Check for
updates

S DIGITAL Associaiivn
acm§ll 1o oS e @mopen}

£ Latest updates: https://dl.acm.org/doi/10.1145/3650212.3680358

RESEARCH-ARTICLE
WASMaker: Differential Testing of WebAssembly Runtimes via
Semantic-Aware Binary Generation

SHANGTONG CAO, Beijing University of Posts and Telecommunications, Beijing, Beijing,
China

NINGYU HE, Peking University, Beijing, China

XINYU SHE, Huazhong University of Science and Technology, Wuhan, Hubei, China
YIXUAN ZHANG, Peking University, Beijing, China

MU ZHANG, The University of Utah, Salt Lake City, UT, United States

HAOYU WANG, Huazhong University of Science and Technology, Wuhan, Hubei, China

Open Access Support provided by:

Peking University

Huazhong University of Science and Technology
Beijing University of Posts and Telecommunications

The University of Utah

: PDF Download
j;b 3650212.3680358.pdf
< 18 December 2025
Total Citations: 4
Total Downloads: 635

00

Published: 11 September 2024
Citation in BibTeX format

ISSTA '24: 33rd ACM SIGSOFT
International Symposium on Software
Testing and Analysis

September 16 - 20, 2024

Vienna, Austria

Conference Sponsors:
SIGSOFT

ISSTA 2024: Proceedings of the 33rd ACM SIGSOFT International Symposium on Software Testing and Analysis (September 2024)

https://doi.org/10.1145/3650212.3680358
ISBN: 9798400706127


https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3650212.3680358
https://dl.acm.org/doi/10.1145/3650212.3680358
https://dl.acm.org/doi/10.1145/contrib-99661051101
https://dl.acm.org/doi/10.1145/institution-60016930
https://dl.acm.org/doi/10.1145/institution-60016930
https://dl.acm.org/doi/10.1145/contrib-99659730653
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/contrib-99661332939
https://dl.acm.org/doi/10.1145/institution-60025761
https://dl.acm.org/doi/10.1145/contrib-99661106675
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/contrib-99659470834
https://dl.acm.org/doi/10.1145/institution-60025488
https://dl.acm.org/doi/10.1145/contrib-99659151059
https://dl.acm.org/doi/10.1145/institution-60025761
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60014966
https://dl.acm.org/doi/10.1145/institution-60025761
https://dl.acm.org/doi/10.1145/institution-60016930
https://dl.acm.org/doi/10.1145/institution-60025488
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3650212.3680358&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/issta
https://dl.acm.org/conference/issta
https://dl.acm.org/conference/issta
https://dl.acm.org/sig/sigsoft
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3650212.3680358&domain=pdf&date_stamp=2024-09-11

WASMaker: Differential Testing of WebAssembly Runtimes via
Semantic-Aware Binary Generation

Shangtong Cao Ningyu He Xinyu She
Beijing University of Posts and Peking University Huazhong University of Science and
Telecommunications Beijing, China Technology
Beijing, China ningyu.he@pku.edu.cn Wuhan, China
shangtongcao@bupt.edu.cn xinyushe@hust.edu.cn
Yixuan Zhang Mu Zhang Haoyu Wang”
Peking University University of Utah Huazhong University of Science and
Beijing, China Salt Lake City, USA Technology
zhangyixuan.6290@pku.edu.cn muzhang@cs.utah.edu Wuhan, China
haoyuwang@hust.edu.cn

Abstract

A fundamental component of the Wasm ecosystem is the Wasm run-
time, as it directly impacts whether Wasm applications can be exe-
cuted as expected. Bugs in Wasm runtimes are frequently reported,
so the research community has made a few attempts to design
automated testing frameworks to detect bugs in Wasm runtimes.
However, existing testing frameworks are limited by the quality of
test cases, i.e., they face challenges in generating Wasm binaries
that are both semantically rich and syntactically correct. As a result,
complicated bugs cannot be triggered effectively. In this work, we
present WASMAKER, a novel differential testing framework that
can generate complicated Wasm test cases by disassembling and
assembling real-world Wasm binaries, which can trigger hidden
inconsistencies among Wasm runtimes. To further pinpoint the
root causes of unexpected behaviors, we design a runtime-agnostic
root cause location method to locate bugs accurately. Extensive
evaluation suggests that WASMAKER outperforms state-of-the-art
techniques in terms of both efficiency and effectiveness. We have
uncovered 33 unique bugs in popular Wasm runtimes, among which
25 have been confirmed.

CCS Concepts
« Software and its engineering — Software testing and debug-
ging.

Keywords

WebAssembly, WebAssembly Runtime, Binary Generation, Differ-
ential Testing

*Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ISSTA °24, September 16-20, 2024, Vienna, Austria

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0612-7/24/09

https://doi.org/10.1145/3650212.3680358

1262

ACM Reference Format:

Shangtong Cao, Ningyu He, Xinyu She, Yixuan Zhang, Mu Zhang, and Haoyu
Wang. 2024. WASMaker: Differential Testing of WebAssembly Runtimes
via Semantic-Aware Binary Generation. In Proceedings of the 33rd ACM SIG-
SOFT International Symposium on Software Testing and Analysis (ISSTA °24),
September 1620, 2024, Vienna, Austria. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3650212.3680358

1 Introduction

WebAssembly (Wasm), a low-level bytecode format, was proposed
by several Internet giants in 2017 [14]. Due to its excellent porta-
bility, native-like speed, compact size, and safety guarantee, Wasm
is gaining growing popularity. By 2022, more than 97% of existing
browsers have supported Wasm. Beyond web browsers, Wasm has
been favored in a wide range of domains, including mobile apps,
blockchain, IoT, etc. Wasm can be regarded as the compilation tar-
get for almost all mainstream high-level programming languages,
e.g., C, C++, Go, and Rust [26, 32, 45]. Wasm binaries are executed
in Wasm runtimes, which are similar to the virtual machine that
serves as an intermediate layer between the Wasm binaries and the
underlying system. Currently, lots of Wasm runtimes have been im-
plemented and actively maintained on GitHub, like Wasmtime [38],
Wasmer [37], and WasmEdge [36].

Wasm runtimes play a key role in the ecosystem, as it directly
impacts whether Wasm applications can be executed as expected.
However, a variety of Wasm runtime-specific bugs have been re-
ported from time to time. For example, Zhang et al. [44] have em-
pirically analyzed over 300 real-world bugs of Wasm runtimes and
created a taxonomy of 31 bug categories of Wasm runtimes. Thus,
some fellow researchers in our community proposed to develop
automated methods for detecting bugs in Wasm runtimes. For ex-
ample, Jiang et al. [18] have uncovered that Wasm runtimes may
not correctly execute Wasm binary by adopting coverage-guided
fuzzing. WADIFF [46] further adopted symbolic execution to gen-
erate lots of Wasm binaries and conducted differential testing to
identify implementation bugs of runtimes.

Although recent automated testing approaches have shown
promising results in identifying Wasm runtime bugs via Wasm
binary generation, they are limited by their inability to generate
semantically rich binaries (see §2.2). Thus, complicated bugs cannot


https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0009-0007-4557-3813
https://orcid.org/0000-0002-9980-7298
https://orcid.org/0009-0001-2988-7042
https://orcid.org/0000-0003-3466-0165
https://orcid.org/0000-0001-5905-9515
https://orcid.org/0000-0003-1100-8633
https://doi.org/10.1145/3650212.3680358
https://doi.org/10.1145/3650212.3680358

ISSTA °24, September 16-20, 2024, Vienna, Austria

be triggered. For example, WADIFF can only generate small Wasm
binaries that target a single instruction, while real-world Wasm
binaries are indeed much more complex. Specifically, there are over
430 kinds of instructions and 13 types of sections with different
functionalities in Wasm, indicating that Wasm is a bytecode format
with rich semantics. For comprehensive testing, ensuring that the
generated Wasm binaries can cover as many semantics as possible
is crucial and necessary. Further, it is impossible to generate Wasm
binaries arbitrarily, as each Wasm binary should be validated for
syntactic correctness before executing.

This work. We present WASMAKER, a novel differential test-
ing framework for Wasm runtimes that can generate syntactically
correct and semantically rich Wasm binaries. We have designed
a dedicated algorithm to extract basic elements from real-world
Wasm binaries and randomly assembled them into Wasm binaries
with valid syntax and rich semantics. WASMAKER further applies
different levels of mutation strategies (e.g., AST-level and module-
level mutation) on generated binaries to increase their diversity,
and sends them to Wasm runtimes simultaneously to investigate
Inconsistencies. Because different binaries may lead to the same
inconsistent state, to further pinpoint the root causes of incon-
sistencies, we proposed a root cause identification algorithm that
can accurately locate bugs at the function and instruction level.
Extensive experiments show the superiority of WASMAKER over
state-of-the-art techniques in both terms of efficiency and effective-
ness. WASMAKER can generate 6.0x and 148.8x Wasm binaries that
can lead to inconsistencies over two baselines. By applying WAS-
MAKER on four representative Wasm runtimes, over 167K Wasm
binaries that can lead to inconsistencies are generated, attributed
to 33 unique bugs. With our timely disclosure, 25 bugs have been
confirmed by runtime developers, and 11 have been fixed with our
aid by the time of this writing.

The main contributions of this work are as follows:

o We propose WASMAKER, a novel differential testing frame-
work that can generate syntactically correct and semanti-
cally rich Wasm binaries by disassembling and assembling
real-world Wasm binaries, which significantly increases the
diversity of generated Wasm binaries in terms of semantics.

e We design a runtime-agnostic root cause identification al-

gorithm that can accurately pinpoint the location of bugs,

which significantly eases the burden of runtime developers
for further verification and bug patching.

WASMAKER has identified 33 unique bugs that can lead to un-

expected behaviors for mainstream Wasm runtimes, among

which 25 have been confirmed and 11 have been patched
with our timely disclosure.

2 Background & Motivation

2.1 WebAssembly & Runtime

WebAssembly (Wasm) is an emerging stack-based binary format
that can be compiled from mainstream high-level languages. Ex-
cept for the original four primary data types, i.e., 132, 164, f32,
and f64, v128 has been recently introduced to support SIMD in-
structions [41]. Each Wasm binary is composed of 13 sections [43],
and complex functionalities can only be achieved by coupling sec-
tions. For example, implementing a function involves three sections:

1263

Shangtong Cao, Ningyu He, Xinyu She, Yixuan Zhang, Mu Zhang, and Haoyu Wang

the type section for function signatures, the code section for local
variables and the function body, and the function section for map-
ping type indexes to function indexes. Each Wasm binary will be
statically validated on its syntactic validity before executing. The
validation mainly focuses on the stack. It checks if the operands
match the specified types and ensures stack balance, verifying that
each block and function behaves according to its signature.
Wasm runtimes provide an executing environment for Wasm
binaries in various hardware and operating systems [44]. They play
a vital role in supporting Wasm-based functionalities in blockchain
platforms [12] and embedded devices [33], enabling the deployment
of lightweight, high-performance applications in resource-sensitive
environments. Additionally, except for the inefficient interpreting
mode, both JIT (Just-In-Time) and AOT (Ahead-Of-Time) compila-
tions are adopted by some runtimes to improve the performance.
Wasm runtime is also responsible for handling interactions between
Wasm binaries and the external environment. In the early stage,
each runtime has its specific set of compiling toolchains and wrap-
pers for APIs exposed by the operating systems, which results in a
severe compatibility issue. Thus, WebAssembly System Interface
(WASI) [39] emerges, which defines the function signatures of each
API as well as its behavior. Currently, WASI is supported by lots of
mainstream Wasm runtimes as well as their compiling toolchains.

2.2 Motivation

Improper implementation of Wasm runtimes will significantly
hamper the intended design goal of Wasm, i.e., security and ef-
ficiency. However, testing the correctness of the implementation
of Wasm runtimes is challenging. Currently, only differential test-
ing, one of the dynamic analysis methods, is adopted by existing
studies [44, 46]. This is because the static validation may struggle
with the complex logic in runtimes, and the pre-defined rules very
likely import false positives. Differential testing is a widely adopted
technique that compares the outputs or states among different tar-
gets (i.e., different implementations of the same functionality) while
giving an identical input. Moreover, it is independent of oracles, one
of the main challenges faced by other dynamic analysis methods,
like grey-box fuzzing. Although differential testing seems to be a
promising approach, there still exist some challenges for detecting
bugs in Wasm runtimes, which can be summarized as follows:
Challenge #1: Generating syntactic-correct and semantic-
rich Wasm binaries. As we mentioned in §2.1, each Wasm binary
should be validated for syntactic correctness before executing. Fur-
ther, in Wasm, there exist over 430 instructions and 13 types of
sections with different functionalities, indicating that Wasm is a
bytecode format with rich semantics. To reach the goal of compre-
hensive testing, instead of guaranteeing syntactic correctness, it is
also crucial and necessary to ensure that the generated Wasm bina-
ries can cover as many semantics as possible. In other words, the
generated Wasm binaries should be syntactic-correct and semantic-
rich. As for syntactic correctness, the generated binaries should be
stack-balanced, and the index reference among sections should be
correct. As for the semantic richness, on the one hand, the instruc-
tions in the generated Wasm binary should interact with as many
sections as possible. On the other hand, these instructions should
be covered as much as possible during execution at runtime.



WASMaker: Differential Testing of WebAssembly Runtimes via Semantic-Aware Binary Generation

1 (func $Wasm-smith (type 1) 1 (module

2 (param i32) (result i32 f32) 2 (type (;0;) (func (result i32)))

3 block 3 (func $WADIFF (type 0)

4 local.get @ 4 (local i32 i32)

5 e 5 e

6 block 6 i32.const 5

7 br 1 — e—— 7 i32.const 10

8 .. 8 i32.add ;; target instruction
end 9

Jump

(memory (;0;) 1)

(export "memory" (memory 0))
(export "_start" (func $WADIFF))
(data (;0;) (i32.const @) "mem"))

end
i32.const 60812
f32.const 1.89)

Figure 1: A Wasm binary
from wasm-smith.

Figure 2: A Wasm binary

from WADIFF.

Challenge #2: Error localization to refine Wasm binaries ac-
cording to root causes. During differential testing, pinpointing the
root cause of inconsistencies among different runtimes is challeng-
ing. Differential testing generates numerous Wasm binaries, each
with hundreds or thousands of instructions, making it difficult to
identify the specific function or instruction causing a bug. However,
implementing the process of bug diagnosing is challenging because
not all Wasm runtimes come with developed debugging tools. More-
over, handling the compatibility issue among these runtimes also
raises the concern of scalability.

Limitations of current tools. To the best of our knowledge, only
two tools are available for differential testing Wasm runtimes, i.e.,
wasm-smith [3] and WADIFF [46]. Specifically, wasm-smith is a
Wasm test case generator proposed by the official community. It
randomly selects instructions while considering the stack balance to
guarantee syntactic correctness. As for WADIFF, it adopts symbolic
execution to generate test cases for each instruction according to
the specification. However, both tools have certain limitations.

Specifically, wasm-smith ignores the semantics of the generated
Wasm binaries, hindered by the Challenge #1. As shown in Fig-
ure 1, the br instruction at L7 will direct the control flow to L11,
i.e., the end of the function. In other words, instructions between
L7 and L11 will be ignored by runtimes. Additionally, L2 indicates
that the results should be an 132 and an f32. To ensure the stack
balance, wasm-smith simply pushes two constant values (L12 and
L13) of the corresponding types. This means that this function can
be aggressively optimized to only include the last two instructions.
Consequently, wasm-smith can only generate Wasm binaries com-
posed of lots of meaningless instructions, which hampers both the
efficiency and effectiveness of differential testing.

As for WADIFF, which adopts symbolic execution on the Wasm
specification of each instruction to generate test cases, it can only
generate simple Wasm binaries (~10 — 100 instructions) to ver-
ify runtimes. As shown in Figure 2, this Wasm binary verifies the
implementation of i32.add. WADIFF follows the Occam’s Razor
principle [1], i.e., following the simplest control flow and giving only
the necessary parameters generated by constraints. In other words,
it is hard for WADIFF to cover complex functionalities among 13
sections within a single Wasm binary. Moreover, it can only gener-
ate a finite number of Wasm binaries after traversing all possible
paths for each instruction, and its random mutation method is likely
to generate invalid ones [46]. Last but not least, generating test
cases against control instructions is not yet supported by WADIFF,
e.g.,, call_indirect and loop. In summary, WADIFF also faces the
Challenge #1 we proposed previously.

Our approach. To address these two challenges, we come up
with some key ideas. Specifically, to generate syntactic-correct

1264

ISSTA °24, September 16-20, 2024, Vienna, Austria

and semantic-rich Wasm binaries, we extract AST nodes from ex-
isting real-world Wasm binaries and randomly assemble them in a
syntactic-correct way. Moreover, to increase the diversity of seman-
tics, we also import some mutations on the AST level and module
level, like introducing SIMD instructions. As for the error local-
ization issue, we implement a static instrumentation-based error
localization algorithm, which is runtime-agnostic to perform the
function level or even instruction level of root cause localization.

3 Approach

3.1 Overview

The workflow of WASMAKER is depicted in Fig 3, which can be
divided into three phases, i.e., corpus preparation, binary genera-
tion & mutation, and differential testing. Specifically, in the corpus
preparation phase, based on all collected real-world Wasm bina-
ries, WASMAKER first parses ASTs and extracts valid AST sub-trees
from them. Then, in the binary generation & mutation phase, WAS-
MAKER randomly assembles AST sub-trees as a valid Wasm binary.
To enhance the diversity of the generated Wasm binaries, WAS-
MAKER performs AST-level and module-level mutations. Last, in
the differential testing phase, WASMAKER sends a Wasm binary to
multiple Wasm runtimes simultaneously to investigate inconsistent
behaviors. Taking advantage of static instrumentation, WASMAKER
can conduct a runtime-agnostic error localization to the root cause
in Wasm binaries that lead to such inconsistent behaviors. We detail
these three phases in the following.

3.2 Corpus Preparation

Instead of directly generating Wasm binaries, we decide to take real-
world Wasm binaries that possess rich semantics as basic elements
to assemble Wasm binaries. To be specific, we first extract their
abstract syntax trees (ASTs), and split them into sub-trees. Then,
we sample AST sub-trees from all extracted ones, and assemble
them in a syntactic-valid way. Thus, the corpus preparation phase
can be divided into steps including context extraction, AST parsing,
and post-processing, which are depicted in Algorithm 1.

3.2.1 Context Extraction. Wasm is a statically typed language, and
each Wasm binary will be comprehensively validated syntactically
and semantically before being executed. Specifically, on the syntactic
side, Wasm is a stack-based language. Therefore, each instruction
will consume or push a certain number of operands from or onto
the stack. For example, 132.load requires an i32 operand as the
address and pushes the retrieved 132 data onto the stack. For some
instructions, the number of required arguments is variable, like
call and block. Thus, guaranteeing the stack balance needs to
consider the signature of the callee and all included instructions for
these two instructions, respectively. On the semantic side, a Wasm
binary is composed of 13 sections with different functionalities.
Without considering the semantic validity, a stack-balanced Wasm
binary still cannot pass the validation. For example, if we have
assembled a function foo, which invokes bar, we should guarantee
the existence of bar: not only its implementation in the code section,
but also its function signature declared in the type section and the
mapping relation kept in the function section.



ISSTA °24, September 16-20, 2024, Vienna, Austria

h ;

Real-world
Wasm binaries

: Stack type :
i| Semantics constraints

II“
x
ES

AST parsing

Corpus Preparation

Shangtong Cao, Ningyu He, Xinyu She, Yixuan Zhang, Mu Zhang, and Haoyu Wang

C

Wasmtime
Bottom-up W
asmer )
Corpus Binary generating - m Wamr Filter
H Wasm binary Wi d -
. T i test cases asmedge Inconsistent
begaviors
- L |: H
i| AST-level mutation |: 4 ‘B(ecum,n l
H : Report
H Module-level H . Ma:“ali Instrumentation-
mutation Bug|  recheck based
mesnsssssssssnassnnsennsannnd _+ error locating

Binary Generation & Mutation

Differential Testing

Figure 3: The architecture and workflow of WASMAKER.

Table 1: Instruction types and the representations, as well as
the stack type and semantic constraint should be guaranteed.

Instruction Stack Type Semantic Constraint
Numeric Instructions

i32.const ¢ [1 — [i32]

i64.add [i64,i64] — [i64]

Vector Instructions

[l — [v128]

v128.const ¢

i32x4.add [0128,0128] — [0128]
Parametric Instructions
select [t,t,i32] — [t]
drop [t]1 =11
Variable Instructions
Local v
local.get n [1—[t] idxy =n
type, =t
Global v
global.set n [t] =[] idxy =n
type, =t

Memory Instructions

Memory m
Limit min, max
pagep, € [min, max|

i32.Joad memarg [i32] — [i32]

Table Instructions

fable.get n li32] = [¢] Tati)clji;bz n
Control Instructions
Function f
call n [t*] — [t] Signature s = [t*] — [t*]

signaturef =5
id)(f =n

IndirectFunction f
Signature s = [t*] — [¢¥]
signaturef =s
idxgs =n

call_indirect n [t*,i32] — [t*]

Signature s = [t*] — [t¥]

block n idxs = 1

[£*] — [£]

To solve this challenge, we first categorize Wasm instructions
into seven groups according to their context. Specifically, the context
of an instruction consists of its stack type and semantic constraints
(the must-satisfy conditions to guarantee semantic validity). Table 1
illustrates the representatives of each group. Specifically, the stack
type of numeric instructions is fixed, and there are no extra semantic

1265

constraints on them. Vector instructions are similar to them but are
specifically designed for the vector type (see §2.1). In addition, the
stack type of parametric instructions may vary. For example, drop
consumes an operand, regardless of its type. Thus, the stack type
of drop is [t] — [], where t is a wildcard and refers to any type.
The other four types of instructions need semantic constraints. For
example, local.get n has two semantic constraints: for a local
variable v, its index and type should be n and ¢, respectively. As for
memory and table instructions, they are respectively responsible for
interacting with the memory and table area. For instance, 132. load
requires the number of pages of the linear memory to be within
a certain range, i.e., [min, max], as declared in the binary. Table
instructions require that the accessed table exists. In Wasm, there
are two kinds of function invocations: call and call_indirect,
which have subtle differences in semantic constraints. For call n,
it directly invokes the n-th function, while the n of call_indirect
indicates the index of the function type declared in the type section.
The index of the callee is retrieved dynamically from the stack at
runtime, i.e., the second i32 parameter of its stack type.

Algorithm 1 The algorithm of corpus preparation.

Input: instrs - list of instructions, binary - the Wasm binary
Output ASTs - the corpus, composed of a list of AST
1: function CORPUSPREPARATION(instrs, binary)
2 ASTs « INITIALIZELIST()
3 for each instr € instrs do
4: context < GETCONTEXT(instr, binary) > §3.2.1
5 node «— Node(instr, context)
6 if instr.opcode € [block,loop,if] then > §3.2.2
7 node.child <« CORPUSPREPARATION(instr.args,

binary)

8: end if

9: params < context.type.params

10: while params do

11: for each preNode € REVERSED(AST's) do
12: node «— APPENDCHILD(node, preNode)
13: ASTs.pop()

14: params.pop()

15: end for

16: end while

17: ASTs.append(node)

18: end for

19: ASTs < PoSTPROCESSING(ASTs) >§3.2.3
20: return ASTs

21: end function




WASMaker: Differential Testing of WebAssembly Runtimes via Semantic-Aware Binary Generation

To build the corpus, the algorithm first goes through the instruc-
tion list (L3) and extracts context information for each of them to
build the node corresponding to each instruction (L4 — L5). Specifi-
cally, against each instruction, the algorithm extracts its stack type,
which can be analyzed statically (see §2.1). As for the semantic
constraints, it is parsed by indexing all necessary sections within
the given binary. Both of them will be packed within a variable,
named context, which is then treated as an attribute of a Node in-
stance along with the instruction (instr). Take the call instruction
as an example, where Listing 1 illustrates its concrete context ex-
traction process. To be specific, the algorithm first initializes a fresh
Function object (L3). Then, it extracts the immediate number n
of call, and obtains its function signature s by indexing through
the function and type sections (L5 — L7). According to its semantic
constraint, the callee is linked to s (L9). Last, both the stack type
and semantic constraint are packed and returned (L10).

1 # suppose the instr and binary are given

2 # initialize a Function

Function f = Function()

# get the callee's signature

n = instr.args

typeid = binary.functionSec[n]

Signature s = binary.typeSec[typeid]

# build the context

Semantics sem = Semantics(function=f, signature=s)
return {'type': s, 'semantics': sem}

[SEV-N-CRN o IS, JINY N

—_

Listing 1: The pseudocode of GetContext on call.

3.2.2 AST Parsing. Parsing ASTs of real-world Wasm binaries is
necessary before extracting sub-trees from them to build the corpus.
By leveraging the extracted context mentioned in §3.2.1, a Wasm
binary can be easily parsed to the corresponding ASTs. To better
illustrate how this process happens, Fig. 4a to Fig. 4c shows a fac-
torial function written in C, the instruction list of the compiled
Wasm binary, and the corresponding AST, respectively. We detail
the process combining with Algorithm 1. As we can see from Fig. 4b,
the compiled instruction list is quite flat, which makes it hard to
identify the AST structure. Therefore, the algorithm firstly identi-
fies whether the current instruction is any of block, loop, or if
(L6 to L8 in Algorithm 1) to recursively build AST. This is because
only sub-trees led by these instructions can be nested. Then, the
algorithm constructs the AST according to the stack type, as shown
from L9 to L18 in Algorithm 1. For example, the first instruction, i.e.,
i32.const 5, takes no elements from the stack, and thus it jumps
over the iteration at L10 and is pushed to ASTs at L17. Then, the
following local.set © takes an element from the stack as shown
in Table 1. Thus, the while-loop at L10 is executed once. Within the
while-loop, the last AST node, i.e., the previous i32.const 5 is set
as the child for local.set 0, which will then be pushed to ASTs.
When the algorithm meets call, an instruction with a variable
number of arguments, its context is determined in §3.2.1 by retriev-
ing the function signature of the callee, and thus the AST can be
built without any issue. Due to the recursive construction as shown
at L7 in Algorithm 1, the block (L7 of Fig. 4b) will lead the 1oop (L8
of Fig. 4b), within which it implements the factorial calculation (L5
of Fig. 4a). Consequently, after traversing the factorial function,
ASTs is composed of four nodes, each of which can be regarded as
aroot of a sub-tree of the AST (Fig. 4c).

3.2.3 Post-processing. The aim of the post-processing stage is to
increase the diversity of the generated Wasm binaries. As we can

1266

ISSTA °24, September 16-20, 2024, Vienna, Austria

1 (func $factorial

2 local i32 i32)
3 i32.const 5
1 void factorial(i{ 4
int n = 5; 5
6
7
8

2 132.const 1

3 int result = 1;] local.set 1

4 for (int i = 1; i <= 5; i++){ block

5 result *= ij; loop

6 } 9

7 print(result); 10 end

8} 11 end
12 local.get 1

(a) The source code in C. 13 [call $print) |

(b) Compiled byte-
code.

Cfmesion >
o O

| local.set 0| | local.set 1| | block | | call $print |

!

! )
| i32.const 5 | | iSZ.CO%.get 1

(c) The parsed AST of the Wasm bytecode.
Figure 4: A concrete example of AST parsing,.

see from Fig. 4c, the 1st and 2nd sub-trees are quite similar. In
other words, if we take both of them into valid elements in the final
corpus, the Wasm binaries with similar functions may be generated.
Therefore, in the post-processing stage, we try to minimize the size
of the corpus to avoid generating similar or even duplicated Wasm
binaries. Specifically, we compare the newly extracted ASTs with
the existing ones in the corpus, the implementation of which is
shown in Listing 2. As we can see, the body is a two-layer nested
loop at L19 that discards the AST that cannot increase the diversity
through compareAST. The compareAST function recursively fetches
children nodes and compares only the opcode of instructions. Take
Fig. 4c as an example. When only considering the opcode, the 1st
and 2nd ASTs are identical. Thus, only one of them will be kept.

function postprocessing(ASTs):

1
2
3 function compareAST(new, old):

4 # compare the opcode of current instruction
5 if new.instr.opcode != old.instr.opcode:

6 return False

7 # compare the number of children nodes

8

if len(new.subNodes) != len(old.subNodes):
9 return False
10 # recursively compare their children nodes
11 for i in range(len(new.subNodes)):
12 if !compareAST (new.subNodes[i], old.subNodes[i]):
13 return False
14 return True
15

16 # get existing ASTs from corpus
17 existingASTs = getExistingASTs()
18 # remove deduplicate AST

19 for AST in ASTs:

20 for existingAST in existingASTs:

21 if not compareAST (AST, existingAST):
22 ASTs.remove (AST)

23 break

24 return ASTs

Listing 2: The pseudocode of PostProcessing.

3.3 Binary Generation & Mutation

Given the sub-trees extracted from ASTs of real-world Wasm bi-
naries as corpus, as well as the extracted context information on
each instruction, WASMAKER can generate valid Wasm binaries
efficiently and effectively. Additionally, WASMAKER also conducts



ISSTA °24, September 16-20, 2024, Vienna, Austria

(func $subfunc (type $type)

T

1) add

|

call_indirect $type

(2 append

] - (]

Indirect function table

)

drop
i32.const $index
call_indirect $type

3 rewrite —»

Figure 5: The concrete steps of WASMAKER on maintaining
necessary invoking relation of the callindirect instruction.

mutations on these generated binaries to bring in more diversities.
The binary generation and binary mutation are detailed as follows.

3.3.1 Binary Generation. We generate a Wasm binary in a bottom-
up way, i.e., building a valid entry function, maintaining necessary
invoking relation, and supplementing extra semantics.

Step I: Building a valid entry function. First of all, we need
to generate a function body for an entry function. In general, we
randomly sample a specified number of AST sub-trees from the
corpus. Then, we concatenate and transform them into a sequence
of Wasm instructions, which is regarded as the body of the entry
function. In Wasm, a function is composed of not only a set of
instructions as its implementation, but also some local variables
that can be accessed within the current function. Thus, WASMAKER
adds five local variables for the entry function, typed as 132, 164,
32, f64, and v128 (see §2.1) and indexed from 0 to 4, respectively.
For each variable instruction in the newly generated entry function,
WASMAKER gets their stack type mentioned in Table 1 and conducts
necessary rewriting on the immediate number. For example, if
a local.get is bound an operand with type 164, its immediate
number, i.e., the index, will be rewritten as 1. Finally, according to
the signature of the entry function, WASMAKER appends necessary
local.get before the final return instruction to avoid them being
optimized as dead code.

Step II: Maintaining necessary invoking relation. Except for
considering the intra-functional validity when building the entry
function, the inter-functional validity should also be ensured, i.e.,
maintaining function invoking relations from the entry function.
In Wasm, only two instructions can invoke function calls, i.e., call
and call_indirect. Thus, WASMAKER traverses each instruction.
Upon encountering a call, WASMAKER generates a callee accord-
ing to its bound concretized stack type and semantic constraint. In-
stead of generating a callee with an empty function body whose aim
is solely to maintain the stack balance, the callee adopts the same
method as we mentioned in the Step I. In other words, the callee
has a functional function body, and it may recursively generate its
callees. For call_indirect, maintaining its invoking relation re-
quires a little extra effort. Specifically, the callee of call_indirect
is determined at runtime. As shown in Fig 5, WASMAKER firstly gen-
erates a callee as its handling on call. Then, it inserts the function
index into the function table to ensure the indexing process raises
no exceptions. Last, to make sure the call_indirect can actually
be guided to the newly generated callee, WASMAKER inserts a drop
and an 132.const c before it, where the c is the index.

Step III: Supplementing extra semantics. For a Wasm binary,
only focusing on functions cannot fully guarantee its semantic
correctness because the functionalities are decoupled into all 13

1267

Shangtong Cao, Ningyu He, Xinyu She, Yixuan Zhang, Mu Zhang, and Haoyu Wang

sections. Thus, extra semantics should be supplemented. Take the
data section as an example, which is used to initiate the linear mem-
ory of Wasm binary. To prevent memory-related instructions from
raising exceptions, WASMAKER goes through the memory instruc-
tions of each function to determine the maximum addressing range
based on its semantic constraint. Within the range, WASMAKER
will fill random data into the data section. Similarly, for the table
and element sections that make up the indirect function table of
Wasm, we construct them based on the context of table instructions
in the binary. This ensures correct executions on table instructions.
As for the global section, whose elements can be accessed by all
functions, we adopt the same strategy as inserting local variables
in functions. That is, WASMAKER inserts only five global elements
with different types into the global section. Additionally, it mod-
ifies the immediate numbers of all global.get and global.set
instructions to match their bound stack type, replacing them with
the corresponding index.

3.3.2  Binary Mutation. Though the methods in §3.3.1 can generate
a substantial number of Wasm binaries, there are two shortcomings.
First, increasing the code coverage of tested runtimes by assem-
bling ASTs from existing Wasm binaries is still difficult. second, the
ongoing evolution of Wasm makes it hard to verify the implemen-
tation of runtimes on new features. For instance, SIMD instructions
are newly introduced to handle vectors, and the number of SIMD
instructions is 236, far more than the one defined in Wasm 1.0 [42].
To address these shortcomings, we propose mutation strategies
to test Wasm runtimes and uncover hidden issues comprehensively.
Generally speaking, the mutation strategies can be divided into
AST-level mutation and module-level mutation. The former one can
be integrated into the Step I and Step II in §3.3.1 and the latter one
can be performed when conducting the Step III in §3.3.1.
AST-level mutation is to mutate the instructions of ASTs in the
corpus we collected, and its purpose is to extend the semantics of
AST, so as to further improve the code coverage of runtime testing.

o Mutate immediate numbers. Improper processes in corner cases
are more likely to trigger bugs or even vulnerabilities [20, 27, 44].
Therefore, part of the mutation strategies is put on the immediate
number of instructions. For example, for constant instructions,
like 132. const, WASMAKER tries to replace the original operand
with the value near the boundary, e.g., 232 _ 1. Furthermore, for
memory load and store instructions, WASMAKER attempts to
mutate the offset and alignment arguments.

Mutate operators. Mutating operators can also increase the diver-
sity of ASTs. To support SIMD instructions, WASMAKER conducts
mutations on numeric and memory instructions to their corre-
sponding SIMD ones with similar semantics. For example, in Fig 6,
the original implementation (left side) is 132. const followed by
an i32.load. After mutating both of them into SIMD instruc-
tions with similar semantics, the mutated implementation (right
side) is v128. const followed by a v128.load. However, we can
observe that the type of the element consumed by v128.1oad
mismatches the one pushed by v128. const. Fortunately, Wasm
specification provides a set of instructions to convert the ele-
ment type [40]. Thus, WASMAKER adds an extra 132x4.splat
to convert v128 to i32 to make the mutated implementation
valid. We further design a strategy to increase the diversity of



WASMaker: Differential Testing of WebAssembly Runtimes via Semantic-Aware Binary Generation

convert

v128.const ¢

[1—[v128]

insert i32x4.splat | [v128]—[132]
[i32]—[i32] | i32.load

[i32]—[v128]

v128.1load
convert

Figure 6: Mutating normal instructions to the SIMD ones.

ASTs. Specifically, as illustrated in Table 1, instructions may have
identical stack type, like 132.add and i32. sub. Performing ar-
bitrary interchanges among these instructions will not disrupt
the stack balance. Consequently, WASMAKER randomly replaces
instructions with others based on the stack type.

Module-level mutation. In addition to the inconsistencies in the
implementation of instructions, deficiencies in the validation of
runtime on the whole Wasm module can also pose security risks. For
example, incomplete memory boundary checks may lead to sandbox
escapes. Thus, we also perform module-level mutations during
the Step III in §3.3.1. Specifically, Cao et al. [8] have summarized
five functionalities in Wasm, i.e., Global, Import & Export, Memory,
Function, and Custom. Except for the last functionality, which has
no association with the semantics of a Wasm binary, against each
of the others, we have designed some specific mutation strategies,
which are detailed in the following.

o Global. Except for the data type, each global variable possesses
various other attributes, such as whether the variable is mutable.
We randomly mutate the attributes of each global element.
Import & Export. Wasm can import or export various seman-
tics, such as functions, memory, and even global variables. WAS-
MakEeR randomly adds import and export items (in the import
and export sections) to the generated binaries.

Memory. As we mentioned in the Step III in §3.3.1, the data
section is initiated with random data. Except for that, Wasm
still requires all memory accesses to be within the valid address
limitation. Thus, WASMAKER mutates the address limitation to
test the correctness of memory boundary checks in runtimes.
Function. Part of this functionality is related to the code section,
which is handled by §3.3.1. Thus, WASMAKER primarily mutates
the table section. Similar to the memory section, the table section
determines the range of the indirect function table, which is used
for indexing by call_indirect. To this end, the correctness of
boundary checks in runtimes can be covered.

3.4 Differential Testing

During differential testing, we first identify inconsistencies among
runtimes. Given the large number of Wasm binaries tested, many in-
consistencies may stem from the same underlying issue. Efficiently
locating the root cause can enhance the overall testing process.
Next, we explain how we address these issues.

3.4.1 Inconsistency ldentification. During the differential testing
process, we cannot simply take different outputs as inconsistency
because some of them are triggered by non-bug factors, like differ-
ences in design principles and implementational distinctions. First,
Wasm is still under development, and thus runtimes may have dif-
ferent levels of supporting the Wasm specification. For example,

1268

ISSTA °24, September 16-20, 2024, Vienna, Austria

Program
crash
Compilation Runtime Unexpected
failure failures output
1 1 1
Compilation Execution Output

Figure 7: The types of inconsistencies during execution.

some runtimes may not support SIMD instructions yet, resulting
in an unsupported prompt when encountering Wasm binaries with
SIMD instructions. Second, the output of various runtimes is also
influenced by their implementation styles. For example, some run-
times may consider 132 and 164 integers as signed when outputting
them, while other runtimes may treat them as unsigned. The Wasm
specification does not explicitly define these behaviors. Third, dif-
ferent runtimes adopt diverse ways to handle error messages. For
example, when encountering an out-of-bounds table access, some
runtimes may only output undefined element, while other runtimes
provide more specific reasons, such as out of bounds table access.

To reduce the number of false positives, i.e., inconsistent behav-
iors due to the above non-bug reasons, we give a clear definition
of inconsistent behavior as shown in Fig. 7. Specifically, we define
three kinds of inconsistent behaviors based on the lifetime of a
Wasm binary being executed by runtimes, namely compilation fail-
ure (CF), runtime failure (RF), and unexpected output (UO). These
three types are mutually exclusive and cover all inconsistent behav-
iors we identified during the differential testing. The first two types
happen when runtimes encounter unexpected errors during the
corresponding stage. As the name suggests, the compilation failure
occurs when the Wasm binary is compiled and instantiated. The
Wasm runtime will crash, that is, the input Wasm binary will not be
executed at all. When Wasm binaries are executed, runtimes may
still crash, usually due to raised exceptions, which is named run-
time failure. We identify this inconsistent behavior by the classes
of raised exceptions. The last one, i.e., unexpected output, can only
be observed when a Wasm binary is executed.

To determine which runtime behaves unexpectedly, we take the
majority rule as other differential testing studies adopt [46]. In
other words, when executing a binary, we consider the behavior
generated by most runtimes as correct. For example, if a binary
encounters out-of-bounds memory access in three runtimes while
the remaining runtime raises an indirect function table-related
error, the latter one is considered potentially buggy.

3.4.2  Root Cause Localization. Different Wasm binaries may trig-
ger the same bug in Wasm runtimes, and thus performing an error
localization is necessary to deduplicate these Wasm binaries ac-
cording to the root causes of triggered inconsistency. To this end,
we propose a runtime-agnostic binary instrumentation method for
root cause localization, which is detailed in Algorithm 2, consisting
of function-level localization and instruction-level localization.

Function-level Localization. It is designed for runtime failure
and unexpected output inconsistency types (see §3.4.1). Specifically,
the localization is implemented by static binary instrumentation.
Before and after each call instruction, the instrumented function
is responsible for printing the index of the invoked function along
with its parameters or return values, which is achieved by the im-
ported fd_write function, one of the WASI functions (see §2.1).



ISSTA °24, September 16-20, 2024, Vienna, Austria

Formally, the FuncLocalization in Algorithm 2 illustrates the im-
plementation of function-level localization. It takes the binary that
exhibits inconsistencies and its corresponding inconsistency type
as inputs. Then the binary is instrumented at the function level and
then executed by runtimes to obtain the respective output logs (L2).
At the loop at L4, the algorithm iterates over the logs outputted by
instrumented functions, consisting of arguments and return values.
The algorithm then compares the logs among runtimes to find the
function that causes the inconsistent behavior (L5-L7). It is worth
noting that the binary generation method guarantees each function
is only called once and there is no recursive invocation. Thus, we
can find the inconsistent function with a simple queue traversing
(L6). Lastly, the algorithm examines whether the instruction-level
localization should be further invoked depending on whether the
inconsistency type is an unexpected output.

Algorithm 2 The error localization algorithm.

Input: binary - inconsistent binary, type - inconsistent type
Output funcid - the index of inconsistent function. instr - the
inconsistent instruction

1: function FuncLocaLizaTION(binary, type)

2 logsList < FUNCINSTRUMENTATION (binary)

3 funcid < None

4 for each logs € logsList do

5 if ComparReFuNcLoGs(logs) = False then
6 funcid < FINDINCONSISTENTFUNC(logsList)
7 end if

8 end for

9. if type = OUTPUT then

10: instr « InstrLocalization(binary, funcid)
11: return instr

12: else

13: return funcid

14: end if

15: end function
Input: binary - inconsistent binary, funcid - the index of incon-
sistent function
Output instr - The inconsistent instruction
1: function INsTRLOCALIZATION(binary, funcid)
2 logsList < INSTRINSTRUMENTATION (binary, funcid)
3 instr < None
4 for each logs € logsList do
5 if ComPAREINSTRLOGS(logs) = False then
6: instr < logs.instr
7 break
8 end if
9 end for
10: return instr
11: end function

Instruction-level Localization. The InstrLocalization will be
invoked if the inconsistent behavior is due to the unexpected output.
Specifically, it takes the binary exhibiting inconsistencies and the in-
dex of its inconsistent function as input. Then InstrLocalization
performs instruction-level instrumentation on the specified func-
tion within the binary and feeds the instrumented binary to run-
times to get their output logs (L2). The instrumentation is con-
ducted by printing the opcode of non-control-flow instruction and

Shangtong Cao, Ningyu He, Xinyu She, Yixuan Zhang, Mu Zhang, and Haoyu Wang

the value on the top of the stack after each instruction. L4 to L10
iterate the output of each instrumentation point. By comparing
the values on the stack after the execution of each instruction, the
algorithm identifies the specific instruction responsible for the ob-
served inconsistent behavior. Consequently, the instruction that
leads to buggy inconsistency is returned.

Re-run Strategy. It is important to note that multiple bugs can
exhibit the same type of inconsistent behavior in runtimes. For ex-
ample, if a runtime has bugs in both the implementation of memory-
related instructions and the validation of memory boundaries, it
may throw the out-of-bounds exception in both cases. To try to
avoid such conflation issues, we employ the re-run strategy. That
is, we re-run all binaries that exhibited inconsistent behaviors after
fixing any of the identified bugs in a runtime. The goal is to discover
additional unique runtime bugs through this process.

4 Implementation & Evaluation

4.1 Implementation & Experimental Setup

We have implemented WASMAKER with over 7.4K LOC of Python3
code from scratch. All experiments were performed on a server
in Ubuntu 22.04 with a 64-core AMD EPYC 7713 CPU and 256GB
RAM. Our evaluation is driven by the following research questions:

RQ1 How effective is WASMAKER compared to baselines?
RQ2 How many real-world bugs can be identified by WASMAKER?
RQ3 What are the characteristics of the detected bugs?

Benchmark. We use the WasmBench [35], a well-known bench-
mark consisting of over 8K Wasm binaries. These binaries are col-
lected from various sources, including code repositories, web ap-
plications, and package managers. Consequently, it guarantees the
richness in terms of the semantics of Wasm binaries, laying the
foundation for WASMAKER to generate a corpus.

Baselines. We select wasm-smith [3] and WADIFF [46] as baselines.
Specifically, wasm-smith is a Wasm binary generator that is widely
adopted in testing Wasm runtimes [37, 38]. It is worth noting that
Wasm binaries generated by wasm-smith in the default mode are
mostly unable to be directly executed by runtimes because they may
import functions that are not supported by runtimes. Therefore, we
configure it to generate Wasm binaries without imported functions,
and each binary has a minimum of ten functions, all of which
are exported. As for WADIFF, it adopts symbolic execution on
specifications of each instruction to generate Wasm binaries for
testing the correctness of Wasm runtimes on executing instructions.
Targeted Runtime. We select representative runtimes according
to two criteria. First, the stars of runtimes are greater than 3K. Sec-
ond, the runtime is actively maintained for the last three months
and has been officially released for over a year. Consequently,
Wasmtime [38], Wasmer [37], WAMR [34], and WasmEdge [36]
are selected. Note that no inconsistent behaviors are identified for
Wasmer, and we omit it in the following three RQs.
Experimental Setup. To ensure a fair comparison, it is important
to generate and execute as many Wasm binaries as possible within a
24-hour time budget using different tools and runtimes. During this
process, we record any instances that lead to inconsistent behaviors.
Note that the following root cause localization, runtime bug fixing,
and re-running processes mentioned in §3.4 for identifying unique
bugs in runtimes are not included within the 24-hour limit.

1269



WASMaker: Differential Testing of WebAssembly Runtimes via Semantic-Aware Binary Generation

Table 2: The number of generated Wasm binaries and the
ones that can trigger inconsistent behaviors, where CF, RF,
UO, and T refer to compilation failure, runtime failure, unex-
pected output, and the sum of these cases, respectively. B and
UB represent bugs and unique bugs that are not discovered
by the other two tools.

WASMAKER WASMAKERy WASMAKERy wasm-smith WADIFF

# Generated
Wasm Binaries

CF
RF

Wasmtime vo

269,998 281,456 29,5269 343,299 283,330

3,151 2,548

cocococo

B
UB

CF

RF

Uo
T

36,314
4,138
983
WAMR 41,435
B

UB

7,647
1,414

‘WasmEdge 9,061

c|lococococoococ|lonvkhhoo|oooooo

36,314
11,785
2,397
50,496

5,555

Total 5,479

(Sum of
above

runtimes)

RF
uo 443
11,034 443
B

UB

4.2 RQ1: Comparison with Baselines

Overall Result. Table 2 illustrates the overall results, where the
2nd, 5th, and 6th columns correspond to WASMAKER, wasm-smith,
and WADIFF, respectively. Moreover, the 2nd row illustrates the
number of generated Wasm binaries, and the rows leading by T refer
to the number of binaries that can result in inconsistent behaviors.
As we can see, the efficiency of these three tools is indistinguishable,
and they all can generate and perform the corresponding differential
testing on roughly 300,000 Wasm binaries within 24 hours. However,
when it comes to the number of Wasm binaries that can lead to
inconsistent behaviors, the difference in efficiency among them is
significant. WASMAKER generates more than 65K Wasm binaries
that can result in inconsistent behaviors, which is 6.0x and 148.8x
greater than wasm-smith and WADIFF, respectively. Interestingly,
we can easily observe that wasm-smith and WADIFF can only
detect inconsistent behaviors in WAMR, while WASMAKER is also
effective in Wasmtime and WasmEdge. This is because the aim of
binaries generated by wasm-smith is more about testing the syntax
validation of runtimes, which may have been widely tested by the
other runtimes before release. As for WADIFF, it can only test the
implementation inconsistency at the instruction level.
Semantic Richness. Against these tools, we further evaluate the
semantic richness of the generated binaries based on four metrics:
nesting depth of code blocks (ND), average number of instructions
(ANTI), average number of control instructions (ANCI), and the
ratio of actually executed instructions out of all instructions (REI).
Fig. 8 illustrates the distribution of ND for binaries generated
by the three tools. It can be observed that when ND is smaller
than 13, the curve of WASMAKER is significantly higher than the
other two tools, while wasm-smith surpasses WASMAKER after that

1270

ISSTA °24, September 16-20, 2024, Vienna, Austria

(o2}
o

—s—\WASMaker —+—wasm-smith ——WADIFF

o

111213141516 17 181920

4
o

W B
o o

n
o
(= )

o
o

Average number of block

1

1 21 31 41

Block nesting depth
Figure 8: The ND distribution for generated Wasm binaries.
Table 3: ANI, ANCI, and REI of binaries generated by WAS-
MAKER, wasm-smith, and WADIFF.

51 61

Metrics WASMAKER wasm-smith WADIFF
ANI 15948.92 2568.73 5.26
ANCI 594.07 216.17 0.00

REI 39.66% 5.55% 100.00%

point. This indicates wasm-smith is good at generating complex
code block patterns compared to WASMAKER. We speculate this is
because WASMAKER generates binaries by combining ASTs of exist-
ing binaries, and thus, the depth of code blocks is more similar than
the one of real-world binaries. On the other hand, wasm-smith is
designed to validate the syntax-checking process of runtimes, thus
intentionally generating such complex code block structures. More-
over, WADIFF does not generate test cases specifically targeting
control instructions, indicating the ND is always 0. Table 3 presents
the results of the other three metrics. As we can see, both ANI and
ANCI of WASMAKER are higher than the ones of the other two
baselines. As for REI, because WADIFF does not generate nested
code blocks, as shown in Fig. 8, all instructions in generated binaries
will be executed once. Moreover, though WASMAKER exhibits a
weaker capability in generating deeply nested code blocks com-
pared to wasm-smith, its REI is much higher. Therefore, we can
conclude that code blocks generated by WASMAKER are more effi-
cient in testing runtimes. In summary, compared to the baselines,
the binaries generated by WASMAKER exhibit richer semantics.

Distribution of Inconsistencies. We further analyze the types
of inconsistencies (mentioned in §3.4.1). Interestingly, for Wasm-
time, all inconsistencies are CF, whereas for WasmEdge, it was
the other way around. We speculate this is due to the different
robustness of the two runtimes in their implementations. Moreover,
most cases that can lead to inconsistency can be found in WAMR
for all three tools, while only WASMAKER can identify all three
kinds of inconsistencies, further strengthening its effectiveness.

Bugs. We take a step further to investigate the root causes of these
inconsistent behaviors, as shown in the rows led by B and UB, indi-
cating the number of bugs and unique bugs that are not discovered
by the other two tools. WASMAKER identifies 15 bugs in total within
24 hours, while 12 of them are not discovered by wasm-smith and
WADIFF. Interestingly, we can also observe that wasm-smith found
four unique bugs that are not identified by WASMAKER during
testing against WAMR, which are all syntactic bugs. For example,
one case has a br_table followed by an array with more than 30
branches as targets, where WAMR failed to examine whether the
type of each targeted block is identical. Such a long br_table is
unusual in real-world cases, and thus WASMAKER cannot find this
issue within 24 hours even with the help of mutation strategies.



ISSTA °24, September 16-20, 2024, Vienna, Austria

Table 4: The breakdown of 167,343 Wasm binaries that can
lead to inconsistent behaviors generated by WASMAKER. The
number in parenthesizes is the number of unique bugs.

CF RF Uo Total
Wasmtime 8,692 (1) 0(0) 0(0) 8,692 (1)
WAMR 99,578 (4) 17,568 (10) 2,763 (5) 119,909 (19)
WasmEdge 0 (0) 30,273 (7) 8469 (6) 38,742 (13)
Total 108,270 (5) 47,841 (17) 11,232 (11) 167,343 (33)

Ablation Study. To evaluate the effectiveness of AST-level and
module-level mutation strategies (see §3.3.2), we conducted an ab-
lation study. Specifically, following the same experimental setup,
we launch WASMAKER4 and WASMAKERy, separately, where only
the AST-level and module-level mutation strategies are adopted,
respectively. The 3rd and 4th columns of Table 2 illustrate the re-
sults. As we can see, WASMAKER,, fails to uncover inconsistent
behaviors under the UO category. This is because the module-level
mutations put attention on sections other than the code section,
where instructions are included. Additionally, the AST-level muta-
tion demonstrates superior effectiveness as it directly targets the
critical aspect of runtimes, i.e., the implementation of instructions.
Note that, both WASMAKER4 and WASMAKERy perform worse
than WASMAKER, which enables two strategies simultaneously,
indicating that the combination of AST- and module-level mutation
strategies can yield better results.

Answer to RQ1. Compared with the state-of-the-art baselines,
i.e., wasm-smith and WADIFF, WASMAKER demonstrates its enhanced
semantic richness, along with superior efficiency and effectiveness, in
identifying unexpected behaviors in Wasm runtimes. It outperforms
them by identifying 6.0x and 148.8x more cases, respectively.

4.3 RQ2:Identified Real-World Runtime Bugs

Our previous exploration suggests that WASMAKER outperforms
state-of-the-art techniques greatly. Thus, we next seek to apply
WASMAKER to identify runtime bugs in the real world. For the
targeted runtimes, WASMAKER performs differential testing for 72
hours!. In total, WASMAKER has generated 832,053 Wasm binaries,
167,343 out of which (20.11%) can lead to inconsistent behavior
across Wasm runtimes. Table 4 illustrates the breakdown details.
Behavior Inconsistencies. Among all these three runtimes, WAS-
MAKER generates a total of 119,908 cases that can trigger inconsis-
tencies in WAMR, which is 3.1x and 13.8x greater than WasmEdge
and Wasmtime. Most of the inconsistent cases belong to CF, ac-
counting for 65% of all binaries.

Bugs. As shown in Table 4, for all the 167,343 inconsistent cases,
our root cause localization method pinpoints 33 unique bugs, and 5,
17, and 11 of them are classified into CF, RF, and UO, respectively.
Over half of the bugs are discovered within the first 24 hours, and
the growth rate gradually slows down in the following hours. Note
that, against Wasmtime, we only identified a single type of bug that
can generate its unexpected behaviors, which is consistent with the
results presented in RQ1. It is noteworthy that although WASMAaKER
generated the highest number of binaries resulting in CF, there are
only 4 unique bugs. After investigating the reason, we found that
it is because WAMR raises exceptions when parsing the complex

!Note that, the reason we set the time frame of 72 hours is that the number of unique
bugs WASMAKER identified remain stable after roughly 65 hours.

1271

Shangtong Cao, Ningyu He, Xinyu She, Yixuan Zhang, Mu Zhang, and Haoyu Wang

Table 5: Detailed information of all confirmed bugs.

Runtime  Issue Type Root Cause Status
Wasmtime #7558  CF type conversion error Fixed
#2450 RF integer overflow Fixed
#2555 RF llvm compiler crash Fixed
#2556  CF non-alignment issue Fixed
#2557 CF value kind check missing Fixed
#2561  UO  instruction implementation error Fixed
WAMR #2677 CF type conversion error Fixed
#2690 UO instruction implementation error Fixed
#2720 RF memory check error Fixed
#2789  CF string check error Fixed
#2861 UO  instruction implementation error ~Confirmed
#2862 UO  instruction implementation error ~Confirmed
#2812 UO  instruction implementation error ~Confirmed
#2814 RF memory check error Confirmed
#2815 UO  instruction implementation error ~Confirmed
#2988 UO  instruction implementation error ~Confirmed
#2996  UO  instruction implementation error ~Confirmed
#2997 UO  instruction implementation error ~Confirmed
WasmEdge #2999 UO  instruction implementation error ~Confirmed
#3018 RF memory check error Confirmed
#3019 RF memory check error Confirmed
#3057 RF memory check error Confirmed
#3063 RF memory check error Confirmed
#3068  RF memory check error Confirmed
#3076  RF memory check error Confirmed

representation of immediate values of v128.const. Because our
mutation strategies (see §3.3.2) can import such instructions, a large
number of binaries trigger this inconsistent behavior.
Bug Reporting. For each unique bug identified, we randomly select
binaries and report them to runtime developers, and we further
provide root cause analysis to them for aiding bug fixing. Out of
the 33 unique bugs, 25 have been confirmed by developers, and 11
have been fixed by the time of this writing, as shown in Table 5.
For those confirmed ones, we will conduct detailed case studies on
some representatives in the following §4.4

Answer to RQ2. WASMAKER successfully generated more than
167K Wasm binaries that can lead to unexpected behaviors of Wasm
runtimes, which were caused by 33 unique bugs. With our timely
disclosure, 25 bugs have already been confirmed by runtime developers,
and 11 of them have been fixed with our help.

4.4 RQ3:Bug Characterization

We go a step further to analyze the root cause of each bug manually.
As shown in Table 5, most of these bugs are caused by instruction
implementation errors, while some other bugs are due to boundary
check and type conversion errors. We next select three fixed bugs
as representative ones for case studies.

(5
;05

65536 65536)
i32.const -79158787)

memory

1 ( 9;)
2 (data ) ( "Bp222N")

Listing 3: Wasmtime Type conversion error.

Case 1: Wasmtime Type conversion error. Listing 3 shows a
part of the Wasm binary generated by WASMAKER, leading to the
#7558 issue of Wasmtime. Specifically, L1 specifies the maximum
space of the linear memory of this binary is 4 GB. However, L2
initializes the memory area starting from the offset of -79158787,
which needs to be interpreted as an unsigned 32-bit integer. Unfor-
tunately, Wasmtime incorrectly takes this number as a signed one,
leading to a compilation failure since a negative address is invalid. In



WASMaker: Differential Testing of WebAssembly Runtimes via Semantic-Aware Binary Generation

contrast, other runtimes correctly convert -79158787 to 4215808509,
and perform the following expected behaviors correctly.

(module
(func (result v128)
v128.const i32x4 0@x3d52aa71 @xea2f90b2 @xb20cdf3d @
x4d6054bc
i32.const -7235
i8x16.shl)
(export "main"

1
2
3

4
5
6 (func 0)))

Listing 4: WAMR instruction implementation error.

Case 2: WAMR instruction implementation error. Listing 4
illustrates a part of the Wasm binary generated by WASMAKER that
triggers the #2690 issue of WAMR. To be specific, the 132. const
-7235 at L4 determines how many bits should be left-shifted, and it
should be interpreted as the unsigned number 58302. Unfortunately,
WAMR incorrectly treats -7235 as a signed number and directly
performs modulo with 128. Thus, the following instruction left
shifts the v128. const at L3 in different bit. To this end, though this
code snippet can be executed normally, WAMR outputs a different
output compared with other runtimes.

1 (export "\@0jCeH" (func 0))
2 (export "" (func 1))
3 (export "fj" (func 2))

Listing 5: WAMR string check error.

Case 3: WAMR string check error. Listing 5 shows a case
that leads to the #2789 issue of WAMR. The first two export items
export \0@jCeH and an empty string, respectively. Note that, both
of them start with a \@@. Instead of using Unicode string to handle
import and export names, as required by the Wasm spec, WAMR
adopts c-style string. Thus WAMR mistakenly resolves the first
two exports to two empty strings, which causes WAMR to fail to
compile the bytecode and raise the duplicate export name exception.

Answer to RQ3. Instruction implementation error and memory
check error are the top two factors leading to the unexpected behav-
iors of Wasm runtimes, underlining the importance of performing
adequate sanity checks and following the specification.

5 Discussion

Ethical Considerations. This work aims to identify real-world
bugs in Wasm runtimes. We have identified 33 unique bugs, and re-
ported them to runtime developers immediately. As of this writing,
most of them have been confirmed, although some bugs are in the
process of being fixed. We have repeatedly urged developers to fix
them by providing necessary help.

Semantics. Although WASMAKER tries to generate binaries with
as rich semantics as possible, they might not be as semantically
rich as real-world binaries. This is mainly due to the fact that some
complex control flows within sub-trees of ASTs cannot be fully
executed. In order to access these deep and nested nodes, reliance is
placed on the context provided by the preceding ASTs. Although we
assign values to local variables in functions, we cannot guarantee
that we can restore every context.

Scalability. Wasm is experiencing rapid development, and many
new proposals are emerging. WASMAKER’s current ability to test the
semantics of runtimes might not encompass some new proposals.
However, we argue that WASMAKER can be easily extended to cover
the new semantics by incorporating real-world Wasm binaries that
exploit new features. Additionally, we will design more generation

1272

ISSTA °24, September 16-20, 2024, Vienna, Austria

and mutation strategies for these new semantics to expand the
capabilities of WASMAKER.

6 Related Work

Wasm Binary Security. Many studies focus on the security side
of Wasm binaries [5, 15-17, 22-24, 27, 31]. Lehmann et al. [22]
analyzed the memory issues in Wasm binaries, and adopted binary
instrumentation and AFL to detect memory bugs [23]. Wasmati [5]
and Wasp [24] leverage code property graphs and concolic execu-
tion, respectively, to identify vulnerabilities in Wasm binaries.
Wasm Runtime Testing. There is some work on testing Wasm
runtimes [6, 18, 19, 44, 46]. Specifically, WADIFF [46] utilizes sym-
bolic execution on the specification of instructions to generate
Wasm binaries to conduct differential testing. Moreover, Zhang et
al. [44] developed a pattern-based runtime bug detection frame-
work based on pre-defined domain knowledge. Additionally, Jiang
et al. [19] leveraged existing performance testing benchmarks to
discover performance issues in server-side Wasm runtimes. It is
worth noting that wasm-mutate [6] can mutate binaries to test run-
times, but its strategies are inefficient. For example, adding function
signatures and dead functions can not trigger the semantic imple-
mentation parts of runtimes. Additionally, its instruction mutation
that preserves the original functionality fails to cover all Wasm in-
structions as comprehensively as possible. Thus, these approaches
still struggle to generate Wasm binaries with rich semantics.
Differential Testing. McKeeman [25] first introduced the concept
of differential testing. Since then, it has been extensively employed
to test various applications, including virtual machines [4, 9, 10],
compilers [28-30], deep learning frameworks [11, 13], and symbolic
execution engines [21]. This paper draws on the idea of differential
testing and applies it to Wasm runtimes.

7 Conclusion

This paper presents WASMAKER, a novel differential testing frame-
work for Wasm runtimes. WASMAKER can generate syntactically
correct and semantic-rich Wasm binaries by disassembling and
assembling real-world Wasm binaries. For further pinpointing the
root causes of inconsistencies and locating the bugs, we propose a
root cause identification algorithm that can accurately locate bugs
on a function level or even an instruction level. WASMAKER shows
great effectiveness via extensive evaluation, and we have uncovered
33 real-world bugs in popular Wasm runtimes.

Data-Availability Statement
The artifact of WASMAKER is released at [2, 7].

Acknowledgement

This work was supported in part by National Key R&D Program of
China (2021YFB2701000), the Key R&D Program of Hubei Province
(2023BAB017, 2023BAB079), the Knowledge Innovation Program
of Wuhan-Basic Research, HUST CSE-HongXin Joint Institute for
Cyber Security and research grants from Huawei. Mu Zhang is sup-
ported by NSF OAC-2115167, DARPA HR00112120009 Cooperative
Agreement, and a Cisco gift.



ISSTA °24, September 16-20, 2024, Vienna, Austria

References

[1] 2023. Occam’s razor. https://en.wikipedia.org/wiki/Occam%27s_razor
[2] 2024. WASMaker. https://github.com/security-pride/ WASMaker.
[3] Bytecode Alliance. 2023. Github wasm-tools repository. https://github.com/

[4

(5

[6

[10

[11

[12
[13

[14

[15

[16

[17

[18

[19

[20

[21

[22

]

=

]

]

]

]

]

]

bytecodealliance/wasm-tools/tree/main/crates/wasm- smith

Lukas Bernhard, Tobias Scharnowski, Moritz Schloegel, Tim Blazytko, and
Thorsten Holz. 2022. ]JIT-picking: Differential fuzzing of JavaScript engines.
In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communica-
tions Security. 351-364.

Tiago Brito, Pedro Lopes, Nuno Santos, and José Fragoso Santos. 2022. Wasmati:
An efficient static vulnerability scanner for WebAssembly. Computers & Security
118 (2022), 102745.

Javier Cabrera-Arteaga, Nicholas Fitzgerald, Martin Monperrus, and Benoit
Baudry. 2024. Wasm-Mutate: Fast and effective binary diversification for We-
bAssembly. Computers & Security 139 (2024), 103731.

Shangtong Cao. 2024. WASMaker: Differential Testing of WebAssembly Runtimes
via Semantic-aware Binary Generation. https://doi.org/10.5281/zenodo.12670309
Shangtong Cao, Ningyu He, Yao Guo, and Haoyu Wang. 2023. BREWasm: A
General Static Binary Rewriting Framework for WebAssembly. In International
Static Analysis Symposium. Springer, 139-163.

Yuting Chen, Ting Su, and Zhendong Su. 2019. Deep differential testing of JVM
implementations. In 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE). IEEE, 1257-1268.

Yuting Chen, Ting Su, Chengnian Sun, Zhendong Su, and Jianjun Zhao. 2016.
Coverage-directed differential testing of JVM implementations. In proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 85-99.

Zizhuang Deng, Guozhu Meng, Kai Chen, Tong Liu, Lu Xiang, and Chunyang
Chen. 2023. Differential Testing of Cross Deep Learning Framework {APIs}: Re-
vealing Inconsistencies and Vulnerabilities. In 32nd USENIX Security Symposium
(USENIX Security 23). 7393-7410.

eosio. 2023. eosio official website. https://eos.io/

Qianyu Guo, Xiaofei Xie, Yi Li, Xiaoyu Zhang, Yang Liu, Xiaohong Li, and Chao
Shen. 2020. Audee: Automated testing for deep learning frameworks. In Pro-
ceedings of the 35th IEEE/ACM International Conference on Automated Software
Engineering. 486-498.

Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael Holman,
Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien. 2017. Bringing the
web up to speed with WebAssembly. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation. 185-200.
Keno Hafller and Dominik Maier. 2021. Wafl: Binary-only webassembly fuzzing
with fast snapshots. In Reversing and Offensive-oriented Trends Symposium. 23-30.
Ningyu He, Ruiyi Zhang, Haoyu Wang, Lei Wu, Xiapu Luo, Yao Guo, Ting Yu,
and Xuxian Jiang. 2021. EOSAFE: Security Analysis of EOSIO Smart Contracts..
In USENIX Security Symposium. 1271-1288.

Ningyu He, Zhehao Zhao, Jikai Wang, Yubin Hu, Shengjian Guo, Haoyu Wang,
Guangtai Liang, Ding Li, Xiangqun Chen, and Yao Guo. 2023. Eunomia: Enabling
User-specified Fine-Grained Search in Symbolically Executing WebAssembly
Binaries. arXiv preprint arXiv:2304.07204 (2023).

Bo Jiang, Zichao Li, Yuhe Huang, Zhenyu Zhang, and W Chan. 2022. Wasmfuzzer:
A fuzzer for webassembly virtual machines. In 34th International Conference on
Software Engineering and Knowledge Engineering, SEKE 2022. KSI Research Inc.,
537-542.

Shuyao Jiang, Ruiying Zeng, Zihao Rao, Jiazhen Gu, Yangfan Zhou, and Michael R
Lyu. 2023. Revealing Performance Issues in Server-side WebAssembly Runtimes
via Differential Testing. arXiv preprint arXiv:2309.12167 (2023).

Evan Johnson, Evan Laufer, Zijie Zhao, Dan Gohman, Shravan Narayan, Stefan
Savage, Deian Stefan, and Fraser Brown. 2023. WaVe: a verifiably secure We-
bAssembly sandboxing runtime. In 2023 IEEE Symposium on Security and Privacy
(SP). IEEE, 2940-2955.

Timotej Kapus and Cristian Cadar. 2017. Automatic testing of symbolic execution
engines via program generation and differential testing. In 2017 32nd IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 590-600.
Daniel Lehmann, Johannes Kinder, and Michael Pradel. 2020. Everything old is
new again: Binary security of webassembly. In Proceedings of the 29th USENIX

1273

Shangtong Cao, Ningyu He, Xinyu She, Yixuan Zhang, Mu Zhang, and Haoyu Wang

[23

[24

[25

[26

[27]

[28

™~
29,

'S
=

&
=

‘%
&,

@
&

&
=)

=
)

"~
&

=
&

Conference on Security Symposium. 217-234.

Daniel Lehmann, Martin Toldam Torp, and Michael Pradel. 2021. Fuzzm: Finding
memory bugs through binary-only instrumentation and fuzzing of webassembly.
arXiv preprint arXiv:2110.15433 (2021).

Filipe Marques, José Fragoso Santos, Nuno Santos, and Pedro Adéo. 2022. Concolic
Execution for WebAssembly. In 36th European Conference on Object-Oriented
Programming (ECOOP 2022). Schloss Dagstuhl-Leibniz-Zentrum fiir Informatik.
William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100-107.

MDN. 2023. MDN web docs website. https://developer.mozilla.org/en-US/docs/
WebAssembly/Rust_to_wasm

Alexandra E Michael, Anitha Gollamudi, Jay Bosamiya, Evan Johnson, Aidan
Denlinger, Craig Disselkoen, Conrad Watt, Bryan Parno, Marco Patrignani, Marco
Vassena, et al. 2023. Mswasm: Soundly enforcing memory-safe execution of
unsafe code. Proceedings of the ACM on Programming Languages 7, POPL (2023),
425-454.

Robin Morisset, Pankaj Pawan, and Francesco Zappa Nardelli. 2013. Compiler
testing via a theory of sound optimisations in the C11/C++ 11 memory model.
ACM SIGPLAN Notices 48, 6 (2013), 187-196.

Georg Ofenbeck, Tiark Rompf, and Markus Piischel. 2016. RandIR: differential
testing for embedded compilers. In Proceedings of the 2016 7th ACM SIGPLAN
Symposium on Scala. 21-30.

Flash Sheridan. 2007. Practical testing of a C99 compiler using output comparison.
Software: Practice and Experience 37, 14 (2007), 1475-1488.

Quentin Stiévenart, Coen De Roover, and Mohammad Ghafari. 2022. Security
risks of porting ¢ programs to WebAssembly. In Proceedings of the 37th ACM/SI-
GAPP Symposium on Applied Computing. 1713-1722.

TinyGo. 2023. TinyGo official docs webpage. https://tinygo.org/docs/guides/
webassembly/

Stefan Wallentowitz, Bastian Kersting, and Dan Mihai Dumitriu. 2022. Potential
of WebAssembly for Embedded Systems. In 2022 11th Mediterranean Conference
on Embedded Computing (MECO). IEEE, 1-4.

wamr. 2023. Github wamr repository. https://github.com/bytecodealliance/
wasm-micro-runtime

WasmBench. 2023. Github WasmBench repository. https://github.com/sola-
st/WasmBench

WasmEdge. 2023. Github WasmEdge repository. https://github.com/WasmEdge/
WasmEdge

Wasmer. 2023. Github Wasmer repository. https://github.com/wasmerio/wasmer
wasmtime. 2023.  Github wasmtime repository. https://github.com/
bytecodealliance/wasmtime

WebAssembly. 2023. Github WASI repository. https://github.com/WebAssembly/
WASI

WebAssembly. 2023. Index of WebAssembly instructions. https://webassembly.
github.io/spec/core/appendix/index-instructions.html

WebAssembly. 2023. SIMD proposal for WebAssembly. https://github.com/
WebAssembly/simd

WebAssembly. 2023. WebAssembly 1.0 specification webpage. https://www.w3.
org/TR/wasm- core- 1/#a7-index- of-instructions

WebAssembly. 2023. WebAssembly specification webpage. https://webassembly.
github.io/spec/core/binary/index.html

Zhang Yixuan, Cao Shangtong, Wang Haoyu, Zhenpeng Chen, Luo Xiapu, Mu
Dongliang, Ma Yun, Huang Gang, and Liu Xuanzhe. 2023. Characterizing and De-
tecting WebAssembly Runtime Bugs. ACM Transactions on Software Engineering
and Methodology (2023).

Alon Zakai. 2011. Emscripten: an LLVM-to-JavaScript compiler. In Proceedings
of the ACM international conference companion on Object oriented programming
systems languages and applications companion. 301-312.

Shiyao Zhou, Muhui Jiang, Weimin Chen, Hao Zhou, Haoyu Wang, and Xiapu Luo.
2023. WADIFF: A Differential Testing Framework for WebAssembly Runtimes. In
2023 38th IEEE/ACM International Conference on Automated Software Engineering
(ASE). IEEE Computer Society, 939-950.

Received 2024-04-12; accepted 2024-07-03


https://en.wikipedia.org/wiki/Occam%27s_razor
https://github.com/security-pride/WASMaker
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-smith
https://github.com/bytecodealliance/wasm-tools/tree/main/crates/wasm-smith
https://doi.org/10.5281/zenodo.12670309
https://eos.io/
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_wasm
https://developer.mozilla.org/en-US/docs/WebAssembly/Rust_to_wasm
https://tinygo.org/docs/guides/webassembly/
https://tinygo.org/docs/guides/webassembly/
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/bytecodealliance/wasm-micro-runtime
https://github.com/sola-st/WasmBench
https://github.com/sola-st/WasmBench
https://github.com/WasmEdge/WasmEdge
https://github.com/WasmEdge/WasmEdge
https://github.com/wasmerio/wasmer
https://github.com/bytecodealliance/wasmtime
https://github.com/bytecodealliance/wasmtime
https://github.com/WebAssembly/WASI
https://github.com/WebAssembly/WASI
https://webassembly.github.io/spec/core/appendix/index-instructions.html
https://webassembly.github.io/spec/core/appendix/index-instructions.html
https://github.com/WebAssembly/simd
https://github.com/WebAssembly/simd
https://www.w3.org/TR/wasm-core-1/#a7-index-of-instructions
https://www.w3.org/TR/wasm-core-1/#a7-index-of-instructions
https://webassembly.github.io/spec/core/binary/index.html
https://webassembly.github.io/spec/core/binary/index.html

	Abstract
	1 Introduction
	2 Background & Motivation
	2.1 WebAssembly & Runtime
	2.2 Motivation

	3 Approach
	3.1 Overview
	3.2 Corpus Preparation
	3.3 Binary Generation & Mutation
	3.4 Differential Testing

	4 Implementation & Evaluation
	4.1 Implementation & Experimental Setup
	4.2 RQ1: Comparison with Baselines
	4.3 RQ2: Identified Real-World Runtime Bugs
	4.4 RQ3: Bug Characterization

	5 Discussion
	6 Related Work
	7 Conclusion
	References



