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ABSTRACT 
Additive manufacturing enables the fabrication of complex designs while minimizing waste, but faces 
challenges related to defects and process anomalies. This study presents a novel multimodal Retrieval-
Augmented Generation-based framework that automates anomaly detection across various Additive 
Manufacturing processes leveraging retrieved information from literature, including images and descriptive 
text, rather than training datasets. This framework integrates text and image retrieval from scientific 
literature and multimodal generation models to perform zero-shot anomaly identification, classification, 
and explanation generation in a Laser Powder Bed Fusion setting. The proposed framework is evaluated on 
four L-PBF manufacturing datasets from Oak Ridge National Laboratory, featuring various printer makes, 
models, and materials. This evaluation demonstrates the framework’s adaptability and generalizability 
across diverse images without requiring additional training. Comparative analysis using Qwen2-VL-2B and 
GPT-4o-mini as MLLM within the proposed framework highlights that GPT-4o-mini outperforms Qwen2-
VL-2B and proportional random baseline in manufacturing anomalies classification. Additionally, the 
evaluation of the RAG system confirms that incorporating retrieval mechanisms improves average accuracy 
by 12% by reducing the risk of hallucination and providing additional information. The proposed 
framework can be continuously updated by integrating emerging research, allowing seamless adaptation to 
the evolving landscape of AM technologies. This scalable, automated, and zero-shot-capable framework 
streamlines AM anomaly analysis, enhancing efficiency and accuracy. 
Keywords: Multimodal Large Language Model; Laser Powder Bed Fusion (L-PBF), Retrieval Augmented 
Generation, Additive Manufacturing 

1. INTRODUCTION 
The objective of this work is to evaluate the feasibility of establishing a generative model that leverages 

literature-based information to detect and classify anomalies in unseen material images, without relying on 
in-house experimental data. Specifically, we focus on anomalies in Additive manufacturing (AM) 
processes. 

 

Acc
ep

te
d 

Man
us

cr
ip

t N
ot

 C
op

ye
di

te
d

Journal of Mechanical Design. Received September 01, 2025;
Accepted manuscript posted December 4, 2025. doi:10.1115/1.4070585
Copyright © 2025 by ASME

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://a

s
m

e
d
ig

ita
lc

o
lle

c
tio

n
.a

s
m

e
.o

rg
/m

e
c
h
a
n
ic

a
ld

e
s
ig

n
/a

rtic
le

-p
d
f/d

o
i/1

0
.1

1
1
5
/1

.4
0
7
0
5
8
5
/7

5
7
3
6
4
4
/m

d
-2

5
-1

6
2
5
.p

d
f b

y
 U

n
iv

e
rs

ity
 O

f C
o
n
n
e
c
tic

u
t u

s
e
r o

n
 1

9
 D

e
c
e
m

b
e
r 2

0
2
5

mailto:hongyi.3.xu@uconn.edu
https://crossmark.crossref.org/dialog/?doi=10.1115/1.4070585&domain=pdf&date_stamp=2025-12-04


Figure 1: (a) Various AM processes, each with unique characteristics. (b) The overwhelming influx of data 
from AM research. (c) Diverse defects across different AM processes. (d) Challenges of manual review in 
handling large datasets. (e) The effectiveness of our proposed RAG-based method in addressing these 
challenges. 

AM has transformed the manufacturing industry by allowing the production of intricate designs, 
minimizing material waste, and providing exceptional flexibility in design [1, 2] through various 
manufacturing processes, as depicted in Figure 1a. Despite the progress in AM technologies, the broader 
adoption of AM faces significant challenges, particularly the presence of defects and anomalies that can 
undermine the performance and reliability of manufactured parts [3]. Anomalies and defects in AM can be 
diverse and process-dependent [3] (Figure 1c). For instance, VAT photopolymerization often encounters 
issues like shrinkage and uneven density [4], Binder Jetting may suffer from slicing and powder spreading 
defects [5]. For Laser Powder Bed Fusion processes, common defects include porosity, balling, and Surface 
roughness [6 , 7]. Given the diversity of AM technologies and the range of defects that can occur, identifying 
and addressing these issues to improve the overall quality and reliability of AM parts is critical.  

Generally, anomaly and defect detection have relied on non-destructive testing techniques, and machine 
learning based methods [3] However, these methods are either labor-intensive, require large amounts of 
data, are time-consuming, or are often impractical for real-time quality control. Additionally, analyzing test 
results and conducting quality analysis requires human expertise, which is prone to errors and requires 
insights from existing scientific papers or company records [8]. The rapid advancement of AM technologies 
has led to an exponential growth in scientific literature focused on defect and anomaly detection (Figure 
1b). While this excess of existing information is a valuable resource, it also creates a significant challenge. 
These approaches are not only time-consuming but also prone to oversight and error (Figure 1d). 
Furthermore, interpreting AM processes’ anomalies requires domain expertise, making it even more 
challenging to synthesize findings across diverse research papers [9].  

Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have been 
increasingly utilized in additive manufacturing applications [10-13] to enhance process control and 
anomaly detection [11, 14-16]. For instance, AnomalyGPT [17] is a workflow utilizing MLLM in 
manufacturing setting, capable of identifying anomalies in manufacturing images through a few-shot 
inference technique using normal examples. Furthermore, Farimani et al. [11] demonstrated that by 
employing MLLMs, these models not only can autonomously analyze images of printed layers, identify 
anomalies such as inconsistent extrusion or layer misalignment, but also adjust printing parameters. This 
approach aims to enhance the quality of additive manufacturing while reducing the need for human 
intervention. However, most of these studies manually incorporate expert knowledge or reference images 
(e.g., images of normal and anomalous parts), which can be prone to oversight and subjectivity. 
Additionally, they often require fine-tuning on MLLMs, which becomes problematic when dealing with 
small anomaly datasets [16-18]. Hence, methods such as Contrastive Language-Image Pre-training (CLIP)-
based [19] zero-shot models such as AnomalyCLIP [20], WinCLIP [21], M3DM-NR [22], ClipSAM [23], 
KAnoCLIP [24] have been employed to address this issue. However, their performance is limited when 
detecting previously unseen manufacturing anomalies, and they rely on predefined anomaly definitions 
within the CLIP model [25, 26]. Even advanced models like VMAD[27] still suffer from the limitation of 
requiring manual anomaly definitions, restricting their adaptability to novel anomaly and defect types. 

Retrieval-Augmented Generation (RAG) [28] presents a promising approach to addressing these 
challenges. RAG systems are able to retrieve relevant information from scientific papers, which makes 
them particularly well-suited for extracting anomaly-related information from extensive AM research [29, 
30]. The current research on anomaly detection and classification using retrieved information is limited, 
primarily focusing on text-based retrieval for anomaly detection [31, 32]. To address this limitation, we 
propose a novel multimodal RAG-based system specifically tailored for anomaly detection in AM 
processes. As illustrated in Figure 1e, the system is designed to streamline the extraction of critical 
information on AM anomalies in both text and image formats [33].Then, it leverages an MLLM to detect 
and classify anomalies in the test images. 
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Figure 2: Streamlined workflow of the proposed framework for anomaly detection. 

The proposed RAG-based framework, as shown in Figure 2, integrates text and image retrieval, 
classification, and generation models, allowing for the automated extraction and synthesis of information 
from a wide range of AM research literature, including Vat Photopolymerization, Material Jetting, Binder 
Jetting, Material Extrusion, Sheet Lamination, Laser Powder Bed Fusion, and Directed Energy Deposition. 
The presented case studies in this paper specifically focus on Laser Powder Bed Fusion. The contributions 
of this work are summarized as follows: 
1) Proposed a novel multimodal RAG-driven framework (Figure 2) for detecting and classifying 

anomalies across various AM processes, leveraging both image and text information extracted from 
scientific papers. This approach addresses key challenges such as literature overload, lack of training 
data, and the need for manually providing reference images (e.g., similar anomalies or normal images) 
and information. 

2) Developed an end-to-end pipeline that integrates text and image retrieval, classification, and generation 
models to extract, synthesize, and systematically organize anomaly-related information. 

3) Highlighted the adaptability of the framework, demonstrating its ability to support evolving AM 
research and emerging processes by applying it to different datasets. 

4) Conducted a comparative analysis of the classification capabilities of a small closed-source model and 
a large open-source model to assess their effectiveness and underlying reasoning in anomaly detection. 
The remainder of this paper is organized as follows: Section 2 introduces the proposed methodology. 

Section 3 presents the dataset used in the case study. Section 4 discusses the results and provides a 
quantitative assessment of the proposed approach. Section 5 concludes the study. 
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Figure 3: Comprehensive workflow of the proposed framework – The framework consists of three main 
phases: (a) Retrieval Phase, which retrieves relevant images, image descriptions, and textual information 
related to anomalies detection, root causes, and prevention strategies; (b) Generation Phase, which utilizes 
the retrieved information to provide the MLLM with sufficient context to detect anomalies, and (c) Output 
Module, which compiles detected anomalies into a one-hot encoded list of anomalies types, facilitating 
model accuracy assessment. Additionally, this module provides comprehensive insights, including anomaly 
occurrence reasons and preventive measures based on detected anomalies in the image. 

 

2. METHODOLOGY 
The proposed framework consists of two major phases (Figure 3). In the first phase, a dual RAG system 

is employed to retrieve relevant information about target anomalies. This retrieved data is then passed to 
the second phase, the generation phase, as a structured prompt. This prompt includes a sample image with 
the anomaly, a detailed visual description of its characteristics, and contextual information. The prompt will 
be fed into an MLLM, which predicts the likelihood of the anomalies’ presence in the test image. Finally, 
the output module aggregates all identified anomalies within the image and generates concise yet thorough 
supplementary information. This ensures a structured and informative summary of anomaly classification. 
In the following sub-section, each component will be explained in detail. 
2.1 Retrieval Phase 
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The retrieval phase utilizes RAG techniques to collect multimodal data essential for anomaly analysis 
(Figure 3a). This phase consists of two parallel retrieval processes, for visual and textual data, respectively. 

Image Retrieval: To retrieve related images from documents, ColPali framework [34] is employed to 
process PDFs containing anomaly-related information, serving as the image retrieval component of the 
pipeline. Unlike similar methods that depend on optical character recognition, ColPali directly indexes and 
retrieves visual content from documents [35]. Originally designed to retrieve the most relevant document 
images for generating text-based responses to queries, this approach can be refined (Figure 4) to specifically 
retrieve images containing target anomalies, with the top-k images saved for further analysis.  

Once the relevant images are retrieved, the Qwen2-VL [36] model is employed as the generative 
component, analyzing the visual data to generate detailed insights or descriptions about the anomaly. Saving 
the top-ranked image from the retrieval process is essential to enable the image-based detection process in 
the following generation phase. 

Text Retrieval: A parallel text-focused RAG pipeline is implemented using GPT-4o-mini [37] and text-
embedding-ada-002 [38]. The text-embedding-ada-002 model serves as the embedding component, 
converting textual information into high-dimensional vector representations that capture semantic meaning 
and contextual relationships [39]. These embeddings enable efficient similarity searches, allowing the 
system to identify the most relevant text segments in response to a given query.  

This text retrieval process goes beyond the image retrieval section, which primarily focuses on visual 
characteristics. In addition to analyzing visual aspects of anomalies, it gathers information on detection 
methods, underlying causes, and prevention strategies. As a result, the framework not only classifies and 
detects anomalies but also provides a detailed analysis of their origins and potential mitigation measures. 
Furthermore, if the retrieved image lacks clear anomaly details (e.g., low-resolution images, high-level 
schematics) or is unavailable, text retrieval provides the model with additional information to accurately 
detect and classify anomalies. Figure 4 presents the queries used to retrieve necessary information for the 
following generation phase.  

 
Figure 4: Retrieval query for gathering text and image information related to the target anomaly. 

Text Retrieval Query
Retrieve comprehensive information about {anomaly_name},
exclusively from provided resources. Ensure the response includes
the following details:

1.Detailed Description
2.Common Causes
3.Visual Characteristics
4.Prevention Strategies

Image Retrieval Query
1: Retrieve images related to the {anomaly_name}, strictly from
provided resources. 2: Analyze the retrieved image and include the
visual characteristics to help in anomaly identification.
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Figure 5: Generation prompts for anomaly detection and explanation 
2.2 Generation Phase 

In the generation phase (Figure 3b), the multimodal data obtained in the earlier retrieval phase is 
synthesized and analyzed in detail through both visual recognition and textual analysis. This phase 
addresses two key objectives: anomaly detection and classification with explanation. 

Anomaly Detection: Using retrieved anomaly images and textual information, the open-source 
Qwen2-VL-2B model [40] and the closed-source GPT-4o-mini [37] are utilized to predict anomaly types 
via the prompt provided in Figure 5. Each MLLM analyzes the visual features of the best retrieved image 
alongside contextual information from the query to generate an informed classification. These MLLMs are 
utilized to detect anomalies within dataset images described in Section 3. Given a list of possible anomalies, 
the detection is performed individually for each anomaly, ensuring the model systematically evaluates each 
anomaly type based on the provided prompt (Figure 5). The detection process was performed three times 
per anomaly to provide more robust results for the classification task inside the output model. 

Anomalies Classification and Explanation (Output Module): After detecting all anomalies, LLM is 
employed to synthesize responses for each anomaly and summarizes the results using one-hot encoding 
classification (prompt provided in Figure 5). The framework then calculates the average prediction for each 
anomaly type, enhancing the reliability of the evaluation. Next, the system uses the identified anomaly type 
to guide the subsequent explanation and prevention steps. For this purpose, GPT-4o-mini is integrated as 
the generative model. It combines the classification results with the text retrieved from the earlier RAG 
pipeline to synthesize a comprehensive explanation. This explanation includes: 
1. A detailed account of the anomaly’s characteristics.  
2. An analysis of its potential root causes. 
3. Preventive measures and recommendations to mitigate similar anomalies in future processes. 

This integrated approach ensures anomalies are systematically classified, enabling the system to deliver 
actionable, context-aware insights tailored to each identified anomaly (Figure 3c).  

Anomalies ClassificationPrompt:
This is the decision about whether the Anomaly exist:
{detection_results}. If {anomaly_name} is detected in even one of
the test images, return 1; otherwise, return 0. Do not provide any
additional explanation or reasoning in the response.

Anomaly Detection Prompt:
Analyze the test image carefully and determine if {anomaly_name} is
possible. Use the information provided in the reference image and
additional scientific information to support your assessment. Provide a
clear, short, and reasoned answer with supporting evidence. These are
the test images: {per image: {image_stage_description}:
{test_image}}. The reference image shows an example of
{anomaly_name}:{reference_image}+{reference_image_descriptio
n}. Use it for comparison. Here is additional scientific information
about {anomaly_name}: {info_anomaly_text}.

Anomalies Explanation Prompt:
Given the detected anomalies in the manufacturing process:
{classification_results}, provide a detailed scientific explanation
covering the following:

1. Root Cause
2. Prevention Strategies
3. Additional Insights

Ensure the response is precise, technical, and grounded in provided
information: {info_anomaly_text}
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3. MANUFACTURING ANOMALY DATASET 
This study focuses on the L-PBF process, given its prominence as a widely used additive manufacturing 

technique. To evaluate our proposed framework, we utilize an anomaly dataset from Oak Ridge National 
Laboratory [41] which contains layer-wise powder bed images. Each image may contain one or more of the 
following anomalies: Recoater Hopping, Recoater Streaking, Incomplete Spreading, Swelling, Debris, 
Super-Elevation, Soot, Excessive Melting, Localized Bright Spot, Spatter on Powder, Mounding Powder, 
Localized Dark Regions, or Misprint. These anomalies are annotated in a file within ORNL’s dataset. This 
annotation file is then converted into a text format for each test sample, listing all existing anomalies 
together, which serves as the ground truth or human reference response. The laser powder-bed fusion (L-
PBF) datasets used in this study are sourced from the “EOS M290” and “AddUp FormUp 350” printers, 
each utilizing different materials, as summarized in Table 1.  

Table 1. L-PBF test samples information taken from ORNL’s dataset to evaluate the proposed framework 
[41] 

Printer 
Make and 

Model 
Material Test 

Images 

AddUp 
FormUp 

350 
Maraging Steel 26 

EOS M290 17-4 PH Stainless 
Steel 14 

EOS M290 DMREF 9 

EOS M290 Inconel 718 5 
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Figure 6: L-PBF’s visible light test samples taken from ORNL Dataset [41]: (a) Image captured post-melting 
(b) Image captured after powder spreading for L-PBF process introduced in Table 1. 

These datasets incorporate multi-modal sensor data, including visible light (VL), temporally integrated 
near-infrared (TI-NR), and wide-band infrared (IR) imaging. Since the dataset includes ground truth files 
and our proposed model does not require training data, we used these images exclusively for testing. In this 
study, visible light images were specifically employed for anomaly detection, with one image captured post-
melting and the other captured after powder spreading, as shown in Figure 6. For the paper dataset used in 
our RAG-based study, we focused on articles related to the L-PBF process, a widely adopted additive 
manufacturing technique. The dataset of document information for RAG (Table 2) consists of scientific 
papers that investigate various defect types and anomalies within the L-PBF process [6, 42-52]. Table 2 
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summarizes the anomalies and defects identified in each document, either explicitly stated or conceptually 
implied, as determined through manual review assisted by an LLM. 

Table 2. Dataset of L-PBF papers on defect types and anomalies in the process 

Document Topic 

Available 
Anomalies and 
related Defects 
(Explicitly and 
Conceptually) 

Ref. 

Scime, L., et 
al., Additive 
Manufacturi
ng, 2020. - 
Oak Ridge 
National 

Laboratory 
(ORNL), 

2023. 

Layer-wise 
anomaly 

detection in 
PBF 

Recoater 
Hopping, 
Recoater 

Streaking, 
Incomplete 
Spreading, 

Debris, Super-
Elevation, Spatter 

on Powder, Jet 
Misfire, Porosity, 

Part Damage, 
Soot Misprint, 
Localized Dark 

Regions, 
Localized Bright 
Spot, Mounding 
Powder, Spatter 

on Powder, Stripe 
Boundary, Edge 

Swelling 

[6, 41] 

Sahar, T., et 
al., Results 

in 
Engineering

, 2023. 

ML-based 
anomaly 

detection in 
L-PBF 

Porosity, Balling, 
Cracks, lack of 

fusion, 
miscellaneous 

defect (Recoater 
Hopping, Part 

failure), 
Excessive 
Melting 

[42] 

Colosimo, 
B.M. and 

M. Grasso, 
Procedia 

CIRP, 2020. 

In-situ 
monitoring 
in L-PBF: 
challenges 

& 
opportuniti

es 

Geometrical 
Distortions 
(Misprint, 
Recoater 

Hopping, …), 
Porosity, 

delamination, 
Microstructural 
inhomogeneity, 
Surface Flaws   

[43] 

Chebil, G., 
et al., 

Journal of 

Deep 
learning for 

optical 

Spatter, Lack of 
fusion, Localized 

Bright Spot 
[44] 
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Materials 
Processing 
Technology, 

2023. 

monitoring 
of spatters 

Peng, X., et 
al., Sensors, 

2022. 

Multi-
sensor 

fusion for 
defect 

detection in 
PBF 

Balling, Porosity, 
Cracking, 

Surface Flaws 
[45] 

D’Accardi, 
E., et al., 

Progress in 
Additive 

Manufacturi
ng, 2022. 

Detecting 
and 

localizing 
L-PBF 
defects 

Porosity, Surface 
Flaws, Localized 
Bright Spot, Lack 

of fusion 

[46] 

Snow, Z., et 
al., 2023, 

Oak Ridge 
National 

Laboratory 
(ORNL). 

ML sensor 
fusion for 

L-PBF 
defect 

detection 

Spatter, 
Excessive 
Melting, 
Recoater 

Streaking, Stripe 
Boundary, 

Porosity, Lack-
of-Fusion, 

Localized Bright 
Spot, Cracks 

[47] 

Cannizzaro, 
D., et al., 

DATE 
Conference, 

2021. 

Image 
analytics & 

ML for 
AM defect 
detection 

Spatter, 
Incandescence 

(Excessive 
Melting, 

Localized Bright 
Spot), Horizontal 
defects (Recoater 

Streaking), 
Vertical defects 

(Recoater 
Hopping) 

[48] 

Mahmoud, 
D., et al., 
Applied 

Sciences, 
2021. 

ML 
application
s in L-PBF 

process 
monitoring 

Recoater 
Hopping, 
Recoater 

Streaking, 
Incomplete 
Spreading, 

Debris, Super-
Elevation, Spatter 

on Powder, 
Overheating 
(Excessive 

Melting), Edge 
Swelling, 
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Curling, 
Shrinkage, 

Balling, Under-
melting, Porosity, 
Lack of Fusion, 

Cracks, 
Delamination 

Mohammadi
, M.G. and 

M. 
Elbestawi, 
Procedia 

Manufacturi
ng, 2020. 

Real-time 
monitoring 
in L-PBF 
using ML 

Porosity, micro-
cracks, voids, and 

Surface Flaws 
[50] 

Okaro, I.A., 
et al., 

Additive 
Manufacturi

ng, 2019. 

Semi-
supervised 
ML for L-
PBF fault 
detection 

Balling, 
overheating 
(excessive 
melting, 

Localized Bright 
Spot)  

[51] 

Chicote, B., 
et al., 

Procedia 
CIRP, 2022. 

Online/offli
ne defect 

detection in 
L-PBF 

Geometrical 
Gaps (Misprint), 
Porosity, Cracks, 
Lack of Fusion 

[52] 

4. RESULTS  
The dataset introduced in Section 3 is used to evaluate the performance of the proposed method in 

anomaly detection and classification. Several metrics can be employed to evaluate the accuracy of generated 
response, including Recall@K , Precision@K, F1 score@K [53-55], Bilingual Evaluation Understudy 
(BLEU) [56], Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [57], and Embedding-Based 
Similarity [58], which measures the similarity between the generated and reference text. However, since 
this study focuses on binary classification (anomaly vs. normal) rather than pure text generation, a clear 
Yes/No decision is required. Hence, the reference text is converted into a one-hot encoded representation 
of anomalies (e.g., 1 for anomaly, 0 for normal). The anomaly classification inside the output module then 
generates the predicted one-hot encoding representation. With this structured format, classification 
accuracy for each anomaly in the dataset is computed using Equation 1. Also, the overall accuracy for each 
anomaly is then obtained by averaging the accuracy results across all images. 

 

!""#$%"& = ($#)	+,-./.0)- + ($#)	2)3)/.0)-
(,/%4	5%-)-  

(1) 
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The framework is tested using Qwen2-VL-2B model and GPT-4o-mini model as the main MLLM 
for anomaly detection. The accuracy results across all L-PBF’s categories, as shown in Figure 7, indicate 
that GPT-4o-mini outperforms Qwen2-VL-2B model by average margin of 34.6%.  

 
Figure 8: The anomaly detection accuracy for desired anomalies for (a) AddUp FormUp 350 (b) EOS M290 - 17-4 PH 

Stainless Steel (c) EOS M290 – DMREF (d) EOS M290 - Inconel 718 
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Figure 7: Prediction performance scores across various L-PBF image datasets using different MLLMs. 

The detailed performance analysis using the same prompt and input images, as shown in Figure 8 
and Tables A1–A4 in the Appendix, indicates that Qwen2-VL-2B does not outperform the proportional 
random baseline and produces mostly the same results. This suggests that, given a detection prompt, 
Qwen2-VL-2B consistently predicts that an anomaly exists, even in cases where no anomaly is present. In 
other words, it tends to flag every instance as anomalous rather than differentiating between normal and 
anomalous cases. Furthermore, the proportional random baseline [59] reveals that anomalies are not evenly 
distributed within the dataset. This imbalance is expected, as the instrument in each ORNL’s dataset [41] 
remains the same, causing some anomalies to appear frequently while others are rarely present. This dataset 
imbalance underscores the importance of using the accuracy metric defined in Equation 1, which accounts 
for cases where the MLLM correctly detects the absence of anomalies. Without this consideration, a model 
like Qwen2-VL-2B, which naively predicts the presence of anomalies, would achieve a high F1-score and 
sensitivity, misleadingly inflating its performance evaluation. 

On the other hand, GPT-4o-mini, using the same input prompt, demonstrates a significantly better 
ability to differentiate between anomalous and normal cases. As a result, it consistently achieves higher 
average accuracy compared to both the proportional random baseline [59] and the Qwen2-VL-2B model. 
However, GPT-4o-mini still encounters challenges in certain cases, such as detecting edge swelling, strip 
boundaries, and soot. These challenges may arise from inadequate retrieved information for the detection 
task or the MLLM's difficulty in identifying specific anomalies. Due to the black-box nature of LLMs [60], 
pinpointing the exact cause remains challenging. A key advantage of GPT-4o-mini is that when it fails to 
detect an anomaly, it does not overdetect like Qwen2-VL-2B. Instead, it tends to avoid incorrect anomaly 
detection, ultimately leading to a more reliable accuracy assessment. 

Upon detecting and classifying the anomalies in all images, the framework generates an explanation 
detailing why the anomalies occur, followed by preventive measures to mitigate their impact. Figure 9 
showcases an example from the EOS M290 – 17-4 PH stainless Steel dataset, including the ground truth, 
predicted anomalies, and explanations for the predicted anomalies. 
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Figure 9: Predicted anomalies and explanation given test image from EOS M290 – 17-4 PH stainless Steel 

Sometimes, adding an RAG system can introduce more problems than it solves regarding hallucination 
[61]. The RAG system design, which bases outputs on retrieved information from other sources to increase 
accuracy, can, in some cases, exacerbate the issue [62]. If a RAG component is improperly configured [63, 
64], it can reduce reliability by creating a false sense of accuracy. To ensure this issue did not occur in this 
study, an additional evaluation was conducted on GPT-4o-mini, the best-performing MLLM, to assess the 

Ground Truth Anomalies in Manufacturing Process:
Incomplete Spreading, Edge Swelling, Soot

Explanation of the Anomalies in Manufacturing Process:
#### 1. Incomplete Spreading
- Root Cause: Incomplete spreading occurs due to issues with the recoating
mechanism (e.g., damaged recoater blade), improper recoating speed or
angle, or unfavorable powder properties. These factors can lead to uneven
distribution of powder across the bed, resulting in gaps or thin areas.
- Prevention Strategies: Regular maintenance of the recoater blade to
prevent damage, controlling the recoating speed and angle, and conducting
inspections of the powder bed after spreading to identify and address
incomplete areas can help prevent this anomaly.
- Additional Insights: Monitoring the powder properties (e.g., flowability,
particle size distribution) and ensuring the recoater mechanism is clean and
free of debris can further enhance powder spreading uniformity.
#### 2. Edge Swelling
- Root Cause: Edge swelling arises from increased energy density near the
edges or corners of the part during the printing process, typically due to
shortened melt tracks and heat conduction variations.
- Prevention Strategies: Optimizing laser power, scanning strategies, and
part orientation can minimize the energy density impact. Additionally,
monitoring heat distribution and controlling cooling rates can help mitigate
edge swelling.
- Additional Insights: Utilizing simulation tools to predict thermal behavior
during printing and adjusting parameters accordingly can lead to improved
dimensional accuracy and surface finish.
#### 3. Excessive Melting
- Root Cause: Excessive melting results from high-power density settings
during laser scanning, often caused by increased scanning speed or
inadequate control of keyhole mode melting, leading to instability in the
melt pool.
- Prevention Strategies: Careful calibration of laser power density and
scanning speed, alongside monitoring of melt pool temperature and
continuity, can prevent excessive melting and associated voids or
irregularities.
- Additional Insights: Implementing in situ monitoring systems to track melt
pool characteristics in real-time can provide immediate feedback and enable
adjustments to prevent excessive melting during the process.
In summary, addressing these anomalies requires a comprehensive approach
that includes regular maintenance, process optimization, and real-time
monitoring to ensure high-quality outcomes in the manufacturing process.

Predicted Anomalies in Manufacturing Process:
Incomplete Spreading, Edge Swelling, Excessive Melting

Test Image: ( EOS M290 - 17-4 PH Stainless Steel)
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effects of incorporating a RAG system for additional information retrieval. The results in Table 3 show that 
incorporating RAG systems enhances prediction accuracy compared to models relying solely on their pre-
trained knowledge. This finding aligns with existing research, which also demonstrates improved 
performance when scientific literature is leveraged. 

Table 3. Comparison of average accuracy with and without the retrieved information 
Test Case Dataset With 

Retrieval 
Without 
Retrieval 

AddUp FormUp 
350 

0.620 0.610 

EOS M290 - S 0.621 0.471 
EOS M290 – D 0.521 0.401 
EOS M290 - I 0.738 0.523 

5. CONCLUSION 
The proposed RAG-based framework offers a novel and efficient solution to the challenge of anomaly 

detection in AM. By integrating advanced multimodal retrieval and generation models, our system enables 
automated and context-aware identification and classification of anomalies in AM processes. By combining 
image and text retrieval with state-of-the-art generative models, we demonstrate the feasibility of 
establishing an anomaly detection and classification model solely based on literature-based information, 
without requiring in-house experimental data. Additionally, the framework’s ability to continuously 
integrate new research literature ensures its adaptability to evolving AM technologies. 

Future work will focus on improving the model’s accuracy by incorporating more advanced image 
retrieval models and refining the multimodal generation process to mitigate the black-box nature of 
anomaly and defect detection and enhance the accuracy. Despite the proposed model’s current limitations 
in classification and detection accuracy, this framework shows promise as a robust and practical tool for 
real-time defect detection in additive manufacturing. It holds significant potential to advance automated 
quality control in the industry. 
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APPENDIX 
Table A1. Performance Metric for AddUp FormUp 350 

Anomaly Random 
Baseline 

Accuracy 

Qwen2-VL-2B GPT-4o-Mini 

Recoater 
Hopping 0.96 0.92 0.19 

Recoater 
Streaking 0.15 0.15 0.58 
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Incomplete 
Spreading 0.77 0.77 0.73 

Swelling 0.23 0.23 0.81 

Debris 0.58 0.58 0.5 

Super-
Elevation 0 0 0.96 

Soot 0.85 0.85 0.23 

Misprint 0 0 0.88 
Table A2. Performance Metric for EOS M290 - S 

Anomaly Random 
Baseline 

Accuracy 

Qwen2-VL-2B GPT-4o-Mini 

Recoater 
Hopping 0 0 0.93 

Recoater 
Streaking 0 0 0.93 

Incomplete 
Spreading 0.36 0.36 0.43 

Edge 
Swelling 0.93 0.93 0.43 

Debris 0 0 0.79 

Super-
Elevation 0 0 0.5 

Soot 1 1 0 
Excessive 
Melting 0 0 0.21 

Crashing 0 0 1 
Misprint 0 0 1 

 
Table A3. Performance Metric for EOS M290 - D 

Anomaly Random 
Baseline 

Accuracy 

Qwen2-VL-2B GPT-4o-Mini 

Recoater 
Hopping 0 0 0.78 

Recoater 
Streaking 0.11 0.11 1 

Incomplete 
Spreading 0.22 0.22 0.22 

Debris 0 0 0.44 
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Edge 
Swelling 1 1 0.44 

Super-
Elevation 0.22 0.22 0.56 

Spatter on 
Powder 0.89 0.78 0.56 

Localized 
Bright Spot 0.78 0.78 0.56 

Mounding 
Powder 0 0 0.67 

Stripe 
Boundary 1 1 0 

Excessive 
Melting 0 0 0.44 

Misprint 0 0 0.56 
Localized 

Dark 
Regions 

0.22 0.22 0.56 

 
Table A4. Performance Metric for EOS M290 – I  

Anomaly Random 
Baseline 

Accuracy 

Qwen2-VL-2B GPT-4o-Mini 

Recoater 
Hopping 0 0 1 

Recoater 
Streaking 0 0 1 

Incomplete 
Spreading 0 0 0.4 

Debris 0 0 0.8 
Edge 

Swelling 1 1 0.2 

Super-
Elevation 0 0 0.8 

Spatter on 
Powder 0.6 0.6 0.6 

Localized 
Bright Spot 0.6 0.4 1 

Mounding 
Powder 0 0 1 
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