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Background Due to the impact of viral metagenomic sequencing, the official virus taxonomy is updated several
times a year, with labels being renamed even substantially across releases. While this helps reveal newer aspects
on the classification of viruses, existing bioinformatic methods for classification struggle to stay in sync with this ever-

Results We developed a new computer program, named VIrGo, that is able to correctly predict virus families
from metagenomic data with an F1 score above 0.9 using a novel viral sequence similarity metric proposed in this
work. Moreover, it ensures compatibility with any version of the official taxonomy of viruses.

Conclusions Virgo is designed to easily incorporate newer releases of the official taxonomy, thus representing a valu-
able resource in the virology community while raising awareness to develop computational methods that evolve
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Introduction

Virus detection and classification have benefited tre-
mendously from viral metagenomics and from the
computational methods developed around it [1, 2]. The
International Committee on Taxonomy of Viruses (ICTV
[3]) has recently begun accepting complete molecular
sequence analysis and annotation as a sufficient require-
ment for entries inclusion and potential ratification,
resulting in a taxonomic architecture that is a better
reflection of the polyphyletic nature of viral evolution
[4]. The ICTV has also created a repository of metadata
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and lineage information for all recognized virus species,
now organized in a 15-rank classification hierarchy that
mirrors the Linnaean taxonomy system [5]. The num-
ber of species listed in the Virus Metadata Resource
(VMR) has more than doubled in the last five years
(since release MSL35, Fig. 2a) and with 3468 new entries
added between the last two versions of the master spe-
cies list (Fig. 2a). Contingent on the growth of this valu-
able resource (which also encompasses satellite nucleic
acids, viriforms, and viroids, highly relevant in plant biol-
ogy [6]), bioinformatic methods for virus prediction and
viral genome analysis have shifted their source of clas-
sification, from the Baltimore classes or NCBI lineages
towards ICT V-ratified taxa [7, 8]. As the ICTV expands,
it inevitably becomes more complex, but this expan-
sion ensures greater precision and thoroughness, albeit
at the cost of introducing new taxa and renaming exist-
ing ones in subsequent releases [4, 9, 10]. These updates
can have a profound effect on computational prediction
methods, especially when trained on specific versions
of the ICTV, thus challenging the labeling process and
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calling for awareness when using such software. This is
a “good” problem, that has been circumvented by tools
such as vConTACT?2 [11], which does not directly output
a taxonomic lineage, but rather makes inference of the
taxonomic context (via RefSeq) a query sequence is more
likely associated with, using a network-based approach
on protein clusters.

Nonetheless, other computational frameworks rely
exclusively on past releases of the ICTV and their pre-
dicted labels are somewhat “crystallized” to a specific
release, thus making it laborious now, and in the future,
to not only trace back the correct viral prediction that
might have changed over time, but also to make a fair
comparison when benchmarking new software. Other
approaches embed taxonomic information directly
within the features used in the training, then use major-
ity rule-based scoring systems or membership ratios to
infer the taxonomy. Even this approach makes synchro-
nization to an ever-improving resource challenging. For
example, PhaGCN2 [12] (a recent virus classification
program that combines convolutional neural networks)
relies on taxonomic labels from a pre-trained version of
the ICTV. Similarly, TIGTOG [13], which uses random
forests to classify giant viruses using DNA and amino
acid sequence features, does not allow to update training
set labels. VPF-Class [14] relies on a set of viral protein
families that were pre-annotated and assigned to specific
taxonomic levels using purity thresholds to enhance the
classification of viral genomes. A similar strategy was
adopted by geNomad [15], where the encoded genes in
a query sequence are aligned to a set of 227,897 markers
which may contain taxonomic information, and a single
taxonomic assignment is emitted according to a weighted
scheme based on the bitscore of the taxonomically
informed matched marker profiles. While these strate-
gies have demonstrated exceptional power in identify-
ing viruses from metagenomic data, they are not exactly
compatible with an ever-refining official taxonomy (as of
2025).

Here we present a straightforward and effective pro-
gram for virus classification, Virgo, that infers the
ICTV-ratified taxonomic lineage of a given set of query
sequences. Our approach finds similarity between the
query and a database of ICTV viruses using a bidirec-
tional subsethood metric, which is used to score the way
two sequences independently align to a set of virus spe-
cific markers. Genomic sequences are modeled using
unordered collections of matched marker profiles, with
markers coming from a recently published, large environ-
mental metagenomic survey [15].

The more two such representations resemble each
other in terms of markers distributions, the higher
the score (closer to 1), or closer to 0 otherwise. The
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taxonomic lineage is then drawn from the ICTV entry
with the highest similarity. A formal presentation of the
algorithm is provided in the “Materials and methods”
section.

We designed a computational framework that uses the
ICTV-ratified lineage labels, and is compatible with dif-
ferent releases of the virus metadata resource, thus allow-
ing the program to operate on fresh updates. Unlike the
other tools that explicitly embed taxonomic information
within the features, we let the features aggregate fluidly
and autonomously in sync with the ICTV version used as
reference, thus ensuring reproducibility and usability.

We benchmarked our tool with state-of-the-art virus-
detection and classification programs, that range from
the specific detection of giant viruses and prokaryotic
viruses, to omni-comprehensive virus prediction tools.
During benchmarking we realized that the evaluation of
the classification results is often hampered by the vari-
ability of labels across releases of the reference taxonomy.
Therefore, we addressed the necessity to develop soft-
ware that can digest newer releases of an ever-growing
taxonomy by making publicly available the source code
for an ICTV sequence dump program. This program,
which we named ICTVdump, connects to any version
of the Virus Metadata Resource release and downloads
sequences, metadata and taxonomic lineage associated to
every sequence listed.

We report several metrics to show Virgo’s performance
on both metagenomic and reference viruses in rela-
tion to other software and investigate the potential rea-
sons behind the fraction of incorrectly classified viruses.
Aware of the fact that the programs used for benchmark-
ing rely on taxonomic labels tied to previous versions of
the ICTV, we accessed the past releases and ran Virgo
on the same version as those programs. This was possi-
ble using ICT Vdump, and it ensured a fair and consistent
comparison to existing programs for virus classification.
Overall, Virgo exhibits consistent and high accuracy in
resolving the family level of viruses, even when those
are fragmented or incomplete, and it is among the fast-
est in terms of speed, compared to the tested tools. Virgo
is written in python and it requires a database which we
distribute together with the source code at https://github.
com/christopher-riccardi/Virgo.

Results

Virgo overview and workflow

Virgo’s workflow consists of three main steps shown in
Fig. 1: (1) downloading sequences and metadata from
the ICTV online resource, (2) creating the Virgo data-
base, and (3) performing virus classification. In Step
1, the user retrieves viral sequences and metadata for a
specific ICTV release. To facilitate this, we developed a
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Step 1: Download
sequences and
metadata

ICTVdump

v

INPUT

e URL to a VMR version

o Output folder name

o (Optional) SQL file created by
ICTVdump

Fetch VMR data
l Edirect

GENBANK accessions

|

Filter out invalid
GENBANK accessions

|

Download sequences in
SQL

|

Update labels if
necessary

OUTPUT

e Taxonomy table
¢ FASTA SQL DB
o Valid accessions file

Step 2: Create
a Virgo
database

create_virgo_database.py
(Virgo GitHub Repo)

v

INPUT

Taxonomy table
FASTA SQL DB
Virus-specific markers
Output folder name

FASTA from SQL

i Prodigal-gv
VORFs
i MMSeqs2

Align markers to vVORFs

v

Filter out viruses without
detected markers

|

Store viruses as sets of
markers

OUTPUT
« Virgo database pickle file
o Copy of virus-specific markers
o (Optionally) FASTA sequences
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Step 3: Virus
taxonomy
prediction

Virgo

v

INPUT

Input FASTA directory

Virgo database directory
Output folder name

(Optional) custom output flags

l

Input FASTA(s)

¢ Prodigal-gv
VORFs
¢ MMSeqs2

Align markers to vVORFs

v

Filter out viruses without
detected markers

v

Represent queries as
sets of markers

v

Calculate bidirectional
subsethood and assign
taxonomy

l

OUTPUT

« Results table with best-scoring
» JSON file with all scores >0

Fig. 1 Workflow overview. Virgo operates on a database tailored to a specific release of the ICTV. In Step 1, the user provides a URL to a specific
release of the VMR, and ICTVdump collects the necessary information for every virus. In Step 2, the user runs the script create_virgo_database.
py to package this information into a computer-readable format; it also writes to a folder with the necessary files in order to run the actual
classification, which happens in Step 3 (i.e,, running Virgo)

companion tool, ICTVdump, which downloads nucleo-
tide sequences in FASTA format along with the corre-
sponding metadata. In Step 2, the user can run the script
create_virgo_database.py which will infer the viral open
reading frames (VORFs), align them to the virus-specific
markers released with geNomad and then package the
computational representation of each virus together with

their ICT V-ratified labels, all in a fully automated fash-
ion. In Step 3, taxonomic classification is performed. For
each query, Virgo computes the bidirectional subsethood
score against all reference viruses in the Virgo database.
The query is then assigned the taxonomic lineage of the
reference virus with the highest score. This modular
workflow allows Virgo to remain compatible with any
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Fig.2 aICTV sequences and virus-specific markers information. The volume of species in the VMR over different versions (blue), and those covered
by the virus-specific markers data set (yellow). MSL39 indicates the release that is currently available (#39 version 4). b Similar representation

as subfigure a, having the number of proteins instead of the number of viruses. ¢ Zoom on the latest release: number of viruses that are covered

by increasing intervals of protein markers. The number of viruses is specified on top of each bar, and the number of hitting markers are binned

in groups of 100, except for the first (zero markers) and last (@anything matching 500 or more markers). Five hundred six viruses are excluded

from our analysis since they match exactly zero markers. d Similar visualization as panel ¢, where the proteins are shown instead of the number

of viruses. The horizontal axis reports individual values and then ICTV proteins hitting 50 or more markers are grouped together (163,398 proteins
hit exactly 0 markers, while the last grouping counts 8106 proteins). e Percentage of all virus-specific marker profiles aligned to viral sequences

in the ICTV over the releases. The number almost doubles between the first (dashed line) and current release (1.78 fold increase), but it stays

below 50%, indicating that a larger fraction of sequences still needs to make entry in the ICTV

version of ICTV taxonomies and provides an interpret-
able framework for virus classification.

The ICTV sequences cover roughly 44% of the marker
profiles database

Virgo implements a system that attributes the taxo-
nomic lineage by maximizing a coverage score between
two sequences, calculated on the degree of subset-
hood between unordered collections of sets of matched
marker profiles. More details and examples are provided
in the “Materials and methods” section. The default
markers deployed with the software are an extract of
the virus-specific sequences collected by Camargo et al.
[15] for geNomad’s marker-based classification, and they

represent an invaluable data resource derived from many
and diverse biological and environmental contexts [16,
17]. The extract is composed of 161,862 markers with
high specificity for viruses. The selection criteria are
explained in the “Materials and methods” section. Dur-
ing a preliminary exploratory analysis we mapped these
marker profiles to the sequences in the ICTV to quantify
the fraction of markers that are currently represented in
the official virus taxonomy.

Interestingly, at the time of writing (2025), the ICTV
captures up to 71,279 distinct markers, represent-
ing 44.05% of the total. Prompted by this observa-
tion we aligned the virus-specific markers to every
historical record of the ICTYV, selecting the very first
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available (MSL31) and then every last version of each
release (# = 9) and noticed that the number of matched
markers increases together with the number of added
sequences across the ICTV releases (Fig. 2). As the num-
ber of genomes almost quadruples (Fig. 2a), the amount
of matched markers nearly doubles (Fig. 2e). For the
MSL39 release consisting of 16,222 virus sequences,
about 3% of the viruses (506) do not contain any mark-
ers, 66 % (10,744) contain 1-100 markers, yet 8 % contain
over 500 markers (Fig. 2c). We performed similar analy-
ses for the viral proteins and the results are shown in
Fig. 2b,d. This trend is a direct indicator of the dynamic
nature of the body of sequences in the ICTV that grows
not just in size, but also in terms of genetic variability,
and highlights the importance of ensuring compatibil-
ity between classification software and virus metadata
resources.

Virgo accurately classifies phages from human gut
metaviromes

The known viral sequence clusters (kVSCs, n = 2232)
dataset consists of viral sequences derived from several
hundreds of highly enriched human gut metavirome
samples, assembled by Zolfo et al. [18]. In terms of com-
position, the kVSCs dataset contains exclusively bacte-
ria-infecting viruses, mostly Caudoviricetes (98.83%),
and it includes 15 single-stranded DNA bacteriophages
(Malgrandaviricetes) and 11 single-stranded DNA fila-
mentous bacteriophages (Faserviricetes). As pointed
out by others [11], many viruses belonging to the class
Caudoviricetes are unclassified at the order and fam-
ily levels. Because of this, we evaluated performance
using two criteria: (i) a stringent criterion, which deems
a prediction correct only if it accurately identifies the
family-level taxon, provided that the true label includes a
family-level classification, and (ii) a loose criterion, which
considers a prediction correct if it correctly identifies
the taxon at the order or class level only when the true
label does not specify a family-level classification. Virgo,
geNomad, PhaGCN2, VPF-Class and vConTACT?2 were
tested. Note that VPF-Class, vConTACT2, geNomad and
PhaGCN?2 are based on ICTV release MSL 33, 36, 37, and
39, respectively. For fair comparison, we ran Virgo based
on the corresponding releases when comparing with the
other tools.

The benchmarking results for both criteria are visual-
ized in Fig. 3a, using the notation a and b, for the strin-
gent and loose criterion, respectively. Detailed metrics
results are reported in Supplementary Table S1. Among
the tested tools, Virgo performed the best on both cri-
teria with a perfect classification based on the stringent,
and F1 score above 0.99 for the loose criterion. The loose
criterion included many more sequences, hence the
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difference. Very close to Virgo, vConTACT2 reached an
F1 score above 0.99 on the loose and stringent evaluation
criteria. Also v€ConTACT?2 was the program that assigned
the least amount of viruses to a cluster (hence classify).
This is due to the fact that the unclassified Caudoviricetes
were previously assigned to the Caudovirales order and
Siphoviridae family, both of which were abolished after
vConTACT?2’s publication.

geNomad and PhaGCN2 reached an F1 score consist-
ently above 0.9 (0.918 for both criteria for the former,
0.914 and 0.968 for the latter). VPF-Class performed
identically on the stringent and loose criteria, with an F1
score of 0.99. Virgo achieved a perfect classification using
both criteria when ran on the same ICTV version as VPE-
Class. Moreover, VPF-Class classified more sequences
than Virgo in the loose evaluation of the kVSCs (2207
sequences against 2144).

Benchmarking results on the kVSCs dataset indicate
superior performance by Virgo in terms of classification
(Fig. 3a—d) on gut metagenomic sequences compared
to other tools, highlighting its potential applicability in
clinical settings. Additional benchmarking results at the
genus level are provided in Supplementary Fig. Sla-b.

Virgo generalizes on unseen data with performance
comparable to state-of-the-art

To further evaluate Virgo’s classification performance
across a broader range of viral taxonomic affiliations, we
selected n = 860 exemplar viral genomes through strati-
fied sampling at the family taxonomic level, ensuring that
their full taxonomic lineage is defined across releases
(refer to “Materials and methods”).

These viruses represent a heterogeneous dataset (here-
after, ICTV dataset) that encompasses 485 distinct genera
and 192 families, whose taxonomic labels can be cor-
rectly pinpointed across releases for fair benchmarking.

Virgo’s performance was compared to that of geNo-
mad, PhaGCN2, and VPF-Class.

Virgo achieved a higher F1 score (0.982) compared to
geNomad (0.768), PhaGCN2 (0.974 and 0.909, respec-
tively) and VPF-Class (0.964 and 0.959, respectively), as
well as every other metric (Supplementary Table S1). A
visual representation of performance evaluation and
sample sizes are shown in Fig. 3e-g.

As with every other benchmarking dataset used in this
study, Virgo was run using the -with replacement
option which skips the database search for queries iden-
tical to a database entry, forcing the next best-scoring
virus to be used as taxonomic reference (see “Materials
and methods”). This option was particularly relevant in
testing the ICTV dataset since it consisted in a Leave-
One-Out type of study. The same approach could not
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Fig. 3 Benchmarking results across datasets. Panels a through d show software performance (F1 score) for the kVSCs (human gut metagenomic
viruses). We compared Virgo with geNomad, PhaGCN2, VPF-Class, vConTACT2, and TIGTOG based on ICTV releases MSL37, 39, 33, 36, and 39,
respectively. To evaluate performance for this dataset we applied two different criteria: a stringent criterion (a) and a loose criterion (b). The
stringent criterion only considers a prediction correct if it accurately identifies the true family-level taxon, provided that the family-level
classification is available in the true label. Instead, the loose criterion allows for a correct prediction if the tool correctly identifies the taxon

at the order or class level when the true label does not specify a family-level classification; the family is compared otherwise. Panels e-g show
the results for the selected ICTV viruses of broad taxonomic coverage. Panel h shows the benchmarking results comparing Virgo and vConTACT2
on the prokaryote-infecting fraction of the RefSeq dataset. Panels i-l show the results on the GOEV ocean metagenomic dataset. Numbers
inside bars indicate the number of viruses classified by each program. Panel m shows the results for the RefSeq dataset random iterations

across various ANI levels between training and testing. All numerical values are reported in Supplementary Table 1

be performed for the remaining programs since it is not
possible to access and modify their training data.

We then expanded our benchmarking dataset by incor-
porating a larger body of viruses present in publicly-
available databases, and accessed the entire NCBI Virus
resource (the RefSeq dataset). Given the predominant
presence of Coronaviridae in this dataset, we randomly
sampled 6,778 sequences (several times, see “Materials
and methods” for details) and compared Virgo’s perfor-
mance to that of geNomad, PhaGCN2 and VPF-Class
using the corresponding ICTV releases.

We also considered the maximum Average Nucleo-
tide Identity (ANI) that exists between these viruses
and the ICTV sequences that Virgo uses as reference
database. High maximum ANI values indicate high
similarity between the query and references, and pro-
gressively lower ANI values represent a more chal-
lenging testing dataset. Computing identity below 60%
was not possible, therefore the RefSeq data were split

into four distinct ANI groups, in increasing levels of
10%. Results for this part of the analysis are shown in
Fig. 3m, and the detailed information relative to perfor-
mance, central tendency and dispersion are reported in
Supplementary Table 1.

Virgo generalizes better than current software at all
ANI intervals, with VPF-Class performing better than
Virgo on sequences in the ANI slot 80-90%, where the
former achieved an average F1 score of 0.996 + 0.0 versus
0.974 + 0.0. It is worth mentioning that the ICTV release
used for this specific comparison, MSL33, came out in
2018 when a substantially lower number of sequences
were present in the database, therefore limiting the num-
ber of viruses classifiable for both programs (113.52 +
0.784 for Virgo and 110.65 + 0.771 for VPF-Class).

For reference PhaGCN2, which classifies all input
viruses and contains pre-trained labels for a much newer
release, produced a prediction for an average of 754.42 +
1.365, and showed an average F1 score of 0.819 + 0.001.



Riccardi et al. Microbiome (2025) 13:170

On the harder-to-classify ANI group (60-70% maxi-
mum ANI), Virgo achieved an average F1 score of 0.899 +
0.001 compared to VPF-Class (0.833 + 0.001), an average
F1 score of 0.817 + 0.001 compared to PhaGCN2 (0.647 +
0.001) and an average F1 score of 0.874 + 0.001 compared
to geNomad (0.822 + 0.001).

Taken together, these results indicate that the bidirec-
tional subsethood metric applied to a database-lookup
system may have robust applications when lower similar-
ity exists between query and reference.

Among the RefSeq viruses were 3536 prokaryote-
infecting viruses which we used for testing Virgo’s perfor-
mance against vConTACT?2 (Fig. 3h). The latter achieved
an overall higher performance on most metrics com-
pared to the former, albeit with a very similar classifica-
tion ability (vConTACT2 F1 score 0.992, Virgo F1 score
0.991). Virgo classified 3208 viruses and vConTACT?2
2210. No additional considerations (e.g., in terms of ANI)
were made for this subset of the data given the elevated
performance achieved by both programs.

We further identified 400 viruses that belong to 40
new families in Version MSL39_v4 but are connected at
higher hierarchical levels to version MSL_37. We were
able to compare Virgo and geNomad on this rather sub-
stantial sample size, and try to understand what happens
when novel families are presented to both tools. The
rationale behind looking at these two specific versions
lies in the fact that, as stated, geNomad performs classi-
fication using labels from MSL_37, but the current tax-
onomy is at version MSL_39. This indicates that several
new viruses were added and thus it was possible to com-
pare both Virgo and geNomad using a reference built on
MSL_37, to predict labels in MSL_39. However, neither
of the two programs are able to discard the input viruses
under new families. Presumably, the sequence signals
are strong for viral components, and the ability to iden-
tify viruses that are incomplete or fragmented trades off
with a lower capability of rejecting viruses that belong
to a new taxonomic lineage. Nonetheless, the F1 metric
for being able to predict the class taxonomic level (higher
level) remains high for both (Virgo: 0.936, geNomad:
0.9) but lower for the order level (Virgo: 0.854, geNo-
mad: 0.751. Data not shown for visualization). Additional
benchmarking results at the genus level are provided in
Supplementary Fig. Slc—e.

Virgo can classify giant viruses from metagenomic datasets
The Global Ocean Eukaryotic Viral database (GOEV) [19]
is a resource of MAGs enriched in large and giant marine
viruses belonging to the phylum Nucleocytoviricota. We
extracted 1412 sequences with well-defined order taxon-
omy from the original publication’s metadata to compare
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our program’s results against geNomad, PhaGCN2, VPE-
Class and TIGTOG [13].

TIGTOG uses a machine learning approach based on
protein family profiles to classify giant virus genomes at
the ICTV order level. Given the high diversity and dis-
tinct signatures of protein content among different taxo-
nomic groups within the Nucleocytoviricota, TIGTOG
leverages the unique composition of giant virus ortholo-
gous groups within each lineage for classification. To
avoid reliance on a fixed set of marker genes, it applies a
random forest algorithm to model taxonomic classifica-
tion at these levels, using features such as the presence
of ortholog groups and G+C content, with pre-estab-
lished taxonomic labels guiding the model. Benchmark-
ing results for six distinct evaluation metrics are reported
in Supplementary Table S1; a visual representation of the
differences in terms of F1 score is depicted in Fig. 3i-1.

Interestingly, three out of four tested programs yield
accuracies below 0.5. More specifically, Virgo ranks sec-
ond in terms of accuracy (0.984), with TIGTOG achiev-
ing an almost perfect classification accuracy of 0.995.
Differences in terms of F1 score are less pronounced,
with Virgo scoring 0.991 and TIGTOG 0.998.

However, geNomad showed an F1 score of 0.307,
the lowest across all comparisons, despite Virgo and
geNomad using the same marker dataset. After fur-
ther investigation of the erroneously attributed orders,
we concluded that geNomad did not generalize well
the taxonomic branch of the Imitervirales. This is likely
due to a poor representation of the reference order Imi-
tervirales in release #37 (n = 2) compared to the later
releases (e.g., n = 22 in release #39). The GOEV bench-
marking dataset is composed of 32 Asfuvirales, 54 Chi-
tovirales, 226 Algavirales and 1100 Imitervirales, thus
probably representing a considerable challenge for geNo-
mad. We note that Virgo was also run using a reference
database with the same taxonomic labels as geNoma’s;
however, Virgo was able to correctly classify this taxo-
nomic branch better than any other program. More
specifically, Virgo misclassified 1.63% of the input data.
Most errors involved confusing Algavirales with Imiter-
virales (n = 16) and failing to recognize one third of the
Asfuvirales sequences (n = 7). A possible explanation for
this is in the low degree of overlapping marker patterns
between the ICTV database and the incorrectly assigned
viruses.

With reference to the meta-analysis reported in this
study, there is strong evidence indicating that the mis-
classified giant viruses tend to have lower scores com-
pared to the correctly classified ones, despite the
overall average score being already low at 0.472 (S.D.
0.19). Therefore, the low fraction of incorrectly classified
viruses is presumably due to the inherent biology of these
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large viruses. Their exceptional genomic complexity, cou-
pled with dynamic gene exchanges between these viruses
and their hosts [20], likely contributed to the errors,
especially given the sporadic representation in the virus-
specific marker dataset.

Virgo is robust to incomplete data

We investigated Virgo’s robustness against genome frag-
mentation and mutations by performing an artificial
reduction of 1000 genomes randomly sampled from
release #39 over a progression of 9 random fragmenta-
tion percentages, with 10 replicates each (Fig. 4). The
genomes were allowed to reduce in size until the required
fragmentation or a minimum size of 1kbp were obtained,
whichever condition was met first. In this instance, we
used Virgo masking the query and reference genome
to ensure replacement in a Leave-One-Out strategy.
The average size of the initial 1000 ICTV genomes was
46,234.3bp (S.D. 70,730.94) and it was reduced to an
average of 4799.19bp (S.D 6977.82) during the last itera-
tion. The reduction in genome completeness was con-
firmed by CheckV [21] (Fig. 4a). Random mutations at
rate of 0.01 were also introduced at the nucleotide level
in order to add an additional layer of difficulty; note that
the sequencing error rates reported on Illumina plat-
forms is in the order of 0.001 [22]. The results show a
general decrease in the average F1 score (vertical axis) as
the reduction gets stronger (horizontal axis), with a more
rapid decay between a reduction of 80% and 90%. How-
ever, a consistent performance indicated by an F1 score
> 0.9 is always observable across all fragmentation levels,
further corroborating Virgo’s ability to correctly classify
viral sequences as long as viral open reading frames are
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still detectable. Figure 4b shows the benchmarking results
of Virgo versus two alternate classification approaches—
one that predicts a query’s virus family using Mash [23],
and another using nucleotide BLAST [24]. Briefly, these
programs classify a query sequence by selecting the virus
family with the highest ANI (Mash) or highest bitscore
(BLAST) between the query and the ICTV reference
viruses, allowing for replacement just as performed with
Virgo. Virgo consistently outperforms the alignment-free
and alignment-based approaches. More details for these
comparisons are provided in the “Materials and meth-
ods” section.

Tie score differs across orders

As noted above, running Virgo with replacement did
not achieve a 100% accurate classification on the ICTV
benchmarking dataset, indicating that a fraction of
viruses remained classified incorrectly. Therefore, we
also conducted a detailed analysis of the correctly ver-
sus incorrectly classified viruses (n = 30), focusing spe-
cifically on those viruses for which Virgo calculated a tie
score less than 1.

We suspected that, in sporadic cases, some viral fami-
lies were “interfering” with correct taxonomic attribution
by exhibiting very high bidirectional subsethood scores
but lower tie scores, meaning that more than one fam-
ily had equal chance of being chosen as the predicted.
We focused on a group of viruses (n = 7) that were con-
sistently attributed to a different family within the same
order (Mononegavirales) and computed the bidirectional
subsethood scores through pairwise comparisons among
all viruses in this order. For visualization, we selected the
incorrectly assigned viruses along with other randomly
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Fig. 4 Sequence fragmentation study on 1000 random ICTV viruses. The genome reduction is confirmed through Average Amino acid Identity
(AAI) completeness, confirmed by CheckV (panel a). Panel b shows the average F1 score (vertical axis) with respect to the percentage reduction
(horizontal axis) for Virgo and two alternate classification approaches that rely on alignment-free (Mash) and alignment-based (BLAST) scoring
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sampled members from the same family as both the
tested and predicted viruses. Similarly, we randomly
selected an order from the group of correctly classi-
fied viruses (Crassvirales) and computed the same met-
ric for comparison. The results are shown in Fig. 5. The
seven incorrectly classified viruses, highlighted in yellow
in panel Fig. 5a, exhibit elevated scores when compared
to viruses from different families within the same order
(indicated by a more intense color), often matching or
exceeding the scores seen when compared to members
of their own family. In contrast, the bidirectional subset-
hood patterns in a correctly predicted order, as shown in
Fig. 5b, display a more regular pattern, with members of
the same family showing higher similarity to each other
compared to members of other families.

Meta-analysis of the effect of several factors
on classification performance
We synthesized the association between predictions
(correctly and incorrectly classified) and three factors,
namely AAI completeness, bidirectional subsethood
score and tie score, using a meta-analysis.

For this analysis, in order to capture the true sources
of error we ran Virgo one more time, this time without
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the replacement mode that was used in the other perfor-
mance evaluation steps (see sections above). At this stage,
the ICTV benchmarking dataset was excluded, since
running Virgo without replacement produced a perfect
classification. We considered the kVSCs, GOEV and one
random iteration of the RefSeq viruses, then ran Virgo
keeping track of the correct and incorrect classifications.
The resulting data table is available as Supplementary
Table S2. The three studies were meta-analyzed compar-
ing two groups, the correct and incorrect classifications,
with respect to each of the three quantitative dependent
variables whose effect sizes were expressed in terms of
raw mean differences (MD). Details for the meta-analysis
are described in the “Materials and methods” section,
and the resulting forest plots are illustrated in Fig. 6d—f.
The meta-analysis result for AAI completeness is an
estimated MD of 10.97% (CI 95% [7.37, 13.93]) indicat-
ing that, on average, correctly classified viruses are nearly
11% more complete compared to the incorrectly clas-
sified portion. This is reflected by all three studies lying
on the right side of the central vertical solid line centered
at 0 in Fig. 6d, thus showing a positive mean difference,
although the kVSCs study showed an MD of 14.48 (CI
95% [—13.66, 42.62]) with a wide confidence interval
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Fig. 5 Heatmaps displaying bidirectional subsethood scores among viruses in two distinct orders. Panel a shows the bidirectional subsethood
scores for viruses belonging to six different families of the order Mononegavirales. Viruses highlighted in the column and row labels are those

that were erroneously predicted as belonging to a different family within the same order. The heatmap also includes a random selection of viruses
from the same family as both the tested and the predicted viruses. The score patterns for these viruses are generally irregular, with viruses

from different families scoring comparably in terms of subsethood, indicating a similarity level comparable to that observed within the same
family cluster. Panel b displays the bidirectional subsethood scores for a random selection of viruses from different families within the order
Crassvirales, with all viruses correctly predicted to their respective families. The patterns in panel b are more regular, with viruses within the same
family sharing markers more similarly than they do with viruses from other family clusters. Notably, there is a faint hue, in panel b, corresponding
to a light similarity between Intestiviridae and Suoliviridae. However, this mild similarity does not affect the prediction accuracy because other
members of each respective family exhibit substantially higher scores. The bidirectional subsethood metric, ranging from 0 (no shared markers) to 1
(all markers shared identically), is used to quantify the similarity between viruses. The family of each virus is reported as well as the virus number

identifier as of release #39 version 1
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Fig. 6 Meta-analysis of three studies examining the association between accuracy of classification and three factors. Panels a through ¢ show
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which suggests substantial uncertainty (due to the small
sample size for the incorrect classifications n = 9). The
GOEV dataset yielded an MD of 14.93 (CI 95% [2.45,
27.40]), indicating a statistically significant difference in
completeness between correctly and incorrectly classi-
fied sequences. The RefSeq dataset, which had the larg-
est sample size, exhibited a mean difference of 10.65% (CI
95% [7.37, 13.93]), demonstrating a strong and significant
effect with a relatively narrow confidence interval.

Regarding the bidirectional subsethood score, the
kVSCs dataset exhibited a mean difference of 0.11 (CI
95% [—0.17, 0.40]), with a wide confidence interval,
which includes zero, suggests that this difference is not
statistically significant. In contrast, the GOEV dataset
showed a statistically significant mean difference of 0.28
(CI 95% [0.25, 0.30]), indicating that correctly classified
sequences had substantially higher bidirectional subset-
hood scores than incorrectly classified sequences. The
RefSeq study also demonstrated a significant mean dif-
ference of 0.20 (CI 95% [0.17, 0.23]), further supporting
the trend that correct classifications correspond to higher
scores.

The random-effects model produced an estimate of
0.23 (CI 95% [0.16, 0.30]). This suggests that, on average,
correctly classified sequences had a bidirectional subset-
hood score that was 0.23-0.24 higher than incorrectly
classified sequences. The GOEV dataset’s relatively larger
effect size drives the majority of the effect and causes
significant heterogeneity (I> = 85.4%, t2 = 0.0027 and
p = 0.0011). This is the dataset with the overall lowest
AAI completeness (60.61% in the correct, Fig. 6e) which
(in this case) is also responsible for the lowest average
bidirectional subsethood score (0.47 in the correct group,
Fig. 6d) since it is composed of sequences with the largest
genomes among the tested data (they are giant viruses).
As shown in a later paragraph, viruses with greater num-
ber of vORFs tend to be classified more accurately, which
is consistent with seeing a dataset with such low average
bidirectional subsethood score being classified with high
accuracy (reported to be 0.984 in the Supplementary
Table S1).

As per the tie score, interestingly the kVSCs and GOEV
datasets do not contribute to the meta analysis since the
standard deviation is exactly 0 between the two groups
making the effect size to become undefined. The RefSeq
dataset is the only contributor to the pooled effect, which
indicates that the tie score tends to be 0.26 lower in the
incorrect fraction of RefSeq viruses (CI 95% [0.22, 0.30],
Fig. 6f). Despite not being able to fully determine the het-
erogeneity for the tie score metric, we are able to explain
why the pooled effect derives from RefSeq only. The
kVSCs and GOEV datasets are composed of sequences
with generally larger viruses (prokaryote-infecting
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bacteria in the former, and giant viruses in the latter)
compared to the more taxonomically broad dataset that is
the RefSeq. Since our framework bases its computations
on the number of vORFs that are present in the query
and reference viruses, it is less likely for longer viruses to
produce tying scores compared to shorted sequences (see
later paragraphs for a more in depth explanation).

Calibration of prediction accuracy using vORF-based
metrics

In addition to the meta-analysis, factors that may affect
prediction accuracy were further investigated using a
calibration dataset. The calibration dataset was pooled
from the benchmarking datasets: ICTV, kVSCs, GOEV,
and one random iteration of the 200-iteration RefSeq set
as described in Data retrieval and preprocessing section.
We hypothesized that the bidirectional subsethood score
may oversimplify sequence relationships if the number
of viral open reading frames (vORFs) in either of the pair
of sequences is low. We studied the relationship between
classification accuracy and varying number of vORF for
the query and reference sequences in the calibration
dataset. Results are shown in Fig. 7a. Classification accu-
racy is 0.892 when either the query or the most similar
reference are composed of just one VORF. When the
number of vOREFs is at least 2 for both the query and the
most similar reference sequence, the classification accu-
racy rises substantially, to 0.987.

We next looked at the classification accuracy as a
function of the tie score and bidirectional subsethood
score for query sequences with 1, 2, or at least 3 vORFs,
respectively, as shown in Fig. 7b and c. When the query
sequence just contains one vOREF, the prediction accu-
racy is lower than 0.933 regardless of the bidirectional
subsethood score value. When the query sequence con-
tains two vORFs, the classification accuracy shows a gen-
eral increasing trend and is 0.978 when the bidirectional
subsethood score is above 0.6. For query sequences with
at least 3 vORFs, the prediction accuracy is above 0.99
when the subsethood score is above 0.2. Figure 7b shows
that the prediction accuracy is above 0.97 when tie score
is 1 and is lower than 0.677 when tie score is less than 1.

While we could apply a strict filter requiring both the
query and the most similar reference sequence to have
at least two vOREFs, this filter would discard 2280 poten-
tial predictions. Instead, we explored a refined filtering
approach that leverages both bidirectional subsethood
score and tie score. We found that for predictions where
either the query or the most similar reference sequence
has only one vORE, for a subsethood score above 0.8 and
a tie score of 1, the accuracy reaches 0.977. In contrast,
classifications performed without applying both criteria
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(bidirectional subsethood score > 0.8 and tie score = 1)
show a much lower accuracy of 0.794.

In the light of these observations, we include in the
results table a confidence label (0 or 1) based on the fol-
lowing two criteria: (i) both the query and most similar
reference sequence have at least 2 vORFs or (ii) either
the query or reference sequence contain just one vORF,
and the bidirectional subsethood score is at least 0.8 and
tie score equals 1. Using these two criteria, we discard
roughly 12 % of the sequences and obtain a prediction
accuracy at about 0.98.

Materials and methods
The bidirectional subsethood scoring metric
The core principle by which we obtain good classifica-
tion power is reliant upon the assumption that related
protein-coding sequences exhibit specificity for pro-
tein domains or families that perform similar functions.
Overall, this assumption is made by most virus classifi-
cation software that use information from the viral open
reading frames to establish connections between viruses.
Here we perform a pairwise comparison between
a query sequence and viruses in the ICTV that are

representative of each family, to infer its possible taxo-
nomic affiliation. However, we do not compare the two
sequences directly. Instead, we analyze the patterns each
sequence independently forms in relation to a set of
virus-specific markers.

We utilize a recently published, comprehensive pro-
tein marker dataset that includes multiple sequence
alignments of protein families derived from de
novo-generated profiles, external profiles, and non-
redundant profiles specific to viruses. This dataset is
sourced from the largest collections of viral and micro-
bial sequences obtained from single genomes and
metagenomes, as well as the NCBI database. It also
encompasses 25,729 protein markers across Nucleo-
cytoviricota, Asgard archaea viruses, archaeal tailed
viruses, and unannotated domains of polyproteins [16,
17]. These profiles are functionally annotated and used
for classifying sequences, providing functional insights,
and enabling taxonomic assignments. We broaden the
application of these markers, without considering their
detailed biological functions or the specific taxonomic
categories, which are hidden and not accounted for.
Briefly, to build the marker profiles, Carmago et al. first



Riccardi et al. Microbiome (2025) 13:170

retrieved a large number of protein sequences from
various databases. These sequences were de-replicated
and then clustered to form different clusters. They then
performed multiple sequence alignment of sequences
in each cluster to form the protein marker profiles.
Detailed steps to obtain these profiles are given in the
“Methods” section of their paper [15]. In this study, we
only use marker profiles related to viruses.

We provide a formal definition of the bidirectional
subsethood, including one example, then proceed to
explain the implementation details in the following sec-
tion. More examples are provided in the Supplementary
materials 2. Just like a genomic DNA sequence encodes
for a collection of open reading frames, we model a
virus as an unordered collection of sets. Each vORF is
represented by a set, and each element of the set corre-
sponds to one virus-specific marker profile that aligns
to that particular vORF. Since a vVORF can match mul-
tiple marker profiles, each set may contain multiple
markers, theoretically as many as there are in the data-
base. We define a measure of similarity between two
such objects, ranging between 0 and 1, with 0 indicat-
ing no shared markers and 1 indicating perfect sharing.
Let A and B be two unordered collections of sets. Virgo
first computes a similarity matrix S, where each ele-
ment S;; is the Jaccard similarity between the i-th set in
A and the j-th set in B:

Sij = J(Ai, B))

with A; and B; representing sets from A and B,
respectively.

The bidirectional subsethood metric aggregates the
similarity matrix into a single value. It is computed
by first finding the best match (i.e., the maximum
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similarity) for each set in A against all sets in B, and
vice versa. Then, the average of these best matches is
taken.

Best match for A; = max S;;
]

Best match for B; = max Sj;
4

The final bidirectional subsethood s is calculated as

4] 1Bl

1
s(A,B) = |A| B Zm}ax Sij + }Zlmax Si | (1)

where |A| is the number of sets in A, and |B| is the num-
ber of sets in B.

Example. Let us model two genomic sequences as the
collections of sets of markers, A and B, containing two and
three vOREFs, respectively:

A = {{a, b}, {d}}
B= {{d}’ {br ¢ dr 6}, {ﬂ}}

We begin by calculating the similarity matrix S where
each element §;; is the Jaccard similarity between the i-th
setin A and the j-th set in B.

Sll 512 513 _ 002 05
S21 S22 S23 )~ \ (10250
The best match for every set in A versus all sets in B and

each set in B against all sets in A are extracted from the
similarity matrix and then averaged out, to yield

1
s(A,B) = 313 (054+1+140.25+0.5) =0.65
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Virus-specific
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Fig. 8 Representation of two viral genomes using unordered collections of sets. The top and bottom rows show three and four distinct vVORFs,
each matching one or more virus-specific marker profiles (colored bricks). The gray solid lines connecting the vVORFs maximize the local Jaccard
coefficients between two sets, as opposed to the dashed lines, that indicate a lower similarity that will not be chosen for the calculation

of the bidirectional subsethood. The final bidirectional subsethood for this specific toy configuration equals 0.452
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Therefore, the bidirectional subsethood measure for
the two mock genomes would be 0.65 given the marker
profiles.

We illustrate an artistic representation of the collec-
tions of sets in Fig. 8.

Virgo’s computational framework

Virgo transforms each query sequence into a multiset
representation, compares them to a database of reference
viruses, also represented as multisets (precomputed), and
assigns the taxonomic lineage of the database entry with
the highest similarity based on the bidirectional subset-
hood of shared markers.

We describe here the feature extraction proce-
dure needed to capture the distribution of viral-spe-
cific marker genes across a set of DNA sequences. We
first infer vORFs using Prodigal V2.11.0-gv [25] with
enhanced specificity for virus nucleotide translation,
parameters (-p: meta/anon to apply pre-calculated train-
ing to the input sequence) and align them to the viral-
specific subset of marker genes using MMSeqs2 Version:
15.6f452 [26] in easy-search mode (parameters: —s 7.5
for high sensitivity, —e 1e—3 —c 0.2 —cov-mode 1 to ena-
ble the coverage of the target to be at least 20%, with an
E-value of at most 0.001). Note that we utilize this proce-
dure and parameters in order to adhere to the specifics
used by the authors of the virus-specific marker profiles
database. The alignment file listing, among others, the
query (each individual vORF) and the target (virus-spe-
cific marker genes) is then converted to an unordered
collection of sets of matched markers for each vORFE.

Upon release of a new ICTV VMR resource, the user
may use our freely distributed source code to generate a
Virgo database, or download it through the GitHub page.
The database serves as input to the computer program
for virus identification through the command line flag
—-data. The same procedure is also embedded in Virgo
to convert the input query sequences into an unordered
collection representation, to then maximize the bidirec-
tional subsethood and assign the taxonomic lineage up
to the family level. When the user runs Virgo on a query
virus, the program reports the taxonomic lineage as well
as the bidirectional subsethood score between the query
and the database entry with the highest match. Addi-
tionally, it reports the number of database entries that
achieved the maximum bidirectional subsethood, along
with the tie score, which is inversely related to the num-
ber of distinct families associated with those top-scoring
viruses. The tie score is calculated as

1
t== for me{l,2,3,... Aamilies)
n
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A tie score of 1 indicates that all the top-scoring data-
base entries belong to the same family, a tie score of 0.5
or lower indicates otherwise.

By default, the current implementation employs a
straightforward approach that chooses the database entry
with the most similar G+C content, to prevent random
selection in the event of ties. The G+C fraction informa-
tion is derived from the gene calling procedure and it
does not add additional overhead on the overall program
execution. To facilitate Leave-One-Out studies on Virgo,
we also included a flag (-with replacement) that
masks the database entries that identical to the query
during classification. This method is meaningful when
testing viruses from the ICTV downloaded using our
program ICTVdump.

Virgo operates in multi-threading using python’s native
libraries. Moreover, Virgo can accept multiple genomes
at once through the —input command line option. We
also provide options to narrow down the results accord-
ing to the user’s need: the flag -min score only saves
viruses with bidirectional subsethood score above a cer-
tain value; ~drop_ ties omits viruses with any ties in
the final results table; —virus-by-virus allows a
more granular and verbose output, by writing a JSON file
with all query-db comparisons that yield a score greater
than zero. The GitHub page provides further information
on usage, examples and access to a repository of pre-cal-
culated VMR releases, eliminating the need for users to
construct the database themselves. Runtime and memory
consumption metrics are reported in Supplementary
Table S3.

Data retrieval and preprocessing

The kVSCs dataset is an extract of the representative
viral sequences included in the MetaPhlan 4.1 release
[27]. To construct the kVSC dataset, Zolfo et al. selected
5651 sequences, including 699 bacteriophage genomes
from RefSeq with known taxonomic labels and 4952
viral contigs identified from high-quality metaviromes.
These sequences were clustered into 3944 viral sequence
clusters (VSCs) using VSEARCH (version 2.14.2) at 90%
sequence identity. The clustering process was performed
with the following parameters: —cluster_fast —id 0.9 —
strand both —maxseqlength 200,000. Clusters that con-
tained at least one RefSeq viral genome were classified
as known viral sequence clusters (kVSCs) [18]. In total,
588 VSCs contained a viral reference genome and were
labeled as kVSCs. The DNA sequences were obtained
from the files VSC5_rep_fnas_nr99_45k_metaph-
lanDB.fna.gz and VSCs_groups.csv, downloaded from
Zenodo (https://zenodo.org/records/10512460) on June
28th, 2024. From the 45,872 representative sequences
included in the MetaPhlan 4.1 module, we selected those
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clustering with a RefSeq representative, yielding the
kVSCs. The selection process further involved matching
RefSeq accession names in the metadata with those in the
ICTV Release #38 to ensure accurate labeling, resulting
in 2232 eligible samples. Taxonomic assignments were
based on the linked RefSeq accessions present in ICTV
Release #38.

ICTV viral exemplar genomes were extracted from
the ICTV Release #39. The data were downloaded on
July 17, 2024, using ICTVdump with default parameters.
A total of 1000 viral genomes, representing 119 differ-
ent viral families, were randomly selected using equal
probability weighting in pandas (python version 3.12.3).
The genomic DNA sequences were then artificially frag-
mented from both ends in a random manner using the
script fragment_dna.py, available at https://doi.org/10.
6084/m?9.figshare.28730093.v1 (under the “Reduction”
subfolder). The fragmentation process involved a muta-
tion parameter of 0.01, a lower bound of 1000 bp, and
an increment of the reduction parameter by 10% each
time (from 0.1 to 0.9), resulting in 9 different reduction
settings. This was performed in 10 replicates across the
1000 genomes, yielding a total of 90,000 fragmented
sequences. The SLURM script used to generate these
fragments is also provided in the same FigShare reposi-
tory, under the “Reduction” subfolder.

An additional set of n = 860 genomes was extracted
using stratified sampling at the family level, selecting
up to 5 viruses per family. This data subset (the ICTV
benchmarking dataset) was assembled by comparing two
ICTYV releases (versions release #37 and #39) and extract-
ing viruses that (i) shared the same GenBank accession,
(ii) had a family assigned (though not necessarily with
consistent naming), and (iii) included at least two rep-
resentatives per family. The taxonomic assignment for
these genomes follows the ICTV-ratified lineage. The
complete list of all ICTV versions are kept at https://ictv.
global/ as of 2025.
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We further used sequences from RefSeq via the NCBI
Virus  resource  (https://www.ncbi.nlm.nih.gov/labs/
virus/vssi/#/), last accessed on January 27, 2025. Initially,
all 3,376,487 viral sequences were downloaded via the
standard web interface. We then filtered the viruses to
only include those that have a family taxon assigned. This
reduced the data from 3,376,487 to 3,342,047. We further
investigated the stratification of the dataset to account
for family imbalance, finding that out of the 258 fami-
lies, the most represented were Coronaviridae with over
3M records. 254/258 family labels that were attached to
the RefSeq sequences matched the ICTV family labels in
release VMR_MSL38_v3, therefore these were kept for
further consideration (n=3,342,022). Since there were
a median of 43 viruses per family in this dataset (data
not shown), we performed 200 random samplings of
the 3,342,022 initial viruses, pulling up to 43 viruses per
family in every cycle. The final RefSeq dataset consisted
of 200 folders containing each exactly 6,778 viruses, for
a total of 1,355,600 sequences. We computed the ANI
(1 — Mash distance * 100) between all sequences in the
RefSeq benchmarking dataset and those listed in the
ICTV Release #39. We then grouped these sequences
into four different slots, according to their ANI value
in descending blocks of 10%, from 100% down to 60%
ANI Mean and standard deviation of all ANI groups
are reported in the Supplementary Table 1. The RefSeq
dataset is composed of both eukaryotic and prokaryotic
viruses.

Finally, we used a dataset extracted from the Global
Ocean Eukaryotic Viral database, as detailed by Gaia et al.
[19]. The dataset comprises eukaryotic double-stranded
DNA viruses: 591 MAGs from Schulz et al. (2020) [28],
445 MAGs from Sunagawa et al. (2020) [29], and 218
MAGs from Moniruzzaman et al. (2020) [30], along
with 158 reference viral assemblies, with the most recent
access being on July 20, 2024. Data were sourced from
GOEV_DB_CONTIGS.db.zip  (https://doi.org/10.6084/

Table 1 Summary of benchmarking datasets. Each dataset is characterized by its size, description, dominant viral taxonomic groups,
number of unique virus families, and the number of viruses with labels

Dataset Size Description Main virus group # of families Viruses
with
labels

ICTV 860 Viruses extracted from ICTV VMR Caudoviricetes, Pisoniviricetes, 192 860

Alsuviricetes, Monjiviricetes,
Bunyaviricetes
RefSeq 6,778 RefSeq viruses that exhibit a minimum MASH distance Caudoviricetes, Pisoniviricetes, 270 5,870
greater than 0.1 from any virus present in ICTV Alsuviricetes, Monjiviricetes,
Bunyaviricetes, Arfiviricetes
kVSCs 2,232 A known viral sequence clusters dataset from human gut Caudoviricetes 17 732
GOERV 1,412 A dataset of viruses related to giant viruses Megaviricetes N/A 1,412
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m9.figshare.20284713), with selection criteria focusing
on data labeled at the order taxon level. The taxonomic
assignments from the GOEV database were found to be
consistent with ICTV release VMR_MSL38_v3.

An overview of these datasets is provided in Table 1.
RefSeq data can be downloaded via the NCBI Virus
resource as indicated above. The ICTV virus meta-
data resource releases used in the benchmarking stage
of this study were VMR_08-201218 _MSL33 (release
#33), VMR _18-191021_MSL36 (release #36), VMR_19-
250422_MSL37 (release #37), VMR_MSL38_v3 (release
#38), and VMR_MSL39_v1 (release #39).

Additional software used in our study

vConTACT2 v0.11.3 was run using the required amino
acid FASTA file containing the input sequences, and the
gene-to-genome mapping file generated using the vcon-
tact2_gene2genome.py script (parameters: -s Prodigal-
FAA) from MetaPhage v0.3.3, last accessed on Aug 8,
2024 via https://github.com/MattiaPandolfoVR/MetaP
hage.

geNomad v1.8.0 was used in end-to-end mode using its
default parameters across all benchmarking runs.

TIGTOG v0.1 was run using an E-value threshold of at
most 1le—10 as suggested by the authors (parameters: —e
1le—10); last accessed on July 19, 2024 via https://github.
com/anhd-ha/TIGTOG.

PhaGCN2 was run through Phabox (v2.1.9) [31] using
minimum length 1500 (parameters: —len 1500).

VPF-Class v0.1 was run using the default parameters
across all benchmarking datasets; last accessed on Janu-
ary 27, 2025 via https://github.com/biocom-uib/vpf-
tools/tree/master.

Nucleotide BLAST from the BLAST+ suite installed
locally (version 2.16.0) with parameter outfmt 6
and default word size was used to evaluate nucleotide
sequence identity between 90,000 fragmented viruses
and all ICTV viruses during the genome reduction study.
Similarly, Mash version 2.3 was used to compute the
average nucleotide identity between all RefSeq and all
ICTV viruses. Sequences were first sketched using Mash
sketch with a k-mer size of 21, then Mash dist was
used to compute the distance. Mash was also used to
compute the distance between 90,000 fragmented viruses
and all ICTV viruses during the genome reduction
study. K-mer values of k=21 and k=31 were used. Mash
default value of k is 21, hence the choice to use such k,
and a larger value of k which is a standard value used in
bioinformatics genome analyses (k = 31, e.g., sequence
assemblers).

CheckV v0.7.0 was used in completeness mode to
assess viral genome completeness throughout the study,
and to study the relationship of the wrongly predicted
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taxa with genome completeness. In three separate analy-
ses, the values for (i) AAI completeness, (ii) bidirectional
subsethood, and iii) tie score were compared between
two groups: correctly classified viruses and incorrectly
classified viruses. The virus-specific marker profiles are
the fraction of markers that are labeled as being at least
specific for viruses, therefore being labeled as “*V’ or
“V*” in the MMSeqs2 profile database file genomad_db_
vl.7.tar.gz from https://zenodo.org/records/10594875
CC by 4.0, Antonio Camargo.

ICTVdump is a simple program for the automatic
retrieval of genome sequences and metadata linked
through the virus metadata resource. It automatically
connects to any VMR version, retrieving the GenBank
identifiers, then downloads them in batch from the NCBI
and generates an SQL database of DNA sequences and
one taxonomy table in CSV format. The program is writ-
ten in python and is freely available at https://github.
com/christopher-riccardi/ICTVdump. All software used
in our study were run using 40 cores (AMD EPYC 9354
32-Core Processors) using the resources provided by
USC Center for Advanced Research Computing (CARC).

Three distinct meta-analytic random-effects models
were fit using the function meta package version 8.0.2
[32] in R version 4.2.2. The mean difference was cho-
sen as the effect size since all studies were expressed on
a common scale (AAI completeness, ranging between 0
and 100, bidirectional subsethood and tie score ranging
between 0 and 1). Let Y; and Y be the sample means of
two independent groups of viruses, in terms of AAI com-
pleteness for the correctly (1) and incorrectly (2) classi-
fied. The raw mean difference is given by

D=Y,-Y,

Let S; and Sy be the sample standard deviations of the
two groups, and #; and n3 be the sample size in the two
groups. Here we don’t assume that the two population
standard deviations are the same, and the variance of D
is estimated by

§? s2
=11, 22
ni ny

VD

We calculated D and vp in three separate instances, one
for every meta-analyzed factor and confirmed that the
above-mentioned R package calculated these values as
required.

Although the viral sequences from the three datasets
do not overlap, as they are collected from different data
sources, they may be related through their taxonomic
relationships. Consequently, the three substudies may
not be independent, which violates the assumptions of
the random effects model. Therefore, the results from
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the random effects model analyses should be interpreted
with caution.

Evaluation metrics

The evaluation metrics used in this study include accu-
racy, precision, recall (sensitivity), specificity, F1 score,
and Matthews Correlation Coefficient (MCC). Briefly, we
calculated the accuracy score as the number of correct
predictions divided by the total number of predictions:

Number of Correct Predictions

Accuracy =
Y Total Number of Predictions
Precision was calculated as the ratio of true positive
predictions to the total number of positive predictions
(true positives and false positives). Therefore, for a given
class i:

TP;

Precision; = ————
TP; 4+ FP;

Recall was calculated as the ratio of true positive pre-
dictions to the total number of actual positives (true pos-
itives and false negatives). For the i-th class:

TP;
Recall; = ———
TP; + FN;
The proportion of actual negative instances that are
correctly identified, for each class i, was calculated as

TN;

Speciﬁcityl« = m
I L

The F1 score, also for each class i, was calculated using
the formula for the harmonic mean of precision and
recall:

Precision; x Recall;
F1 score; = 2 x

Precision; + Recall;

MCC was calculated using all the elements in the con-
fusion matrix, as

TP x TN — FP x FN

MCC =
/(TP + FP)(TP + FN)(TN + FP)(TN + FN)

All the above metrics were calculated using python’s
scikit-learn library within a multi-class classification
context. The overall metrics were derived as a weighted
average to ensure that each class was considered propor-
tionately to its distribution in the dataset.

Discussion

We propose a virus classification method based on a
similarity metric between sequences, and show that
using a recently published, comprehensive database of
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virus-specific marker profiles, our method can accurately
predict the family taxonomic label with an overall aver-
age accuracy above 0.96. Benchmarking and performance
analysis across all tested data sources demonstrate that
Virgo can generalize and accurately predict viral family
taxonomy with precision comparable to more sophisti-
cated tools. Arguably, flexibility and tolerance in dealing
with imprecise data are valuable characteristics for any
virus classification software, and the bidirectional sub-
sethood metric we propose for this type of classification
may exhibit such characteristics.

Nonetheless, in at least two instances, the incorrect
predictions were significantly associated to lower tie
scores. Further investigation of these cases revealed that
the bidirectional subsethood score, though robust for the
majority of the viruses tested, can be shared at compara-
ble levels across distinct families of the Mononegavirales
order, thus making resolution at family level problematic.

Moreover, our method assumes that the user-provided
sequences are viral; therefore, pre-filtering non-viral
sequences using methods like geNomad [15], Deep-
VirFinder [33], or DeepMicroClass [34] is advised prior
to classification.

The metagenomic datasets used in our study pay spe-
cial attention to viruses of microorganisms, since viruses
within the Caudoviricetes order and Nucleocytoviricota
phylum are abundant in the sunlit ocean, where they play
a crucial role in regulating plankton community com-
position and controlling bloom dynamics, and whereas
gut phages have been shown to play a fundamental role
in shaping and modulating bacterial growth by lysis and
lysogeny, thus directly affecting human health since early
age [35, 36].

Virgo showed excellent results in the classification of
giant viruses derived from ocean metagenomes, but it
was generally outperformed by a dedicated program,
TIGTOG. It is fair to mention, however, that TIGTOG is
in fact trained on a set of data that included sequences
from GOEV itself, and this likely contributed to the
higher performance on this dataset. Compared to the
several other programs tested, we were surprised to
observe that a general virus classification program like
Virgo achieved comparable results on a dataset char-
acterized by such a remarkably broad phylogenetic
diversity.

Virgo exhibited a relatively stable performance on the
kVSCs dataset, while the other methods exhibited an
unexpectedly poorer performance. Although this dataset
represents a novel resource of viruses associated with the
human gut microbiome, deriving from high quality meta-
viromes, these viruses are still phylogenetically close to
viruses in the current data banks (recall how the kVSCs
are the known viral sequence clusters). Virgo was able to
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capture their taxonomic lineage with great precision and
recall, perceptibly better than any other method tested.

It is interesting to note that the viruses in the ICTV
cover around 44% of the 161,862 virus-specific markers.
On the one hand, this suggests that a significant portion
of the markers are well represented in the ICTV. On the
other hand, the remaining 56% of the markers are found
in viral sequences that have been captured and are pre-
sent in publicly available datasets, but have yet to be
classified and named. In the light of this observation, we
highlight the necessity to develop computational meth-
ods that can easily integrate new versions of the manually
curated taxonomic labels.

We also provide an accessory program, ICTVdump, to
facilitate and automate this operation, given the utmost
importance of manually curated reference taxonomic
lineages. Our method is designed to deal with an ever-
improving resource such as the ICTV. Moreover, while
our method is generally robust to fragmentation, as
confirmed by the non-parametric tests of completeness
across datasets and, even more prominently, by the arti-
ficial genome mutation and reduction study, the meta-
analysis revealed that viruses correctly classified by Virgo
tend to be 10% more complete than the misclassified
ones. This suggests a potential limitation in cases where
genomes are highly fragmented, since our method relies
on the indirect comparison of marker gene sharing, and
genome completeness is closely tied to viral sequence
size. Nonetheless, compared to straightforward metrics
of similarity scores (e.g., BLAST, ANI, or Jaccard coeffi-
cient, see “Results”), our method has shown better per-
formance in dealing with incomplete data. These are
desirable features that could position Virgo as a valuable
tool for metagenomic studies or reclassification efforts in
light of new ICTV updates.

Taken together, the presented results favor the hypoth-
esis that the bidirectional subsethood of matched marker
profiles is a viable metric on which accurate virus clas-
sification can rely on. Nonetheless, we can devise
ways to further enhance methods using this similarity
measure. For example, when attempting to distinguish
harder-to-classify viruses, such as those in the order
Mononegavirales, the metric could be further refined
by re-architecturing the bidirectional subsethood and
transforming the collections of sets from unordered to
ordered. Modeling the order in which the two genomic
sequences individually map to the markers profiles
(a synteny-like approach) could help reduce ties and
improve classification accuracy. We would like to empha-
size that the classification robustness achieved is likely a
testament to the extensive effort put into the collection
and validation of the markers by the authors of geNomad,
and we gratefully acknowledge their contributions.
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