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ABSTRACT

Additive manufacturing enables the fabrication of complex designs while minimizing waste, but faces
challenges related to defects and process anomalies. This study presents a novel multimodal Retrieval-
Augmented Generation-based framework that automates anomaly detection across various Additive
Manufacturing processes leveraging retrieved information from literature, including images and descriptive
text, rather than training datasets. This framework integrates text and image retrieval from scientific
literature and multimodal generation models to perform zero-shot anomaly identification, classification,
and explanation generation in a Laser Powder Bed Fusion setting. The proposed framework is evaluated on
four L-PBF manufacturing datasets from Oak Ridge National Laboratory, featuring various printer makes,
models, and materials. This evaluation demonstrates the framework’s adaptability and generalizability
across diverse images without requiring additional training. Comparative analysis using Qwen2-VL-2B and
GPT-40-mini as MLLM within the proposed framework highlights that GPT-40-mini outperforms Qwen2-
VL-2B and proportional random baseline in manufacturing anomalies classification. Additionally, the
evaluation of the RAG system confirms that incorporating retrieval mechanisms improves average accuracy
by 12% by reducing the risk of hallucination and providing additional information. The proposed
framework can be continuously updated by integrating emerging research, allowing seamless adaptation to
the evolving landscape of AM technologies. This scalable, automated, and zero-shot-capable framework
streamlines AM anomaly analysis, enhancing efficiency and accuracy.

Keywords: Multimodal Large Language Model; Laser Powder Bed Fusion (L-PBF), Retrieval Augmented
Generation, Additive Manufacturing

1. INTRODUCTION

The objective of this work is to evaluate the feasibility of establishing a generative model that leverages
literature-based information to detect and classify anomalies in unseen material images, without relying on
in-house experimental data. Specifically, we focus on anomalies in Additive manufacturing (AM)
processes.
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Figure 1: (a) Various AM processes, each with unique characteristics. (b) The overwhelming influx of data
from AM research. (c) Diverse defects across different AM processes. (d) Challenges of manual review in
handling large datasets. (¢) The effectiveness of our proposed RAG-based method in addressing these
challenges.

AM has transformed the manufacturing industry by allowing the production of intricate designs,
minimizing material waste, and providing exceptional flexibility in design [1, 2] through various
manufacturing processes, as depicted in Figure 1a. Despite the progress in AM technologies, the broader
adoption of AM faces significant challenges, particularly the presence of defects and anomalies that can
undermine the performance and reliability of manufactured parts [3]. Anomalies and defects in AM can be
diverse and process-dependent [3] (Figure 1c). For instance, VAT photopolymerization often encounters
issues like shrinkage and uneven density [4], Binder Jetting may suffer from slicing and powder spreading
defects [5]. For Laser Powder Bed Fusion processes, common defects include porosity, balling, and Surface
roughness [6, 7]. Given the diversity of AM technologies and the range of defects that can occur, identifying
and addressing these issues to improve the overall quality and reliability of AM parts is critical.

Generally, anomaly and defect detection have relied on non-destructive testing techniques, and machine
learning based methods [3] However, these methods are either labor-intensive, require large amounts of
data, are time-consuming, or are often impractical for real-time quality control. Additionally, analyzing test
results and conducting quality analysis requires human expertise, which is prone to errors and requires
insights from existing scientific papers or company records [8]. The rapid advancement of AM technologies
has led to an exponential growth in scientific literature focused on defect and anomaly detection (Figure
1b). While this excess of existing information is a valuable resource, it also creates a significant challenge.
These approaches are not only time-consuming but also prone to oversight and error (Figure 1d).
Furthermore, interpreting AM processes’ anomalies requires domain expertise, making it even more
challenging to synthesize findings across diverse research papers [9].

Large Language Models (LLMs) and Multimodal Large Language Models (MLLMs) have been
increasingly utilized in additive manufacturing applications [10-13] to enhance process control and
anomaly detection [11, 14-16]. For instance, AnomalyGPT [17] is a workflow utilizing MLLM in
manufacturing setting, capable of identifying anomalies in manufacturing images through a few-shot
inference technique using normal examples. Furthermore, Farimani et al. [11] demonstrated that by
employing MLLMs, these models not only can autonomously analyze images of printed layers, identify
anomalies such as inconsistent extrusion or layer misalignment, but also adjust printing parameters. This
approach aims to enhance the quality of additive manufacturing while reducing the need for human
intervention. However, most of these studies manually incorporate expert knowledge or reference images
(e.g., images of normal and anomalous parts), which can be prone to oversight and subjectivity.
Additionally, they often require fine-tuning on MLLMs, which becomes problematic when dealing with
small anomaly datasets [16-18]. Hence, methods such as Contrastive Language-Image Pre-training (CLIP)-
based [19] zero-shot models such as AnomalyCLIP [20], WinCLIP [21], M3DM-NR [22], ClipSAM [23],
KAnoCLIP [24] have been employed to address this issue. However, their performance is limited when
detecting previously unseen manufacturing anomalies, and they rely on predefined anomaly definitions
within the CLIP model [25, 26]. Even advanced models like VMAD[27] still suffer from the limitation of
requiring manual anomaly definitions, restricting their adaptability to novel anomaly and defect types.

Retrieval-Augmented Generation (RAG) [28] presents a promising approach to addressing these
challenges. RAG systems are able to retrieve relevant information from scientific papers, which makes
them particularly well-suited for extracting anomaly-related information from extensive AM research [29,
30]. The current research on anomaly detection and classification using retrieved information is limited,
primarily focusing on text-based retrieval for anomaly detection [31, 32]. To address this limitation, we
propose a novel multimodal RAG-based system specifically tailored for anomaly detection in AM
processes. As illustrated in Figure le, the system is designed to streamline the extraction of critical
information on AM anomalies in both text and image formats [33].Then, it leverages an MLLM to detect
and classify anomalies in the test images.
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Figure 2: Streamlined workflow of the proposed framework for anomaly detection.

The proposed RAG-based framework, as shown in Figure 2, integrates text and image retrieval,

classification, and generation models, allowing for the automated extraction and synthesis of information
from a wide range of AM research literature, including Vat Photopolymerization, Material Jetting, Binder
Jetting, Material Extrusion, Sheet Lamination, Laser Powder Bed Fusion, and Directed Energy Deposition.
The presented case studies in this paper specifically focus on Laser Powder Bed Fusion. The contributions
of this work are summarized as follows:

1)

2)
3)

4)

Proposed a novel multimodal RAG-driven framework (Figure 2) for detecting and classifying
anomalies across various AM processes, leveraging both image and text information extracted from
scientific papers. This approach addresses key challenges such as literature overload, lack of training
data, and the need for manually providing reference images (e.g., similar anomalies or normal images)
and information.

Developed an end-to-end pipeline that integrates text and image retrieval, classification, and generation
models to extract, synthesize, and systematically organize anomaly-related information.

Highlighted the adaptability of the framework, demonstrating its ability to support evolving AM
research and emerging processes by applying it to different datasets.

Conducted a comparative analysis of the classification capabilities of a small closed-source model and
a large open-source model to assess their effectiveness and underlying reasoning in anomaly detection.
The remainder of this paper is organized as follows: Section 2 introduces the proposed methodology.

Section 3 presents the dataset used in the case study. Section 4 discusses the results and provides a
quantitative assessment of the proposed approach. Section 5 concludes the study.
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Figure 3: Comprehensive workflow of the proposed framework — The framework consists of three main
phases: (a) Retrieval Phase, which retrieves relevant images, image descriptions, and textual information
related to anomalies detection, root causes, and prevention strategies; (b) Generation Phase, which utilizes
the retrieved information to provide the MLLM with sufficient context to detect anomalies, and (¢) Output
Module, which compiles detected anomalies into a one-hot encoded list of anomalies types, facilitating
model accuracy assessment. Additionally, this module provides comprehensive insights, including anomaly
occurrence reasons and preventive measures based on detected anomalies in the image.

2. METHODOLOGY

The proposed framework consists of two major phases (Figure 3). In the first phase, a dual RAG system
is employed to retrieve relevant information about target anomalies. This retrieved data is then passed to
the second phase, the generation phase, as a structured prompt. This prompt includes a sample image with
the anomaly, a detailed visual description of its characteristics, and contextual information. The prompt will
be fed into an MLLM, which predicts the likelihood of the anomalies’ presence in the test image. Finally,
the output module aggregates all identified anomalies within the image and generates concise yet thorough
supplementary information. This ensures a structured and informative summary of anomaly classification.
In the following sub-section, each component will be explained in detail.

2.1 Retrieval Phase
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The retrieval phase utilizes RAG techniques to collect multimodal data essential for anomaly analysis
(Figure 3a). This phase consists of two parallel retrieval processes, for visual and textual data, respectively.

Image Retrieval: To retrieve related images from documents, ColPali framework [34] is employed to
process PDFs containing anomaly-related information, serving as the image retrieval component of the
pipeline. Unlike similar methods that depend on optical character recognition, ColPali directly indexes and
retrieves visual content from documents [35]. Originally designed to retrieve the most relevant document
images for generating text-based responses to queries, this approach can be refined (Figure 4) to specifically
retrieve images containing target anomalies, with the top-k images saved for further analysis.

Once the relevant images are retrieved, the Qwen2-VL [36] model is employed as the generative
component, analyzing the visual data to generate detailed insights or descriptions about the anomaly. Saving
the top-ranked image from the retrieval process is essential to enable the image-based detection process in
the following generation phase.

Text Retrieval: A parallel text-focused RAG pipeline is implemented using GPT-40-mini [37] and text-
embedding-ada-002 [38]. The text-embedding-ada-002 model serves as the embedding component,
converting textual information into high-dimensional vector representations that capture semantic meaning
and contextual relationships [39]. These embeddings enable efficient similarity searches, allowing the
system to identify the most relevant text segments in response to a given query.

This text retrieval process goes beyond the image retrieval section, which primarily focuses on visual
characteristics. In addition to analyzing visual aspects of anomalies, it gathers information on detection
methods, underlying causes, and prevention strategies. As a result, the framework not only classifies and
detects anomalies but also provides a detailed analysis of their origins and potential mitigation measures.
Furthermore, if the retrieved image lacks clear anomaly details (e.g., low-resolution images, high-level
schematics) or is unavailable, text retrieval provides the model with additional information to accurately
detect and classify anomalies. Figure 4 presents the queries used to retrieve necessary information for the
following generation phase.

! Image Retrieval Query

i 1: Retrieve images related to the {anomaly_name}, strictly from
i provided resources. 2: Analyze the retrieved image and include the
:\ visual characteristics to help in anomaly identification.

______________________________________________________

1

" Text Retrieval Query '
Retrieve comprehensive information about {anomaly name},
exclusively from provided resources. Ensure the response includes
the following details:

1.Detailed Description
2.Common Causes
3.Visual Characteristics
) 4.Prevention Strategies y

Figure 4: Retrieval query for gathering text and image information related to the target anomaly.
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- ~

. Anomaly Detection Prompt: k
! Analyze the test image carefully and determine if {anomaly_name} is
i possible. Use the information provided in the reference image and
E additional scientific information to support your assessment. Provide a
! clear, short, and reasoned answer with supporting evidence. These are
| the test images: {per image: {image stage description}:
i {test_image}}. The reference image shows an example of
E {anomaly_name}:{reference_image}+{reference_image_descriptio
' n}. Use it for comparison. Here is additional scientific information
«_ about {anomaly_name}: {info_anomaly_text}. g

\

 Anomalies Classification Prompt:

E This is the decision about whether the Anomaly exist:
! {detection_results}. If {anomaly name} is detected in even one of !
i the test images, return 1; otherwise, return 0. Do not provide any E
'\\ additional explanation or reasoning in the response. ;

\
1
1
I

/ Anomalies Explanation Prompt: \
Given the detected anomalies in the manufacturing process: |
{classification_results}, provide a detailed scientific explanation E
covering the following: i
1. Root Cause i
2. Prevention Strategies E
3. Additional Insights J
Ensure the response is precise, technical, and grounded in provided |

\ information: {info_anomaly_text} /

Figure 5: Generation prompts for anomaly detection and explanation
2.2 Generation Phase

In the generation phase (Figure 3b), the multimodal data obtained in the earlier retrieval phase is
synthesized and analyzed in detail through both visual recognition and textual analysis. This phase
addresses two key objectives: anomaly detection and classification with explanation.

Anomaly Detection: Using retrieved anomaly images and textual information, the open-source
Qwen2-VL-2B model [40] and the closed-source GPT-40-mini [37] are utilized to predict anomaly types
via the prompt provided in Figure 5. Each MLLM analyzes the visual features of the best retrieved image
alongside contextual information from the query to generate an informed classification. These MLLMs are
utilized to detect anomalies within dataset images described in Section 3. Given a list of possible anomalies,
the detection is performed individually for each anomaly, ensuring the model systematically evaluates each
anomaly type based on the provided prompt (Figure 5). The detection process was performed three times
per anomaly to provide more robust results for the classification task inside the output model.

Anomalies Classification and Explanation (Output Module): After detecting all anomalies, LLM is
employed to synthesize responses for each anomaly and summarizes the results using one-hot encoding
classification (prompt provided in Figure 5). The framework then calculates the average prediction for each
anomaly type, enhancing the reliability of the evaluation. Next, the system uses the identified anomaly type
to guide the subsequent explanation and prevention steps. For this purpose, GPT-40-mini is integrated as
the generative model. It combines the classification results with the text retrieved from the earlier RAG
pipeline to synthesize a comprehensive explanation. This explanation includes:

1. A detailed account of the anomaly’s characteristics.
2. An analysis of its potential root causes.
3. Preventive measures and recommendations to mitigate similar anomalies in future processes.

This integrated approach ensures anomalies are systematically classified, enabling the system to deliver
actionable, context-aware insights tailored to each identified anomaly (Figure 3c¢).
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3. MANUFACTURING ANOMALY DATASET

This study focuses on the L-PBF process, given its prominence as a widely used additive manufacturing
technique. To evaluate our proposed framework, we utilize an anomaly dataset from Oak Ridge National
Laboratory [41] which contains layer-wise powder bed images. Each image may contain one or more of the
following anomalies: Recoater Hopping, Recoater Streaking, Incomplete Spreading, Swelling, Debris,
Super-Elevation, Soot, Excessive Melting, Localized Bright Spot, Spatter on Powder, Mounding Powder,
Localized Dark Regions, or Misprint. These anomalies are annotated in a file within ORNL’s dataset. This
annotation file is then converted into a text format for each test sample, listing all existing anomalies
together, which serves as the ground truth or human reference response. The laser powder-bed fusion (L-
PBF) datasets used in this study are sourced from the “EOS M290” and “AddUp FormUp 350 printers,
each utilizing different materials, as summarized in Table 1.

Table 1. L-PBF test samples information taken from ORNL’s dataset to evaluate the proposed framework
[41]

Printer Test
Make and Material Im:ls es
Model g

AddUp
FormUp Maraging Steel 26
350
EOS M290 17-4 PH Stainless 14
Steel
EOS M290 DMREF 9
EOS M290 Inconel 718 5
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Figure 6: L-PBF’s visible light test samples taken from ORNL Dataset [41]: (a) Image captured post-melting
(b) Image captured after powder spreading for L-PBF process introduced in Table 1.

These datasets incorporate multi-modal sensor data, including visible light (VL), temporally integrated
near-infrared (TI-NR), and wide-band infrared (IR) imaging. Since the dataset includes ground truth files
and our proposed model does not require training data, we used these images exclusively for testing. In this
study, visible light images were specifically employed for anomaly detection, with one image captured post-
melting and the other captured after powder spreading, as shown in Figure 6. For the paper dataset used in
our RAG-based study, we focused on articles related to the L-PBF process, a widely adopted additive
manufacturing technique. The dataset of document information for RAG (Table 2) consists of scientific
papers that investigate various defect types and anomalies within the L-PBF process [6, 42-52]. Table 2
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summarizes the anomalies and defects identified in each document, either explicitly stated or conceptually
implied, as determined through manual review assisted by an LLM.

Table 2. Dataset of L-PBF papers on defect types and anomalies in the process

Available
Anomalies and
Document Topic related Defects Ref.
(Explicitly and
Conceptually)
Recoater
Hopping,
Recoater
Streaking,
Incomplete
Scime, L., et Spr.eadmg,
L Debris, Super-
al., Additive .
. Elevation, Spatter
Manufacturi .
Layer-wise on Powder, Jet
ng, 2020. - . .
. anomaly | Misfire, Porosity,
Oak Ridge L. [6,41]
. detection in Part Damage,
National .S
PBF Soot Misprint,
Laboratory Localized Dark
(ORNL), )
2023 Regions,
’ Localized Bright
Spot, Mounding
Powder, Spatter
on Powder, Stripe
Boundary, Edge
Swelling
Porosity, Balling,
Cracks, lack of
Sahar, T., et MI-based . fusion,
al., Results SI¥ 1 miscellaneous
in naty defect (Recoater [42]
. . detection in .
Engineering L-PBF Hopping, Part
,2023. failure),
Excessive
Melting
Geometrical
. Distortions
In-situ ..

. - (Misprint,
Colosimo, | monitoring Recoater
BM.and | inL-PBF: | - efg © )
M. Grasso, | challenges ppme --.), [43]

. Porosity,
Procedia & delamination
CIRP, 2020. | opportuniti Microstructural
es . .
inhomogeneity,
Surface Flaws
Chebil, G., Deep Spatter, Lack of
etal., learning for | fusion, Localized [44]
Journal of optical Bright Spot
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Materials | monitoring
Processing | of spatters
Technology,
2023.
Multi-
Peng, X., et f SeNsor Balling, Porosity,
usion for .
al., Sensors, defect Cracking, [45]
2022. L. Surface Flaws
detection in
PBF
D’Accardi, .
E. etal, Detecting Porosity, Surface
. and :
Progress in localizing F l'flws, Localized [46]
Additive Bright Spot, Lack
. L-PBF .
Manufacturi defects of fusion
ng, 2022.
Spatter,
Excessive
Snow, Z., et Melting,
al., 2023, %I;i(s)in;;r Recoater
Oak Ridge L-PBF Streaking, Stripe
. [47]
National def Boundary,
etect )
Laboratory detection Porosity, Lack-
(ORNL). of-Fusion,
Localized Bright
Spot, Cracks
Spatter,
Incandescence
(Excessive
Cannizzaro, Image Melting,
D, etal, analytics & | Localized Bright
DATE ML for Spot), Horizontal [48]
Conference, | AM defect | defects (Recoater
2021. detection Streaking),
Vertical defects
(Recoater
Hopping)
Recoater
Hopping,
Recoater
Streaking,
Mahmoud, ML Incomplete
D, etal, application Spreading,
Applied s in L-PBF Debris, Super- [49]
Sciences, process Elevation, Spatter
2021. monitoring on Powder,
Overheating
(Excessive

Melting), Edge
Swelling,
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4. RESULTS

Curling,
Shrinkage,
Balling, Under-
melting, Porosity,
Lack of Fusion,
Cracks,
Delamination
Mohammadi
»M.G. and Real-time . .
M. monitorin Porosity, micro-
Elbestawi, . g cracks, voids, and [50]
. in L-PBF
Procedia using ML Surface Flaws
Manufacturi &
ng, 2020.
Okaro, LA, Semi- Balhng,
. overheating
et al., supervised (excessive
Additive ML for L- melting [51]
Manufacturi | PBF fgult Localized Bright
ng, 2019. detection
Spot)
Chicote, B., | Online/offli Geometrical
et al,, ne defect | Gaps (Misprint), [52]
Procedia detection in | Porosity, Cracks,
CIRP, 2022. L-PBF Lack of Fusion

The dataset introduced in Section 3 is used to evaluate the performance of the proposed method in
anomaly detection and classification. Several metrics can be employed to evaluate the accuracy of generated
response, including Recall@K , Precision@K, F1 score@K [53-55], Bilingual Evaluation Understudy
(BLEU) [56], Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [57], and Embedding-Based
Similarity [58], which measures the similarity between the generated and reference text. However, since
this study focuses on binary classification (anomaly vs. normal) rather than pure text generation, a clear
Yes/No decision is required. Hence, the reference text is converted into a one-hot encoded representation
of anomalies (e.g., 1 for anomaly, 0 for normal). The anomaly classification inside the output module then
generates the predicted one-hot encoding representation. With this structured format, classification
accuracy for each anomaly in the dataset is computed using Equation 1. Also, the overall accuracy for each
anomaly is then obtained by averaging the accuracy results across all images.

True Positives + True Negetives

A —
ceuracy Total Cases

(1)
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The framework is tested using Qwen2-VL-2B model and GPT-40-mini model as the main MLLM
for anomaly detection. The accuracy results across all L-PBF’s categories, as shown in Figure 7, indicate
that GPT-40-mini outperforms Qwen2-VL-2B model by average margin of 34.6%.

(a) AddUp FormUp 350 - Maraging Steel (b) EOS M290 - 17-4 PH Stainless Steel

Recoater Streaking Recoater Streaking
Incomplete Spreading

cessive Melting
Super-Elevation GPT-40-Mini Soot

-l Qwen-2B-VL-Instruct

(C) EOS M290 - DMREF (d) EOS M290 - Inconel 718
Incomplete Spreading Excessive Melting
Debris Stripe Boundary

ssive Melting

Mounding Powder stripe Boundary Debris Edge Swelling
|}

Figure 8: The anomaly detection accuracy for desired anomalies for (a) AddUp FormUp 350 (b) EOS M290 - 17-4 PH
Stainless Steel (c) EOS M290 — DMREF (d) EOS M290 - Inconel 718
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Figure 7: Prediction performance scores across various L-PBF image datasets using different MLLMs.

The detailed performance analysis using the same prompt and input images, as shown in Figure 8
and Tables A1-A4 in the Appendix, indicates that Qwen2-VL-2B does not outperform the proportional
random baseline and produces mostly the same results. This suggests that, given a detection prompt,
Qwen2-VL-2B consistently predicts that an anomaly exists, even in cases where no anomaly is present. In
other words, it tends to flag every instance as anomalous rather than differentiating between normal and
anomalous cases. Furthermore, the proportional random baseline [59] reveals that anomalies are not evenly
distributed within the dataset. This imbalance is expected, as the instrument in each ORNL’s dataset [41]
remains the same, causing some anomalies to appear frequently while others are rarely present. This dataset
imbalance underscores the importance of using the accuracy metric defined in Equation 1, which accounts
for cases where the MLLM correctly detects the absence of anomalies. Without this consideration, a model
like Qwen2-VL-2B, which naively predicts the presence of anomalies, would achieve a high F1-score and
sensitivity, misleadingly inflating its performance evaluation.

On the other hand, GPT-40-mini, using the same input prompt, demonstrates a significantly better
ability to differentiate between anomalous and normal cases. As a result, it consistently achieves higher
average accuracy compared to both the proportional random baseline [59] and the Qwen2-VL-2B model.
However, GPT-40-mini still encounters challenges in certain cases, such as detecting edge swelling, strip
boundaries, and soot. These challenges may arise from inadequate retrieved information for the detection
task or the MLLM's difficulty in identifying specific anomalies. Due to the black-box nature of LLMs [60],
pinpointing the exact cause remains challenging. A key advantage of GPT-40-mini is that when it fails to
detect an anomaly, it does not overdetect like Qwen2-VL-2B. Instead, it tends to avoid incorrect anomaly
detection, ultimately leading to a more reliable accuracy assessment.

Upon detecting and classifying the anomalies in all images, the framework generates an explanation
detailing why the anomalies occur, followed by preventive measures to mitigate their impact. Figure 9
showcases an example from the EOS M290 — 17-4 PH stainless Steel dataset, including the ground truth,
predicted anomalies, and explanations for the predicted anomalies.
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(
! Ground Truth Anomalies in Manufacturing Process:
! Incomplete Spreading, Edge Swelling, Soot

Predicted Anomalies in Manufacturing Process:
Incomplete Spreading, Edge Swelling, Excessive Melting

.
// Explanation of the Anomalies in Manufacturing Process: \
| #### 1. Incomplete Spreading \
- Root Cause: Incomplete spreading occurs due to issues with the recoating 1
mechanism (e.g., damaged recoater blade), improper recoating speed or E
angle, or unfavorable powder properties. These factors can lead to uneven !
distribution of powder across the bed, resulting in gaps or thin areas. ]
- Prevention Strategies: Regular maintenance of the recoater blade to !
prevent damage, controlling the recoating speed and angle, and conducting !
inspections of the powder bed after spreading to identify and address |
incomplete areas can help prevent this anomaly. ]
- Additional Insights: Monitoring the powder properties (e.g., flowability, |
particle size distribution) and ensuring the recoater mechanism is clean and |
free of debris can further enhance powder spreading uniformity. \
#### 2. Edge Swelling ]
- Root Cause: Edge swelling arises from increased energy density near the |
edges or corners of the part during the printing process, typically due to |
shortened melt tracks and heat conduction variations. i
- Prevention Strategies: Optimizing laser power, scanning strategies, and |
part orientation can minimize the energy density impact. Additionally, i
monitoring heat distribution and controlling cooling rates can help mitigate
edge swelling. E
- Additional Insights: Utilizing simulation tools to predict thermal behavior ]
during printing and adjusting parameters accordingly can lead to improved !
dimensional accuracy and surface finish. ]
#it## 3. Excessive Melting !
- Root Cause: Excessive melting results from high-power density settings !
during laser scanning, often caused by increased scanning speed or |
inadequate control of keyhole mode melting, leading to instability in the |
melt pool. 1
- Prevention Strategies: Careful calibration of laser power density and |
scanning speed, alongside monitoring of melt pool temperature and |
continuity, can prevent excessive melting and associated voids or |
irregularities. i
- Additional Insights: Implementing in situ monitoring systems to track melt
pool characteristics in real-time can provide immediate feedback and enable |
adjustments to prevent excessive melting during the process. i
In summary, addressing these anomalies requires a comprehensive approach 1
that includes regular maintenance, process optimization, and real-time |
\\ monitoring to ensure high-quality outcomes in the manufacturing process. /l
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Figure 9: Predicted anomalies and explanation given test image from EOS M290 — 17-4 PH stainless Steel

Sometimes, adding an RAG system can introduce more problems than it solves regarding hallucination
[61]. The RAG system design, which bases outputs on retrieved information from other sources to increase
accuracy, can, in some cases, exacerbate the issue [62]. If a RAG component is improperly configured [63,
64], it can reduce reliability by creating a false sense of accuracy. To ensure this issue did not occur in this
study, an additional evaluation was conducted on GPT-40-mini, the best-performing MLLM, to assess the
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effects of incorporating a RAG system for additional information retrieval. The results in Table 3 show that
incorporating RAG systems enhances prediction accuracy compared to models relying solely on their pre-
trained knowledge. This finding aligns with existing research, which also demonstrates improved
performance when scientific literature is leveraged.

Table 3. Comparison of average accuracy with and without the retrieved information

Test Case Dataset With Without
Retrieval Retrieval
AddUp FormUp 0.620 0.610
350
EOS M290 - S 0.621 0.471
EOS M290 - D 0.521 0.401
EOS M290 -1 0.738 0.523

5. CONCLUSION

The proposed RAG-based framework offers a novel and efficient solution to the challenge of anomaly
detection in AM. By integrating advanced multimodal retrieval and generation models, our system enables
automated and context-aware identification and classification of anomalies in AM processes. By combining
image and text retrieval with state-of-the-art generative models, we demonstrate the feasibility of
establishing an anomaly detection and classification model solely based on literature-based information,
without requiring in-house experimental data. Additionally, the framework’s ability to continuously
integrate new research literature ensures its adaptability to evolving AM technologies.

Future work will focus on improving the model’s accuracy by incorporating more advanced image
retrieval models and refining the multimodal generation process to mitigate the black-box nature of
anomaly and defect detection and enhance the accuracy. Despite the proposed model’s current limitations
in classification and detection accuracy, this framework shows promise as a robust and practical tool for
real-time defect detection in additive manufacturing. It holds significant potential to advance automated
quality control in the industry.
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APPENDIX
Table A1l. Performance Metric for AddUp FormUp 350
Random Accuracy
Anomaly Baseli
aseliN® (wen2-VL-2B GPT-40-Mini
Recoater | o6 0.92 0.19
Hopping
Recoater
Streaking 0.15 0.15 0.58
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Incomplete
Spreading

Swelling
Debris

Super-
Elevation

Soot
Misprint
Table A2. Performance Metric for EOS

Anomaly

0.77 0.77 0.73
0.23 0.23 0.81
0.58 0.58 0.5
0 0 0.96
0.85 0.85 0.23
0 0 0.88
M290 - S
Random Accuracy

Baseline 3y en2-VL-2B GPT-40-Mini

Recoater
Hopping

Recoater
Streaking

Incomplete
Spreading

Edge
Swelling

Debris

Super-
Elevation

Soot

Excessive
Melting

Crashing
Misprint

Table A3. Performance Metric for EOS

Anomaly

0 0 0.93
0 0 0.93

0.36 0.36 0.43

0.93 0.93 0.43
0 0 0.79
0 0 0.5
1 1 0
0 0 0.21
0 0 1
0 0 1

M290 - D
Random Accuracy

Baseline 3y en2-VL-2B GPT-40-Mini

Recoater
Hopping

Recoater
Streaking

Incomplete
Spreading

Debris

0 0 0.78
0.11 0.11 1
0.22 0.22 0.22

0 0 0.44
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Edge
Swelling

Super-
Elevation

Spatter on
Powder

Localized
Bright Spot

Mounding
Powder

Stripe
Boundary

Excessive
Melting

Misprint

Localized
Dark
Regions

Table A4. Performance Metric for EOS

Anomaly

1 1 0.44
0.22 0.22 0.56
0.89 0.78 0.56
0.78 0.78 0.56

0 0 0.67

1 1 0

0 0 0.44

0 0 0.56
0.22 0.22 0.56

M290 -1
Random Accuracy

Baseline Qwen2-VL-2B GPT-40-Mini

Recoater
Hopping

Recoater
Streaking

Incomplete
Spreading

Debris

Edge
Swelling

Super-
Elevation

Spatter on
Powder

Localized
Bright Spot

Mounding
Powder

0 0 1
0 0 1
0 0 0.4
0 0 0.8
1 1 0.2
0 0 0.8
0.6 0.6 0.6
0.6 0.4 1
0 0 1
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Stripe
Boundary 0.6 0.6 0.4
Excessive
Melting 0 0 0.6
Misprint 0 0 1
Localized
Dark 0 0 0.8
Regions
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