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Bidirectional subsethood of shared marker 
profiles enables accurate virus classification
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Abstract 

Background  Due to the impact of viral metagenomic sequencing, the official virus taxonomy is updated several 
times a year, with labels being renamed even substantially across releases. While this helps reveal newer aspects 
on the classification of viruses, existing bioinformatic methods for classification struggle to stay in sync with this ever-
improving resource.

Results  We developed a new computer program, named Virgo, that is able to correctly predict virus families 
from metagenomic data with an F1 score above 0.9 using a novel viral sequence similarity metric proposed in this 
work. Moreover, it ensures compatibility with any version of the official taxonomy of viruses.

Conclusions  Virgo is designed to easily incorporate newer releases of the official taxonomy, thus representing a valu-
able resource in the virology community while raising awareness to develop computational methods that evolve 
alongside manually curated resources.
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Introduction
Virus detection and classification have benefited tre-
mendously from viral metagenomics and from the 
computational methods developed around it [1, 2]. The 
International Committee on Taxonomy of Viruses (ICTV 
[3]) has recently begun accepting complete molecular 
sequence analysis and annotation as a sufficient require-
ment for entries inclusion and potential ratification, 
resulting in a taxonomic architecture that is a better 
reflection of the polyphyletic nature of viral evolution 
[4]. The ICTV has also created a repository of metadata 

and lineage information for all recognized virus species, 
now organized in a 15-rank classification hierarchy that 
mirrors the Linnaean taxonomy system [5]. The num-
ber of species listed in the Virus Metadata Resource 
(VMR) has more than doubled in the last five years 
(since release MSL35, Fig. 2a) and with 3468 new entries 
added between the last two versions of the master spe-
cies list (Fig. 2a). Contingent on the growth of this valu-
able resource (which also encompasses satellite nucleic 
acids, viriforms, and viroids, highly relevant in plant biol-
ogy [6]), bioinformatic methods for virus prediction and 
viral genome analysis have shifted their source of clas-
sification, from the Baltimore classes or NCBI lineages 
towards ICTV-ratified taxa [7, 8]. As the ICTV expands, 
it inevitably becomes more complex, but this expan-
sion ensures greater precision and thoroughness, albeit 
at the cost of introducing new taxa and renaming exist-
ing ones in subsequent releases [4, 9, 10]. These updates 
can have a profound effect on computational prediction 
methods, especially when trained on specific versions 
of the ICTV, thus challenging the labeling process and 
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calling for awareness when using such software. This is 
a “good” problem, that has been circumvented by tools 
such as vConTACT2 [11], which does not directly output 
a taxonomic lineage, but rather makes inference of the 
taxonomic context (via RefSeq) a query sequence is more 
likely associated with, using a network-based approach 
on protein clusters.

Nonetheless, other computational frameworks rely 
exclusively on past releases of the ICTV and their pre-
dicted labels are somewhat “crystallized” to a specific 
release, thus making it laborious now, and in the future, 
to not only trace back the correct viral prediction that 
might have changed over time, but also to make a fair 
comparison when benchmarking new software. Other 
approaches embed taxonomic information directly 
within the features used in the training, then use major-
ity rule-based scoring systems or membership ratios to 
infer the taxonomy. Even this approach makes synchro-
nization to an ever-improving resource challenging. For 
example, PhaGCN2 [12] (a recent virus classification 
program that combines convolutional neural networks) 
relies on taxonomic labels from a pre-trained version of 
the ICTV. Similarly, TIGTOG [13], which uses random 
forests to classify giant viruses using DNA and amino 
acid sequence features, does not allow to update training 
set labels. VPF-Class [14] relies on a set of viral protein 
families that were pre-annotated and assigned to specific 
taxonomic levels using purity thresholds to enhance the 
classification of viral genomes. A similar strategy was 
adopted by geNomad [15], where the encoded genes in 
a query sequence are aligned to a set of 227,897 markers 
which may contain taxonomic information, and a single 
taxonomic assignment is emitted according to a weighted 
scheme based on the bitscore of the taxonomically 
informed matched marker profiles. While these strate-
gies have demonstrated exceptional power in identify-
ing viruses from metagenomic data, they are not exactly 
compatible with an ever-refining official taxonomy (as of 
2025).

Here we present a straightforward and effective pro-
gram for virus classification, Virgo, that infers the 
ICTV-ratified taxonomic lineage of a given set of query 
sequences. Our approach finds similarity between the 
query and a database of ICTV viruses using a bidirec-
tional subsethood metric, which is used to score the way 
two sequences independently align to a set of virus spe-
cific markers. Genomic sequences are modeled using 
unordered collections of matched marker profiles, with 
markers coming from a recently published, large environ-
mental metagenomic survey [15].

The more two such representations resemble each 
other in terms of markers distributions, the higher 
the score (closer to 1), or closer to 0 otherwise. The 

taxonomic lineage is then drawn from the ICTV entry 
with the highest similarity. A formal presentation of the 
algorithm is provided in the “Materials and methods” 
section.

We designed a computational framework that uses the 
ICTV-ratified lineage labels, and is compatible with dif-
ferent releases of the virus metadata resource, thus allow-
ing the program to operate on fresh updates. Unlike the 
other tools that explicitly embed taxonomic information 
within the features, we let the features aggregate fluidly 
and autonomously in sync with the ICTV version used as 
reference, thus ensuring reproducibility and usability.

We benchmarked our tool with state-of-the-art virus-
detection and classification programs, that range from 
the specific detection of giant viruses and prokaryotic 
viruses, to omni-comprehensive virus prediction tools. 
During benchmarking we realized that the evaluation of 
the classification results is often hampered by the vari-
ability of labels across releases of the reference taxonomy. 
Therefore, we addressed the necessity to develop soft-
ware that can digest newer releases of an ever-growing 
taxonomy by making publicly available the source code 
for an ICTV sequence dump program. This program, 
which we named ICTVdump, connects to any version 
of the Virus Metadata Resource release and downloads 
sequences, metadata and taxonomic lineage associated to 
every sequence listed.

We report several metrics to show Virgo’s performance 
on both metagenomic and reference viruses in rela-
tion to other software and investigate the potential rea-
sons behind the fraction of incorrectly classified viruses. 
Aware of the fact that the programs used for benchmark-
ing rely on taxonomic labels tied to previous versions of 
the ICTV, we accessed the past releases and ran Virgo 
on the same version as those programs. This was possi-
ble using ICTVdump, and it ensured a fair and consistent 
comparison to existing programs for virus classification. 
Overall, Virgo exhibits consistent and high accuracy in 
resolving the family level of viruses, even when those 
are fragmented or incomplete, and it is among the fast-
est in terms of speed, compared to the tested tools. Virgo 
is written in python and it requires a database which we 
distribute together with the source code at https://​github.​
com/​chris​topher-​ricca​rdi/​Virgo.

Results
Virgo overview and workflow
Virgo’s workflow consists of three main steps shown in 
Fig.  1: (1) downloading sequences and metadata from 
the ICTV online resource, (2) creating the Virgo data-
base, and (3) performing virus classification. In Step 
1, the user retrieves viral sequences and metadata for a 
specific ICTV release. To facilitate this, we developed a 
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companion tool, ICTVdump, which downloads nucleo-
tide sequences in FASTA format along with the corre-
sponding metadata. In Step 2, the user can run the script 
create_virgo_database.py which will infer the viral open 
reading frames (vORFs), align them to the virus-specific 
markers released with geNomad and then package the 
computational representation of each virus together with 

their ICTV-ratified labels, all in a fully automated fash-
ion. In Step 3, taxonomic classification is performed. For 
each query, Virgo computes the bidirectional subsethood 
score against all reference viruses in the Virgo database. 
The query is then assigned the taxonomic lineage of the 
reference virus with the highest score. This modular 
workflow allows Virgo to remain compatible with any 

Fig. 1  Workflow overview. Virgo operates on a database tailored to a specific release of the ICTV. In Step 1, the user provides a URL to a specific 
release of the VMR, and ICTVdump collects the necessary information for every virus. In Step 2, the user runs the script create_virgo_database.
py to package this information into a computer-readable format; it also writes to a folder with the necessary files in order to run the actual 
classification, which happens in Step 3 (i.e., running Virgo)
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version of ICTV taxonomies and provides an interpret-
able framework for virus classification.

The ICTV sequences cover roughly 44% of the marker 
profiles database
Virgo implements a system that attributes the taxo-
nomic lineage by maximizing a coverage score between 
two sequences, calculated on the degree of subset-
hood between unordered collections of sets of matched 
marker profiles. More details and examples are provided 
in the “Materials and methods” section. The default 
markers deployed with the software are an extract of 
the virus-specific sequences collected by Camargo et al. 
[15] for geNomad’s marker-based classification, and they 

represent an invaluable data resource derived from many 
and diverse biological and environmental contexts [16, 
17]. The extract is composed of 161,862 markers with 
high specificity for viruses. The selection criteria are 
explained in the “Materials and methods” section. Dur-
ing a preliminary exploratory analysis we mapped these 
marker profiles to the sequences in the ICTV to quantify 
the fraction of markers that are currently represented in 
the official virus taxonomy.

Interestingly, at the time of writing (2025), the ICTV 
captures up to 71,279 distinct markers, represent-
ing 44.05% of the total. Prompted by this observa-
tion we aligned the virus-specific markers to every 
historical record of the ICTV, selecting the very first 

Fig. 2  a ICTV sequences and virus-specific markers information. The volume of species in the VMR over different versions (blue), and those covered 
by the virus-specific markers data set (yellow). MSL39 indicates the release that is currently available (#39 version 4). b Similar representation 
as subfigure a, having the number of proteins instead of the number of viruses. c Zoom on the latest release: number of viruses that are covered 
by increasing intervals of protein markers. The number of viruses is specified on top of each bar, and the number of hitting markers are binned 
in groups of 100, except for the first (zero markers) and last (anything matching 500 or more markers). Five hundred six viruses are excluded 
from our analysis since they match exactly zero markers. d Similar visualization as panel c, where the proteins are shown instead of the number 
of viruses. The horizontal axis reports individual values and then ICTV proteins hitting 50 or more markers are grouped together (163,398 proteins 
hit exactly 0 markers, while the last grouping counts 8106 proteins). e Percentage of all virus-specific marker profiles aligned to viral sequences 
in the ICTV over the releases. The number almost doubles between the first (dashed line) and current release (1.78 fold increase), but it stays 
below 50%, indicating that a larger fraction of sequences still needs to make entry in the ICTV
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available (MSL31) and then every last version of each 
release ( n = 9 ) and noticed that the number of matched 
markers increases together with the number of added 
sequences across the ICTV releases (Fig. 2). As the num-
ber of genomes almost quadruples (Fig. 2a), the amount 
of matched markers nearly doubles (Fig.  2e). For the 
MSL39 release consisting of 16,222 virus sequences, 
about 3% of the viruses (506) do not contain any mark-
ers, 66 % (10,744) contain 1–100 markers, yet 8 % contain 
over 500 markers (Fig. 2c). We performed similar analy-
ses for the viral proteins and the results are shown in 
Fig. 2b,d. This trend is a direct indicator of the dynamic 
nature of the body of sequences in the ICTV that grows 
not just in size, but also in terms of genetic variability, 
and highlights the importance of ensuring compatibil-
ity between classification software and virus metadata 
resources.

Virgo accurately classifies phages from human gut 
metaviromes
The known viral sequence clusters (kVSCs, n = 2232 ) 
dataset consists of viral sequences derived from several 
hundreds of highly enriched human gut metavirome 
samples, assembled by Zolfo et al. [18]. In terms of com-
position, the kVSCs dataset contains exclusively bacte-
ria-infecting viruses, mostly Caudoviricetes (98.83%), 
and it includes 15 single-stranded DNA bacteriophages 
(Malgrandaviricetes) and 11 single-stranded DNA fila-
mentous bacteriophages (Faserviricetes). As pointed 
out by others [11], many viruses belonging to the class 
Caudoviricetes are unclassified at the order and fam-
ily levels. Because of this, we evaluated performance 
using two criteria: (i) a stringent criterion, which deems 
a prediction correct only if it accurately identifies the 
family-level taxon, provided that the true label includes a 
family-level classification, and (ii) a loose criterion, which 
considers a prediction correct if it correctly identifies 
the taxon at the order or class level only when the true 
label does not specify a family-level classification. Virgo, 
geNomad, PhaGCN2, VPF-Class and vConTACT2 were 
tested. Note that VPF-Class, vConTACT2, geNomad and 
PhaGCN2 are based on ICTV release MSL 33, 36, 37, and 
39, respectively. For fair comparison, we ran Virgo based 
on the corresponding releases when comparing with the 
other tools.

The benchmarking results for both criteria are visual-
ized in Fig. 3a, using the notation a and b, for the strin-
gent and loose criterion, respectively. Detailed metrics 
results are reported in Supplementary Table S1. Among 
the tested tools, Virgo performed the best on both cri-
teria with a perfect classification based on the stringent, 
and F1 score above 0.99 for the loose criterion. The loose 
criterion included many more sequences, hence the 

difference. Very close to Virgo, vConTACT2 reached an 
F1 score above 0.99 on the loose and stringent evaluation 
criteria. Also vConTACT2 was the program that assigned 
the least amount of viruses to a cluster (hence classify). 
This is due to the fact that the unclassified Caudoviricetes 
were previously assigned to the Caudovirales order and 
Siphoviridae family, both of which were abolished after 
vConTACT2’s publication.

geNomad and PhaGCN2 reached an F1 score consist-
ently above 0.9 (0.918 for both criteria for the former, 
0.914 and 0.968 for the latter). VPF-Class performed 
identically on the stringent and loose criteria, with an F1 
score of 0.99. Virgo achieved a perfect classification using 
both criteria when ran on the same ICTV version as VPF-
Class. Moreover, VPF-Class classified more sequences 
than Virgo in the loose evaluation of the kVSCs (2207 
sequences against 2144).

Benchmarking results on the kVSCs dataset indicate 
superior performance by Virgo in terms of classification 
(Fig.  3a–d) on gut metagenomic sequences compared 
to other tools, highlighting its potential applicability in 
clinical settings. Additional benchmarking results at the 
genus level are provided in Supplementary Fig. S1a–b.

Virgo generalizes on unseen data with performance 
comparable to state‑of‑the‑art
To further evaluate Virgo’s classification performance 
across a broader range of viral taxonomic affiliations, we 
selected n = 860 exemplar viral genomes through strati-
fied sampling at the family taxonomic level, ensuring that 
their full taxonomic lineage is defined across releases 
(refer to “Materials and methods”).

These viruses represent a heterogeneous dataset (here-
after, ICTV dataset) that encompasses 485 distinct genera 
and 192 families, whose taxonomic labels can be cor-
rectly pinpointed across releases for fair benchmarking.

Virgo’s performance was compared to that of geNo-
mad, PhaGCN2, and VPF-Class.

Virgo achieved a higher F1 score (0.982) compared to 
geNomad (0.768), PhaGCN2 (0.974 and 0.909, respec-
tively) and VPF-Class (0.964 and 0.959, respectively), as 
well as every other metric (Supplementary Table  S1). A 
visual representation of performance evaluation and 
sample sizes are shown in Fig. 3e-g.

As with every other benchmarking dataset used in this 
study, Virgo was run using the –with_replacement 
option which skips the database search for queries iden-
tical to a database entry, forcing the next best-scoring 
virus to be used as taxonomic reference (see “Materials 
and methods”). This option was particularly relevant in 
testing the ICTV dataset since it consisted in a Leave-
One-Out type of study. The same approach could not 
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be performed for the remaining programs since it is not 
possible to access and modify their training data.

We then expanded our benchmarking dataset by incor-
porating a larger body of viruses present in publicly-
available databases, and accessed the entire NCBI Virus 
resource (the RefSeq dataset). Given the predominant 
presence of Coronaviridae in this dataset, we randomly 
sampled 6,778 sequences (several times, see “Materials 
and methods” for details) and compared Virgo’s perfor-
mance to that of geNomad, PhaGCN2 and VPF-Class 
using the corresponding ICTV releases.

We also considered the maximum Average Nucleo-
tide Identity (ANI) that exists between these viruses 
and the ICTV sequences that Virgo uses as reference 
database. High maximum ANI values indicate high 
similarity between the query and references, and pro-
gressively lower ANI values represent a more chal-
lenging testing dataset. Computing identity below 60% 
was not possible, therefore the RefSeq data were split 

into four distinct ANI groups, in increasing levels of 
10%. Results for this part of the analysis are shown in 
Fig. 3m, and the detailed information relative to perfor-
mance, central tendency and dispersion are reported in 
Supplementary Table 1.

Virgo generalizes better than current software at all 
ANI intervals, with VPF-Class performing better than 
Virgo on sequences in the ANI slot 80–90%, where the 
former achieved an average F1 score of 0.996 ± 0.0 versus 
0.974 ± 0.0. It is worth mentioning that the ICTV release 
used for this specific comparison, MSL33, came out in 
2018 when a substantially lower number of sequences 
were present in the database, therefore limiting the num-
ber of viruses classifiable for both programs (113.52 ± 
0.784 for Virgo and 110.65 ± 0.771 for VPF-Class).

For reference PhaGCN2, which classifies all input 
viruses and contains pre-trained labels for a much newer 
release, produced a prediction for an average of 754.42 ± 
1.365, and showed an average F1 score of 0.819 ± 0.001.

Fig. 3  Benchmarking results across datasets. Panels a through d show software performance (F1 score) for the kVSCs (human gut metagenomic 
viruses). We compared Virgo with geNomad, PhaGCN2, VPF-Class, vConTACT2, and TIGTOG based on ICTV releases MSL37, 39, 33, 36, and 39, 
respectively. To evaluate performance for this dataset we applied two different criteria: a stringent criterion (a) and a loose criterion (b). The 
stringent criterion only considers a prediction correct if it accurately identifies the true family-level taxon, provided that the family-level 
classification is available in the true label. Instead, the loose criterion allows for a correct prediction if the tool correctly identifies the taxon 
at the order or class level when the true label does not specify a family-level classification; the family is compared otherwise. Panels e–g show 
the results for the selected ICTV viruses of broad taxonomic coverage. Panel h shows the benchmarking results comparing Virgo and vConTACT2 
on the prokaryote-infecting fraction of the RefSeq dataset. Panels i–l show the results on the GOEV ocean metagenomic dataset. Numbers 
inside bars indicate the number of viruses classified by each program. Panel m shows the results for the RefSeq dataset random iterations 
across various ANI levels between training and testing. All numerical values are reported in Supplementary Table 1
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On the harder-to-classify ANI group (60–70% maxi-
mum ANI), Virgo achieved an average F1 score of 0.899 ± 
0.001 compared to VPF-Class (0.833 ± 0.001), an average 
F1 score of 0.817 ± 0.001 compared to PhaGCN2 (0.647 ± 
0.001) and an average F1 score of 0.874 ± 0.001 compared 
to geNomad (0.822 ± 0.001).

Taken together, these results indicate that the bidirec-
tional subsethood metric applied to a database-lookup 
system may have robust applications when lower similar-
ity exists between query and reference.

Among the RefSeq viruses were 3536 prokaryote-
infecting viruses which we used for testing Virgo’s perfor-
mance against vConTACT2 (Fig. 3h). The latter achieved 
an overall higher performance on most metrics com-
pared to the former, albeit with a very similar classifica-
tion ability (vConTACT2 F1 score 0.992, Virgo F1 score 
0.991). Virgo classified 3208 viruses and vConTACT2 
2210. No additional considerations (e.g., in terms of ANI) 
were made for this subset of the data given the elevated 
performance achieved by both programs.

We further identified 400 viruses that belong to 40 
new families in Version MSL39_v4 but are connected at 
higher hierarchical levels to version MSL_37. We were 
able to compare Virgo and geNomad on this rather sub-
stantial sample size, and try to understand what happens 
when novel families are presented to both tools. The 
rationale behind looking at these two specific versions 
lies in the fact that, as stated, geNomad performs classi-
fication using labels from MSL_37, but the current tax-
onomy is at version MSL_39. This indicates that several 
new viruses were added and thus it was possible to com-
pare both Virgo and geNomad using a reference built on 
MSL_37, to predict labels in MSL_39. However, neither 
of the two programs are able to discard the input viruses 
under new families. Presumably, the sequence signals 
are strong for viral components, and the ability to iden-
tify viruses that are incomplete or fragmented trades off 
with a lower capability of rejecting viruses that belong 
to a new taxonomic lineage. Nonetheless, the F1 metric 
for being able to predict the class taxonomic level (higher 
level) remains high for both (Virgo: 0.936, geNomad: 
0.9) but lower for the order level (Virgo: 0.854, geNo-
mad: 0.751. Data not shown for visualization). Additional 
benchmarking results at the genus level are provided in 
Supplementary Fig. S1c–e.

Virgo can classify giant viruses from metagenomic datasets
The Global Ocean Eukaryotic Viral database (GOEV) [19] 
is a resource of MAGs enriched in large and giant marine 
viruses belonging to the phylum Nucleocytoviricota. We 
extracted 1412 sequences with well-defined order taxon-
omy from the original publication’s metadata to compare 

our program’s results against geNomad, PhaGCN2, VPF-
Class and TIGTOG [13].

TIGTOG uses a machine learning approach based on 
protein family profiles to classify giant virus genomes at 
the ICTV order level. Given the high diversity and dis-
tinct signatures of protein content among different taxo-
nomic groups within the Nucleocytoviricota, TIGTOG 
leverages the unique composition of giant virus ortholo-
gous groups within each lineage for classification. To 
avoid reliance on a fixed set of marker genes, it applies a 
random forest algorithm to model taxonomic classifica-
tion at these levels, using features such as the presence 
of ortholog groups and G+C content, with pre-estab-
lished taxonomic labels guiding the model. Benchmark-
ing results for six distinct evaluation metrics are reported 
in Supplementary Table S1; a visual representation of the 
differences in terms of F1 score is depicted in Fig. 3i–l.

Interestingly, three out of four tested programs yield 
accuracies below 0.5. More specifically, Virgo ranks sec-
ond in terms of accuracy (0.984), with TIGTOG achiev-
ing an almost perfect classification accuracy of 0.995. 
Differences in terms of F1 score are less pronounced, 
with Virgo scoring 0.991 and TIGTOG 0.998.

However, geNomad showed an F1 score of 0.307, 
the lowest across all comparisons, despite Virgo and 
geNomad using the same marker dataset. After fur-
ther investigation of the erroneously attributed orders, 
we concluded that geNomad did not generalize well 
the taxonomic branch of the Imitervirales. This is likely 
due to a poor representation of the reference order Imi-
tervirales in release #37 ( n = 2 ) compared to the later 
releases (e.g., n = 22 in release #39). The GOEV bench-
marking dataset is composed of 32 Asfuvirales, 54 Chi-
tovirales, 226 Algavirales and 1100 Imitervirales, thus 
probably representing a considerable challenge for geNo-
mad. We note that Virgo was also run using a reference 
database with the same taxonomic labels as geNoma’s; 
however, Virgo was able to correctly classify this taxo-
nomic branch better than any other program. More 
specifically, Virgo misclassified 1.63% of the input data. 
Most errors involved confusing Algavirales with Imiter-
virales ( n = 16 ) and failing to recognize one third of the 
Asfuvirales sequences ( n = 7 ). A possible explanation for 
this is in the low degree of overlapping marker patterns 
between the ICTV database and the incorrectly assigned 
viruses.

With reference to the meta-analysis reported in this 
study, there is strong evidence indicating that the mis-
classified giant viruses tend to have lower scores com-
pared to the correctly classified ones, despite the 
overall average score being already low at 0.472 (S.D. 
0.19). Therefore, the low fraction of incorrectly classified 
viruses is presumably due to the inherent biology of these 
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large viruses. Their exceptional genomic complexity, cou-
pled with dynamic gene exchanges between these viruses 
and their hosts [20], likely contributed to the errors, 
especially given the sporadic representation in the virus-
specific marker dataset.

Virgo is robust to incomplete data
We investigated Virgo’s robustness against genome frag-
mentation and mutations by performing an artificial 
reduction of 1000 genomes randomly sampled from 
release #39 over a progression of 9 random fragmenta-
tion percentages, with 10 replicates each (Fig.  4). The 
genomes were allowed to reduce in size until the required 
fragmentation or a minimum size of 1 kbp were obtained, 
whichever condition was met first. In this instance, we 
used Virgo masking the query and reference genome 
to ensure replacement in a Leave-One-Out strategy. 
The average size of the initial 1000 ICTV genomes was 
46,234.3 bp (S.D. 70,730.94) and it was reduced to an 
average of 4799.19 bp (S.D 6977.82) during the last itera-
tion. The reduction in genome completeness was con-
firmed by CheckV [21] (Fig.  4a). Random mutations at 
rate of 0.01 were also introduced at the nucleotide level 
in order to add an additional layer of difficulty; note that 
the sequencing error rates reported on Illumina plat-
forms is in the order of 0.001 [22]. The results show a 
general decrease in the average F1 score (vertical axis) as 
the reduction gets stronger (horizontal axis), with a more 
rapid decay between a reduction of 80% and 90%. How-
ever, a consistent performance indicated by an F1 score 
> 0.9 is always observable across all fragmentation levels, 
further corroborating Virgo’s ability to correctly classify 
viral sequences as long as viral open reading frames are 

still detectable. Figure 4b shows the benchmarking results 
of Virgo versus two alternate classification approaches—
one that predicts a query’s virus family using Mash [23], 
and another using nucleotide BLAST [24]. Briefly, these 
programs classify a query sequence by selecting the virus 
family with the highest ANI (Mash) or highest bitscore 
(BLAST) between the query and the ICTV reference 
viruses, allowing for replacement just as performed with 
Virgo. Virgo consistently outperforms the alignment-free 
and alignment-based approaches. More details for these 
comparisons are provided in the “Materials and meth-
ods” section.

Tie score differs across orders
As noted above, running Virgo with replacement did 
not achieve a 100% accurate classification on the ICTV 
benchmarking dataset, indicating that a fraction of 
viruses remained classified incorrectly. Therefore, we 
also conducted a detailed analysis of the correctly ver-
sus incorrectly classified viruses ( n = 30 ), focusing spe-
cifically on those viruses for which Virgo calculated a tie 
score less than 1.

We suspected that, in sporadic cases, some viral fami-
lies were “interfering” with correct taxonomic attribution 
by exhibiting very high bidirectional subsethood scores 
but lower tie scores, meaning that more than one fam-
ily had equal chance of being chosen as the predicted. 
We focused on a group of viruses ( n = 7 ) that were con-
sistently attributed to a different family within the same 
order (Mononegavirales) and computed the bidirectional 
subsethood scores through pairwise comparisons among 
all viruses in this order. For visualization, we selected the 
incorrectly assigned viruses along with other randomly 

Fig. 4  Sequence fragmentation study on 1000 random ICTV viruses. The genome reduction is confirmed through Average Amino acid Identity 
(AAI) completeness, confirmed by CheckV (panel a). Panel b shows the average F1 score (vertical axis) with respect to the percentage reduction 
(horizontal axis) for Virgo and two alternate classification approaches that rely on alignment-free (Mash) and alignment-based (BLAST) scoring 
engines
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sampled members from the same family as both the 
tested and predicted viruses. Similarly, we randomly 
selected an order from the group of correctly classi-
fied viruses (Crassvirales) and computed the same met-
ric for comparison. The results are shown in Fig. 5. The 
seven incorrectly classified viruses, highlighted in yellow 
in panel Fig. 5a, exhibit elevated scores when compared 
to viruses from different families within the same order 
(indicated by a more intense color), often matching or 
exceeding the scores seen when compared to members 
of their own family. In contrast, the bidirectional subset-
hood patterns in a correctly predicted order, as shown in 
Fig. 5b, display a more regular pattern, with members of 
the same family showing higher similarity to each other 
compared to members of other families.

Meta‑analysis of the effect of several factors 
on classification performance
We synthesized the association between predictions 
(correctly and incorrectly classified) and three factors, 
namely AAI completeness, bidirectional subsethood 
score and tie score, using a meta-analysis.

For this analysis, in order to capture the true sources 
of error we ran Virgo one more time, this time without 

the replacement mode that was used in the other perfor-
mance evaluation steps (see sections above). At this stage, 
the ICTV benchmarking dataset was excluded, since 
running Virgo without replacement produced a perfect 
classification. We considered the kVSCs, GOEV and one 
random iteration of the RefSeq viruses, then ran Virgo 
keeping track of the correct and incorrect classifications. 
The resulting data table is available as Supplementary 
Table S2. The three studies were meta-analyzed compar-
ing two groups, the correct and incorrect classifications, 
with respect to each of the three quantitative dependent 
variables whose effect sizes were expressed in terms of 
raw mean differences (MD). Details for the meta-analysis 
are described in the “Materials and methods” section, 
and the resulting forest plots are illustrated in Fig. 6d–f.

The meta-analysis result for AAI completeness is an 
estimated MD of 10.97% (CI 95% [7.37, 13.93]) indicat-
ing that, on average, correctly classified viruses are nearly 
11% more complete compared to the incorrectly clas-
sified portion. This is reflected by all three studies lying 
on the right side of the central vertical solid line centered 
at 0 in Fig. 6d, thus showing a positive mean difference, 
although the kVSCs study showed an MD of 14.48 (CI 
95% [− 13.66, 42.62]) with a wide confidence interval 

Fig. 5  Heatmaps displaying bidirectional subsethood scores among viruses in two distinct orders. Panel a shows the bidirectional subsethood 
scores for viruses belonging to six different families of the order Mononegavirales. Viruses highlighted in the column and row labels are those 
that were erroneously predicted as belonging to a different family within the same order. The heatmap also includes a random selection of viruses 
from the same family as both the tested and the predicted viruses. The score patterns for these viruses are generally irregular, with viruses 
from different families scoring comparably in terms of subsethood, indicating a similarity level comparable to that observed within the same 
family cluster. Panel b displays the bidirectional subsethood scores for a random selection of viruses from different families within the order 
Crassvirales, with all viruses correctly predicted to their respective families. The patterns in panel b are more regular, with viruses within the same 
family sharing markers more similarly than they do with viruses from other family clusters. Notably, there is a faint hue, in panel b, corresponding 
to a light similarity between Intestiviridae and Suoliviridae. However, this mild similarity does not affect the prediction accuracy because other 
members of each respective family exhibit substantially higher scores. The bidirectional subsethood metric, ranging from 0 (no shared markers) to 1 
(all markers shared identically), is used to quantify the similarity between viruses. The family of each virus is reported as well as the virus number 
identifier as of release #39 version 1
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Fig. 6  Meta-analysis of three studies examining the association between accuracy of classification and three factors. Panels a through c show 
individual data points relative to correct and incorrect predictions across the three studies, with respect to AAI completeness (a), bidirectional 
subsethood score (score for short in the legend, panel b) and tie score (c). Panels d through f show forest plots with the effect sizes (horizontal axes) 
expressed as raw mean difference. The solid vertical line centered at 0 indicates the significance threshold. The boxes are bounded by confidence 
interval at 95% and their size is proportional to the precision of their estimate. The diamonds in each panel represent the final estimates for random 
effect models



Page 11 of 19Riccardi et al. Microbiome          (2025) 13:170 	

which suggests substantial uncertainty (due to the small 
sample size for the incorrect classifications n = 9 ). The 
GOEV dataset yielded an MD of 14.93 (CI 95% [2.45, 
27.40]), indicating a statistically significant difference in 
completeness between correctly and incorrectly classi-
fied sequences. The RefSeq dataset, which had the larg-
est sample size, exhibited a mean difference of 10.65% (CI 
95% [7.37, 13.93]), demonstrating a strong and significant 
effect with a relatively narrow confidence interval.

Regarding the bidirectional subsethood score, the 
kVSCs dataset exhibited a mean difference of 0.11 (CI 
95% [− 0.17, 0.40]), with a wide confidence interval, 
which includes zero, suggests that this difference is not 
statistically significant. In contrast, the GOEV dataset 
showed a statistically significant mean difference of 0.28 
(CI 95% [0.25, 0.30]), indicating that correctly classified 
sequences had substantially higher bidirectional subset-
hood scores than incorrectly classified sequences. The 
RefSeq study also demonstrated a significant mean dif-
ference of 0.20 (CI 95% [0.17, 0.23]), further supporting 
the trend that correct classifications correspond to higher 
scores.

The random-effects model produced an estimate of 
0.23 (CI 95% [0.16, 0.30]). This suggests that, on average, 
correctly classified sequences had a bidirectional subset-
hood score that was 0.23–0.24 higher than incorrectly 
classified sequences. The GOEV dataset’s relatively larger 
effect size drives the majority of the effect and causes 
significant heterogeneity ( I2 = 85.4 %, τ 2 = 0.0027 and 
p = 0.0011 ). This is the dataset with the overall lowest 
AAI completeness (60.61% in the correct, Fig. 6e) which 
(in this case) is also responsible for the lowest average 
bidirectional subsethood score (0.47 in the correct group, 
Fig. 6d) since it is composed of sequences with the largest 
genomes among the tested data (they are giant viruses). 
As shown in a later paragraph, viruses with greater num-
ber of vORFs tend to be classified more accurately, which 
is consistent with seeing a dataset with such low average 
bidirectional subsethood score being classified with high 
accuracy (reported to be 0.984 in the Supplementary 
Table S1).

As per the tie score, interestingly the kVSCs and GOEV 
datasets do not contribute to the meta analysis since the 
standard deviation is exactly 0 between the two groups 
making the effect size to become undefined. The RefSeq 
dataset is the only contributor to the pooled effect, which 
indicates that the tie score tends to be 0.26 lower in the 
incorrect fraction of RefSeq viruses (CI 95% [0.22, 0.30], 
Fig. 6f ). Despite not being able to fully determine the het-
erogeneity for the tie score metric, we are able to explain 
why the pooled effect derives from RefSeq only. The 
kVSCs and GOEV datasets are composed of sequences 
with generally larger viruses (prokaryote-infecting 

bacteria in the former, and giant viruses in the latter) 
compared to the more taxonomically broad dataset that is 
the RefSeq. Since our framework bases its computations 
on the number of vORFs that are present in the query 
and reference viruses, it is less likely for longer viruses to 
produce tying scores compared to shorted sequences (see 
later paragraphs for a more in depth explanation).

Calibration of prediction accuracy using vORF‑based 
metrics
In addition to the meta-analysis, factors that may affect 
prediction accuracy were further investigated using a 
calibration dataset. The calibration dataset was pooled 
from the benchmarking datasets: ICTV, kVSCs, GOEV, 
and one random iteration of the 200-iteration RefSeq set 
as described in Data retrieval and preprocessing section. 
We hypothesized that the bidirectional subsethood score 
may oversimplify sequence relationships if the number 
of viral open reading frames (vORFs) in either of the pair 
of sequences is low. We studied the relationship between 
classification accuracy and varying number of vORF for 
the query and reference sequences in the calibration 
dataset. Results are shown in Fig. 7a. Classification accu-
racy is 0.892 when either the query or the most similar 
reference are composed of just one vORF. When the 
number of vORFs is at least 2 for both the query and the 
most similar reference sequence, the classification accu-
racy rises substantially, to 0.987.

We next looked at the classification accuracy as a 
function of the tie score and bidirectional subsethood 
score for query sequences with 1, 2, or at least 3 vORFs, 
respectively, as shown in Fig. 7b and c. When the query 
sequence just contains one vORF, the prediction accu-
racy is lower than 0.933 regardless of the bidirectional 
subsethood score value. When the query sequence con-
tains two vORFs, the classification accuracy shows a gen-
eral increasing trend and is 0.978 when the bidirectional 
subsethood score is above 0.6. For query sequences with 
at least 3 vORFs, the prediction accuracy is above 0.99 
when the subsethood score is above 0.2. Figure 7b shows 
that the prediction accuracy is above 0.97 when tie score 
is 1 and is lower than 0.677 when tie score is less than 1.

While we could apply a strict filter requiring both the 
query and the most similar reference sequence to have 
at least two vORFs, this filter would discard 2280 poten-
tial predictions. Instead, we explored a refined filtering 
approach that leverages both bidirectional subsethood 
score and tie score. We found that for predictions where 
either the query or the most similar reference sequence 
has only one vORF, for a subsethood score above 0.8 and 
a tie score of 1, the accuracy reaches 0.977. In contrast, 
classifications performed without applying both criteria 
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(bidirectional subsethood score > 0.8 and tie score = 1) 
show a much lower accuracy of 0.794.

In the light of these observations, we include in the 
results table a confidence label (0 or 1) based on the fol-
lowing two criteria: (i) both the query and most similar 
reference sequence have at least 2 vORFs or (ii) either 
the query or reference sequence contain just one vORF, 
and the bidirectional subsethood score is at least 0.8 and 
tie score equals 1. Using these two criteria, we discard 
roughly 12 % of the sequences and obtain a prediction 
accuracy at about 0.98.

Materials and methods
The bidirectional subsethood scoring metric
The core principle by which we obtain good classifica-
tion power is reliant upon the assumption that related 
protein-coding sequences exhibit specificity for pro-
tein domains or families that perform similar functions. 
Overall, this assumption is made by most virus classifi-
cation software that use information from the viral open 
reading frames to establish connections between viruses.

Here we perform a pairwise comparison between 
a query sequence and viruses in the ICTV that are 

representative of each family, to infer its possible taxo-
nomic affiliation. However, we do not compare the two 
sequences directly. Instead, we analyze the patterns each 
sequence independently forms in relation to a set of 
virus-specific markers.

We utilize a recently published, comprehensive pro-
tein marker dataset that includes multiple sequence 
alignments of protein families derived from de 
novo-generated profiles, external profiles, and non-
redundant profiles specific to viruses. This dataset is 
sourced from the largest collections of viral and micro-
bial sequences obtained from single genomes and 
metagenomes, as well as the NCBI database. It also 
encompasses 25,729 protein markers across Nucleo-
cytoviricota, Asgard archaea viruses, archaeal tailed 
viruses, and unannotated domains of polyproteins [16, 
17]. These profiles are functionally annotated and used 
for classifying sequences, providing functional insights, 
and enabling taxonomic assignments. We broaden the 
application of these markers, without considering their 
detailed biological functions or the specific taxonomic 
categories, which are hidden and not accounted for. 
Briefly, to build the marker profiles, Carmago et al. first 

Fig. 7  Prediction accuracy across vORF counts, tie scores, and subsethood score thresholds. Panel a shows the relationship between prediction 
accuracy and the numbers of vORFs for the query and most similar reference sequences. Panel b shows the accuracy as a function of the number 
of additional tying families (reciprocal of tie score) for the same query vORF categories. The numbers on top of each bar indicate the sample 
sizes in each category. Panel c shows the accuracy trends based on subsethood score thresholds and the number of query vORFs. The number 
on the top of each bar is the number of sequences in each category
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retrieved a large number of protein sequences from 
various databases. These sequences were de-replicated 
and then clustered to form different clusters. They then 
performed multiple sequence alignment of sequences 
in each cluster to form the protein marker profiles. 
Detailed steps to obtain these profiles are given in the 
“Methods” section of their paper [15]. In this study, we 
only use marker profiles related to viruses.

We provide a formal definition of the bidirectional 
subsethood, including one example, then proceed to 
explain the implementation details in the following sec-
tion. More examples are provided in the Supplementary 
materials 2. Just like a genomic DNA sequence encodes 
for a collection of open reading frames, we model a 
virus as an unordered collection of sets. Each vORF is 
represented by a set, and each element of the set corre-
sponds to one virus-specific marker profile that aligns 
to that particular vORF. Since a vORF can match mul-
tiple marker profiles, each set may contain multiple 
markers, theoretically as many as there are in the data-
base. We define a measure of similarity between two 
such objects, ranging between 0 and 1, with 0 indicat-
ing no shared markers and 1 indicating perfect sharing. 
Let A and B be two unordered collections of sets. Virgo 
first computes a similarity matrix S, where each ele-
ment Sij is the Jaccard similarity between the i-th set in 
A and the j-th set in B:

with Ai and Bj representing sets from A and B, 
respectively.

The bidirectional subsethood metric aggregates the 
similarity matrix into a single value. It is computed 
by first finding the best match (i.e., the maximum 

Sij = J (Ai,Bj)

similarity) for each set in A against all sets in B, and 
vice versa. Then, the average of these best matches is 
taken.

The final bidirectional subsethood s is calculated as

where |A| is the number of sets in A, and |B| is the num-
ber of sets in B.
Example. Let us model two genomic sequences as the 

collections of sets of markers, A and B, containing two and 
three vORFs, respectively:

We begin by calculating the similarity matrix S where 
each element Si,j is the Jaccard similarity between the i-th 
set in A and the j-th set in B.

The best match for every set in A versus all sets in B and 
each set in B against all sets in A are extracted from the 
similarity matrix and then averaged out, to yield

Best match for Ai = max
j

Sij

Best match for Bj = max
i

Sij

(1)s(A,B) =
1

|A| + |B|

|A|

i=1

max
j

Sij +
|B|

j=1

max
i

Sij

A = {{a, b}, {d}}
B = {{d}, {b, c, d, e}, {a}}

S =
(

S1,1 S1,2 S1,3
S2,1 S2,2 S2,3

)

=
(

0 0.2 0.5
1 0.25 0

)

s(A,B) =
1

2+ 3
· (0.5+ 1+ 1+ 0.25+ 0.5) = 0.65

Fig. 8  Representation of two viral genomes using unordered collections of sets. The top and bottom rows show three and four distinct vORFs, 
each matching one or more virus-specific marker profiles (colored bricks). The gray solid lines connecting the vORFs maximize the local Jaccard 
coefficients between two sets, as opposed to the dashed lines, that indicate a lower similarity that will not be chosen for the calculation 
of the bidirectional subsethood. The final bidirectional subsethood for this specific toy configuration equals 0.452
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Therefore, the bidirectional subsethood measure for 
the two mock genomes would be 0.65 given the marker 
profiles.

We illustrate an artistic representation of the collec-
tions of sets in Fig. 8.

Virgo’s computational framework
Virgo transforms each query sequence into a multiset 
representation, compares them to a database of reference 
viruses, also represented as multisets (precomputed), and 
assigns the taxonomic lineage of the database entry with 
the highest similarity based on the bidirectional subset-
hood of shared markers.

We describe here the feature extraction proce-
dure needed to capture the distribution of viral-spe-
cific marker genes across a set of DNA sequences. We 
first infer vORFs using Prodigal V2.11.0-gv [25] with 
enhanced specificity for virus nucleotide translation, 
parameters (-p: meta/anon to apply pre-calculated train-
ing to the input sequence) and align them to the viral-
specific subset of marker genes using MMSeqs2 Version: 
15.6f452 [26] in easy-search mode (parameters: −s 7.5 
for high sensitivity, −e 1e−3 −c 0.2 –cov-mode 1 to ena-
ble the coverage of the target to be at least 20%, with an 
E-value of at most 0.001). Note that we utilize this proce-
dure and parameters in order to adhere to the specifics 
used by the authors of the virus-specific marker profiles 
database. The alignment file listing, among others, the 
query (each individual vORF) and the target (virus-spe-
cific marker genes) is then converted to an unordered 
collection of sets of matched markers for each vORF.

Upon release of a new ICTV VMR resource, the user 
may use our freely distributed source code to generate a 
Virgo database, or download it through the GitHub page. 
The database serves as input to the computer program 
for virus identification through the command line flag 
–data. The same procedure is also embedded in Virgo 
to convert the input query sequences into an unordered 
collection representation, to then maximize the bidirec-
tional subsethood and assign the taxonomic lineage up 
to the family level. When the user runs Virgo on a query 
virus, the program reports the taxonomic lineage as well 
as the bidirectional subsethood score between the query 
and the database entry with the highest match. Addi-
tionally, it reports the number of database entries that 
achieved the maximum bidirectional subsethood, along 
with the tie score, which is inversely related to the num-
ber of distinct families associated with those top-scoring 
viruses. The tie score is calculated as

t =
1

n
for n ∈ {1, 2, 3, . . . nfamilies}

A tie score of 1 indicates that all the top-scoring data-
base entries belong to the same family, a tie score of 0.5 
or lower indicates otherwise.

By default, the current implementation employs a 
straightforward approach that chooses the database entry 
with the most similar G+C content, to prevent random 
selection in the event of ties. The G+C fraction informa-
tion is derived from the gene calling procedure and it 
does not add additional overhead on the overall program 
execution. To facilitate Leave-One-Out studies on Virgo, 
we also included a flag (–with_replacement) that 
masks the database entries that identical to the query 
during classification. This method is meaningful when 
testing viruses from the ICTV downloaded using our 
program ICTVdump.

Virgo operates in multi-threading using python’s native 
libraries. Moreover, Virgo can accept multiple genomes 
at once through the –input command line option. We 
also provide options to narrow down the results accord-
ing to the user’s need: the flag –min_score only saves 
viruses with bidirectional subsethood score above a cer-
tain value; –drop_ties omits viruses with any ties in 
the final results table; –virus-by-virus allows a 
more granular and verbose output, by writing a JSON file 
with all query-db comparisons that yield a score greater 
than zero. The GitHub page provides further information 
on usage, examples and access to a repository of pre-cal-
culated VMR releases, eliminating the need for users to 
construct the database themselves. Runtime and memory 
consumption metrics are reported in Supplementary 
Table S3.

Data retrieval and preprocessing
The kVSCs dataset is an extract of the representative 
viral sequences included in the MetaPhlan 4.1 release 
[27]. To construct the kVSC dataset, Zolfo et al. selected 
5651 sequences, including 699 bacteriophage genomes 
from RefSeq with known taxonomic labels and 4952 
viral contigs identified from high-quality metaviromes. 
These sequences were clustered into 3944 viral sequence 
clusters (VSCs) using VSEARCH (version 2.14.2) at 90% 
sequence identity. The clustering process was performed 
with the following parameters: –cluster_fast –id 0.9 –
strand both –maxseqlength 200,000. Clusters that con-
tained at least one RefSeq viral genome were classified 
as known viral sequence clusters (kVSCs) [18]. In total, 
588 VSCs contained a viral reference genome and were 
labeled as kVSCs. The DNA sequences were obtained 
from the files VSC5_rep_fnas_nr99_45k_metaph-
lanDB.fna.gz and VSCs_groups.csv, downloaded from 
Zenodo (https://​zenodo.​org/​recor​ds/​10512​460) on June 
28th, 2024. From the 45,872 representative sequences 
included in the MetaPhlan 4.1 module, we selected those 

https://zenodo.org/records/10512460
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clustering with a RefSeq representative, yielding the 
kVSCs. The selection process further involved matching 
RefSeq accession names in the metadata with those in the 
ICTV Release #38 to ensure accurate labeling, resulting 
in 2232 eligible samples. Taxonomic assignments were 
based on the linked RefSeq accessions present in ICTV 
Release #38.

ICTV viral exemplar genomes were extracted from 
the ICTV Release #39. The data were downloaded on 
July 17, 2024, using ICTVdump with default parameters. 
A total of 1000 viral genomes, representing 119 differ-
ent viral families, were randomly selected using equal 
probability weighting in pandas (python version 3.12.3). 
The genomic DNA sequences were then artificially frag-
mented from both ends in a random manner using the 
script fragment_dna.py, available at https://​doi.​org/​10.​
6084/​m9.​figsh​are.​28730​093.​v1 (under the ‘‘Reduction’’ 
subfolder). The fragmentation process involved a muta-
tion parameter of 0.01, a lower bound of 1000 bp, and 
an increment of the reduction parameter by 10% each 
time (from 0.1 to 0.9), resulting in 9 different reduction 
settings. This was performed in 10 replicates across the 
1000 genomes, yielding a total of 90,000 fragmented 
sequences. The SLURM script used to generate these 
fragments is also provided in the same FigShare reposi-
tory, under the ‘‘Reduction’’ subfolder.

An additional set of n = 860 genomes was extracted 
using stratified sampling at the family level, selecting 
up to 5 viruses per family. This data subset (the ICTV 
benchmarking dataset) was assembled by comparing two 
ICTV releases (versions release #37 and #39) and extract-
ing viruses that (i) shared the same GenBank accession, 
(ii) had a family assigned (though not necessarily with 
consistent naming), and (iii) included at least two rep-
resentatives per family. The taxonomic assignment for 
these genomes follows the ICTV-ratified lineage. The 
complete list of all ICTV versions are kept at https://​ictv.​
global/ as of 2025.

We further used sequences from RefSeq via the NCBI 
Virus resource (https://​www.​ncbi.​nlm.​nih.​gov/​labs/​
virus/​vssi/#/), last accessed on January 27, 2025. Initially, 
all 3,376,487 viral sequences were downloaded via the 
standard web interface. We then filtered the viruses to 
only include those that have a family taxon assigned. This 
reduced the data from 3,376,487 to 3,342,047. We further 
investigated the stratification of the dataset to account 
for family imbalance, finding that out of the 258 fami-
lies, the most represented were Coronaviridae with over 
3M records. 254/258 family labels that were attached to 
the RefSeq sequences matched the ICTV family labels in 
release VMR_MSL38_v3, therefore these were kept for 
further consideration (n=3,342,022). Since there were 
a median of 43 viruses per family in this dataset (data 
not shown), we performed 200 random samplings of 
the 3,342,022 initial viruses, pulling up to 43 viruses per 
family in every cycle. The final RefSeq dataset consisted 
of 200 folders containing each exactly 6,778 viruses, for 
a total of 1,355,600 sequences. We computed the ANI 
(1−Mash distance ∗ 100) between all sequences in the 
RefSeq benchmarking dataset and those listed in the 
ICTV Release #39. We then grouped these sequences 
into four different slots, according to their ANI value 
in descending blocks of 10%, from 100% down to 60% 
ANI. Mean and standard deviation of all ANI groups 
are reported in the Supplementary Table  1. The RefSeq 
dataset is composed of both eukaryotic and prokaryotic 
viruses.

Finally, we used a dataset extracted from the Global 
Ocean Eukaryotic Viral database, as detailed by Gaïa et al. 
[19]. The dataset comprises eukaryotic double-stranded 
DNA viruses: 591 MAGs from Schulz et al. (2020) [28], 
445 MAGs from Sunagawa et  al. (2020) [29], and 218 
MAGs from Moniruzzaman et  al. (2020) [30], along 
with 158 reference viral assemblies, with the most recent 
access being on July 20, 2024. Data were sourced from 
GOEV_DB_CONTIGS.db.zip (https://​doi.​org/​10.​6084/​

Table 1  Summary of benchmarking datasets. Each dataset is characterized by its size, description, dominant viral taxonomic groups, 
number of unique virus families, and the number of viruses with labels

Dataset Size Description Main virus group # of families Viruses 
with 
labels

ICTV 860 Viruses extracted from ICTV VMR Caudoviricetes, Pisoniviricetes, 
Alsuviricetes, Monjiviricetes, 
Bunyaviricetes

192 860

RefSeq 6,778 RefSeq viruses that exhibit a minimum MASH distance 
greater than 0.1 from any virus present in ICTV

Caudoviricetes, Pisoniviricetes, 
Alsuviricetes, Monjiviricetes, 
Bunyaviricetes, Arfiviricetes

270 5,870

kVSCs 2,232 A known viral sequence clusters dataset from human gut Caudoviricetes 17 732

GOEV 1,412 A dataset of viruses related to giant viruses Megaviricetes N/A 1,412

https://doi.org/10.6084/m9.figshare.28730093.v1
https://doi.org/10.6084/m9.figshare.28730093.v1
https://ictv.global/
https://ictv.global/
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
https://doi.org/10.6084/m9.figshare.20284713
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m9.​figsh​are.​20284​713), with selection criteria focusing 
on data labeled at the order taxon level. The taxonomic 
assignments from the GOEV database were found to be 
consistent with ICTV release VMR_MSL38_v3.

An overview of these datasets is provided in Table  1. 
RefSeq data can be downloaded via the NCBI Virus 
resource as indicated above. The ICTV virus meta-
data resource releases used in the benchmarking stage 
of this study were VMR_08-201218_MSL33 (release 
#33), VMR_18-191021_MSL36 (release #36), VMR_19-
250422_MSL37 (release #37), VMR_MSL38_v3 (release 
#38), and VMR_MSL39_v1 (release #39).

Additional software used in our study
vConTACT2 v0.11.3 was run using the required amino 
acid FASTA file containing the input sequences, and the 
gene-to-genome mapping file generated using the vcon-
tact2_gene2genome.py script (parameters: -s Prodigal-
FAA) from MetaPhage v0.3.3, last accessed on Aug 8, 
2024 via https://​github.​com/​Matti​aPand​olfoVR/​MetaP​
hage.

geNomad v1.8.0 was used in end-to-end mode using its 
default parameters across all benchmarking runs.

TIGTOG v0.1 was run using an E-value threshold of at 
most 1e−10 as suggested by the authors (parameters: −e 
1e−10); last accessed on July 19, 2024 via https://​github.​
com/​anhd-​ha/​TIGTOG.

PhaGCN2 was run through Phabox (v2.1.9) [31] using 
minimum length 1500 (parameters: –len 1500).

VPF-Class v0.1 was run using the default parameters 
across all benchmarking datasets; last accessed on Janu-
ary 27, 2025 via https://​github.​com/​biocom-​uib/​vpf-​
tools/​tree/​master.

Nucleotide BLAST from the BLAST+ suite installed 
locally (version 2.16.0) with parameter outfmt 6 
and default word size was used to evaluate nucleotide 
sequence identity between 90,000 fragmented viruses 
and all ICTV viruses during the genome reduction study. 
Similarly, Mash version 2.3 was used to compute the 
average nucleotide identity between all RefSeq and all 
ICTV viruses. Sequences were first sketched using Mash 
sketch with a k-mer size of 21, then Mash dist was 
used to compute the distance. Mash was also used to 
compute the distance between 90,000 fragmented viruses 
and all ICTV viruses during the genome reduction 
study. K-mer values of k = 21 and k = 31 were used. Mash 
default value of k is 21, hence the choice to use such k, 
and a larger value of k which is a standard value used in 
bioinformatics genome analyses ( k = 31 , e.g., sequence 
assemblers).

CheckV v0.7.0 was used in completeness mode to 
assess viral genome completeness throughout the study, 
and to study the relationship of the wrongly predicted 

taxa with genome completeness. In three separate analy-
ses, the values for (i) AAI completeness, (ii) bidirectional 
subsethood, and iii) tie score were compared between 
two groups: correctly classified viruses and incorrectly 
classified viruses. The virus-specific marker profiles are 
the fraction of markers that are labeled as being at least 
specific for viruses, therefore being labeled as ‘‘*V’ or 
‘‘V*’’ in the MMSeqs2 profile database file genomad_db_
v1.7.tar.gz from https://​zenodo.​org/​recor​ds/​10594​875 
CC by 4.0, Antonio Camargo.

ICTVdump is a simple program for the automatic 
retrieval of genome sequences and metadata linked 
through the virus metadata resource. It automatically 
connects to any VMR version, retrieving the GenBank 
identifiers, then downloads them in batch from the NCBI 
and generates an SQL database of DNA sequences and 
one taxonomy table in CSV format. The program is writ-
ten in python and is freely available at https://​github.​
com/​chris​topher-​ricca​rdi/​ICTVd​ump. All software used 
in our study were run using 40 cores (AMD EPYC 9354 
32-Core Processors) using the resources provided by 
USC Center for Advanced Research Computing (CARC).

Three distinct meta-analytic random-effects models 
were fit using the function meta package version 8.0.2 
[32] in R version 4.2.2. The mean difference was cho-
sen as the effect size since all studies were expressed on 
a common scale (AAI completeness, ranging between 0 
and 100, bidirectional subsethood and tie score ranging 
between 0 and 1). Let Y 1 and Y 2 be the sample means of 
two independent groups of viruses, in terms of AAI com-
pleteness for the correctly (1) and incorrectly (2) classi-
fied. The raw mean difference is given by

Let S1 and S2 be the sample standard deviations of the 
two groups, and n1 and n2 be the sample size in the two 
groups. Here we don’t assume that the two population 
standard deviations are the same, and the variance of D 
is estimated by

We calculated D and vD in three separate instances, one 
for every meta-analyzed factor and confirmed that the 
above-mentioned R package calculated these values as 
required.

Although the viral sequences from the three datasets 
do not overlap, as they are collected from different data 
sources, they may be related through their taxonomic 
relationships. Consequently, the three substudies may 
not be independent, which violates the assumptions of 
the random effects model. Therefore, the results from 

D = Y 1 − Y 2

vD =
S21
n1

+
S22
n2

https://doi.org/10.6084/m9.figshare.20284713
https://github.com/MattiaPandolfoVR/MetaPhage
https://github.com/MattiaPandolfoVR/MetaPhage
https://github.com/anhd-ha/TIGTOG
https://github.com/anhd-ha/TIGTOG
https://github.com/biocom-uib/vpf-tools/tree/master
https://github.com/biocom-uib/vpf-tools/tree/master
https://zenodo.org/records/10594875
https://github.com/christopher-riccardi/ICTVdump
https://github.com/christopher-riccardi/ICTVdump
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the random effects model analyses should be interpreted 
with caution.

Evaluation metrics
The evaluation metrics used in this study include accu-
racy, precision, recall (sensitivity), specificity, F1 score, 
and Matthews Correlation Coefficient (MCC). Briefly, we 
calculated the accuracy score as the number of correct 
predictions divided by the total number of predictions:

Precision was calculated as the ratio of true positive 
predictions to the total number of positive predictions 
(true positives and false positives). Therefore, for a given 
class i:

Recall was calculated as the ratio of true positive pre-
dictions to the total number of actual positives (true pos-
itives and false negatives). For the i-th class:

The proportion of actual negative instances that are 
correctly identified, for each class i , was calculated as

The F1 score, also for each class i , was calculated using 
the formula for the harmonic mean of precision and 
recall:

MCC was calculated using all the elements in the con-
fusion matrix, as

All the above metrics were calculated using python’s 
scikit-learn library within a multi-class classification 
context. The overall metrics were derived as a weighted 
average to ensure that each class was considered propor-
tionately to its distribution in the dataset.

Discussion
We propose a virus classification method based on a 
similarity metric between sequences, and show that 
using a recently published, comprehensive database of 

Accuracy =
Number of Correct Predictions

Total Number of Predictions

Precisioni =
TPi

TPi + FPi

Recalli =
TPi

TPi + FNi

Specificityi =
TNi

TNi + FPi

F1 scorei = 2×
Precisioni × Recalli

Precisioni + Recalli

MCC =
TP × TN − FP × FN

√
(TP + FP)(TP + FN )(TN + FP)(TN + FN )

virus-specific marker profiles, our method can accurately 
predict the family taxonomic label with an overall aver-
age accuracy above 0.96. Benchmarking and performance 
analysis across all tested data sources demonstrate that 
Virgo can generalize and accurately predict viral family 
taxonomy with precision comparable to more sophisti-
cated tools. Arguably, flexibility and tolerance in dealing 
with imprecise data are valuable characteristics for any 
virus classification software, and the bidirectional sub-
sethood metric we propose for this type of classification 
may exhibit such characteristics.

Nonetheless, in at least two instances, the incorrect 
predictions were significantly associated to lower tie 
scores. Further investigation of these cases revealed that 
the bidirectional subsethood score, though robust for the 
majority of the viruses tested, can be shared at compara-
ble levels across distinct families of the Mononegavirales 
order, thus making resolution at family level problematic.

Moreover, our method assumes that the user-provided 
sequences are viral; therefore, pre-filtering non-viral 
sequences using methods like geNomad [15], Deep-
VirFinder [33], or DeepMicroClass [34] is advised prior 
to classification.

The metagenomic datasets used in our study pay spe-
cial attention to viruses of microorganisms, since viruses 
within the Caudoviricetes order and Nucleocytoviricota 
phylum are abundant in the sunlit ocean, where they play 
a crucial role in regulating plankton community com-
position and controlling bloom dynamics, and whereas 
gut phages have been shown to play a fundamental role 
in shaping and modulating bacterial growth by lysis and 
lysogeny, thus directly affecting human health since early 
age [35, 36].

Virgo showed excellent results in the classification of 
giant viruses derived from ocean metagenomes, but it 
was generally outperformed by a dedicated program, 
TIGTOG. It is fair to mention, however, that TIGTOG is 
in fact trained on a set of data that included sequences 
from GOEV itself, and this likely contributed to the 
higher performance on this dataset. Compared to the 
several other programs tested, we were surprised to 
observe that a general virus classification program like 
Virgo achieved comparable results on a dataset char-
acterized by such a remarkably broad phylogenetic 
diversity.

Virgo exhibited a relatively stable performance on the 
kVSCs dataset, while the other methods exhibited an 
unexpectedly poorer performance. Although this dataset 
represents a novel resource of viruses associated with the 
human gut microbiome, deriving from high quality meta-
viromes, these viruses are still phylogenetically close to 
viruses in the current data banks (recall how the kVSCs 
are the known viral sequence clusters). Virgo was able to 
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capture their taxonomic lineage with great precision and 
recall, perceptibly better than any other method tested.

It is interesting to note that the viruses in the ICTV 
cover around 44% of the 161,862 virus-specific markers. 
On the one hand, this suggests that a significant portion 
of the markers are well represented in the ICTV. On the 
other hand, the remaining 56% of the markers are found 
in viral sequences that have been captured and are pre-
sent in publicly available datasets, but have yet to be 
classified and named. In the light of this observation, we 
highlight the necessity to develop computational meth-
ods that can easily integrate new versions of the manually 
curated taxonomic labels.

We also provide an accessory program, ICTVdump, to 
facilitate and automate this operation, given the utmost 
importance of manually curated reference taxonomic 
lineages. Our method is designed to deal with an ever-
improving resource such as the ICTV. Moreover, while 
our method is generally robust to fragmentation, as 
confirmed by the non-parametric tests of completeness 
across datasets and, even more prominently, by the arti-
ficial genome mutation and reduction study, the meta-
analysis revealed that viruses correctly classified by Virgo 
tend to be 10% more complete than the misclassified 
ones. This suggests a potential limitation in cases where 
genomes are highly fragmented, since our method relies 
on the indirect comparison of marker gene sharing, and 
genome completeness is closely tied to viral sequence 
size. Nonetheless, compared to straightforward metrics 
of similarity scores (e.g., BLAST, ANI, or Jaccard coeffi-
cient, see “Results”), our method has shown better per-
formance in dealing with incomplete data. These are 
desirable features that could position Virgo as a valuable 
tool for metagenomic studies or reclassification efforts in 
light of new ICTV updates.

Taken together, the presented results favor the hypoth-
esis that the bidirectional subsethood of matched marker 
profiles is a viable metric on which accurate virus clas-
sification can rely on. Nonetheless, we can devise 
ways to further enhance methods using this similarity 
measure. For example, when attempting to distinguish 
harder-to-classify viruses, such as those in the order 
Mononegavirales, the metric could be further refined 
by re-architecturing the bidirectional subsethood and 
transforming the collections of sets from unordered to 
ordered. Modeling the order in which the two genomic 
sequences individually map to the markers profiles 
(a synteny-like approach) could help reduce ties and 
improve classification accuracy. We would like to empha-
size that the classification robustness achieved is likely a 
testament to the extensive effort put into the collection 
and validation of the markers by the authors of geNomad, 
and we gratefully acknowledge their contributions.
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