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Abstract

A fundamental component of theWasm ecosystem is theWasm run-

time, as it directly impacts whether Wasm applications can be exe-

cuted as expected. Bugs in Wasm runtimes are frequently reported,

so the research community has made a few attempts to design

automated testing frameworks to detect bugs in Wasm runtimes.

However, existing testing frameworks are limited by the quality of

test cases, i.e., they face challenges in generating Wasm binaries

that are both semantically rich and syntactically correct. As a result,

complicated bugs cannot be triggered e�ectively. In this work, we

present WASMaker, a novel di�erential testing framework that

can generate complicated Wasm test cases by disassembling and

assembling real-world Wasm binaries, which can trigger hidden

inconsistencies among Wasm runtimes. To further pinpoint the

root causes of unexpected behaviors, we design a runtime-agnostic

root cause location method to locate bugs accurately. Extensive

evaluation suggests that WASMaker outperforms state-of-the-art

techniques in terms of both e�ciency and e�ectiveness. We have

uncovered 33 unique bugs in popularWasm runtimes, amongwhich

25 have been con�rmed.

CCS Concepts

• Software and its engineering→ Software testing and debug-

ging.

Keywords

WebAssembly, WebAssembly Runtime, Binary Generation, Di�er-

ential Testing

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA ’24, September 16–20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09
https://doi.org/10.1145/3650212.3680358

ACM Reference Format:

ShangtongCao, NingyuHe, Xinyu She, Yixuan Zhang,MuZhang, andHaoyu

Wang. 2024. WASMaker: Di�erential Testing of WebAssembly Runtimes

via Semantic-Aware Binary Generation. In Proceedings of the 33rd ACM SIG-

SOFT International Symposium on Software Testing and Analysis (ISSTA ’24),

September 16–20, 2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3650212.3680358

1 Introduction

WebAssembly (Wasm), a low-level bytecode format, was proposed

by several Internet giants in 2017 [14]. Due to its excellent porta-

bility, native-like speed, compact size, and safety guarantee, Wasm

is gaining growing popularity. By 2022, more than 97% of existing

browsers have supported Wasm. Beyond web browsers, Wasm has

been favored in a wide range of domains, including mobile apps,

blockchain, IoT, etc. Wasm can be regarded as the compilation tar-

get for almost all mainstream high-level programming languages,

e.g., C, C++, Go, and Rust [26, 32, 45]. Wasm binaries are executed

in Wasm runtimes, which are similar to the virtual machine that

serves as an intermediate layer between the Wasm binaries and the

underlying system. Currently, lots of Wasm runtimes have been im-

plemented and actively maintained on GitHub, like Wasmtime [38],

Wasmer [37], and WasmEdge [36].

Wasm runtimes play a key role in the ecosystem, as it directly

impacts whether Wasm applications can be executed as expected.

However, a variety of Wasm runtime-speci�c bugs have been re-

ported from time to time. For example, Zhang et al. [44] have em-

pirically analyzed over 300 real-world bugs of Wasm runtimes and

created a taxonomy of 31 bug categories of Wasm runtimes. Thus,

some fellow researchers in our community proposed to develop

automated methods for detecting bugs in Wasm runtimes. For ex-

ample, Jiang et al. [18] have uncovered that Wasm runtimes may

not correctly execute Wasm binary by adopting coverage-guided

fuzzing. WADIFF [46] further adopted symbolic execution to gen-

erate lots of Wasm binaries and conducted di�erential testing to

identify implementation bugs of runtimes.

Although recent automated testing approaches have shown

promising results in identifying Wasm runtime bugs via Wasm

binary generation, they are limited by their inability to generate

semantically rich binaries (see §2.2). Thus, complicated bugs cannot
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be triggered. For example, WADIFF can only generate small Wasm

binaries that target a single instruction, while real-world Wasm

binaries are indeed much more complex. Speci�cally, there are over

430 kinds of instructions and 13 types of sections with di�erent

functionalities in Wasm, indicating that Wasm is a bytecode format

with rich semantics. For comprehensive testing, ensuring that the

generated Wasm binaries can cover as many semantics as possible

is crucial and necessary. Further, it is impossible to generate Wasm

binaries arbitrarily, as each Wasm binary should be validated for

syntactic correctness before executing.

This work. We present WASMaker, a novel di�erential test-

ing framework for Wasm runtimes that can generate syntactically

correct and semantically rich Wasm binaries. We have designed

a dedicated algorithm to extract basic elements from real-world

Wasm binaries and randomly assembled them into Wasm binaries

with valid syntax and rich semantics. WASMaker further applies

di�erent levels of mutation strategies (e.g., AST-level and module-

level mutation) on generated binaries to increase their diversity,

and sends them to Wasm runtimes simultaneously to investigate

Inconsistencies. Because di�erent binaries may lead to the same

inconsistent state, to further pinpoint the root causes of incon-

sistencies, we proposed a root cause identi�cation algorithm that

can accurately locate bugs at the function and instruction level.

Extensive experiments show the superiority of WASMaker over

state-of-the-art techniques in both terms of e�ciency and e�ective-

ness. WASMaker can generate 6.0x and 148.8x Wasm binaries that

can lead to inconsistencies over two baselines. By applyingWAS-

Maker on four representative Wasm runtimes, over 167K Wasm

binaries that can lead to inconsistencies are generated, attributed

to 33 unique bugs. With our timely disclosure, 25 bugs have been

con�rmed by runtime developers, and 11 have been �xed with our

aid by the time of this writing.

The main contributions of this work are as follows:

• We proposeWASMaker, a novel di�erential testing frame-

work that can generate syntactically correct and semanti-

cally rich Wasm binaries by disassembling and assembling

real-world Wasm binaries, which signi�cantly increases the

diversity of generated Wasm binaries in terms of semantics.

• We design a runtime-agnostic root cause identi�cation al-

gorithm that can accurately pinpoint the location of bugs,

which signi�cantly eases the burden of runtime developers

for further veri�cation and bug patching.

• WASMaker has identi�ed 33 unique bugs that can lead to un-

expected behaviors for mainstream Wasm runtimes, among

which 25 have been con�rmed and 11 have been patched

with our timely disclosure.

2 Background & Motivation

2.1 WebAssembly & Runtime

WebAssembly (Wasm) is an emerging stack-based binary format

that can be compiled from mainstream high-level languages. Ex-

cept for the original four primary data types, i.e., i32, i64, f32,

and f64, v128 has been recently introduced to support SIMD in-

structions [41]. Each Wasm binary is composed of 13 sections [43],

and complex functionalities can only be achieved by coupling sec-

tions. For example, implementing a function involves three sections:

the type section for function signatures, the code section for local

variables and the function body, and the function section for map-

ping type indexes to function indexes. Each Wasm binary will be

statically validated on its syntactic validity before executing. The

validation mainly focuses on the stack. It checks if the operands

match the speci�ed types and ensures stack balance, verifying that

each block and function behaves according to its signature.

Wasm runtimes provide an executing environment for Wasm

binaries in various hardware and operating systems [44]. They play

a vital role in supporting Wasm-based functionalities in blockchain

platforms [12] and embedded devices [33], enabling the deployment

of lightweight, high-performance applications in resource-sensitive

environments. Additionally, except for the ine�cient interpreting

mode, both JIT (Just-In-Time) and AOT (Ahead-Of-Time) compila-

tions are adopted by some runtimes to improve the performance.

Wasm runtime is also responsible for handling interactions between

Wasm binaries and the external environment. In the early stage,

each runtime has its speci�c set of compiling toolchains and wrap-

pers for APIs exposed by the operating systems, which results in a

severe compatibility issue. Thus, WebAssembly System Interface

(WASI) [39] emerges, which de�nes the function signatures of each

API as well as its behavior. Currently, WASI is supported by lots of

mainstream Wasm runtimes as well as their compiling toolchains.

2.2 Motivation

Improper implementation of Wasm runtimes will signi�cantly

hamper the intended design goal of Wasm, i.e., security and ef-

�ciency. However, testing the correctness of the implementation

of Wasm runtimes is challenging. Currently, only di�erential test-

ing, one of the dynamic analysis methods, is adopted by existing

studies [44, 46]. This is because the static validation may struggle

with the complex logic in runtimes, and the pre-de�ned rules very

likely import false positives. Di�erential testing is a widely adopted

technique that compares the outputs or states among di�erent tar-

gets (i.e., di�erent implementations of the same functionality) while

giving an identical input. Moreover, it is independent of oracles, one

of the main challenges faced by other dynamic analysis methods,

like grey-box fuzzing. Although di�erential testing seems to be a

promising approach, there still exist some challenges for detecting

bugs in Wasm runtimes, which can be summarized as follows:

Challenge #1: Generating syntactic-correct and semantic-

rich Wasm binaries. As we mentioned in §2.1, each Wasm binary

should be validated for syntactic correctness before executing. Fur-

ther, in Wasm, there exist over 430 instructions and 13 types of

sections with di�erent functionalities, indicating that Wasm is a

bytecode format with rich semantics. To reach the goal of compre-

hensive testing, instead of guaranteeing syntactic correctness, it is

also crucial and necessary to ensure that the generated Wasm bina-

ries can cover as many semantics as possible. In other words, the

generated Wasm binaries should be syntactic-correct and semantic-

rich. As for syntactic correctness, the generated binaries should be

stack-balanced, and the index reference among sections should be

correct. As for the semantic richness, on the one hand, the instruc-

tions in the generated Wasm binary should interact with as many

sections as possible. On the other hand, these instructions should

be covered as much as possible during execution at runtime.
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Jump

(func $Wasm-smith (type 1)

 (param i32) (result i32 f32)

 block

  local.get 0

  ...

  block

   br 1

   ...

  end

  ...

 end

 i32.const 60812

 f32.const 1.89)

Figure 1: AWasm binary

from wasm-smith.
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(module

 (type (;0;) (func (result i32)))

 (func $WADIFF (type 0) 

  (local i32 i32)

  ...

  i32.const 5

  i32.const 10

  i32.add ;; target instruction

  ...)

 (memory (;0;) 1)

  (export "memory" (memory 0))

 (export "_start" (func $WADIFF))

 (data (;0;) (i32.const 0) "mem"))

Figure 2: A Wasm binary

fromWADIFF.

Challenge #2: Error localization to re�ne Wasm binaries ac-

cording to root causes. During di�erential testing, pinpointing the

root cause of inconsistencies among di�erent runtimes is challeng-

ing. Di�erential testing generates numerous Wasm binaries, each

with hundreds or thousands of instructions, making it di�cult to

identify the speci�c function or instruction causing a bug. However,

implementing the process of bug diagnosing is challenging because

not all Wasm runtimes come with developed debugging tools. More-

over, handling the compatibility issue among these runtimes also

raises the concern of scalability.

Limitations of current tools. To the best of our knowledge, only

two tools are available for di�erential testing Wasm runtimes, i.e.,

wasm-smith [3] and WADIFF [46]. Speci�cally, wasm-smith is a

Wasm test case generator proposed by the o�cial community. It

randomly selects instructions while considering the stack balance to

guarantee syntactic correctness. As for WADIFF, it adopts symbolic

execution to generate test cases for each instruction according to

the speci�cation. However, both tools have certain limitations.

Speci�cally, wasm-smith ignores the semantics of the generated

Wasm binaries, hindered by the Challenge #1. As shown in Fig-

ure 1, the br instruction at L7 will direct the control �ow to L11,

i.e., the end of the function. In other words, instructions between

L7 and L11 will be ignored by runtimes. Additionally, L2 indicates

that the results should be an i32 and an f32. To ensure the stack

balance, wasm-smith simply pushes two constant values (L12 and

L13) of the corresponding types. This means that this function can

be aggressively optimized to only include the last two instructions.

Consequently, wasm-smith can only generate Wasm binaries com-

posed of lots of meaningless instructions, which hampers both the

e�ciency and e�ectiveness of di�erential testing.

As for WADIFF, which adopts symbolic execution on the Wasm

speci�cation of each instruction to generate test cases, it can only

generate simple Wasm binaries (∼10 – 100 instructions) to ver-

ify runtimes. As shown in Figure 2, this Wasm binary veri�es the

implementation of i32.add. WADIFF follows the Occam’s Razor

principle [1], i.e., following the simplest control �ow and giving only

the necessary parameters generated by constraints. In other words,

it is hard for WADIFF to cover complex functionalities among 13

sections within a single Wasm binary. Moreover, it can only gener-

ate a �nite number of Wasm binaries after traversing all possible

paths for each instruction, and its randommutation method is likely

to generate invalid ones [46]. Last but not least, generating test

cases against control instructions is not yet supported by WADIFF,

e.g., call_indirect and loop. In summary, WADIFF also faces the

Challenge #1 we proposed previously.

Our approach. To address these two challenges, we come up

with some key ideas. Speci�cally, to generate syntactic-correct

and semantic-rich Wasm binaries, we extract AST nodes from ex-

isting real-world Wasm binaries and randomly assemble them in a

syntactic-correct way. Moreover, to increase the diversity of seman-

tics, we also import some mutations on the AST level and module

level, like introducing SIMD instructions. As for the error local-

ization issue, we implement a static instrumentation-based error

localization algorithm, which is runtime-agnostic to perform the

function level or even instruction level of root cause localization.

3 Approach

3.1 Overview

The work�ow of WASMaker is depicted in Fig 3, which can be

divided into three phases, i.e., corpus preparation, binary genera-

tion & mutation, and di�erential testing. Speci�cally, in the corpus

preparation phase, based on all collected real-world Wasm bina-

ries,WASMaker �rst parses ASTs and extracts valid AST sub-trees

from them. Then, in the binary generation & mutation phase,WAS-

Maker randomly assembles AST sub-trees as a valid Wasm binary.

To enhance the diversity of the generated Wasm binaries, WAS-

Maker performs AST-level and module-level mutations. Last, in

the di�erential testing phase, WASMaker sends a Wasm binary to

multiple Wasm runtimes simultaneously to investigate inconsistent

behaviors. Taking advantage of static instrumentation, WASMaker

can conduct a runtime-agnostic error localization to the root cause

inWasm binaries that lead to such inconsistent behaviors. We detail

these three phases in the following.

3.2 Corpus Preparation

Instead of directly generatingWasm binaries, we decide to take real-

world Wasm binaries that possess rich semantics as basic elements

to assemble Wasm binaries. To be speci�c, we �rst extract their

abstract syntax trees (ASTs), and split them into sub-trees. Then,

we sample AST sub-trees from all extracted ones, and assemble

them in a syntactic-valid way. Thus, the corpus preparation phase

can be divided into steps including context extraction, AST parsing,

and post-processing, which are depicted in Algorithm 1.

3.2.1 Context Extraction. Wasm is a statically typed language, and

each Wasm binary will be comprehensively validated syntactically

and semantically before being executed. Speci�cally, on the syntactic

side, Wasm is a stack-based language. Therefore, each instruction

will consume or push a certain number of operands from or onto

the stack. For example, i32.load requires an i32 operand as the

address and pushes the retrieved i32 data onto the stack. For some

instructions, the number of required arguments is variable, like

call and block. Thus, guaranteeing the stack balance needs to

consider the signature of the callee and all included instructions for

these two instructions, respectively. On the semantic side, a Wasm

binary is composed of 13 sections with di�erent functionalities.

Without considering the semantic validity, a stack-balanced Wasm

binary still cannot pass the validation. For example, if we have

assembled a function foo, which invokes bar, we should guarantee

the existence of bar: not only its implementation in the code section,

but also its function signature declared in the type section and the

mapping relation kept in the function section.

1264



ISSTA ’24, September 16–20, 2024, Vienna, Austria Shangtong Cao, Ningyu He, Xinyu She, Yixuan Zhang, Mu Zhang, and Haoyu Wang

 
 





 

 



 





 

 






 
























Figure 3: The architecture and work
ow of WASMaker.

Table 1: Instruction types and the representations, as well as

the stack type and semantic constraint should be guaranteed.

Instruction Stack Type Semantic Constraint

Numeric Instructions

i32.const c [] → [�32]

i64.add [�64, �64] → [�64]

Vector Instructions

v128.const c [] → [�128]

i32x4.add [�128, �128] → [�128]

Parametric Instructions

select [�, �, �32] → [�]

drop [�] → []

Variable Instructions

local.get n [] → [�]

Local �

idx� = �

type� = �

global.set n [�] → []

Global �

idx� = �

type� = �

Memory Instructions

i32.load memarg [�32] → [�32]

Memory�

Limit���,���

page� ∈ [���,���]

Table Instructions

table.get n [�32] → [�]
Table ��

idx�� = �

Control Instructions

call n [�∗] → [�∗]

Function �

Signature � = [�∗] → [�∗]

signature� = �

idx� = �

call_indirect n [�∗, �32] → [�∗]

IndirectFunction �

Signature � = [�∗] → [�∗]

signature� = �

idx� = �

block n [�∗] → [�∗]
Signature � = [�∗] → [�∗]

idx� = �

To solve this challenge, we �rst categorize Wasm instructions

into seven groups according to their context. Speci�cally, the context

of an instruction consists of its stack type and semantic constraints

(the must-satisfy conditions to guarantee semantic validity). Table 1

illustrates the representatives of each group. Speci�cally, the stack

type of numeric instructions is �xed, and there are no extra semantic

constraints on them. Vector instructions are similar to them but are

speci�cally designed for the vector type (see §2.1). In addition, the

stack type of parametric instructions may vary. For example, drop

consumes an operand, regardless of its type. Thus, the stack type

of drop is [�] → [], where t is a wildcard and refers to any type.

The other four types of instructions need semantic constraints. For

example, local.get � has two semantic constraints: for a local

variable � , its index and type should be � and � , respectively. As for

memory and table instructions, they are respectively responsible for

interacting with the memory and table area. For instance, i32.load

requires the number of pages of the linear memory to be within

a certain range, i.e., [���,���], as declared in the binary. Table

instructions require that the accessed table exists. In Wasm, there

are two kinds of function invocations: call and call_indirect,

which have subtle di�erences in semantic constraints. For call n,

it directly invokes the n-th function, while the n of call_indirect

indicates the index of the function type declared in the type section.

The index of the callee is retrieved dynamically from the stack at

runtime, i.e., the second i32 parameter of its stack type.

Algorithm 1 The algorithm of corpus preparation.

Input: ������ - list of instructions, ������ - the Wasm binary

Output ���� - the corpus, composed of a list of AST

1: function CorpusPreparation(������ , ������)

2: ���� ← InitializeList()

3: for each ����� ∈ ������ do

4: ����
�� ← GetContext(�����, ������) ⊲ §3.2.1

5: ���
 ← ���
 (�����, ����
��)

6: if ����� .�	���
 ∈ [�����, ���	, � � ] then ⊲ §3.2.2

7: ���
.�ℎ��� ← CorpusPreparation(����� .����,

������)

8: end if

9: 	����� ← ����
�� .��	
.	�����

10: while 	����� do

11: for each 	�
���
 ∈ Reversed(����) do

12: ���
 ← AppendChild(���
, 	�
���
)

13: ����.	�	 ()

14: 	�����.	�	 ()

15: end for

16: end while

17: ����.�		
�� (���
)

18: end for

19: ���� ← PostProcessing(����) ⊲ §3.2.3

20: return ����

21: end function
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To build the corpus, the algorithm �rst goes through the instruc-

tion list (L3) and extracts context information for each of them to

build the node corresponding to each instruction (L4 – L5). Speci�-

cally, against each instruction, the algorithm extracts its stack type,

which can be analyzed statically (see §2.1). As for the semantic

constraints, it is parsed by indexing all necessary sections within

the given binary. Both of them will be packed within a variable,

named context, which is then treated as an attribute of a Node in-

stance along with the instruction (instr). Take the call instruction

as an example, where Listing 1 illustrates its concrete context ex-

traction process. To be speci�c, the algorithm �rst initializes a fresh

Function object (L3). Then, it extracts the immediate number �

of call, and obtains its function signature � by indexing through

the function and type sections (L5 – L7). According to its semantic

constraint, the callee is linked to � (L9). Last, both the stack type

and semantic constraint are packed and returned (L10).

1 # suppose the instr and binary are given
2 # initialize a Function
3 Function f = Function ()
4 # get the callee 's signature
5 n = instr.args
6 typeid = binary.functionSec[n]
7 Signature s = binary.typeSec[typeid]
8 # build the context
9 Semantics sem = Semantics(function=f, signature=s)
10 return {'type ': s, 'semantics ': sem}

Listing 1: The pseudocode of GetContext on call.

3.2.2 AST Parsing. Parsing ASTs of real-world Wasm binaries is

necessary before extracting sub-trees from them to build the corpus.

By leveraging the extracted context mentioned in §3.2.1, a Wasm

binary can be easily parsed to the corresponding ASTs. To better

illustrate how this process happens, Fig. 4a to Fig. 4c shows a fac-

torial function written in C, the instruction list of the compiled

Wasm binary, and the corresponding AST, respectively. We detail

the process combining with Algorithm 1. As we can see from Fig. 4b,

the compiled instruction list is quite �at, which makes it hard to

identify the AST structure. Therefore, the algorithm �rstly identi-

�es whether the current instruction is any of block, loop, or if

(L6 to L8 in Algorithm 1) to recursively build AST. This is because

only sub-trees led by these instructions can be nested. Then, the

algorithm constructs the AST according to the stack type, as shown

from L9 to L18 in Algorithm 1. For example, the �rst instruction, i.e.,

i32.const 5, takes no elements from the stack, and thus it jumps

over the iteration at L10 and is pushed to ���� at L17. Then, the

following local.set 0 takes an element from the stack as shown

in Table 1. Thus, the while-loop at L10 is executed once. Within the

while-loop, the last AST node, i.e., the previous i32.const 5 is set

as the child for local.set 0, which will then be pushed to ���� .

When the algorithm meets call, an instruction with a variable

number of arguments, its context is determined in §3.2.1 by retriev-

ing the function signature of the callee, and thus the AST can be

built without any issue. Due to the recursive construction as shown

at L7 in Algorithm 1, the block (L7 of Fig. 4b) will lead the loop (L8

of Fig. 4b), within which it implements the factorial calculation (L5

of Fig. 4a). Consequently, after traversing the factorial function,

���� is composed of four nodes, each of which can be regarded as

a root of a sub-tree of the AST (Fig. 4c).

3.2.3 Post-processing. The aim of the post-processing stage is to

increase the diversity of the generated Wasm binaries. As we can
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(a) The source code in C.
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(c) The parsed AST of the Wasm bytecode.

Figure 4: A concrete example of AST parsing.

see from Fig. 4c, the 1st and 2nd sub-trees are quite similar. In

other words, if we take both of them into valid elements in the �nal

corpus, the Wasm binaries with similar functions may be generated.

Therefore, in the post-processing stage, we try to minimize the size

of the corpus to avoid generating similar or even duplicated Wasm

binaries. Speci�cally, we compare the newly extracted ASTs with

the existing ones in the corpus, the implementation of which is

shown in Listing 2. As we can see, the body is a two-layer nested

loop at L19 that discards the AST that cannot increase the diversity

through compareAST. The compareAST function recursively fetches

children nodes and compares only the opcode of instructions. Take

Fig. 4c as an example. When only considering the opcode, the 1st

and 2nd ASTs are identical. Thus, only one of them will be kept.

1 function postprocessing(ASTs):
2
3 function compareAST(new , old):
4 # compare the opcode of current instruction
5 if new.instr.opcode != old.instr.opcode:
6 return False
7 # compare the number of children nodes
8 if len(new.subNodes) != len(old.subNodes):
9 return False
10 # recursively compare their children nodes
11 for i in range(len(new.subNodes)):
12 if !compareAST(new.subNodes[i], old.subNodes[i]):
13 return False
14 return True
15
16 # get existing ASTs from corpus
17 existingASTs = getExistingASTs ()
18 # remove deduplicate AST
19 for AST in ASTs:
20 for existingAST in existingASTs:
21 if not compareAST(AST , existingAST):
22 ASTs.remove(AST)
23 break
24 return ASTs

Listing 2: The pseudocode of PostProcessing.

3.3 Binary Generation & Mutation

Given the sub-trees extracted from ASTs of real-world Wasm bi-

naries as corpus, as well as the extracted context information on

each instruction, WASMaker can generate valid Wasm binaries

e�ciently and e�ectively. Additionally, WASMaker also conducts
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...
call_indirect $type

...

drop

i32.const $index

call_indirect $type

Indirect function table

(func $subfunc (type $type)

  ...

)

① add

③ rewrite

1 $index...

② append

1

Figure 5: The concrete steps of WASMaker on maintaining

necessary invoking relation of the callindirect instruction.

mutations on these generated binaries to bring in more diversities.

The binary generation and binary mutation are detailed as follows.

3.3.1 Binary Generation. We generate a Wasm binary in a bottom-

up way, i.e., building a valid entry function, maintaining necessary

invoking relation, and supplementing extra semantics.

Step I: Building a valid entry function. First of all, we need

to generate a function body for an entry function. In general, we

randomly sample a speci�ed number of AST sub-trees from the

corpus. Then, we concatenate and transform them into a sequence

of Wasm instructions, which is regarded as the body of the entry

function. In Wasm, a function is composed of not only a set of

instructions as its implementation, but also some local variables

that can be accessed within the current function. Thus,WASMaker

adds �ve local variables for the entry function, typed as i32, i64,

f32, f64, and v128 (see §2.1) and indexed from 0 to 4, respectively.

For each variable instruction in the newly generated entry function,

WASMaker gets their stack type mentioned in Table 1 and conducts

necessary rewriting on the immediate number. For example, if

a local.get is bound an operand with type i64, its immediate

number, i.e., the index, will be rewritten as 1. Finally, according to

the signature of the entry function,WASMaker appends necessary

local.get before the �nal return instruction to avoid them being

optimized as dead code.

Step II: Maintaining necessary invoking relation. Except for

considering the intra-functional validity when building the entry

function, the inter-functional validity should also be ensured, i.e.,

maintaining function invoking relations from the entry function.

In Wasm, only two instructions can invoke function calls, i.e., call

and call_indirect. Thus, WASMaker traverses each instruction.

Upon encountering a call, WASMaker generates a callee accord-

ing to its bound concretized stack type and semantic constraint. In-

stead of generating a callee with an empty function body whose aim

is solely to maintain the stack balance, the callee adopts the same

method as we mentioned in the Step I. In other words, the callee

has a functional function body, and it may recursively generate its

callees. For call_indirect, maintaining its invoking relation re-

quires a little extra e�ort. Speci�cally, the callee of call_indirect

is determined at runtime. As shown in Fig 5,WASMaker �rstly gen-

erates a callee as its handling on call. Then, it inserts the function

index into the function table to ensure the indexing process raises

no exceptions. Last, to make sure the call_indirect can actually

be guided to the newly generated callee,WASMaker inserts a drop

and an i32.const c before it, where the c is the index.

Step III: Supplementing extra semantics. For a Wasm binary,

only focusing on functions cannot fully guarantee its semantic

correctness because the functionalities are decoupled into all 13

sections. Thus, extra semantics should be supplemented. Take the

data section as an example, which is used to initiate the linear mem-

ory of Wasm binary. To prevent memory-related instructions from

raising exceptions, WASMaker goes through the memory instruc-

tions of each function to determine the maximum addressing range

based on its semantic constraint. Within the range, WASMaker

will �ll random data into the data section. Similarly, for the table

and element sections that make up the indirect function table of

Wasm, we construct them based on the context of table instructions

in the binary. This ensures correct executions on table instructions.

As for the global section, whose elements can be accessed by all

functions, we adopt the same strategy as inserting local variables

in functions. That is, WASMaker inserts only �ve global elements

with di�erent types into the global section. Additionally, it mod-

i�es the immediate numbers of all global.get and global.set

instructions to match their bound stack type, replacing them with

the corresponding index.

3.3.2 Binary Mutation. Though the methods in §3.3.1 can generate

a substantial number of Wasm binaries, there are two shortcomings.

First, increasing the code coverage of tested runtimes by assem-

bling ASTs from existing Wasm binaries is still di�cult. second, the

ongoing evolution of Wasm makes it hard to verify the implemen-

tation of runtimes on new features. For instance, SIMD instructions

are newly introduced to handle vectors, and the number of SIMD

instructions is 236, far more than the one de�ned in Wasm 1.0 [42].

To address these shortcomings, we propose mutation strategies

to test Wasm runtimes and uncover hidden issues comprehensively.

Generally speaking, the mutation strategies can be divided into

AST-level mutation and module-level mutation. The former one can

be integrated into the Step I and Step II in §3.3.1 and the latter one

can be performed when conducting the Step III in §3.3.1.

AST-level mutation is to mutate the instructions of ASTs in the

corpus we collected, and its purpose is to extend the semantics of

AST, so as to further improve the code coverage of runtime testing.

• Mutate immediate numbers. Improper processes in corner cases

are more likely to trigger bugs or even vulnerabilities [20, 27, 44].

Therefore, part of the mutation strategies is put on the immediate

number of instructions. For example, for constant instructions,

like i32.const,WASMaker tries to replace the original operand

with the value near the boundary, e.g., 232 − 1. Furthermore, for

memory load and store instructions, WASMaker attempts to

mutate the o�set and alignment arguments.

• Mutate operators. Mutating operators can also increase the diver-

sity of ASTs. To support SIMD instructions,WASMaker conducts

mutations on numeric and memory instructions to their corre-

sponding SIMD ones with similar semantics. For example, in Fig 6,

the original implementation (left side) is i32.const followed by

an i32.load. After mutating both of them into SIMD instruc-

tions with similar semantics, the mutated implementation (right

side) is v128.const followed by a v128.load. However, we can

observe that the type of the element consumed by v128.load

mismatches the one pushed by v128.const. Fortunately, Wasm

speci�cation provides a set of instructions to convert the ele-

ment type [40]. Thus, WASMaker adds an extra i32x4.splat

to convert v128 to i32 to make the mutated implementation

valid. We further design a strategy to increase the diversity of
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v128.const c

i32x4.splat

i32.load
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insert

[]→[i32]
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[v128]→[i32]
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Figure 6: Mutating normal instructions to the SIMD ones.

ASTs. Speci�cally, as illustrated in Table 1, instructions may have

identical stack type, like i32.add and i32.sub. Performing ar-

bitrary interchanges among these instructions will not disrupt

the stack balance. Consequently, WASMaker randomly replaces

instructions with others based on the stack type.

Module-level mutation. In addition to the inconsistencies in the

implementation of instructions, de�ciencies in the validation of

runtime on thewholeWasmmodule can also pose security risks. For

example, incomplete memory boundary checksmay lead to sandbox

escapes. Thus, we also perform module-level mutations during

the Step III in §3.3.1. Speci�cally, Cao et al. [8] have summarized

�ve functionalities in Wasm, i.e., Global, Import & Export, Memory,

Function, and Custom. Except for the last functionality, which has

no association with the semantics of a Wasm binary, against each

of the others, we have designed some speci�c mutation strategies,

which are detailed in the following.

• Global. Except for the data type, each global variable possesses

various other attributes, such as whether the variable is mutable.

We randomly mutate the attributes of each global element.

• Import & Export. Wasm can import or export various seman-

tics, such as functions, memory, and even global variables. WAS-

Maker randomly adds import and export items (in the import

and export sections) to the generated binaries.

• Memory. As we mentioned in the Step III in §3.3.1, the data

section is initiated with random data. Except for that, Wasm

still requires all memory accesses to be within the valid address

limitation. Thus,WASMaker mutates the address limitation to

test the correctness of memory boundary checks in runtimes.

• Function. Part of this functionality is related to the code section,

which is handled by §3.3.1. Thus, WASMaker primarily mutates

the table section. Similar to the memory section, the table section

determines the range of the indirect function table, which is used

for indexing by call_indirect. To this end, the correctness of

boundary checks in runtimes can be covered.

3.4 Di�erential Testing

During di�erential testing, we �rst identify inconsistencies among

runtimes. Given the large number ofWasm binaries tested, many in-

consistencies may stem from the same underlying issue. E�ciently

locating the root cause can enhance the overall testing process.

Next, we explain how we address these issues.

3.4.1 Inconsistency Identification. During the di�erential testing

process, we cannot simply take di�erent outputs as inconsistency

because some of them are triggered by non-bug factors, like di�er-

ences in design principles and implementational distinctions. First,

Wasm is still under development, and thus runtimes may have dif-

ferent levels of supporting the Wasm speci�cation. For example,

Compilation Execution Output

Unexpected

output

Runtime

failures

Program

crash

Compilation

failure

Figure 7: The types of inconsistencies during execution.

some runtimes may not support SIMD instructions yet, resulting

in an unsupported prompt when encountering Wasm binaries with

SIMD instructions. Second, the output of various runtimes is also

in�uenced by their implementation styles. For example, some run-

times may consider i32 and i64 integers as signed when outputting

them, while other runtimes may treat them as unsigned. The Wasm

speci�cation does not explicitly de�ne these behaviors. Third, dif-

ferent runtimes adopt diverse ways to handle error messages. For

example, when encountering an out-of-bounds table access, some

runtimes may only output unde�ned element, while other runtimes

provide more speci�c reasons, such as out of bounds table access.

To reduce the number of false positives, i.e., inconsistent behav-

iors due to the above non-bug reasons, we give a clear de�nition

of inconsistent behavior as shown in Fig. 7. Speci�cally, we de�ne

three kinds of inconsistent behaviors based on the lifetime of a

Wasm binary being executed by runtimes, namely compilation fail-

ure (CF), runtime failure (RF), and unexpected output (UO). These

three types are mutually exclusive and cover all inconsistent behav-

iors we identi�ed during the di�erential testing. The �rst two types

happen when runtimes encounter unexpected errors during the

corresponding stage. As the name suggests, the compilation failure

occurs when the Wasm binary is compiled and instantiated. The

Wasm runtime will crash, that is, the input Wasm binary will not be

executed at all. When Wasm binaries are executed, runtimes may

still crash, usually due to raised exceptions, which is named run-

time failure. We identify this inconsistent behavior by the classes

of raised exceptions. The last one, i.e., unexpected output, can only

be observed when a Wasm binary is executed.

To determine which runtime behaves unexpectedly, we take the

majority rule as other di�erential testing studies adopt [46]. In

other words, when executing a binary, we consider the behavior

generated by most runtimes as correct. For example, if a binary

encounters out-of-bounds memory access in three runtimes while

the remaining runtime raises an indirect function table-related

error, the latter one is considered potentially buggy.

3.4.2 Root Cause Localization. Di�erent Wasm binaries may trig-

ger the same bug in Wasm runtimes, and thus performing an error

localization is necessary to deduplicate these Wasm binaries ac-

cording to the root causes of triggered inconsistency. To this end,

we propose a runtime-agnostic binary instrumentation method for

root cause localization, which is detailed in Algorithm 2, consisting

of function-level localization and instruction-level localization.

Function-level Localization. It is designed for runtime failure

and unexpected output inconsistency types (see §3.4.1). Speci�cally,

the localization is implemented by static binary instrumentation.

Before and after each call instruction, the instrumented function

is responsible for printing the index of the invoked function along

with its parameters or return values, which is achieved by the im-

ported fd_write function, one of the WASI functions (see §2.1).
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Formally, the FuncLocalization in Algorithm 2 illustrates the im-

plementation of function-level localization. It takes the binary that

exhibits inconsistencies and its corresponding inconsistency type

as inputs. Then the binary is instrumented at the function level and

then executed by runtimes to obtain the respective output logs (L2).

At the loop at L4, the algorithm iterates over the logs outputted by

instrumented functions, consisting of arguments and return values.

The algorithm then compares the logs among runtimes to �nd the

function that causes the inconsistent behavior (L5-L7). It is worth

noting that the binary generation method guarantees each function

is only called once and there is no recursive invocation. Thus, we

can �nd the inconsistent function with a simple queue traversing

(L6). Lastly, the algorithm examines whether the instruction-level

localization should be further invoked depending on whether the

inconsistency type is an unexpected output.

Algorithm 2 The error localization algorithm.

Input: 18=0A~ - inconsistent binary, C~?4 - inconsistent type

Output 5 D=283 - the index of inconsistent function. 8=BCA - the

inconsistent instruction

1: function FuncLocalization(18=0A~, C~?4)

2: ;>6B!8BC ← FuncInstrumentation(18=0A~)

3: 5 D=283 ← #>=4

4: for each ;>6B ∈ ;>6B!8BC do

5: if CompareFuncLogs(;>6B) = �0;B4 then

6: 5 D=283 ← FindInconsistentFunc(;>6B!8BC)

7: end if

8: end for

9: if C~?4 = $*)%*) then

10: 8=BCA ← �=BCA!>20;8I0C8>=(18=0A~, 5 D=283)

11: return 8=BCA

12: else

13: return 5 D=283

14: end if

15: end function

Input: 18=0A~ - inconsistent binary, 5 D=283 - the index of incon-

sistent function

Output 8=BCA - The inconsistent instruction

1: function InstrLocalization(18=0A~, 5 D=283)

2: ;>6B!8BC ← InstrInstrumentation(18=0A~, 5 D=283)

3: 8=BCA ← #>=4

4: for each ;>6B ∈ ;>6B!8BC do

5: if CompareInstrLogs(;>6B) = �0;B4 then

6: 8=BCA ← ;>6B.8=BCA

7: 1A40:

8: end if

9: end for

10: return 8=BCA

11: end function

Instruction-level Localization. The InstrLocalization will be

invoked if the inconsistent behavior is due to the unexpected output.

Speci�cally, it takes the binary exhibiting inconsistencies and the in-

dex of its inconsistent function as input. Then InstrLocalization

performs instruction-level instrumentation on the speci�ed func-

tion within the binary and feeds the instrumented binary to run-

times to get their output logs (L2). The instrumentation is con-

ducted by printing the opcode of non-control-�ow instruction and

the value on the top of the stack after each instruction. L4 to L10

iterate the output of each instrumentation point. By comparing

the values on the stack after the execution of each instruction, the

algorithm identi�es the speci�c instruction responsible for the ob-

served inconsistent behavior. Consequently, the instruction that

leads to buggy inconsistency is returned.

Re-run Strategy. It is important to note that multiple bugs can

exhibit the same type of inconsistent behavior in runtimes. For ex-

ample, if a runtime has bugs in both the implementation of memory-

related instructions and the validation of memory boundaries, it

may throw the out-of-bounds exception in both cases. To try to

avoid such con�ation issues, we employ the re-run strategy. That

is, we re-run all binaries that exhibited inconsistent behaviors after

�xing any of the identi�ed bugs in a runtime. The goal is to discover

additional unique runtime bugs through this process.

4 Implementation & Evaluation

4.1 Implementation & Experimental Setup

We have implemented WASMaker with over 7.4K LOC of Python3

code from scratch. All experiments were performed on a server

in Ubuntu 22.04 with a 64-core AMD EPYC 7713 CPU and 256GB

RAM. Our evaluation is driven by the following research questions:

RQ1 How e�ective is WASMaker compared to baselines?

RQ2 Howmany real-world bugs can be identi�ed byWASMaker?

RQ3 What are the characteristics of the detected bugs?

Benchmark.We use the WasmBench [35], a well-known bench-

mark consisting of over 8K Wasm binaries. These binaries are col-

lected from various sources, including code repositories, web ap-

plications, and package managers. Consequently, it guarantees the

richness in terms of the semantics of Wasm binaries, laying the

foundation for WASMaker to generate a corpus.

Baselines.We select wasm-smith [3] andWADIFF [46] as baselines.

Speci�cally, wasm-smith is a Wasm binary generator that is widely

adopted in testing Wasm runtimes [37, 38]. It is worth noting that

Wasm binaries generated by wasm-smith in the default mode are

mostly unable to be directly executed by runtimes because theymay

import functions that are not supported by runtimes. Therefore, we

con�gure it to generate Wasm binaries without imported functions,

and each binary has a minimum of ten functions, all of which

are exported. As for WADIFF, it adopts symbolic execution on

speci�cations of each instruction to generate Wasm binaries for

testing the correctness of Wasm runtimes on executing instructions.

Targeted Runtime. We select representative runtimes according

to two criteria. First, the stars of runtimes are greater than 3K. Sec-

ond, the runtime is actively maintained for the last three months

and has been o�cially released for over a year. Consequently,

Wasmtime [38], Wasmer [37], WAMR [34], and WasmEdge [36]

are selected. Note that no inconsistent behaviors are identi�ed for

Wasmer, and we omit it in the following three RQs.

Experimental Setup. To ensure a fair comparison, it is important

to generate and execute as manyWasm binaries as possible within a

24-hour time budget using di�erent tools and runtimes. During this

process, we record any instances that lead to inconsistent behaviors.

Note that the following root cause localization, runtime bug �xing,

and re-running processes mentioned in §3.4 for identifying unique

bugs in runtimes are not included within the 24-hour limit.
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Table 2: The number of generated Wasm binaries and the

ones that can trigger inconsistent behaviors, where CF, RF,

UO, and T refer to compilation failure, runtime failure, unex-

pected output, and the sum of these cases, respectively. B and

UB represent bugs and unique bugs that are not discovered

by the other two tools.

WASMaker WASMaker� WASMaker" wasm-smith WADIFF

# Generated

Wasm Binaries
269,998 281,456 29,5269 343,299 283,330

Wasmtime

CF 3,151 0 2,548 0 0

RF 0 0 0 0 0

UO 0 0 0 0 0

T 3,151 0 2,548 0 0

B 1 0 1 0 0

UB 1 0 1 0 0

WAMR

CF 40,158 36,314 38,662 5,555 0

RF 7,578 4,138 6,274 5,479 0

UO 1,441 983 0 0 443

T 49,177 41,435 44,936 11,034 443

B 7 4 2 5 2

UB 4 4 0 4 0

WasmEdge

CF 0 0 0 0 0

RF 10,032 7,647 3,918 0 0

UO 3,543 1,414 0 0 0

T 13,575 9,061 3,918 0 0

B 7 5 3 0 0

UB 7 5 3 0 0

Total

(Sum of

above

runtimes)

CF 43,309 36,314 41,210 5,555 0

RF 17,610 11,785 10,192 5,479 0

UO 4,984 2,397 0 0 443

T 65,903 50,496 51,402 11,034 443

B 15 9 6 5 2

UB 12 9 4 4 0

4.2 RQ1: Comparison with Baselines

Overall Result. Table 2 illustrates the overall results, where the

2nd, 5th, and 6th columns correspond to WASMaker, wasm-smith,

and WADIFF, respectively. Moreover, the 2nd row illustrates the

number of generatedWasm binaries, and the rows leading byT refer

to the number of binaries that can result in inconsistent behaviors.

As we can see, the e�ciency of these three tools is indistinguishable,

and they all can generate and perform the corresponding di�erential

testing on roughly 300,000Wasm binaries within 24 hours. However,

when it comes to the number of Wasm binaries that can lead to

inconsistent behaviors, the di�erence in e�ciency among them is

signi�cant.WASMaker generates more than 65K Wasm binaries

that can result in inconsistent behaviors, which is 6.0x and 148.8x

greater than wasm-smith and WADIFF, respectively. Interestingly,

we can easily observe that wasm-smith and WADIFF can only

detect inconsistent behaviors in WAMR, while WASMaker is also

e�ective in Wasmtime and WasmEdge. This is because the aim of

binaries generated by wasm-smith is more about testing the syntax

validation of runtimes, which may have been widely tested by the

other runtimes before release. As for WADIFF, it can only test the

implementation inconsistency at the instruction level.

Semantic Richness. Against these tools, we further evaluate the

semantic richness of the generated binaries based on four metrics:

nesting depth of code blocks (ND), average number of instructions

(ANI), average number of control instructions (ANCI), and the

ratio of actually executed instructions out of all instructions (REI).

Fig. 8 illustrates the distribution of ND for binaries generated

by the three tools. It can be observed that when ND is smaller

than 13, the curve of WASMaker is signi�cantly higher than the

other two tools, while wasm-smith surpassesWASMaker after that
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Figure 8: The ND distribution for generated Wasm binaries.

Table 3: ANI, ANCI, and REI of binaries generated byWAS-

Maker, wasm-smith, and WADIFF.

Metrics WASMaker wasm-smith WADIFF

ANI 15948.92 2568.73 5.26

ANCI 594.07 216.17 0.00

REI 39.66% 5.55% 100.00%

point. This indicates wasm-smith is good at generating complex

code block patterns compared to WASMaker. We speculate this is

becauseWASMaker generates binaries by combining ASTs of exist-

ing binaries, and thus, the depth of code blocks is more similar than

the one of real-world binaries. On the other hand, wasm-smith is

designed to validate the syntax-checking process of runtimes, thus

intentionally generating such complex code block structures. More-

over, WADIFF does not generate test cases speci�cally targeting

control instructions, indicating theND is always 0. Table 3 presents

the results of the other three metrics. As we can see, both ANI and

ANCI of WASMaker are higher than the ones of the other two

baselines. As for REI, because WADIFF does not generate nested

code blocks, as shown in Fig. 8, all instructions in generated binaries

will be executed once. Moreover, though WASMaker exhibits a

weaker capability in generating deeply nested code blocks com-

pared to wasm-smith, its REI is much higher. Therefore, we can

conclude that code blocks generated by WASMaker are more e�-

cient in testing runtimes. In summary, compared to the baselines,

the binaries generated by WASMaker exhibit richer semantics.

Distribution of Inconsistencies. We further analyze the types

of inconsistencies (mentioned in §3.4.1). Interestingly, for Wasm-

time, all inconsistencies are CF, whereas for WasmEdge, it was

the other way around. We speculate this is due to the di�erent

robustness of the two runtimes in their implementations. Moreover,

most cases that can lead to inconsistency can be found in WAMR

for all three tools, while only WASMaker can identify all three

kinds of inconsistencies, further strengthening its e�ectiveness.

Bugs.We take a step further to investigate the root causes of these

inconsistent behaviors, as shown in the rows led by B and UB, indi-

cating the number of bugs and unique bugs that are not discovered

by the other two tools.WASMaker identi�es 15 bugs in total within

24 hours, while 12 of them are not discovered by wasm-smith and

WADIFF. Interestingly, we can also observe that wasm-smith found

four unique bugs that are not identi�ed by WASMaker during

testing against WAMR, which are all syntactic bugs. For example,

one case has a br_table followed by an array with more than 30

branches as targets, where WAMR failed to examine whether the

type of each targeted block is identical. Such a long br_table is

unusual in real-world cases, and thus WASMaker cannot �nd this

issue within 24 hours even with the help of mutation strategies.
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Table 4: The breakdown of 167,343 Wasm binaries that can

lead to inconsistent behaviors generated byWASMaker. The

number in parenthesizes is the number of unique bugs.

CF RF UO Total

Wasmtime 8,692 (1) 0 (0) 0 (0) 8,692 (1)

WAMR 99,578 (4) 17,568 (10) 2,763 (5) 119,909 (19)

WasmEdge 0 (0) 30,273 (7) 8,469 (6) 38,742 (13)

Total 108,270 (5) 47,841 (17) 11,232 (11) 167,343 (33)

Ablation Study. To evaluate the e�ectiveness of AST-level and

module-level mutation strategies (see §3.3.2), we conducted an ab-

lation study. Speci�cally, following the same experimental setup,

we launchWASMaker� andWASMaker" separately, where only

the AST-level and module-level mutation strategies are adopted,

respectively. The 3rd and 4th columns of Table 2 illustrate the re-

sults. As we can see, WASMaker" fails to uncover inconsistent

behaviors under the UO category. This is because the module-level

mutations put attention on sections other than the code section,

where instructions are included. Additionally, the AST-level muta-

tion demonstrates superior e�ectiveness as it directly targets the

critical aspect of runtimes, i.e., the implementation of instructions.

Note that, both WASMaker� and WASMaker" perform worse

than WASMaker, which enables two strategies simultaneously,

indicating that the combination of AST- and module-level mutation

strategies can yield better results.

Answer to RQ1. Compared with the state-of-the-art baselines,

i.e., wasm-smith and WADIFF,WASMaker demonstrates its enhanced

semantic richness, along with superior e�ciency and e�ectiveness, in

identifying unexpected behaviors in Wasm runtimes. It outperforms

them by identifying 6.0x and 148.8x more cases, respectively.

4.3 RQ2: Identi�ed Real-World Runtime Bugs

Our previous exploration suggests thatWASMaker outperforms

state-of-the-art techniques greatly. Thus, we next seek to apply

WASMaker to identify runtime bugs in the real world. For the

targeted runtimes, WASMaker performs di�erential testing for 72

hours1. In total, WASMaker has generated 832,053 Wasm binaries,

167,343 out of which (20.11%) can lead to inconsistent behavior

across Wasm runtimes. Table 4 illustrates the breakdown details.

Behavior Inconsistencies. Among all these three runtimes,WAS-

Maker generates a total of 119,908 cases that can trigger inconsis-

tencies in WAMR, which is 3.1x and 13.8x greater than WasmEdge

and Wasmtime. Most of the inconsistent cases belong to CF, ac-

counting for 65% of all binaries.

Bugs. As shown in Table 4, for all the 167,343 inconsistent cases,

our root cause localization method pinpoints 33 unique bugs, and 5,

17, and 11 of them are classi�ed into CF, RF, and UO, respectively.

Over half of the bugs are discovered within the �rst 24 hours, and

the growth rate gradually slows down in the following hours. Note

that, against Wasmtime, we only identi�ed a single type of bug that

can generate its unexpected behaviors, which is consistent with the

results presented in RQ1. It is noteworthy that althoughWASMaker

generated the highest number of binaries resulting in CF, there are

only 4 unique bugs. After investigating the reason, we found that

it is because WAMR raises exceptions when parsing the complex

1Note that, the reason we set the time frame of 72 hours is that the number of unique
bugs WASMaker identi�ed remain stable after roughly 65 hours.

Table 5: Detailed information of all con�rmed bugs.

Runtime Issue Type Root Cause Status

Wasmtime #7558 CF type conversion error Fixed

WAMR

#2450 RF integer over�ow Fixed

#2555 RF llvm compiler crash Fixed

#2556 CF non-alignment issue Fixed

#2557 CF value kind check missing Fixed

#2561 UO instruction implementation error Fixed

#2677 CF type conversion error Fixed

#2690 UO instruction implementation error Fixed

#2720 RF memory check error Fixed

#2789 CF string check error Fixed

#2861 UO instruction implementation error Con�rmed

#2862 UO instruction implementation error Con�rmed

WasmEdge

#2812 UO instruction implementation error Con�rmed

#2814 RF memory check error Con�rmed

#2815 UO instruction implementation error Con�rmed

#2988 UO instruction implementation error Con�rmed

#2996 UO instruction implementation error Con�rmed

#2997 UO instruction implementation error Con�rmed

#2999 UO instruction implementation error Con�rmed

#3018 RF memory check error Con�rmed

#3019 RF memory check error Con�rmed

#3057 RF memory check error Con�rmed

#3063 RF memory check error Con�rmed

#3068 RF memory check error Con�rmed

#3076 RF memory check error Con�rmed

representation of immediate values of v128.const. Because our

mutation strategies (see §3.3.2) can import such instructions, a large

number of binaries trigger this inconsistent behavior.

BugReporting. For each unique bug identi�ed, we randomly select

binaries and report them to runtime developers, and we further

provide root cause analysis to them for aiding bug �xing. Out of

the 33 unique bugs, 25 have been con�rmed by developers, and 11

have been �xed by the time of this writing, as shown in Table 5.

For those con�rmed ones, we will conduct detailed case studies on

some representatives in the following §4.4

Answer to RQ2.WASMaker successfully generated more than

167K Wasm binaries that can lead to unexpected behaviors of Wasm

runtimes, which were caused by 33 unique bugs. With our timely

disclosure, 25 bugs have already been con�rmed by runtime developers,

and 11 of them have been �xed with our help.

4.4 RQ3: Bug Characterization

We go a step further to analyze the root cause of each bug manually.

As shown in Table 5, most of these bugs are caused by instruction

implementation errors, while some other bugs are due to boundary

check and type conversion errors. We next select three �xed bugs

as representative ones for case studies.

1 (memory (;0;) 65536 65536)
2 (data (;0;) (i32.const -79158787) "Bp222N ")

Listing 3: Wasmtime Type conversion error.

Case 1: Wasmtime Type conversion error. Listing 3 shows a

part of the Wasm binary generated byWASMaker, leading to the

#7558 issue of Wasmtime. Speci�cally, L1 speci�es the maximum

space of the linear memory of this binary is 4 GB. However, L2

initializes the memory area starting from the o�set of -79158787,

which needs to be interpreted as an unsigned 32-bit integer. Unfor-

tunately, Wasmtime incorrectly takes this number as a signed one,

leading to a compilation failure since a negative address is invalid. In
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contrast, other runtimes correctly convert -79158787 to 4215808509,

and perform the following expected behaviors correctly.

1 (module
2 (func (result v128)
3 v128.const i32x4 0x3d52aa71 0xea2f90b2 0xb20cdf3d 0

x4d6054bc
4 i32.const -7235
5 i8x16.shl)
6 (export "main" (func 0)))

Listing 4: WAMR instruction implementation error.

Case 2: WAMR instruction implementation error. Listing 4

illustrates a part of the Wasm binary generated byWASMaker that

triggers the #2690 issue of WAMR. To be speci�c, the i32.const

-7235 at L4 determines how many bits should be left-shifted, and it

should be interpreted as the unsigned number 58302. Unfortunately,

WAMR incorrectly treats -7235 as a signed number and directly

performs modulo with 128. Thus, the following instruction left

shifts the v128.const at L3 in di�erent bit. To this end, though this

code snippet can be executed normally, WAMR outputs a di�erent

output compared with other runtimes.

1 (export "\00 jCeH" (func 0))
2 (export "" (func 1))
3 (export "fj" (func 2))

Listing 5: WAMR string check error.

Case 3: WAMR string check error. Listing 5 shows a case

that leads to the #2789 issue of WAMR. The �rst two export items

export \00jCeH and an empty string, respectively. Note that, both

of them start with a \00. Instead of using Unicode string to handle

import and export names, as required by the Wasm spec, WAMR

adopts c-style string. Thus WAMR mistakenly resolves the �rst

two exports to two empty strings, which causes WAMR to fail to

compile the bytecode and raise the duplicate export name exception.

Answer to RQ3. Instruction implementation error and memory

check error are the top two factors leading to the unexpected behav-

iors of Wasm runtimes, underlining the importance of performing

adequate sanity checks and following the speci�cation.

5 Discussion

Ethical Considerations. This work aims to identify real-world

bugs in Wasm runtimes. We have identi�ed 33 unique bugs, and re-

ported them to runtime developers immediately. As of this writing,

most of them have been con�rmed, although some bugs are in the

process of being �xed. We have repeatedly urged developers to �x

them by providing necessary help.

Semantics. AlthoughWASMaker tries to generate binaries with

as rich semantics as possible, they might not be as semantically

rich as real-world binaries. This is mainly due to the fact that some

complex control �ows within sub-trees of ASTs cannot be fully

executed. In order to access these deep and nested nodes, reliance is

placed on the context provided by the preceding ASTs. Although we

assign values to local variables in functions, we cannot guarantee

that we can restore every context.

Scalability.Wasm is experiencing rapid development, and many

new proposals are emerging.WASMaker’s current ability to test the

semantics of runtimes might not encompass some new proposals.

However, we argue thatWASMaker can be easily extended to cover

the new semantics by incorporating real-world Wasm binaries that

exploit new features. Additionally, we will design more generation

and mutation strategies for these new semantics to expand the

capabilities of WASMaker.

6 Related Work

Wasm Binary Security.Many studies focus on the security side

of Wasm binaries [5, 15–17, 22–24, 27, 31]. Lehmann et al. [22]

analyzed the memory issues in Wasm binaries, and adopted binary

instrumentation and AFL to detect memory bugs [23]. Wasmati [5]

and Wasp [24] leverage code property graphs and concolic execu-

tion, respectively, to identify vulnerabilities in Wasm binaries.

Wasm Runtime Testing. There is some work on testing Wasm

runtimes [6, 18, 19, 44, 46]. Speci�cally, WADIFF [46] utilizes sym-

bolic execution on the speci�cation of instructions to generate

Wasm binaries to conduct di�erential testing. Moreover, Zhang et

al. [44] developed a pattern-based runtime bug detection frame-

work based on pre-de�ned domain knowledge. Additionally, Jiang

et al. [19] leveraged existing performance testing benchmarks to

discover performance issues in server-side Wasm runtimes. It is

worth noting that wasm-mutate [6] can mutate binaries to test run-

times, but its strategies are ine�cient. For example, adding function

signatures and dead functions can not trigger the semantic imple-

mentation parts of runtimes. Additionally, its instruction mutation

that preserves the original functionality fails to cover all Wasm in-

structions as comprehensively as possible. Thus, these approaches

still struggle to generate Wasm binaries with rich semantics.

Di�erential Testing.McKeeman [25] �rst introduced the concept

of di�erential testing. Since then, it has been extensively employed

to test various applications, including virtual machines [4, 9, 10],

compilers [28–30], deep learning frameworks [11, 13], and symbolic

execution engines [21]. This paper draws on the idea of di�erential

testing and applies it to Wasm runtimes.

7 Conclusion

This paper presents WASMaker, a novel di�erential testing frame-

work for Wasm runtimes.WASMaker can generate syntactically

correct and semantic-rich Wasm binaries by disassembling and

assembling real-world Wasm binaries. For further pinpointing the

root causes of inconsistencies and locating the bugs, we propose a

root cause identi�cation algorithm that can accurately locate bugs

on a function level or even an instruction level. WASMaker shows

great e�ectiveness via extensive evaluation, and we have uncovered

33 real-world bugs in popular Wasm runtimes.

Data-Availability Statement

The artifact of WASMaker is released at [2, 7].
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