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Motivated by the observation of positive Gaussian curvature in kinetoplast DNA networks, we consider
the effect of linking chirality in square lattice molecular chainmail networks using Langevin dynamics
simulations and constrained gradient optimization. Linking chirality here refers to ordering of over-under
versus under-over linkages between a loop and its neighbors. We consider fully alternating linking,
maximally non-alternating, and partially non-alternating linking chiralities. We find that in simulations of
polymer chainmail networks, the linking chirality dictates the sign of the Gaussian curvature of the final
state of the chainmail membranes. Alternating networks have positive Gaussian curvature, similar to
what is observed in kinetoplast DNA networks. Maximally non-alternating networks form isotropic
membranes with negative Gaussian curvature. Partially non-alternating networks form flat diamond-
shaped sheets which undergo a thermal folding transition when sufficiently large, similar to the
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|. Introduction

Many emerging materials are comprised at the microscopic
scale of two-dimensional crystalline materials' or topologically
complex linked-ring molecular architectures such as poly-
catenanes” and Olympic gels.> Some materials have combined
both features into molecular structures that are both planar
and topologically linked.** There is currently an incomplete
understanding about how the underlying topology of the mole-
cular network affects its equilibrium mechanical properties, as
well as what role thermal fluctuations play in the stability of
planar molecules at finite temperatures. One emerging model
system for studying these effects is kinetoplast DNA.

Kinetoplasts are the mitochondrial DNA of trypanosome
parasites. Often described as molecular chainmail, they consist
of several thousand topologically linked DNA “minicircles” of a
few thousand base pairs forming a planar network as well as
several dozen “maxicircles” of tens of thousands of base pairs
(similar to our own mitochondrial DNA) also linked within
the network.® Their catenated (linked-ring) molecular structure
and planar network topology make them an interesting experi-
mental system for researchers in both the topological chemistry
and two-dimensional materials communities.
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In one of the initial studies characterizing the material
properties of kinetoplasts in free solution, Klotz et al. reported
positive Gaussian curvature, giving kinetoplasts the appearance
of wrinkled hemispheres.” There is no known biological reason
for this curvature, and it is likely not present in every species.
Subsequent work attempted to explain this curvature on physical
grounds. Simulations by Polson, Garcia, and Klotz® showed that
networks of rigid linked rings, when thermalized, will replicate the
curvature seen in Crithidia fasciculata kinetoplasts. In a detailed
simulated-supported atomic force microscopy investigation of
kinetoplast DNA, He et al.’® argued that the incommensurability
between the area of the kinetoplast sheet and its circumference,
which is lined by a dense fiber of excess DNA linkages, creates a
tension that is resolved by curving the membrane.

Based on gel electrophoresis experiments,™ it was concluded
that the network structure of Crithidia kinetoplasts is that of a
honeycomb lattice, with the average number of minicircles each
minicircle is linked to, termed the valence, most likely being three.
Subsequent investigations, including that of He et al.,’ supported
the average trivalence but not the honeycomb picture, which
cannot capture the observed complexity of minicircle arrange-
ment. More recent work has investigated the role of the edge loop
in determining kinetoplasts topology,'’ as well as that of the
maxicircles that are typically neglected.'” The dependence of the
equilibrium structure of a molecular chainmail network on its
lattice topology has not been fully explored. Preliminary work by
Thomas O’Connor showed that different medieval chainmail
designs folded differently at low temperatures,"* while the simula-
tions by Polson, Garcia and Klotz showed slight differences in the
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Fig. 1 (a)-(c) Chainmail network topologies shown with unit cells highlighted in blue. Highlighed orange rings have labeled over (‘'O’) and under (‘'U’)
crossings. (a) Alternating chirality shows pattern of alternating over-under crossings as a loop is traversed. (b) Non-alternating chirality has pairs of over-
crossings next to pairs of under-crossings. (c) Semi-alternating consists of a mix of paired crossings and alternation. Unit cells for (a) and (b) each contain
the mass of a single ring; unit cell of (c) contains the mass of four rings. (d)—(f) Initial configurations of 3 x 3 networks of each chainlink network.

concavity of hexagonal and square networks with non-uniform
valence.® The most detailed simulations by He et al.” used trivalent
honeycomb networks, and highlighted the role of link chirality as
well as network topology.

When two solitary rings - curves that form closed loops in
three-dimensional space — share a topological Hopf link, a given
projection may show that as the path of a single loop is traversed,
the link is composed of an under crossing followed by an over
crossing, or an over crossing followed by an under crossing. In this
case, either loop may be rotated about the plane of projection to
change the over-under crossing order to an under-over crossing
order. Similarly, a linear chain of Hopf links can interconvert pairs
of crossings via rotations of the constituent loops. However, more
general linked structures, such as closed necklace-like linked
chains or the doubly-periodic chainmail networks shown in
Fig. 1, do not admit such flexibility — conversion of under-over to
over-under may be achieved via an additional twist of a given loop,
rather than a rigid rotation, which adds additional crossings to the
projection. Consequently, there are non-equivalent choices of how
a given ring passes over and under its neighbors, as encoded
by the order of under (‘U’) and over (‘O’) crossings, called the
“chirality” of the link. We note that the term chirality here
does not have the same meaning as is used in knot theory and
stereochemistry. For example, the links in Fig. 1(a), with an
“alternating chirality,” and the links in Fig. 1(b), with “non-
alternating chirality,” are not mirror images of each other.

The effect of link chirality in polycatenanes and molecular
chainmail was explored by Luca Tubiana and collaborators in
two studies. The first examined twisted circular polycatenanes,"
finding that a closed, untwisted, fully non-alternating chain-link
will be structurally relaxed at equilibrium, but adding twists before
closing the chain link will introduce a torsional constraint to the
system that must be alleviated. They formulated a relationship
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between the number of twists and the apparent writhe of the
polycatenane that was analogous to the Fuller-White-Calugareanu
relation that applies to supercoiled DNA."> In a second study, the
simulations used by He et al. to explore the effect of tension due to
the kinetoplast edge loop,” randomized the chirality of each loop
such that effects of chirality were averaged out. During the writing of
this manuscript, we became aware of parallel work by Luengo-
Miérquez et al.'® examining the equilibrium properties of block-
copolymer chainmail networks with two different link chiralities.
The networks simulated by Polson, Garcia, and Klotz® used
“Japanese-style” networks in which tetravalent or hexavelent rings
on a lattice were connected by divalent linkers, eliminating issues
with link chirality.

Here, we consider the effect of molecular chirality in square
lattices of topologically linked loops. Although the honeycomb
lattice is typically used to describe kinetoplast DNA, we choose
a square lattice, as the bipartite structure ensures a consistent
choice of linking chirality, i.e. without the “geometric frustra-
tion” characteristic of non-bipartite lattices. Additionally, the
4-valent connectivity yields a bigger difference between the fully
alternating and fully non-alternating cases. The three square
lattice chiralities that we study can be seen in Fig. 1. Each
linked ring contributes a separate over-under (OU) or under-
over (UO) pair; since each loop is 4-valent, each loop can be
labeled by a sequence of four OU and UO pairs. The fully
alternating configuration is given by UOUOUOUO; the fully non-
alternating is UUOOUUOO; the semi-alternating is UUOUOOUO.
The semi-alternating pattern is known in the armoring community
as the European 4-in-1 weave.} The unit cells of these networks

# Historical armor styles mentioned in this paper are based on the conventions of
online communities. We have not examined the historical accuracy of their
names.
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(highlighted blue in Fig. 1) are not centered on the individual
loops, but rather the junctions of four loops, with the exception of
the semi-alternating network, which is centered on a ring. In
Alexander-Briggs and Thistlethwait notation, the unit cells of each
network are 8,"/L8a21, 8;*/L8n8, and 8,"/L8n7. As U’s and O’s only
exist in UO and OU pairs, one can consider each pair as labeled
with a collective label, e.g. an up or down “spin.” These chainmail
networks then resemble ordered spin arrangements, with the fully
alternating case being “ferromagnetic” and the fully non-
alternating case being “antiferromagnetic.” This suggests a possi-
ble mapping of the equilibrium conformations of molecular
chainmail to Ising model-patterned elastic sheets, such as those
in Plummer et al."’

In this work, we explore the configurations of molecular
chainmail given these chiral topological constraints. We use
two complementary numerical methods and a simplified
exactly-solvable model. The first numerical method is Langevin
dynamics (LD), used to model the equilibrium behavior of
polymer chains. We explore the equilibrium configurations of
chainmail networks parameterized to the properties of DNA in
low ionic strength solvents, comparable to about 13 mM, the
second-lowest ionic strength explored in fluorescence experi-
ments with kinetoplast DNA."® The equilibrium configuration
of a polymer depends on a balance of entropy, excluded
volume, and bending rigidity. To reduce the degrees of freedom
more directly investigate the relationship between topology and
geometry, the second method uses constrained gradient opti-
mization (CGO) to find the tightest possible configuration of
chainmail networks, which might arise in synthetic chemical
networks.” This algorithm is typically used to find the tightest
configurations of knots and links, and here is used to identify
the minimal geometric factors that lead to the observed
membrane behavior. Finally, we develop a simple model of
the preferred homogeneous embedding of these networks,
illustrating the emergence of intrinsic curvature and the neces-
sity of loop deformation due to an apparent geometric incom-
patibility between certain periodic linkages and constraints
imposed by Euclidean space.

[I. Methods

A. Initialization

We initialize our loops (a term we use interchangeably with
links to refer to the individual components of the networks)
as 16-gons. These 16-gons are centered on square lattice sites,
and can be thought of as inhabiting tiling squares; initial
configurations are shown for the three network chiralities in
Fig. 1(d)-(f). Eight vertices of each 16-gon lie in the xy-plane
in an octagon, with four sides touching neighboring squares in
the lattice. Between each two octagonal vertices on the sides of
the square, are points extending into the next square, one in the
+z direction and one in the —z direction. The order of the +z
extension determines whether the linkage is over-under or the
reverse. Each 16-gon has four linkage components, the alternating
16-gons have all four going over-under. The z-coordinates on

This journal is © The Royal Society of Chemistry 2024

View Article Online

Paper

opposite sides of the 16-gon are flipped to create the fully non-
alternating network. To create the semi-alternating network, the
z-coordinates are flipped on either the upper and right linkage,
or the lower and left linkage, and the network is created by a
checkerboard tiling of those two cases.

We use spline interpolation to refine the mesh for each loop,
increasing the number of vertices-per-loop to ~24. Because the
algorithms we use typically function better with smooth initial
configurations, we import the generated configurations into
KnotPlot'® and anneal them by treating each vertex as a charge
and each edge as a spring, which ensures evenly-spaced vertices
and a safe distance between beads on neighboring links such
that they will not cross each other during simulation. After
the loops in a medium-sized network have been annealed in
KnotPlot, we can extract the coordinates of an interior loop and
tile them to create larger networks. Coordinates of these loops
and instructions for tiling them are available on the public data
repository linked in the data availability statement. For CGO,
we also reduce the charge of each vertex and apply a contour-
minimizing force in KnotPlot, which allows the minimization
to proceed faster.

B. Langevin dynamics

We simulate molecular chainmail networks with M links using
a model used to simulate topologically complex polymers in
previous works, and our descriptions may bear similarity to
previous descriptions of these methods. In short, each loop in
the network is comprised of beads of diameter ¢ (which sets the
lengthscale of the system) at position r¢), connected by springs
to their two neighbors. A finitely-extensible nonlinear elastic
(FENE) spring potential with a maximum extension of 1.5¢
is used. Excluded volume interactions between beads are
enforced by a truncated Lennard-Jones repulsive potential that
applies when the centers of mass of two beads are closer than o.
The relatively short range of distances between the excluded
volume of the beads and maximum extension of the springs
ensures that strands do not cross and the link topology is
preserved. Bending rigidity is imposed by a Kratky-Porod
potential depending on the cosine of the angle between three
successive beads. The strength of this potential sets the persis-
tence length of the polymer. The entire contribution to the
energy of a bead is:

Utot = Uspr + Uev + Ubend- (1)

The excluded volume interaction takes the form:

Uen — 4‘{(%)12_(%)6%} ifr <2t 2

0 otherwise,

where ¢ sets the energy scale of the repulsive interactions.
The spring force is parameterized as:

r 2
1 —
<Rmax)

00 otherwise,

1 3
7§<K%> Riax log s if r < Rinax

Uspr =
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where « is typically 30 and sets the spring constant in units of
¢/o* and Rpay iS the maximum separation of the springs, and is
1.5¢0 in this work. The bending potential takes the form:

Ubend = g—ka(l —cos0). (4)
o

The dimensionless ratio of the persistence length 7, to the bead
diameter is typically /,,/0 = 5 in this work. The time evolution of
the ith bead is determined by the Langevin equation:

2kTyn(1). (5)

Here, y is the drag coefficient on a single bead, kT is the thermal
energy scale,  is a delta-correlated normal random variable,
ie. (n{tn;(t")) = 640(t — t'), and an overdot represents a
time derivative. The final term provides a random force that
emulates Brownian motion in a manner consistent with the
fluctuation-dissipation theorem. These equations of motion
are solved by LAMMPS,*® which iterates the system forward in
time using the Velocity Verlet algorithm.

The system is non-dimensionalized with o, y, m, kT and ¢

mr,(l) = 7"/1',([) — V,.,, UIOt +

taking values of 1, which defines a timescale t = o+/m/¢. We
iterate the simulation with a timestep of 0.01t. We initially
perform 500 iterations of the system with a simpler harmonic
spring potential to avoid overstretched FENE springs. We then
iterate the system for hundreds of thousands to tens of millions
of timesteps depending on the system size, typically at least ten
times as long as the initial transient deformation of the net-
work from its initial conditions. For each system size, we
simulate at least five iterations with different random seeds.
To ensure the harmonic equilibration stage did not change the
linking topology through strand crossing, we compute the
Gauss linking number of neighboring loops in the final
configuration and verify that everything is linked appropriately.
In practice, this was only an issue for unfavorable initial
conditions, which were fixed in KnotPlot.

The equilibrium configuration of a polymer chainmail net-
work depends on four lengthscales: the effective width of the
monomers, the persistence length, the contour length of each
ring, and the total number of rings. In our simulations, we
primarily use a parameterization in which the effective width is
set by the diameter of each bead, the persistence length is five
beads (representing a monomer anisotropy found in DNA in
low-salt solutions), each ring is 24 beads (about 5 persistence
lengths), and the number of rings is varied. The simulated
polymer rings are comparable to the minicircles of Trypano-
soma brucei, which are slightly below six persistence lengths in
contour. The minicircles in Crithidia fasciculata are each about
16 persistence lengths in contour, requiring 80 monomers per
ring in this model. While we primarily focus on the system with
M rings of 24 beads and a persistence length of 5q, we will
discuss the effect of varying the other lengthscales.

C. Constrained gradient optimization

We use constrained gradient optimization (GCO) to find the
tightest configuration of molecular chainmail networks, that
which minimizes the total contour length of all the loops while
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treating each loop as a tube of unit radius and respecting a no-
overlap constraint. The width of a curve is defined as the
minimum radius of a circle that is guaranteed to pass through
any three points on a curve. The ropelength of a knotted or
linked curve is the minimum ratio of the total contour length of
the curve to its width. Conventionally, this is normalized such
that the thickness of the curve is 0.5 or 1, depending on
whether it is treated as a rope with unit diameter or radius.
The configuration of a knot or link that minimizes ropelength
is known as ideal. No exact value for the ropelength of a nontrivial
knot is known, but numeric analyses put the upper bound of the
ropelength of the trefoil knot at around 32.74 radii.**

To perform constrained gradient optimization (CGO) on
chainmail networks, we use an algorithm called Ridgerunner,
developed by Jason Cantarella and colleagues. A full description
of Ridgerunner can be found in Ashton et al,*! but in short
it approaches the ideal configuration of an initial knot by
perturbing its coordinates into many trial knots. At each step,
the next perturbation is computed by projecting the gradient of
the length function onto a polyhedral cone of perturbations
of the current polygon which respect the no-overlap condition.
When the projected gradient is a small fraction of the length of
the original gradient vector (typically 0.01 or 0.001) the algo-
rithm terminates.

We initialized the three types of square lattice chainmail
networks with 9, 16, and 25 loops, with 16 vertices per loop. As a
preliminary investigation we also tightened twisted polycate-
nanes, the system established by Tubiana et al'* to study
chirality effects in linked polymers, discussed in the appendix.
We initially performed CGO on the networks using an equila-
teralization force to maintain a constant distance between the
vertices of each loop. When the residual gradient reached 0.1 or
the ropelength stopped decreasing, the final configuration
was re-run without equilateralization, towards its minimum.
Compared to Langevin dynamics and similar methods, CGO is
generally slower and limited in system-size as width-testing
scales cubically with the number of nodes, and is susceptible to
strong local minima. Ridgerunner is not optimized for systems
with configurations that have both straight and tightly curved
components, such as the links in chainmail networks. Thus,
our results should be regarded as approximations to length-
minimizing links, within the constraints discussed above.

I1l. Results and discussion
A. Langevin dynamics

For our primary investigation of alternating, fully non-
alternating, and semi-alternating chiralities, we arranged loops
on square lattices with free boundaries, ranging from 3 x 3 =9
loops up to 15 x 15 = 225 loops. We also simulated a more
circular network with 137 loops, and performed trial simula-
tions of square Japanese-style chainmail and Borromean chain-
mail (Appendix). Alternating and fully non-alternating networks
were simulated with M = 9, 16, 25, 49, 81, 137, and 225.
The behavior of the semi-alternating networks proved more

This journal is © The Royal Society of Chemistry 2024
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Fig. 2 Representive images of 225-loop molecular chainmail networks simulated with Langevin dynamics for (a) alternating, (b) fully non-alternating,
and (c) semi-alternating chiralities. Top row shows a top-down orientation, bottom row shows a side view with an osculating surface. Links are color-
coded by their distance along the surface normal direction. The arrows in the bottom-left image represent the principal axes of the gyration tensor.

complex, and thus they were more densely sampled at M =9, 16,
25, 36, 49, 64, 81, 121, 137, 169, 196, and 225.

We begin with qualitative descriptions of the simulated
networks, examples of which can be seen in Fig. 2. Videos of
three-dimensional rotations of each case may be found in the
supplementary data. We observe that alternating networks
become bowl-shaped with positive Gaussian curvature, similar
to Crithidia kinetoplasts. Fully non-alternating networks
become saddle-shaped with negative Gaussian curvature.
Semi-alternating networks appear flat, although can fold along
one axis when sufficiently large, discussed subsequently. In the
first two cases, there is little apparent impact of the initially
square boundary geometry on sampled equilibrium configura-
tions. Moreover, the edges of the alternating configurations
resemble typical edge shapes seen in kinetoplast DNA.” In
contrast, the semi-alternating lattices elongate along one pair
of opposite corners and contracting along another, converging
on a diamond configuration with an aspect ratio of about two.

In order to obtain a measure of curvature of each chainmail
assembly, we first need to extract a suitable representation of a
surface from a given assembly. Here, we generate a Delaunay
triangulation of center of mass of each ring, based on the
square lattice connectivity. This creates a membrane of pla-
quettes that meet at nodes, and techniques derived from
discrete differential geometry can be used to compute the local
Gaussian curvature K and mean curvature H at each node.”
The Gaussian curvature, here measured in computational units
of 672, characterizes the intrinsic geometry of a surface, with
positive Gaussian curvature indicating spherical geometries,
negative indicating hyperbolic geometries. The node- and time-
averaged Gaussian curvature is then a macroscopic representative

This journal is © The Royal Society of Chemistry 2024

of intrinsic geometry and is on the order of the inverse square of
average radius of gyration of the fluctuating networks. As shown in
Fig. 3, the averaged Gaussian curvature is function of network size,
with the alternating and fully non-alternating networks exhibiting
peak magnitudes at M = 16 before approaching zero. The maxi-
mum at M = 16 can be regarded as a balance between two
competing trends: for small M, the polymer rings are subject to
fewer constraints and are thus able to undergo larger conforma-
tional fluctuations, reducing the orientational correlations needed
to establish a well-defined curvature; for larger M, bending modes
of the membranes are more easily excited by thermal fluctuations,
leading to inhomogeneous curvature distributions that reduce the
average curvature. The semi-alternating networks have a curvature
much closer to zero than the others, as expected, but is consis-
tently negative at about —0.0003¢ 2 rather than fluctuating about
zero, approaching zero with system size. The notable exception is
the circular sheet at M = 137, which may be due to the reduction of
constraints from a reduced average valence. While the averaged
Gaussian curvature of the largest non-alternating network passes
zero, Fig. 2(b) reveals that it still samples saddle-shaped config-
urations. This is confirmed by an alternative surface-construction
procedure in which the networks are fit to quadric surfaces, as
illustrated in the lower panels of Fig. 2 and discussed in the
Appendix.

The parallel work by Luengo-Marquez et al.® examined two
chiralities of the honeycomb lattice and also observed negative
Gaussian curvature in systems equivalent to our non-
alternating chirality. They examined the local variation of
Gaussian curvature across the membrane, and their analysis
showed that the time-averaged curvature at each vertex on the
surface matched the local curvature of the time-averaged
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Fig. 3 Gaussian curvature as a function of network size for alternating (black), fully non-alternating (red) and semi-alternating (blue) networks. The
datum at M = 137 in each set was taken from a circular rather than square network.

configuration, suggesting that the curvature is stable over long
time periods.

To characterize the dimensions of the equilibrated net-
works, we compute the gyration tensor based on the position
of each of N beads relative to the center of mass:

1 N

NZ (ri,a -

i=1

Gab = <ra>) (rl}b - <rb>)7 (6)

where r;, and r;;, represent the position of the ith bead in
dimensions a and b, and the angle brackets denote the center
of mass in that dimension. The eigenvalues of this tensor repre-
sent (squared) lengthscales describing the distribution of the
network along three perpendicular axes, the eigenvectors corres-
ponding to each eigenvalue. The square roots of these eigenvalues
are the principal radii of gyration, and when ordered by size are

referred to as the minor, medium, and major axes. For sheet-like
networks, there are typically two eigenvectors that point within the
plane of the sheet with comparable eigenvalues, and a third
pointing transverse to the sheet with an eigenvector that scales
with a weaker exponent than those in the plane, sometimes called
the roughness exponent. This is known as the “flat” phase,* as
membranes will extend asymptotically farther in their chemically-
defined plane than fluctuate transverse to it. In the flat phase, the
in-plane gyration eigenvalues typically grow close to linearly
with molecular weight (consistent with area-mass proportionality).
Scaling arguments put the roughness exponent near 0.7,>* which is
consistent with simulations.”>*” The simulation of chainmail
networks of rigid circles by Polson et al.® found in-plane exponents
between 0.92 and 1.02 and roughness exponents between 0.73
and 0.84, likely higher than the tethered membrane flat phase
due to curvature effects. Fig. 4 shows the scaling of the gyration
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Fig. 4 Squared principal radii of gyration from the eigenvalues of the gyration tensor for alternating (a), full non-alternating (b) and semi-alternating (c)
networks as a function of molecular weight, with power-law fits. Each eigenvalue is labelled black, red, and blue in increasing size. The asterisk indicates
the 137-ring circular networks that were not used for fits. If not visible, error bars are smaller than points.
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Table 1 Best-fit scaling exponents of gyration tensor eigenvalues

Eigenvalue Alternating Non-alternating Semi-alternating
Minor 0.66 & 0.02 0.74 £+ 0.02 0.44 £ 0.02
Medium 0.79 £ 0.02 0.73 £ 0.01 0.93 £ 0.01
Major 0.76 & 0.02 0.71 £ 0.03 0.95 £ 0.01

eigenvalues with system size for the three chiralities. The power-
law scaling parameters for each eigenvalue can be found in
Table 1. Here we report the dependence on the squared principal
radius scaling with molecular weight; other literature may report
either the radii or their squares, and either the molecular weight or
the side-length, leading to two possible factor-of-two differences in
how the exponents are presented (e.g. the major eigenvalue in the
flat phase is reported in various studies to be close to 0.5, 1, and 2).

The characteristic squared radii of each chirality behave
differently with the number of links, and we will discuss them
individually. The positively-curved alternating networks have
middle and major squared radii that scale with a size exponent
between 0.76 and 0.79. This is lower than what is typically
found in tethered membrane simulations, including the linked-
ring simulation study.® The minor exponent of about 0.66 is
comparable to some simulations of the flat membrane phase,
but should be interpreted as representative of curvature, e.g. the
depth of the bowl shape adopted by the membrane, rather than
roughness. The minor exponent is about 5/6 that of the major
exponents, which is comparable to what was observed in the
linked ring simulation for rings of finite thickness. The fact
that the depth of the bowl grows with a weaker exponent
indicates that asymptotically large networks may not appear
significantly curved. If, ignoring wrinkles and fluctuations, the
membrane took the form of a spherical cap with constant solid
angle, all eigenvalues would scale similarly. The smaller trans-
verse scaling is consistent with this angle decreasing with
length, or equivalently, the effective radius of the osculating
sphere increasing faster than the dimensions of network size.
We note that although there is no reason to suspect that
kinetoplast DNA has alternating chirality, simulating alternat-
ing molecular networks may be a useful method of inducing
curvature in future kinetoplast simulation studies.

The negatively-curved, fully non-alternating networks have
three principal squared radii that scale with roughly the same
exponent, between 0.70 and 0.75. This indicates that they
asymptotically adopt an isotropic configuration. Negatively
curved saddle-shaped membranes are not common in nature
or in synthetic materials, but it is possible to induce negative
curvature in origami sheets with specific folding patterns.”®
There have been predictions of nontrivial electronic effects in
negatively curved graphene,” but this has not been synthesized.

The flat semi-alternating sheets display the most complex
behavior. The major and middle squared radii grow with a
power close to 1, which is consistent with previous simulations
of flat-phase membranes. The roughness exponent takes a
value just below one-half, which is smaller than in tethered
membrane simulations. We note that the fluctuations of the
membrane are anisotropic, taking the form of bends along the
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long axis of the diamond shape of the membrane, with the
short axis remaining stable. This distinctive anisotropy can be
rationalized by the underlying symmetry of the network, which
possesses a 4-ring unit cell with mirror planes along one
diagonal, as opposed to the non-alternating network, which
has mirror planes along both diagonals of the unit cell. The
correspondingly anisotropic shape fluctuations are analogous
to the highly anisotropic elasticity that is seen in knitted fabric,
which similarly possess mirror planes along a single direction;
the semi-alternating sheets in fact possess a linking motif
resembling that of the garter stitch.>® The lack of fluctuations
along one direction likely suppresses the roughness exponent.
The finite thickness of the network, due in part to the tendency
of each ring to lie with a normal in the plane of the membrane,
may suppress roughness further. Notably, the minor eigenvalue
of the largest membranes grows faster than the trend set by
smaller membranes. This happens when the fluctuations of the
long diamond axis become sufficiently large as to cause the
membrane to fold over itself, displacing the center of mass
from within the loops. This bears similarity to the thermal
crumpling transition predicted for tethered membranes, in
which the distribution of surface normals lose correlation
above a certain thermal lengthscale.*" It also bears similarity
to a backfolding transition observed in nanoconfined DNA that
occurs when a molecule exceeds its ‘“global” persistence
length.*> A video of a fluctuating semi-alternating network
may be found in the supplementary data.

To characterize this folding transition, we note that the
diamond-shape networks only fold in the direction of the
diamond’s long axis, leading to much larger fluctuations in
the distance between the two corners separated by the long axis
(Dy), compared to the two corners separated by the short axis
(Ds). Typically, the short axis is highly aligned with the medium
gyration eigenvector, the eigenvalue of which displays much
lower-amplitude fluctuations than the other two, which are
anti-correlated. In extreme folding events, the major eigen-
vector will become aligned with the short axis of the diamond,
as can be seen in Fig. 5. These folds are also marked by a
displacement of the center of mass of the network away
from the geometric center of the middle loop, which greatly
increases the minor gyration radius. We can characterize the
scale of these fluctuations by measuring the variance in D;, and
Ds and plotting their ratio as a function of system size
(Fig. 5(b)). This ratio increases with the number of links, but
increases much more strongly beyond 100 links. There is
evidence of a local maximum at 49 loops that may be indicative
of a phase transition.

In contrast to tethered membranes with isotropic interac-
tions that undergo a crumpling transition, the semi-alternating
chainmail networks are an anisotropic 2D material, and
undergo what can be described as a folding transition rather
than a crumpling transition. The thermal lengthscale for
crumpling is on the order of ¢y, = k\/kT /Y where k is the
bending modulus and Y is the Young’s modulus. Although
beyond the scope of this work, future simulations applying
uniaxial extension or clamped boundaries may measure these
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Fig. 5 Left: A partial time series of the three gyration eigenvalues (major, medium, and minor labelled blue, red, and black respectively) of a 225-loop
semi-alternating membrane during which a large-amplitude folding event occurs, causing the major axis to align with the width of the diamond-shaped
membrane. Delaunay triangulations of the membranes are shown from the side at three stages of this event. Right: Ratio of the variance of the distances
between the corners along the long axis of the membrane to the variance of the short axis. Error bars represent standard error over multiple runs. Inset
shows a side view of a folded membrane, showing its center of mass as a black circle displaced from the loops, and smaller dots pointing along the minor

eigenvector.

moduli to further clarify the lengthscale associated with the
folding transition.

There are many possible extensions to this model that can
be explored, and as the main focus of this manuscript is
chirality we will only comment on them qualitatively. Other
lattices besides square can be studied, and we direct readers to
the works of Luengo-Marquez et al.*® and He et al.® for simula-
tions of honeycomb lattices. Rings may be removed from the
networks to simulate kinetoplast degradation experiments; we
observe that when 10% of the rings are randomly removed the
curvature is not affected, but the networks lose their sheetlike
properties when 20% are removed. Introducing a small number
of random lattice defects with the opposite chirality does not
impact the overall curvature, but there likely exists some critical
fraction of defects that will. The Lennard-Jones repulsion in
our simulations ignores the screened electrostatic repulsion
between DNA segments; if the charged repulsion is included
the simulations, the same curvature is observed but segments
in each ring become significantly stretched. In the two previous
kinetoplast simulation studies, the minicircles were rigid or
effectively rigid: Polson, Garcia, and Klotz simulated rigid
circles,® and He et al. simulated rings with a contour length
half of the persistence length.® As mentioned, the minicircles in
T. brucei KDNA are about 1000 base pairs or six persistence
lengths, while in Crithidia fasciculata they are about 2500
base pairs or 16 persistence lengths. Alternating networks can
pucker when the persistence length is increased, similar to
puckering observed by He et al.® Fully non-alternating networks
lose some isotropy and become more taco-shaped. Semi-
alternating networks remain diamond-shaped. When the per-
sistence length is kept the same but the loops are increased to
80 beads to mimic Crithidia minicircles, we do not see curva-
ture effects as strongly. This is likely due to the reduced

Soft Matter

excluded volume interactions between the rings, and we expect
that sufficiently large networks would revert to the established
trends.

B. Constrained gradient optimization

We annealed towards the ideal configurations of the three
square lattice chiralities with 9, 16, and 25 loops. Larger
networks were attempted but did not converge on a minimal
configuration, even with more vertices per loop. As a prelimin-
ary investigation, we annealed polycatenanes with varying
degrees of twist to measure the effect of intrinsic twist on
ropelength, described in the Appendix.

We begin with a qualitative description of the ideal net-
works. Examining the tight configurations in Fig. 6, the alter-
nating, non-alternating, and semi-alternating networks display
positive, negative, and null Gaussian curvature as in the poly-
mer simulation. The semi-alternating case in particular
remains effectively flat with increasing size. Quantitatively, we
can measure the total contour length of the network, in addi-
tion to the radii of gyration and the Gaussian curvature.

The lower bound on the ropelength of a linked network
follows a result from Cantarella et al.** that each loop in the
network that is Hopf linked to Q neighbors cannot be shorter
than a curve that is parallel (and one unit separated) to the
minimum convex hull around Q unit-radius disks. While the
minimum convex hull is a challenging optimization problem
when Q is large, each link in square lattice molecular chainmail
has either 2, 3, or 4 linked neighbors. The ideal divalent link is
a stadium curve of length 4n + 4, the ideal trivalent link is a
rounded triangle with length 4n + 6, and the ideal tetravalent
link is a rounded square or rhombus with a length of 4w + 8.
A square network with M = L> components will have (L — 2)*
tetravalent links in the interior, 4(L — 2) trivalent links on the

This journal is © The Royal Society of Chemistry 2024
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Fig. 6 Renderings of the tightest configurations of (a) alternating, (b) fully non-alternating, and (c) semi-alternating chainmail with 25 links, with
osculating surfaces. Links are colored by their position along the surface normal direction.

edges, and 4 divalent links in the corners. For networks of side
length L = 3, 4, 5, this gives lower bounds of approximately
161.1, 297.1, and 474.2.

We can compare the total contour length of each network to
the lower bound. In all cases, the excess contour increases with
the number of links. The alternating network exceeds it by the
most, by 31%, 39%, and 47% with 9, 16, and 25 links. The non-
alternating exceeds the minimum by 7%, 13%, and 29%, and
the semi-alternating is the closest to the ideal configuration,
exceeding it by 4%, 6%, and 12%. It may be argued that the
larger networks are simply not being annealed as efficiently,
but it is likely that the loops on the edge do not need to twist as
much to accommodate the topological constraints, and larger
networks have a larger proportion of interior loops. The mean
and Gaussian curvature of each network can be compared to
the expected behavior of surfaces. Here, we expect the ratio of
Gaussian curvature to the square of mean curvature to be
unitary for surfaces of positive Gaussian curvature, to diverge
to negative infinity for surfaces with negative Gaussian curva-
ture, and zero for flat surfaces. Examining the 25-link tightened
networks in Fig. 6, we find values of 0.999982, —201.824
and 0.779 respectively. We note that the curvature of a tight
configuration does not necessarily dictate the equilibrium
conformation of a polymer model of the same network. For
example, a Japanese-style square network can be constructed in
a plane out of ropelength-minimizing components, but main-
tains positive Gaussian curvature as a polymer (Fig. 11).

Although the annealed networks approach the lower bound of
ropelength to within tens of percent, it is clear from visual
inspection that many of the configurations have not reached their
true minimum. This is likely due to the fact that Ridgerunner is
optimized for tightening sections of densely linked curves, but not
for reducing the length of the straight segments of each link.
While these results do highlight the role of topological constraints
in the chirality-curvature relationship, they remain qualitative.

In addition to the overall properties of the tight networks, we
can examine the tightest shape of the links from the interior,
edges, and corners of the networks. Examples for each position
and chirality are seen in Fig. 7. The out-of-plane deviation of each
ring must accommodate its neighbors according to the chirality,
with the flat networks remaining the most planar. The divalent
corner loops in the alternating case appear to be twisted into a
figure-8 shape, which is also observed in the corner loops in the
networks simulated using Langevin dynamics. Although kineto-
plast minicircles are typically not supercoiled, this indicates how
an “open circular” molecule may have a twisted shape due to
external topological constraints.

IV. Link chirality and Gaussian
curvature

We now derive a relationship between linking chirality and the
Gaussian curvature of a chainmail sheet by considering a

Fig. 7 Individual links in tightened networks from the interior (orange), edge (magenta), and corner (blue) of networks with alternating (a), non-

alternating (b), and semi-alternating (c) chiralities.

This journal is © The Royal Society of Chemistry 2024
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minimal geometric model of linked rings. In the systems
considered so far, the fundamental unit is a closed loop of
material whose equilibrium shape deviates from a circular ring
of some radius R. In the case of ring polymers, the expected
circular conformation is the ensemble-averaged configuration
of a solitary ring polymer; for tight ropes, the circular ring
minimizes ropelength while maximizing the amount of area
that the rope can enclose. Deviations from these ideal states
can arise from interactions between linked loops: there may be
either a reduction in conformational entropy or an increase
in ropelength when rings become linked. Since each ring has a
finite thickness ¢, two rings that are linked together are
required to pierce through the interior of the other ring, so
that of the ~R® of interior area, each linked ring decreases the
amount of “empty area” by ~¢*, constraining the states avail-
able to the rings: ropes cannot be tightened to arbitrarily small
lengths and ring polymers experience a reduction in conforma-
tional entropy. Since this threaded area depends on the orien-
tation of the two linked rings, given by the normal unit vector
N, via a function that increases with N*.N? (here, 1 and 2 index
the two linked rings), the optimal configuration is one where
the rings are mutually orthogonal. Just as Hopf links between
pairs of rings in a linear chain can freely exchange the order of
over-under crossings, such linear chains can freely rotate so
that neighboring rings have orthogonal orientations. Similarly,
as ring networks lack this freedom to exchange the order of
crossings, rings cannot remain orthogonal in these networks —
we now explore consequences of this linking frustration.

To describe the geometry of a collection of rings, we first
define an orthonormal frame {fll,ﬁz,N} for a given ring, where
(Ail, (x=1, 2) lie in the plane of the ring. Arranging these rings on
a square lattice, we can then index the rings by a pair of integers
(iy)- If each ring is assumed to be identical (ignoring

View Article Online
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boundaries), we can treat the chainmail sheet as a homoge-
neous surface, where points on the surface correspond to ring
centers r/); the normal vector at each point is N and the
tangent space at each point is spanned by the vectors &gﬁ. Next
we will orient the tangent basis vectors such that d{ is parallel
to r™1) — ) and d$¥) is parallel to r*Y — @, both in the
limit of R — 0. The orientations of neighboring rings can be
related by a pair of Euler angles - a bending angle 0, and a
twisting angle ,, - that detail the rotation of a ring’s normal

vector into its tangent plane. The rotation matrices R, (9;17 l//ﬂ)

(provided in the Appendix) that describe this rotation operation
then define a discrete affine connection. Importantly, rotations
that fix the normal vector do not play a role. Next, consider a
situation in which ¢ « R and linked rings are in contact at their
boundaries. Then neighboring ring centers can be related via

L) _ i) zg(&ﬁm n aEHIJ))

() ) z£<&g'j) n &;iﬁl))
2
and the full shape of the chainmail can be constructed given a
set of bending and twisting angles.

Given the affine connection and eqn (7), we can assess the
degree to which the chainmail sheet can be approximated by a
smooth, homogeneous membrane in Euclidean space. We do
this by examining a closed circuit along the lattice - a path
t0) s () ) 64D 50D and determining the
magnitude of the displacement vector u required to join the
ring center /) (the origin of the circuit) to the ring center /)
(the end-point of the circuit), as depicted in Fig. 8(b). The
lattice circuits for non-alternating and alternating chainmail
are shown in Fig. 8(c) and (d). Lattice symmetry dictates

Fig. 8 (a) Depiction of the twist angle i and bend angle 6 for two linked rings. (b) A non-closed configuration of a chain of linkages, where R is the ring

radius, tis the ring thickness, and u is the vector joining the end of the chain to the beginning. Closed circuits are shown on the diagrams representing the
(c) non-alternating chainmail and (d) alternating chainmail, where the order 1-4 shows the counterclockwise ordering of the path. (e) and (f) Show these
linkage circuits in Euclidean space, where y = /10 and 0 minimizes |u|?, for non-alternating and alternating chainmail, respectively; arrows represent the
orientations of these rings. (g) and (h) Show the Gauss maps of these circuits, with clockwise path indicating a negative curvature and counterclockwise
path indicating a positive curvature.

Soft Matter This journal is © The Royal Society of Chemistry 2024
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Fig. 9 (a) Compares the degree of nonclosure, expressed as Alul? = (lu(@,y)|> — [u(0,)|2)/R?, as a function of bend angle 6 for twist angle ¥ = n/10.
(b) Compares the minimum value of the non-closure [u*[?/R? = |u(0*(y).)|?/R? as a function of twist angle v.

relationships amongst the bending angles 0, and twisting
angles ,, such that for the non-alternating lattice, 0, =
—0; = —0 and ¥, = —y; = —, and for the alternating lattice,
0, =0, = 0 and Y, = ; = . Since vanishing values of the twist
angle  result in rings whose boundaries pass through each
other, thus requiring rings to deviate from their preferred
circular shape, we fix i/ to be non-zero and then consider values
of 0 that minimize |u|>. The case of { = m/10 is shown
in Fig. 8(e) and (f) for non-alternating (6 = 0) and alternating
(0 ~ 0.513) chainmail, respectively, revealing that these lin-
kages do not generally close in Euclidean space. At fixed , the
magnitude of non-closure is shown as a function of bending
angle 0 in Fig. 9(a). While non-alternating sheets minimize
their non-closure by twisting without bend (6 = 0), alternating
sheets adopt one of two non-zero bend angles +0*(y). In a
small-angle approximation, we find for alternating sheets that
the degree of non-closure is given by

Alu(0.y)?

R? R?

w0, W) — (O W) 5
2

1
e+ ()

5
so that the optimal bending angle is 6* (/) ~ i\/;l//.

The failure of circuits of rings to close suggests that each
circuit in the lattice may be treated as enclosing a dislocation
core and the closure of these circuits requires an elastic
deformation from the preferred state, the cost of which scales
with |u|*>*** Since the amount of dislocation grows with the
number of rings enclosed by the lattice circuit, the elastic cost
grows super-linearly with respect to network size, requiring
increasingly large deformations at the boundary of the
sheets, thus limiting their maximum sizes,*>*” and resulting
in large differences in the shapes of bulk and boundary loops,
as illustrated in Fig. 7. As shown in Fig. 9(b), the cost of
elastic deformation is smaller for non-alternating sheets,

1
increasing as |u*(gb)\2/R2z§1//4, whereas for alternating

95
sheets, |u*(i))|? / R~ 4% — ﬁl//“. Consequently, alternating

sheets are under higher residual stress when forced to maintain
closed links in Euclidean space.

Finally, we can calculate the expected curvatures of these
sheets by studying the transport of the ring frame around a
lattice circuit. The curvature is related to the net rotation of the

This journal is © The Royal Society of Chemistry 2024

frame around a closed circuit, which is given by the commu-
tator of R; and R,, namely Rire. = Ro~' R~ RoR;. Taking the
small-angle approximation, we find that

(Reire.) = 057 — (0102 + ¥ 1)y, )

where ¢ is the Levi-Civita symbol. We find that to leading
order in the bending and twisting angles, the frame undergoes
an in-plane rotation when transported around a circuit, indi-
cating that the Gaussian curvature K is given by

2
Knon-ult. ~ 7% (10)

for non-alternating chainmail and

T2
Kt = — 11
Y2 (11)

for alternating chainmail. Therefore, we confirm that non-
alternating chainmail is characterized by negative Gaussian
curvature (i.e. is hyperbolic) and alternating chainmail is char-
acterized by positive Gaussian curvature (i.e. is spherical), as
seen in the results of both simulations. The identification of
the alternating chainmail as spherical allows us to interpret the
two preferred bending angles as corresponding to the two
choices sign for the mean curvature H ~ i\/§/‘2¢ /R. Beyond
the small-angle approximation, we additionally consider trans-
port of the normal vector N around the lattice circuit. The unit
vectors are mapped to the unit two-sphere via the Gauss map,
and the individual ring normals form the corners of the paths
shown in Fig. 8(g) and (h) for non-alternating and alternating
chainmail, where the segments of the path are found using
linear interpolation. The solid angle formed by the paths on the
unit two-sphere is proportional to the integrated Gaussian
curvature of the surface patch that they represent, and the
orientation of the path is controlled by the sign of the Gaussian
curvature, providing a secondary confirmation that the two
chainmail sheets have different curvatures.’® Notably, these
paths do not close, indicating a net rotation of the normal that
is not found in the small angle approximation. This suggests a
net twist or torsion of the frame as it is transported around the
circuit. Since surfaces are not allowed to have torsion, this
is another source of stress that must be accounted for by
ring deformation in order for the sheet to be embedded in
Euclidean space.
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V. Conclusion

The most significant result of this work is a set of simulation
data and a complementary model showing the connection
between the chirality of links in molecular chainmail and the
Gaussian curvature of the surface. We have demonstrated this
both for a DNA-parameterized polymer model, and for geo-
metrically tight ideal configurations. We have observed that
networks with semi-alternating chirality that are flat at small
molecular weights will undergo a transition to folded config-
urations above a certain size, analogous to the crumpling
transitions predicted for tethered membranes.

Analogous systems are subject to theorems relating curva-
ture to chirality in some way. The Fuller-White-Calugareanu
theorem relates the topology and geometry of a twisted ribbon
(or a DNA double-helix), constraining the sum of twist and
writhe of the ribbon to the linking number of its two edges
(or helices). Likewise, the Gauss-Bonnet theorem relates the
Gaussian curvature of a surface to its donut-hole genus.
An analogous theorem may be developed to relate the chirality
of a linked surface to its Gaussian curvature. Drawing on the
similarity between the polymer and tight networks in Fig. 2
and 6, a constraint may be established (for example) between
the Mobius energy of the links and the Helfrich energy of the
surface. As a first step towards such a relation, we have
developed an understanding of the topology-curvature relation
through a model system of linked rigid rings. This purely
kinematic construction, which shares similarities with geo-
metric relations for periodic origami,*® defines a discrete affine
connection based on the constraints introduced by the configu-
ration of Hopf links between pairs of rings. Intrinsic curvature
is then derived from the holonomy of this discrete connection.
Since this construction is purely based on local rules, without
a priori postulating a specific manifold structure, we find
predictions for rings that preferentially lie in defect-ridden
lattices, suggesting that a geometry-curvature relationship for
periodically-linked rings in the spirit of Fuller-White-Calugar-
eanu may resemble the relationships between topological
defects and curvature of flexible crystalline membranes.*’
Notably, our model establishes the emergence of curvature as
a consequence of “linking frustration,” originating from the
topological constraints on linking in each ring network that is
not present for linear chains; it may be regarded as a many-
body effect. Moreover, the observed relationships between link
symmetry and membrane shape draws parallels with similar
relationships between stitch topology and fabric shape and
mechanics in the context of knitted fabric,*® which we leave for
future explorations. Finally, we emphasize that the networks
studied here are quite different in structure from kinetoplast
membranes, which are unlikely to have a uniform chirality and
whose curvature is likely boundary-controlled. Nevertheless, we
find preliminary evidence that the predicted sign of Gaussian
curvature survives modest changes in coordination and
removal of rings, suggesting that the averaged membrane
curvature depends on a more general distribution of network
chiralities; such a relationship between linking statistics and
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intrinsic geometry remains unexplored. We hope that this work
allows the discovery of a more complete understanding of the
topology-curvature relation for surfaces, and guides the rational
design of future planar materials with topologically complex
chemistry.

Data availability

Raw data used for plots, initial configurations, as well as
LAMMPS and Ridgerunner simulation outputs, can be found at
the Harvard Dataverse at https://doi.org/10.7910/DVN/ADEGSU.
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Appendices
Tight twisted polycatenanes and bonus networks

Here we discuss the results of constrained gradient optimiza-
tion of twisted polycatenanes using Ridgerunner. For an intro-
duction to twisted polycatenanes we direct the reader to
Tubiana et al.'* We initialized polycatenanes as circular net-
works of 22-gons, each with two possible link chiralities. The
polycatenanes had an even number of links. If all links have the
same chirality, the network is fully non-alternating and
untwisted. If a link had the opposite chirality of its two
neighbors, it gives the network alternating crossings and excess
twist. A network is said to be maximally twisted if half the links
contribute to twisting the network. When the polycatenane is
fully non-alternating and untwisted, each link may be mini-
mized to a stadium curve with ropelength 4n + 4,** and the
network takes on a familiar chain-link configuration with a
ropelength of M(4n + 4). The simplest links that admit this
pattern are the 4-component 8;*, 8,%, and 8,* with zero, one,
and two twists.

We measured the ropelength of twisted polycatenanes with
M from 6 to 18 loops, varying the twist from zero to M/2.
Untwisted polycatenanes formed circular chain-link configura-
tions as expected, and as the twist was increased, each compo-
nent in the network became twisted. The final configuration
often picked up the symmetry of a regular M/2-gon, for example
the 8-loop polycatenane forming a square (Fig. 10(a)). The
process often involved a buckling in which the normal vector
of each loop was forced to rotate 180°. Since the ropelength
depends more strongly on the number of loops than their twist,
we plot the ratio of the measured ropelength to the untwisted
Ny
M/2
Fig. 10(b) shows this data for polycatenanes with 4, 8, and 16
loops. Although the excess ropelength similarly increases with
twist for each sized network, the maximum excess ropelength at
maximum twist is largest for the smallest networks. The excess
ropelength at maximal twist as a function of the number of
loops in the network is plot in Fig. 10(c), where it decreases

minimum, against the degree of twist

ranging from 0 to 1.
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Fig. 10 (a) Ideal configurations of untwisted and maximally twisted 8-loop polycatenanes. (b) Excess ropelength ratio of ideal twisted polycatenanes, as
a function of their relative twist as defined in the text. (c) Excess ropelength ratio of maximally twisted polycatenanes as a function of the number of loops.

roughly as 1 + 2/M. The tightest knot is not necessarily the
smallest,*” and the maximally twisted polycatenanes, despite
having a greater ropelength, occupied a smaller volume as
defined by their convex hull. This may have implications for
the evolution of supercoiling in bacterial DNA

In a square lattice chainmail network, each set of 3 x 3 loops
maybe treated as an 8-loop polycatenane constrained by a ninth
in the middle. We expect alternating networks to have loops
that are more deformed from their ideal configuration than
the comparable maximally-twisted 8-loop polycatnenaes in
Fig. 10(a), acquiring at least 6% excess ropelength. Although
direct comparisons between polycatenanes and chainmail net-
works are difficult, this was a necessary first step towards our
current understanding.

Fig. 11 shows the patterns and sample LAMMPS configura-
tions of Japanese 4-in-1 chainmail, studied by Polson et al.,?
and Borromean chainmail, based on a design by Luc Devroye.*>
Japanese chainmail has no chirality effects, and no two links in
Borromean chainmail share a direct topological link. We have
not done quantitative analysis on either, but both adopt
positive Gaussian curvature. The Japanese chainmail network
can be constructed out of ropelength-minimizing components
in a plane, implying that an ideal configuration need not have
the same curvature as a polymer configuration.

Japanese

Quadric surface fitting

To perform the quadric surface fitting, we first calculated the
center of mass r; for each ring 7 and the center of mass (r) for
the full chainmail assembly. We then calculated the gyration
tensor G,, defined in eqn (6) and found the normalized
eigenvectors {€,,é,,6;}, ordered from largest to smallest eigen-
value. The quadric surface is then given by the set of points o,
expressed using the Monge representation as

o(ug,y) = (1) + uy8q + Uy + ((uy,uy)és, (12)

where the Monge height function {(«,v) is given by

1
{(uy,up) = EuuCWu,, + Buuy, + Ao, (13)

where A, is a scalar, B, are components of a vector B, and
C,., are components of a symmetric matrix C (where C;, = Cy4).
The quadric surface is then fit to ring center of mass data by
minimizing the residual functional

I40.B.C) :%i (s —c(rer)) ()

over the parameters Ay, B, and C. Here, the ring centers r; have
been expressed in the {€;,€,,é;} frame as rf = 17 ,&q- Finally, the

Borromean

Fig. 11 Design and LAMMPS configurations of Japanese and Borromean chainmail.
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Gaussian curvature K is approximated as

detC

N——— (15)
(1+[BP)’
and the mean curvature H is approximated as
1+ B?)Cii —2B1B,Cry + (1 + B2)C
Hz( ) Ciy 1B:Ciy + ( ) 2 (16)

2(1+ [BP2)*?

Discrete affine connection

The discrete affine connection is a pair of rotation matrices R
and R,. The first of these, R|, maps the orthonormal frame at
ring (i,\)j) to the frame at (i + 1,\j) via

(Aiﬁi+l,/) cosf; —sinf;siny; —sinf;cosy, aii,/’)
a(2i+l,/) = 0 cosy —siny, &(ziJ)
N+1) sinf; cosO;siny; cosO;cosy, NG

ail}i)

=Ri(0r,91) | §v”

NG

(17)

The second, R,, maps the orthonormal frame at ring (7,j) to the
frame at (i + 1) via

(Ai(liﬁl) cosy, 0 sini, &(li’/)
ag’#l) =| sin6;siny, cosf, —sinb,cosy, El(zi’j)
N+1) —coslOysiny, sin0; cos0,cosy, NG
&(liJ)
=R (02,%5) &g'j)
NG/
(18)

Taking the small-angle approximation, we R, ~ 1+ A,, where

0 0 -0,
Ar=10 0 —
0 ¥, 0
(19)
0 0 Yy
Ay = 0 0 -6,
—Y 6 0

which allows us to approximate the resultant rotation matrix
Reire. around the closed circuit as

Rcirc. ~1+ [A27-A1L (20)

Soft Matter
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yielding the result in eqn (9). Here, the commutator [Ay, 4] =
Ay Ai — A1 Ax measures the holonomy of the discrete connec-
tion and represents a discrete calculation of the curvature two-
form.*® Note that the only non-zero component of the commu-
tator is a generator of rotations that leaves the normal fixed,
allowing us to immediately relate the magnitude of this term to
the Gaussian curvature.
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