan areas offers a new benefit of source tracing elevated PM2.5
concentration within the study area. Using the large size of the dataset resulting from these
sensors coupled with hourly wind field data, multiple statistical methods including cluster
analysis along with back-trajectory modeling via NOAA’s HYSPLIT could be utilized to
identify the transport pathways of PM2.5 in the metropolitan city of Denver, Colorado.
This is performed by clustering bins of recorded PM2.5 levels at certain receptors for each
hour based on their hourly wind vector data for the receptor. This technique serves as
a screening tool to identify the qualitative trend in PM2.5 concentration variability and
potential source types when compared with corresponding spatio-temporal maps of the
other air pollutants. Finally, back-trajectory modeling obtains more details regarding the
point of origins for PM2.5 levels recorded and averaged for the study area. Overall, in the
absence of emission profiles of suspected sources, the presented methodology serves as a
screening tool to trace potential stationary sources.
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