
On the Complexity of Cryptographic
Groups and Generic Group Models

Keyu Ji1,2, Cong Zhang1,2(B), Taiyu Wang1,2, Bingsheng Zhang1,2(B),
Hong-Sheng Zhou3(B), Xin Wang4, and Kui Ren1,2

1 the State Key Laboratory of Blockchain and Data Security, Zhejiang University,
Hangzhou, China

{jikeyu,congresearch,taiyuwang,bingsheng,kuiren}@zju.edu.cn
2 Hangzhou High-Tech Zone (Binjiang) Blockchain and Data Security Research

Institute, Hangzhou, China
3 Virginia Commonwealth University, Richmond, USA

hszhou@vcu.edu
4 Digital Technologies, Ant Group, Hangzhou, China

wx352699@antgroup.com

Abstract. Ever since the seminal work of Diffie and Hellman, crypto-
graphic (cyclic) groups have served as a fundamental building block for
constructing cryptographic schemes and protocols. The security of these
constructions can often be based on the hardness of (cyclic) group-based
computational assumptions. Then, the generic group model (GGM) has
been studied as an idealized model (Shoup, EuroCrypt 1997), which jus-
tifies the hardness of many (cyclic) group-based assumptions and shows
the limits of some group-based cryptosystems. We stress that, the impor-
tance of the length of group encoding, either in a concrete group-based
construction or assumption, or in the GGM, has not been studied.

In this work, we initiate a systematic study on the complexity of cryp-
tographic groups and generic group models, varying in different lengths of
group encodings, and demonstrate evidences that “the length matters”.
More concretely, we have the following results:

– We show that there is no black-box/relativizing reduction from
the CDH-secure groups (i.e., over such groups, the computational
Diffie-Hellman assumption holds) with shorter encodings, to the
CDH-secure groups with longer encodings, within the same security
parameter. More specifically, given any arbitrary longer CDH-secure
group, it is impossible to generically shorten the group encoding and
obtain a shorter CDH-secure group within the same group order.

– We show that there is a strict hierarchy of the GGMs with different
lengths of encodings. That is, in the framework of indifferentiability,
the shorter GGM is strictly stronger than the longer ones, even in
the presence of computationally bounded adversaries.

The work was mainly supported by National Key Research and Development Program
of China, Grant No. 2023YFB3106000. Cong Zhang is the co-first author.

c© International Association for Cryptologic Research 2025
K.-M. Chung and Y. Sasaki (Eds.): ASIACRYPT 2024, LNCS 15490, pp. 3–35, 2025.
https://doi.org/10.1007/978-981-96-0941-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0941-3_1&domain=pdf
https://doi.org/10.1007/978-981-96-0941-3_1

4 K. Ji et al.

1 Introduction

Provable Security and Black-Box Reduction. In the past decades, provable
security becomes one of the cornerstones of modern cryptography. As the main
technique of provable security, reductions are involved to justify the security
of a scheme based on a cryptographic primitive. Essentially, given an allegedly
successful adversary that breaks the scheme, one can convert it into another
successful adversary against the underlying primitive. To a large extent, we study
the reductions that are in a black-box manner, in the sense that reductions
consider the primitive and/or the adversary against the scheme only via the
input-output behavior, without exploring the internal code of the primitive or
of the adversary.

In the realm of group-based cryptography (initiated by Diffie and Hellman
in their seminal work [DH76]), reductions are established based on the security
of cryptographic groups. Serving as the foundation, the community is motivated
to study cryptographic groups from various perspectives.

From an Efficiency Perspective. In the literature, with few exceptions, group-
based cryptosystems are often built on cryptographic groups in an abstract and
black-box manner, which means the underlying groups can be instantiated by
any concrete ones as long as the desired security properties are fulfilled. For
instance, the well-known public key encryption (PKE) scheme, the ElGamal
encryption [ElG85], is chosen-plaintext attack secure (IND-CPA) w.r.t. any con-
crete prime-order cyclic group in which the decisional Diffie-Hellman (DDH)
assumption holds.

In practice, when it comes to instantiating cryptosystems for better efficiency,
we typically prefer concrete groups with shorter descriptions. Specifically, the
ElGamal encryption utilizes the prime-order subgroup of Z

∗
p, for prime p, where

the typical bit-length of a group element is 3072 (for 128-bit security) [Bar20];
an alternative approach involves elliptic curves, an increasingly popular choice,
and NIST SP 800-186 [CMR+23] provides a list of recommended curves for 128-
bit security, such as Curve25519 (with a 255-bit prime modulus). With classic
point compression technique, each group element of Curve25519 can be encoded
in 256 bits.

This highlights a critical yet subtle issue that has long been overlooked by the
community. That is, the bit-length of a group element is not explicitly taken into
account when the group is utilized in a black-box manner. Note, in real-world
applications, groups with shorter descriptions are often preferred to minimize
communication and computation overhead. Hereby, we ask the following ques-
tions: Does the length of the group description matter when using it in a black-
box manner? Is it possible to construct a group with a shorter description gener-
ically from groups with longer descriptions? For notation simplicity, throughout
this work, we will use shorter groups and longer groups, to denote “groups with
shorter descriptions” and “groups with longer descriptions,” respectively.

From a Security Perspective. Unfortunately, despite the advancement of modern
cryptography, to the best of our knowledge, there is a fundamental limitation

On the Complexity of Cryptographic Groups and Generic Group Models 5

in provable security—the inability of establishing unconditional hardness with
respect to a concrete group. In the past decades, researchers have made sig-
nificant efforts to explore various ways to demonstrate the hardness of those
group-based problems, and one approach is through the class of generic algo-
rithms.

In essence, generic algorithms do not explore the specific encoding of group
elements, but instead treat them in a generic manner. Studying this class of
algorithms is highly motivated, since several well-known algorithms such as the
baby-step/giant-step algorithm [PH78] and Pollard’s rho algorithm [Pol78] fall
within this classification. To formally describe generic algorithms, ever since
the initial work by Nechaev [Nec94], variants of generic group models (GGMs)
have been proposed. In Shoup’s GGM [Sho97], the group is conceptualized as a
random injective encoding from the additive group ZN into bit strings uniformly
sampled from a set S, where algorithms are allowed to retrieve group encodings
and perform group operations, through oracle access. In Maurer’s GGM [Mau05],
the group is modeled as pointers with respect to a stateful register, where group
encodings are the handles (or the indexes) of the register. Within both models,
we can establish the unconditional hardness, affirming the justification of the
security of cryptographic groups.

When it comes to the study of the lengths of group encodings in the GGMs,
Maurer, Portmann, and Zhu [MPZ20] initiate the models varying in the length
of the group encoding, and illustrate a partial hierarchy of the GGMs, wherein
any adversary within the GGM with a longer group encoding (below we denote it
as “the longer GGM” for simplicity) can be converted into an adversary within
the GGM with a shorter group encoding (below we denote it as “the shorter
GGM” for simplicity). Despite the partial hierarchy, the connection and distinc-
tion between the longer GGM and the shorter GGM remains unexplored, which
hinders a comprehensive interpretation and comparison of the numerous positive
and negative results in the GGM.

To deepen our understanding on cryptographic groups, we ask the following
question:

Will the longer group/GGM and the shorter group/GGM yield the same
complexity?

1.1 Our Results

In this work, we initiate a fine-grained study of cryptographic groups and generic
group models with different lengths of group encodings. Specifically, we give
evidences that:

– There is a black-box separation between the shorter CDH-secure groups and
the longer CDH-secure groups with the same security parameter; in other
words, given longer CDH-secure groups, one cannot build a shorter CDH-
secure group with the same group order from any standard techniques;

– The shorter GGMs are strictly stronger than the longer GGMs, even in the
presence of computationally bounded adversaries.

6 K. Ji et al.

To illustrate our findings, we first formalize the notions of groups/GGMs, param-
eterized by (N,m)1, where N and m denote the order of the group and the length
of the group encodings2, respectively. More concretely, we respectively denote
the (parameterized) groups and GGMs as PCDH

N,m and GN,m.
To establish the black-box separation between PCDH

N,m1
and PCDH

N,m2
where m2 is

much larger than m1, we apply the common technique, namely, the relativizing
separation. Concretely, we identify an idealized oracle O and prove that the
longer CDH-secure groups exist relative to O, but the shorter one does not exist.
In our strategy, we set this oracle to be the GGM with longer group encodings,
namely GN,m2 . At the first glance, this seems impossible, because the GGM is
designed as the idealized model for cryptographic groups, and the GGM justifies
the CDH by having the unconditional lower bound of the hardness. Fortunately,
we observe that the analysis becomes subtle when the “length” is involved.

Theorem 1 (Main Theorem, informal). Consider m1 < m2. The shorter
CDH-secure groups PCDH

N,m1
are black-box separated from the longer CDH-secure

groups PCDH
N,m2

. Concretely,

– PCDH
N,m1

does not exist in the generic group model GN,m2 ;
– GN,m2 implies PCDH

N,m2
.

Remark 1. Careful readers might wonder what is the relationship between the
longer groups and the shorter groups in which discrete logarithm is assumed
to be hard. We emphasize that, due to technical challenges3, the relationship
between the longer and shorter groups remains unknown—neither positively nor
negatively established. We leave it as an open problem.

Next, we turn our attention to understanding the relationship between the
GGMs with different lengths of encoding. Based on the trivial observation that
“GN,m1 implies PCDH

N,m1
”, we immediately note that the shorter GGM, GN,m1 , and

the longer GGM, GN,m2 do not yield the same black-box complexity. However,
when attempting to grasp the relationship between two idealized models, solely
relying on black-box complexity might not provide us a comprehensive under-
standing. Essentially, the black-box complexity of a model only demonstrates
the limit of standard-model cryptographic systems it implies and considers the
computationally unbounded adversary.

To supplement this, Zhang and Zhandry [ZZ23] propose an orthogonal per-
spective to the black-box complexity, namely the heuristic complexity. It con-
siders computationally bounded adversaries, thereby excluding the impact of all
standard-model cryptosystems on the complexity. We investigate “the length
matters” of GGMs within this new perspective, showing that:
1 Typically N is sufficiently large, and 2m ≥ N .
2 By the length of group encoding, we mean that the binary length of the longest

canonical representation for all group elements. For instance, let G’s be a group
such that the order is 3 and the canonical representation of the group elements is
{00, 111, 0101}, then the length of G, denoted as lenG, is 4.

3 It is still unclear that whether discrete logarithm implies key agreement or not yet.

On the Complexity of Cryptographic Groups and Generic Group Models 7

Fig. 1. Relationship between idealized models.

Theorem 2 (Hierarchy of GGMs, Informal). In the framework of indiffer-
entiability, the GGM with shorter encodings is strictly stronger than the GGM
with longer ones, even against computational bounded adversaries.

To make it clearer, we show our results in Fig. 1. Following the notions
in [ZZ23], we give evidence that the shorter GGM statistically implies the longer
ones, but the existence of longer GGM’s does not computationally imply the
existence of a shorter one. More concretely, there exists an indifferentiable con-
struction of a longer generic group with oracle access to shorter generic group
without any computational assumption; whereas, as long as the difference in
encoding lengths is sufficiently large, there does not exist an indifferentiable
construction of a shorter generic group from a long generic group, even with any
additional computational assumption.

1.2 Interpretation

Below, we offer interpretations of our findings.

From the Perspective of Black-Box Separation. Our results will bring
the research community a better understanding of the cryptographic groups
and the generic group models, from the perspective of the black-box reduc-
tion/separation4. In literature, generic group models have been frequently
used to show the impossibility of constructing advanced group-based cryp-
tosystems. Examples include identity-based encryption (IBE) [PRV12,SGS21,
Zha22], indistinguishable obfuscation (iO) [MMN16], registration-based encryp-
tion (RBE) [HMQS23], accumulators [SGS20], order revealing encryption
(ORE) [ZZ18], verifiable delay functions (VDF) [RSS20], and digital signa-
ture [DHH+21]. Most of the separation results (e.g., [MMN16,ZZ18,RSS20,
SGS20]) are established in Maurer’s GGM. Meanwhile, Zhandry [Zha22] illus-
trates the limits of Maurer’s GGM by proving that there are many natural
4 In this work, when talking about the black-box reduction/separation, we mean that

the fully black-box reduction/separation that is explicitly defined in [RTV04].

8 K. Ji et al.

group-based cryptographic schemes (e.g., efficient IND-CPA secure PKE) can-
not be modeled by Maurer’s GGM, and motivates the line of research, i.e.,
separations in Shoup’s GGM (e.g., IBE in [Zha22] and RBE in [HMQS23]).

Our results demonstrate the first evidence that the generic group model can
also be used to show the impossibility of constructing plain cryptographic groups,
varying in distinct length of group encodings. Speaking of the “lengths” in cryp-
tographic primitives, prior to our work, Garg et.al. [GMM17] prove that there
is no iO construction from the single-key functional encryption (FE), if the out-
put length of the functions is much shorter than the length of the ciphertexts5.
Therefore, we believe that, our result would motivate the community to study
the “lengths” in fundamental primitives (e.g., PKE).

However, when delving deeper into our analysis, we stress that our separation
results have a limitation. That is, we only establish the separations between
the shorter CDH-secure groups and the longer CDH-secure groups under the
condition that those groups yield the same security-parameter, which indicates
that our separations are somehow security-parameter dependent.

For readability, we now explain the limitation through a concrete example.
Let λ and λ′ be two security parameters. Let p and p′ be two primes where
�log p� = λ and �log p′� = λ′. Let G1 be a CDH-secure cryptographic group
where the group order is p and the length is 2λ. Let G2 be another CDH-
secure cryptographic group where the group order is p′ and the length is 4λ′.
Apparently, G1 is the shorter group and G2 is the longer one. According to our
findings, if λ′ ≥ λ, then one cannot generically build G1 from G2. Unfortunately,
if λ′ < λ (say, λ′ = 1

3λ, indicating that 4λ′ = 4
3λ < 2λ), then the relationship

between G1 and G2 becomes unclear.
In contrast, most known separations are security-parameter independent.

Take the separation of IBE in Shoup’s GGM [Zha22] for instance; according
to Zhandry’s analysis, we have that for any sufficiently large λ and λ′, one can-
not generically build an IBE along with security-parameter λ′, in Shoup’s GGM
with security-parameter λ. In order to establish a complete black-box separation
(i.e., in the sense of security-parameter independent) between shorter groups and
longer groups, novel techniques must be developed to resolve the limitation; we
leave this as an important open problem.

Next, we justify that despite of the limitation, our results are interesting and
important. First, when it comes to the problem that building a cryptographic
group (say, G1) from another one (say, G2), it is natural to study the cases that:
(1) G1 and G2 are with the same group order; (2) the order of G1 is a factor of
G2

6. Second, to the best of our knowledge, we are aware of no technique that
can be used to generically build G1 from G2 if the group orders of G1 and G2

are distinct and co-prime. Therefore, we stress that our separations do capture
the natural settings.

5 The separation is established under the condition that one-way functions (OWFs)
exist and NP � coAM.

6 This case indicates that the security parameter of G2 is bigger than G1’s, and for-
tunately our analysis does capture such a case.

On the Complexity of Cryptographic Groups and Generic Group Models 9

Moreover, our results serve as the first attempt to pin down the “lengths”
problem for a fundamental primitive (i.e., cryptographic groups), which might
open up new research directions (say, the “lengths” problem for other funda-
mental primitives). Below, for the ease of exposition, when we say the black-box
separation between groups, we always mean the one with the same security
parameter.

From a Heuristic Perspective. Our results will deepen our understanding of
the generic group models from the perspective of heuristic complexity. Inspired
by [MRH04,ZZ23], an idealized model can be interpreted through two orthogonal
perspectives: the black-box complexity and the heuristic complexity, as depicted
in Fig. 1.

For the heuristic aspect, initiated by Maurer et.al. [MRH04] and explicitly
studied by Zhang and Zhandry [ZZ23], we consider the framework of indifferen-
tiability against computationally bounded adversaries, where all cryptosystems
that exist in the standard model are incorporated. Therefore, the perspective of
heuristic is orthogonal to the one of black-box reduction/separation, and under-
standing the heuristic aspect of various idealized models is important for the
relative security of cryptosystems based on idealized models. We establish a
strict hierarchy of GGMs from this perspective and prove that the shorter GGM
is strictly stronger than the longer one.

In the following, we will give an overview of our approach to comparing the
various primitives/models, varying in different lengths of encodings, and our
solutions for separating them.

1.3 Technical Overview

Separation Between Cryptographic Groups. Given two cryptographic
primitives P and Q, the typical technique to establish the black-box separa-
tion is “relativizing separation” [IR89]. That is, we find a proper oracle O and
prove that the primitive P exists relative to O but Q does not. In our setting, we
consider the primitives P and Q to be the longer CDH-secure group and shorter
one, respectively.

Compared to prior works, the main technical challenge is that, we need to
show the gap between two primitives within the same security game (i.e., the
CDH game), rather than within different games7. The first obstacle is to find a
proper oracle. Apparently, the random oracle does not serve our purpose, because
the random oracle is weak and there is no construction for CDH-secure groups
in the random oracle model.

Our idea is to use a stronger oracle, the generic group model. At the first
glance, this is impossible, because GGM implies CDH trivially! Fortunately, the
GGMs varying in length of group encodings might also yield different levels of
complexity, and thus we set this oracle to be the longer GGM within the same
security parameter. Concretely, we denote the shorter groups, the longer groups

7 Games in [IR89] are one-wayness and key recovery attack, respectively.

10 K. Ji et al.

and the longer GGM as PCDH
N,m1

,PCDH
N,m2

,GN,m2 , respectively; recall that m2 > m1;
and we prove that:

– PCDH
N,m2

exists relative to GN,m2 ;
– PCDH

N,m1
does not exist relative to GN,m2 .

As the former statement is trivial, below we only explain the latter one. To
show that PCDH

N,m1
does not exist in GN,m2 , it suffices to construct an adversary

A that breaks the CDH game for any construction of shorter group relative to
GN,m2 . Due to technical difficulties, we switch to an alternative path. First we
pin down a new primitive—non-interactive key exchange (NIKE) with shorter
public key, denoted as PNIKE

N,m1
8. Then we prove that:

1. PCDH
N,m1

implies PNIKE
N,m1

;
2. PNIKE

N,m1
does not exist relative to GN,m2 .

As the first statement is straightforward, we will prove the second one. Essen-
tially, PNIKE

N,m1
, in and of itself, is a key agreement scheme. Next, we give a brief

explanation of the separation between NIKE and the random oracle [BKSY11]
and then demonstrate how to incorporate the ideas into our analysis. Let H
be a random oracle and ΠH := (KGenH,SHKH) be an NIKE scheme with per-
fect correctness. Assuming that the algorithms KGen and SHK make at most q
queries, we then construct the adversary A as follows9. Let Alice and Bob be
two honest parties. Given the transcript of an execution between Alice and Bob,
i.e., pkA and pkB , in the present of H, the adversary A maintains a set Sque-res of
query/response pairs of H, and a multiset Skey of candidate keys, both initialized
to be ∅. The adversary A then runs 4q + 1 iterations of the following attack:

– Simulation Phase. The adversary A searches a proper view of Alice that is
consistent with pkA and Sque-res. Specifically, this view contains the random-
ness r∗

A used by KGen and SHK, as well as a set of oracle queries/responses ŜA
made by KGen and SHK. The set ŜA is chosen to be consistent with Sque-res,
but it is unnecessary to be consistent with the true oracle H. Let key be the
value computed by SHK(r∗

A, pkB). Now, A adds key into Skey.
– Update Phase. The adversary A makes all queries in ŜA \Sque-res to the oracle

H, and adds the corresponding pairs into Sque-res.

Finally, A outputs the majority of the keys in Skey. Next, we explain why A
recovers the key. Let SB denote the queries made by Bob in the real execution
of the key exchange protocol. In a given iteration, there are two events:

– Event 1 (Bad event): ∃(queA, resA) ∈ ŜA, (queB , resB) ∈ SB s.t. queA =
queB but resA �= resB .

8 Here, m1 means the length of the public key; please find the formal definition in
Sect. 2.1.

9 The adversary here is computational unbounded but query-efficient.

On the Complexity of Cryptographic Groups and Generic Group Models 11

– Event 2 (Good event): ∀(queA, resA) ∈ ŜA, (queB , resB) ∈ SB, we have that
if queA = queB , then resA = resB .

Note that event 1 only occurs in at most 2q iterations because |SB | ≤ 2q and
once it happens, the update phase would absorb at least one pair (queB , resB) ∈
SB into Sque-res. For event 2, we observe that, when it occurs, there is another
oracle H̃ that is consistent with both ŜA and SB . Based on the perfect correct-
ness, we have that the shared key computed in that iteration is valid. Moreover,
event 2 occurs in at least 2q+1 iterations, indicating that the majority in Skey is
valid.

However, when it comes to the GGM, the attack fails. Comparing to ROM,
there are two kinds of queries in GGM, namely the labeling query (x,G label

N,m2
(x))

and the addition query (G label
N,m2

(x),G label
N,m2

(y),G label
N,m2

(x + y)). Therefore, we should
define SB that covers all the group encodings that appear in the queries (both
labeling and addition) with the discrete logarithms (Bob might not know the
value). Then, in a given iteration, there are three events:

– Event 1 (Bad event): ∃(queA, resA) ∈ ŜA, (queB , resB) ∈ SB s.t. queA =
queB but resA �= resB .

– Event 2 (Bad event): ∃(queA, resA) ∈ ŜA, (queB , resB) ∈ SB s.t. queA �=
queB but resA = resB .

– Event 3 (Good event): ∀(queA, resA) ∈ ŜA, (queB , resB) ∈ SB, we have that
if queA = queB , then resA = resB .

Note that event 1 and event 3 can be handled similarly as above. However,
the fatal problem is that event 2 might always happen. In other words, we cannot
find a GGM that is consistent with both ŜA and SB , indicating that the above
attack fails immediately.

More specifically, we note that the reason why event 2 happens is that, given
pkA and pkB , algorithms can obtain valid group encoding without making label-
ing query10. Moreover, if algorithms cannot obtain valid group encodings without
making labeling queries, then the GGM can be simulated by a stateful oracle
that only provides labeling queries, as the addition queries can be easily con-
verted into labeling queries. Such an oracle is close to the random oracle model
and thus our goal is to design a mechanism that prevent extracting valid group
elements without knowing the corresponding discrete logarithms.

Here we introduce our length tool, intuitively, if the length of the public
key is much shorter than the group encoding (say, the length gap is at least
ω(log λ)), then the public key would not carry enough information to recover
the group encodings. This also explains why we choose NIKE other than general
key agreement (say, multi-round KA), because the adversary only obtains two
public keys in the setting of NIKE.

10 This in fact is natural in group-based cryptosystem, take the ElGamal encryption
scheme [ElG85] for instance, the public key itself is a valid group element.

12 K. Ji et al.

Concretely, let QskA
and QskB

be the set of the query/response pairs (only
labeling queries11) made when running KGenGN,m2 (skA) and KGenGN,m2 (skB),
respectively. Let h be the valid group encoding that an algorithm outputs, by
having pkA and pkB, we then consider the following four cases:

– Case 1: (Independent) h /∈ QskA
∪ QskB

.
– Case 2: (Frequent) h ∈ QskA

∩ QskB
.

– Case 3: (Dependent but hard to extract) h ∈ QskA
\ QskB

.
– Case 4: (Dependent but hard to extract) h ∈ QskB

\ QskA
.

For case 1, h is independent of pkA and pkB . Due to the sparseness of the
group encodings in GN,m2 , no algorithm can output h except for negligible prob-
ability.

For case 2, it is apparent that pkA and pkB together might carry enough
information for h. Fortunately, with high probability h is a frequent query, there-
fore the discrete logarithm of h can be easily obtained by repeatedly running
KGenGN,m2 (·) on sufficiently many random inputs.

For case 3 (or case 4), note that h is independent of pkB , which means that
only pkA carries the information of h. Note that the length of pkA is m1 but
length of h is m2. Moreover, h is uniformly distributed over the probability of
GGM. Therefore, conditioned on that m2 −m1 is sufficiently large, no algorithm
can extract such an h except for negligible probability.

The above sketch is not precise; please find low-level details, in Sect. 3.

Hierarchy of GGMs. To establish the hierarchy of the generic group models
against computational bounded adversaries, we formalize our goal in the frame-
work of indifferentiability. Specifically, we prove that the shorter GGM (denoted
as GN,m1) statistically implies the longer one (denoted as GN,m2), but the longer
GGM does not computationally imply the shorter one.

GN,m1 statistically implies GN,m2 . We first explain how GN,m1 implies GN,m2

against computationally unbounded adversaries. Let H be a random oracle that
maps {0, 1}∗ → {0, 1}m2−m1 ; as the first attempt, it is natural to design the
labeling function as:

LGN,m1 ,H(x) := G label
N,m1

(x)||H(G label
N,m1

(x)).

However, there always exists an efficient distinguisher that breaks the indifferen-
tiability w.r.t. the above scheme. Specifically, in the ideal world, the distinguisher
uniformly samples x ∈ ZN , makes a labeling query with x, and obtains G label

N,m2
(x).

Let str and str′ be the first m1 bits and the last m2−m1 bits of G label
N,m2

(x), respec-
tively. Then the distinguisher makes a query to the simulator with input str and
checks whether the response matches str′. Note that, without knowing x, the
11 We stress that, for the algorithm KGenGN,m2 , without loss of generality, it only makes

labeling queries. Essentially, the group encodings of GN,m2 are sparse, which means
any algorithm with inputs that are independent of GN,m2 cannot obtain a valid group
encoding without making labeling query, indicating that any addition query can be
absorbed by the corresponding labeling query.

On the Complexity of Cryptographic Groups and Generic Group Models 13

simulator cannot answer this query properly except for a negligible probability.
To prevent the attack above, we enhance the power of the simulator. We involve
an additional oracle, the random permutation oracle E , that permutes {0, 1}m2

with its inverse12 E−1, and design the labeling function as:

LGN,m1 ,H,E(x) := E(G label
N,m1

(x)||H(G label
N,m1

(x))).

Careful readers may wonder why it works. Note that both E and E−1 are under
full control of the simulator, which means that the distinguisher is independent
of the value H(G label

N,m1
(x)) without making queries to the simulator. This extra

information gained from these queries is exactly what the simulator requires
for the proof to go through. In fact, with the aid of E , we can even simplify the
construction by replacing H(G label

N,m1
(x)) with a fixed string, say 0 · · · 0, concretely:

LGN,m1 ,E(x) := E(G label
N,m1

(x)|| 0 · · · 0
︸ ︷︷ ︸

m2−m1

).

The addition algorithm can be easily constructed by applying the inverse oracle
E−1. While the additional oracle E and its inverse E−1 have protected against
certain natural attacks, we need to argue indifferentiability against all possible
attacks. To do so, we use a careful simulation strategy for G label

N,m1
,Gadd

N,m1
, E , and

E−1, and prove indifferentiability through a careful sequence of hybrids. Due to
the space limit, we omit the formal descriptions of our simulation, and we refer
interesting readers to see it in the full version of this paper [ZJW+24].

Remark 2. Careful readers might note that the building blocks of construction
above contain both the shorter GGM GN,m1 and an additional independent ran-
dome oracle, rather than the shorter GGM solely. Although we have that GGM
implies ROM statistically [ZZ23], it is unclear to us that how to build an indif-
ferentiable GGM plus an independent ROM from a single GGM. Therefore, we
stress that our hierarchy of the GGM is established with the aid of an additional
independent random oracle.

Moreover, this even motivates an interesting research question that whether
one single GGM implies multiple independent GGMs, comparing to the fact that
the random oracle does.

GN,m2 does not computationally imply GN,m1 . Suppose we have a purported con-
struction ΠGN,m2 := (LGN,m2 , AGN,m2) of a shorter group from a longer GGM.
How could we prove that ΠGN,m2 can be differentiated from GN,m1 by a compu-
tationally bounded distinguisher?

Following the strategy in [ZZ23], we should find some security property P
that holds for GN,m1 but fails for any ΠGN,m2 . As explained in [ZZ23], any stan-
dard model assumption cannot serve as the property, and thus, this property P is
set to be a variant of discrete logarithm problem, called discrete log identification
12 According to [HKT11], the random oracle and random permutation oracle with

inverse are equivalent, therefore we take E and E−1 for granted.

14 K. Ji et al.

(DLI). Intuitively, DLI is defined as: given h := L(x), construct a (probabilistic,
efficient, and query-free) circuit C such that C(x) accepts with a high probabil-
ity, but C(x′) rejects with a overwhelming probability on all x′ �= x. Apparently,
the DLI problem is easy on any standard-model group: for any y, set C(y) to
be 1 if and only if L(y) = h, where L(y) := gy is computed as part of the cir-
cuit13. To establish the separation between GGM and ROM, Zhandry and Zhang
prove that the DLI problem is also easy on any group built within the random
oracle model. Intuitively, they “compile out” the random oracle H and design
an attacker that can easily construct an oracle-aided circuit CH(·), breaking
the DLI problem by computing LH(·). The subtlety is to anticipate the oracle
queries that C will make to the random oracle model and have the attacker make
the corresponding queries for itself. Concretely, given input LH(x), the attacker
runs the addition algorithm AH(LH(y), LH(x − y)) and LH(·) on several ran-
dom inputs, records all queries/responses that were made, and hardcodes the
queries/responses into the C to obtain an oracle-free circuit, which C outputs.

Below, we outline our method for integrating the aforementioned technique
into the analysis within the longer GGM. The difficulty is that, our goal seems
to conflict with the results in [ZZ23], as they have proven that the DLI problem
is hard with respect to the generic group model. To bypass the obstacle, we here
leverage the length tool again.

Consider computing LGN,m2 (x) from x, which in turn makes queries to the
longer GGM, GN,m2 . Let Qx be the set of query/response pairs made during the
procedure of computing LGN,m2 (x). Similarly as above, we assume that, without
loss of generality, each query/response pair (que, res) ∈ Qx is a labeling query.
Consider computing AGN,m2 (LGN,m2 (y), LGN,m2 (z)) where y and z are random,
conditioned on y + z = x. The output of this addition is LGN,m2 (y + z) =
LGN,m2 (x). For each query/response pair (que, res) ∈ Qx, there are roughly four
possible cases:

– Case 1: The label LGN,m2 (x) does not depend on the response res at all;
– Case 2: The label LGN,m2 (x) depends on the response res, but with a over-

whelming probability over the choice of y and z, res does not appear when
computing AGN,m2 (LGN,m2 (y), LGN,m2 (z));

– Case 3: The label LGN,m2 (x) depends on the response res, and
with a non-negligible probability over the choice of y and z,
AGN,m2 (LGN,m2 (y), LGN,m2 (z)) makes a “labeling” query to GN,m2 on input
que;

– Case 4: The label LGN,m2 (x) depends on the response res, and with a
non-negligible probability over the choice of y and z, an “addition” query
(que1, que2, res) occurs when computing AGN,m2 (LGN,m2 (y), LGN,m2 (z)).

Now we explain our approach of building the oracle-free circuit C. We collect
queries into a list, denoted as Sque-res, and hardcode Sque-res into the circuit C to

13 Note that for standard-model groups, L(y) denotes the value gy for the fixed gener-
ator g, and here y is the discrete logarithm of h with respect to g.

On the Complexity of Cryptographic Groups and Generic Group Models 15

make sure that C(x) will be able to reconstruct LGN,m2 (x) without making any
query to the oracle at all:

– In case 1 (Non-sensitive query), same as in [ZZ23], since LGN,m2 (x) does
not depend on res, when computing LGN,m2 (x) we can just replace the
response with a random string without affecting the ultimate labeling. There-
fore, for any query not in Sque-res, we will have C respond with a uniformly
random string.

– In case 2 (Sensitive but frequent query), same as in [ZZ23], since
LGN,m2 (x) does depend on res, this query is a sensitive query for the ulti-
mate labeling. In this case, it must be that AGN,m2 (LGN,m2 (y), LGN,m2 (z)) be
able to extract res from the inputs, i.e., LGN,m2 (y) and LGN,m2 (z), which indi-
cates that, with a high probability, (que, res) ∈ Qx ∩ (Qy ∪ Qz). On the other
hand, x, y and z are pairwise independent, which means that Qx ∩ Qy and
Qx ∩Qz only contains “frequent” queries. Therefore, this query/response pair
can be collected by running LGN,m2 (·) on sufficiently many random inputs.

– In case 3 (Sensitive labeling query), same as in [ZZ23], Sque-res collects all
the labeling queries that occur when running AGN,m2 (LGN,m2 (y), LGN,m2 (z)).
We know that, with a non-negligible probability (que, res) will be amongst the
queries in Sque-res. By repeating several times, we have that (que, res) ∈ Sque-res

with a high probability.
– In Case 4 (Sensitive addition query), different from [ZZ23], the addition

query, i.e., (que1, que2, res) occurs, where que1 and que2 are two valid group
encodings of GN,m2 . Although res appears in this query, collecting this kind
of query is not usually useful for our purpose. Specifically, when running
LGN,m2 (x), the algorithm might make labeling queries on points (x1, . . . , xq),
whereas Sque-res might only store query/response pairs in the form of addition,
i.e., (GN,m2(yi),GN,m2(zi),GN,m2(yi + zi)), without explicitly knowing either
yi or zi. As a result, C(x) might fail to reconstruct LGN,m2 (x): when running
C(x) := LSque-res(x), although C knows that GN,m2(xi) exists in the database
Sque-res, it does not know which tuple corresponds to the correct one.
To resolve the problem, we need to transform this addition query into a
labeling query. Observe that if the discrete logarithms of que1 and que2 are
known, then the transformation is trivial. Exploring deeper, during the proce-
dure of computing AGN,m2 (LGN,m2 (y), LGN,m2 (z)), the algorithm AGN,m2 can
only extract valid group encodings in Qy ∪ Qz

14. Moreover, we have that
LGN,m2 (y) and LGN,m2 (z) are independent of the responses that are in Qz \Qy

and Qy \ Qz, respectively.
Now, we leverage the length tool. Concretely, from AGN,m2 ’s perspective,
LGN,m2 (y) is the only string that carries information of the valid group encod-
ings ∈ Qy \Qz. If m2 −m1 is sufficiently large, say m2 −m1 ≥ ω(log λ), where
λ is the security parameter, then it is impossible for AGN,m2 to extract a valid
group encoding from Qy \ Qz except for a negligible probability, indicating
that the valid group encodings that AGN,m2 can extract are in Qy∩Qz. Having

14 Other group encodings in GN,m2 are independent of LGN,m2 (y) and LGN,m2 (z).

16 K. Ji et al.

that x, y and z are pairwise independent, we know that queries in Qy ∩ Qz

are frequent with a high probability, which can be easily captured as in case
2.

Next, we consider the value of C(x′) for x′ �= x. If we are lucky and Sque-res

contains all sensitive queries of Qx′ , then C(x′) = LGN,m2 (x′) �= LGN,m2 (x),
indicating that C(x′) rejects as desired. Otherwise, if Sque-res does not contain
all the sensitive queries of Qx′ , then Sque-res would respond to the query with
random value, which means that C(x′) computes an invalid label for x′. As
explained in [ZZ23], the random response would only serve to inject further
randomness into the label, and the invalid label would be unequal to LGN,m2 (x)
with a high probability. Combining the above together, we build an oracle-free
circuit that only accepts the discrete logarithm x.

The above sketch is not precise; please find the low-level details in Sect. 4.

The Hierarchy is Tight. To complement our results of the hierarchy, we next
show that if m2 − m1 is small, then GN,m1 and GN,m2 are equivalent under the
indifferentiability framework. To explain our idea, we illustrate the simplest case,
where m2 − m1 = 115. Let Trunc be the function that chops off the last bit of
the input, we build an indifferentiable group in GN,m2 as follows:

LGN,m2 (x) := Trunc(G label
N,m2

(x));

AGN,m2 (str0, str1) :=

{
Trunc(Gadd

N,m2
(str0||b0, str1||b1)), if str0||b0 and str1||b1 are valid;

⊥ otherwise.

For clarity, if there exist b0, b1 ∈ {0, 1} such that both str0||b0 and str1||b1

are valid, then the addition algorithm outputs Trunc(Gadd
N,m2

(str0||b0, str1||b1)),
otherwise it aborts. Based on the fact that the group encodings of GN,m2 are
sparse, we know that for any string str, the probability that both str||0 and
str||1 are valid is negligible, which indicates that the addition algorithm is well
defined. Moreover, we prove that the construction above is indifferentiable from
GN,m1 . Due to the space limit, we leave the proof in the full version of this
paper [ZJW+24].

Due to the composition of indifferentiability, our results can be easily
extended to the case that m2 − m1 ≤ Θ(log λ), which completes the entire
picture of the hierarchy asymptotically.

1.4 Organization

In Sect. 2, we present the necessary notations, concepts, and definitions. We
establish a separation between two CDH-secure groups with sufficiently large

15 We also require that group encodings in GN,m2 are sparse, say m2−log N ≥ ω(log λ).

On the Complexity of Cryptographic Groups and Generic Group Models 17

encoding length difference in Sect. 3. We then establish a hierarchy among GGMs
with different encoding lengths in Sect. 4. All formal proofs can be found in the
full version of this paper [ZJW+24] due to the space limitation.

2 Preliminaries

Notation. For a finite set S, we denote a random sample s from S according to
the uniform distribution as s

$← S. We say a positive function negl(·) is negligible,
if for all positive polynomial p(·), there exists a constant λ0 > 0 such that for
all λ > λ0, it holds that negl(λ) < 1/p(λ). We say a function ρ(·) is noticeable

in λ, if the inverse 1/ρ(λ) is polynomial in λ. We write y
$← Alg(I) to denote

variable y that is obtained by running a randomized algorithm Alg on input I
(which may consist of a tuple I := (I1, ..., In)). If Alg is deterministic, we write

“←” instead of “ $←”. By x||y, we mean the concatenation of strings x and y.

Algorithms. Denote λ ∈ N as the security parameter. Here we use a non-
uniform circuit to formalize the model of computation. An algorithm Alg is
a collection of circuits {Cλ}λ∈N with domain Domλ and range Ranλ, respec-
tively. When considering interactive algorithms (Alg1, . . . ,Algn), algorithms are
treated as a sequence of circuits C

(1)
λ , C

(2)
λ , . . ., where the domain of C

(i)
λ is

denoted as Dom
(i)
λ = stat

(i)
λ × input

(i−1)
λ , the range of C

(i)
λ is denoted as

Ran
(i)
λ = stat

(i+1)
λ × output

(i)
λ . Here, stat

(i)
λ (input(i)λ , output

(i)
λ) is the space of

the state (inputs, outputs) that C
(i)
λ sends to C

(i+1)
λ , respectively.

Games. A game is initiated by a probabilistic interactive algorithm C, called a
challenger, and a predicate function pf : {0, 1}∗ → [0, 1]. The challenger takes
the security parameter as input and interacts with k communicating-restricted
parties (Alg1, . . . ,Algk). We call A := (Alg1, . . . ,Algk) the adversary. In the end
of the game, the challenger C outputs a bit b; if b = 1 we say the adversary wins
the game, otherwise we say the adversary loses. Let Cl(A) be a class of adversary.
We say a game (C, pf) is hard with respect to Cl(A), if for any adversary A ∈
Cl(A), we have Pr[A wins] ≤ pf + negl(λ).

Cryptosystems. A cryptosystem Σ consists of a set of algorithms, which typically
are non-interactive. Here, Σ is accessible via two interfaces Σ.hon and Σ.adv,
where Σ.hon provides an honest interface through which the system can be
accessed by all parties in a black-box manner, and Σ.adv models the adversarial
access to the inner working part of Σ.

2.1 Primitives, Idealized Models, and Reduction Notions

In this work, we treat CDH-secure groups as cryptographic primitives, and
explore black-box reduction between them with different lengths. First of all,
we recall the definition of primitive formalized by [RTV04].

18 K. Ji et al.

2.1.1 Cryptographic Primitives

Definition 1 (Cryptographic Primitive [RTV04]). A primitive P is a pair
〈FP ,RP〉, where FP is a set of functions f : {0, 1}∗ �→ {0, 1}∗, and RP is a
relation over pairs 〈f,A〉 of a function f ∈ FP and an adversarial machine A.
(The set FP is required to contain at least one function which is computable by
a ppt machine.)

– Efficient implementation. We say a function f implements P or is an imple-
mentation of P if f ∈ FP . An efficient implementation of P is an imple-
mentation of P which is polynomial-time computable.

– Secure implementation. We say an adversarial machine A P-breaks f ∈ FP
if 〈f,A〉 ∈ RP . A secure implementation of P is an implementation of P
such that no ppt adversarial machine P-breaks f .

We say the primitive P exists if there is an efficient and secure implemen-
tation of P.

As mentioned before, we treat CDH-secure groups as a cryptographic prim-
itive. Now we formalize this primitive by using the terms in [RTV04].

Definition 2 (CDH-Secure Groups). A CDH-secure group PCDH consists of
the following pair 〈FPCDH ,RPCDH〉:

1. The set FPCDH for specifying syntax and capturing the correctness property.
Here, the set FPCDH consists of functions f , where f represents the group
generation function for generating group description of finite cycle groups.
Concretely, we write (G, g,N,m) $← f(1λ), where G is a cyclic group of prime
order N , g is a generator G, and m is the length of group encoding (that is,
each group element in G can be represented as an m-bit string).
We note that the correctness is guaranteed by the basic properties of the cyclic
group.

2. The relation RPCDH for capturing the security property.
For function f ∈ FPCDH and ppt (adversarial) machine A, we define 〈f,A〉 ∈
RPCDH if there exists a polynomial p(·) such that Pr[A(G, g,N,m, h1, h2) =
gx1x2] > 1/p(λ) for infinitely many λ.

Here, (G, g,N,m) $← f(1λ), and h1, h2 ∈ G are two uniformly chosen group
elements where h1 = gx1 , h2 = gx2 , and x1, x2 ∈ ZN .

We say CDH-secure group PCDH exists, if there exists a function f ∈ FPCDH ,
it holds that no ppt adversarial machine A such that 〈f,A〉 ∈ RPCDH . Often,
we make the parameters, the order N and the encoding length m, explicit, and
denote the CDH-secure group as PCDH

N,m.

Non-interactive key exchange (NIKE) was initially studied by Diffie and Hell-
man in their breakthrough paper [DH76]. We now describe this primitive by
using the terms in [RTV04].

On the Complexity of Cryptographic Groups and Generic Group Models 19

Definition 3 (Non-Interactive Key Exchange). A non-interactive key
exchange protocol PNIKE consists of the following pair 〈FPNIKE ,RPNIKE〉:
1. The set FPNIKE for specifying syntax and capturing the correctness property.

Here, the set FPNIKE consists of functions f , where f := (KGen,SHK) repre-
sents
– the public-key message function KGen : SK �→ PK for generating the

public-key message based on a randomly chosen private-key, where PK
and SK are public-key space and private-key space, respectively.

– the shared key generation function SHK : PK × SK �→ K ∪ {⊥} for
generating the shared key, where K is shared-key space, and ⊥ denotes
that the computation fails.

Concretely, for randomly chosen sk
$← SK, we write pk ← KGen(sk), where

pk is called public key. Furthermore, for randomly chosen sk′ $← SK, compute
pk′ ← KGen(sk′). We write shk ← SHK(pk′, sk) and shk′ ← SHK(pk, sk′).
Note that, when the shared key generation function fails, we write shk = ⊥
or shk′ = ⊥.
We say correctness is achieved if there exists an negl(·) such that

Pr
[

shk �= ⊥ ∧ shk′ �= ⊥ ∧ shk �= shk′] ≤ negl(λ)

When negl(λ) = 0, then we say perfect correctness is achieved.
2. The relation RPNIKE for capturing the security property against key-recovery

attack (KRA).
For function f := (KGen,SHK) ∈ FPNIKE and a ppt (adversarial) machine
A, we define 〈f,A〉 ∈ RPNIKE if there exists a polynomial p(·) such that
Pr[A(pk, pk′) = SHK(pk′, sk) = SHK(pk, sk′) �= ⊥] > 1/p(λ) for infinitely
many λ.
Here, for randomly chosen sk

$← SK and sk′ $← SK, compute pk ← KGen(sk)
and pk′ ← KGen(sk′), respectively.

We say non-interactive key exchange protocol PNIKE exists, if there exists
a function f ∈ FPNIKE , it holds that no ppt adversarial machine A such that
〈f,A〉 ∈ RPNIKE . When SK = ZN and PK = K = {0, 1}m, we make the param-
eters N and m explicit and denote the non-interactive key exchange protocol as
PNIKE

N,m .

2.1.2 Idealized Models In this subsection, we introduce idealized models
including the Random Oracle Model (ROM) [BR93], the Random Permutation
Model (RPM) [RS08], and the Generic Group Model (GGM) [Sho97]. In each
idealized model, all entities including the adversary A and the challenger C, are
provided with the access to the corresponding oracle. Below we will specify the
behavior of the oracle in each idealized model.

Definition 4 (Random Oracle Model [BR93]). Let I∗,S denote the set of
functions h : {0, 1}∗ → S, where S := {0, 1}n for some integer n. The random
oracle model H is an idealized model, sampling a random function h from I∗,S.
Every algorithm can query x, obtaining the corresponding value h(x) ∈ S.

20 K. Ji et al.

Definition 5 (Random Permutation Model [RS08]). Let IS,S denote the
set of permutations π : S → S, where S := {0, 1}n for some integer n. The ran-
dom permutation model E is an idealized model, sampling a random permutation
π from IS,S. Every algorithm can query x ∈ S with E for both π and its inverse
π−1, obtaining the corresponding value π(x) ∈ S or π−1(x) ∈ S.

Definition 6 (Generic Group Model [Sho97]). Denote by IZN ,S the set of
injections σ : ZN �→ S, where S := {0, 1}m. The generic group model GN,m is
an idealized model, sampling a random injection σ from IZN ,S, with functions
G label

N,m and Gadd
N,m. Concretely, for each query x ∈ ZN , the “labeling” function G label

N,m

responds with a value σ(x) ∈ S. For a query (g1, g2), the “adding” function Gadd
N,m

answers as follows: if g1 = σ(x1) and g2 = σ(x2) for some x1, x2 ∈ ZN , replying
by σ(x1 + x2), and replying by ⊥ otherwise.

2.1.3 Notions of Reductions To establish separations between primitives,
in this paper, we follow two notions, fully black-box reduction and relativizing
reduction, as formalized by Reingold, Trevisan, and Vadhan [RTV04].

Definition 7 (Fully Black-Box Reduction [RTV04]). There exists a fully
black-box reduction from a primitive P := 〈FP ,RP〉 to a primitive Q :=
〈FQ,RQ〉, if there exist ppt oracle machines Π and B such that:

Correctness For every implementation f ∈ FQ we have that Πf ∈ FP .
Security For every implementation f ∈ FQ, if there exists a ppt oracle machine

A such that Af P-breaks Πf , then there exists a ppt oracle machine B such
that Bf Q-breaks f .

In literature, a typical technique for black-box separation, say for primitives
P and Q, is relativizing separation, which means that there is no relativizing
reduction between P and Q. Reingold et al. [RTV04] indicate that fully black-
box reduction implies relativizing reduction, referring to that the relativizing
separation from P to Q indicates the corresponding fully black-box separation.

Definition 8 (Relativizing Reduction [RTV04]). There exists a relativizing
reduction from a primitive P := 〈FP ,RP〉 to a primitive Q := 〈FQ,RQ〉, if for
every oracle O, the primitive P exists relative to O whenever Q exists relative
to O. A primitive P is said to exist relative to O, if there exists f ∈ FP which
has an efficient implementation when having access to the oracle O such that no
ppt oracle machine with access to O, can P-break f .

2.2 Indifferentiability

The framework of indifferentiability is proposed by Maurer, Renner, and Holen-
stein [MRH04], which formalizes a set of necessary and sufficient conditions
for securely replacing one cryptosystem with another in an arbitrary envi-
ronment. This framework is used to justify the structural soundness of vari-
ous cryptographic primitives, including hash functions [CDMP05,DRS09], block

On the Complexity of Cryptographic Groups and Generic Group Models 21

ciphers [ABD+13,CHK+16,DSSL16,GWL23], domain extenders [CDMS10],
authenticated encryption with associated data [BF18], and public key cryptosys-
tems [ZZ20]. It can also be used to study the relationship between idealized
models [ZZ23]. Within the context of the indifferentiability framework, it is cus-
tomary to consider that a cryptosystem either implements certain ideal objects
denoted as F , or it is a construction denoted as CF ′

that relies on underlying
ideal objects F ′.

Definition 9 (Indifferentiability [MRH04]).Let Σ1 and Σ2 be two cryptosys-
tems and S be a simulator. The indifferentiability advantage of a distinguisher
D against (Σ1,Σ2) with respect to S is

Advindif
Σ1,Σ2,S,D(1λ) := Pr[RealΣ1,D] − Pr[IdealΣ2,S,D],

where games RealΣ1,D and IdealΣ2,S,D are defined in Fig. 2. We say Σ1 is indif-
ferentiable from Σ2, if there exists an efficient simulator S such that for any
efficient distinguisher D, the advantage above is negligible. Moreover, we say Σ1

is statistically indifferentiable from Σ2, if there exists an efficient simulator such
that, for any unbounded distinguisher D, the advantage above is negligible.

Fig. 2. Indifferentiability of Σ1 and Σ2, where S is the simulator and D is the adversary.

Below, we also use the notations in [BF18] and consider the definition above
to two systems with interfaces as:

(Σ1.hon(X),Σ1.adv(x)) := (ΠF1(X),F1(x)),
(Σ2.hon(X),Σ2.adv(x)) := (F2(X),F2(x)),

where F1 and F2 are two ideal objects sampled from their distributions and ΠF1

is a construction of F2 by calling F1. Maurer, Renner, and Holenstein prove the
composition theorem for the framework of indifferentiability; for simplicity, we
give a game-based formalization from [RSS11].

Theorem 3 (Composition Theorem [MRH04]).Let Σ1 := (ΠF1 ,F1) and
Σ2 := (F2,F2) be two systems that Σ1 is indifferentiable from Σ2 with respect
to a simulator S, then Σ1 is as secure as Σ2 for any single-stage game. More
concretely, let Game be a single-stage game, then for any adversary A, there is
an adversary B and a distinguisher D such that

Pr[GameΠF1 ,AF1] ≤ Pr[GameF2,BF2] + Advindif
Σ1,Σ2,S,D.

22 K. Ji et al.

The proof of Theorem 3 is straightforward; due to space limit, we skip it here.
Next, we give the formal definition of the separation between two idealized mod-
els in the framework of indifferentiability against computational adversaries.

Definition 10 (Computational Indifferentiable Separation [MRH04,
ZZ23]). Let Σ1,Σ2 be two idealized models, we say Σ2 is computationally indif-
ferentiably separated from Σ1 if for any efficient algorithm Π and any efficient
simulator S, there exists an efficient distinguisher DΠ,S and a noticeable func-
tion ρ such that

Advindif
ΠΣ1 ,Σ2,S,DΠ,S (1λ) :=

∣

∣

∣ Pr[RealΣ1,DΠ,S] − Pr[IdealΣ2,S,DΠ,S]
∣

∣

∣ ≥ ρ(λ).

Observe that, if an idealized model Σ2 is computationally indifferentiably sepa-
rated from another idealized model Σ1, it means that, we cannot build a scheme
ΠΣ1 such that ΠΣ1 is indifferentiable from Σ2, even under arbitrarily strong
computational assumptions.

3 Separation Between Cryptographic Groups

In this section, we establish the separation between two CDH-secure groups,
PCDH

N,m1
and PCDH

N,m2
, under the condition that both N and (m2−m1) are sufficiently

large within the same security parameter.

Theorem 4 (Main Theorem). Let λ ∈ N be the security parameter. Let
N,m1,m2 be integers such that N ≥ 2ω(log λ),m1 > log N and m2 − m1 ≥
ω(log λ). Then there is no black-box reduction from PCDH

N,m2
to PCDH

N,m1
.

Proof. To establish the theorem, we apply the so-called two-oracle tech-
nique [HR04]. Let PSPACE be a PSPACE-complete oracle. Essentially, we set
O := (PSPACE,GN,m2) and prove the following:

1. PCDH
N,m2

exists relative to O;
2. PCDH

N,m1
does not exist relative to O.

The former statement holds trivially as GN,m2 implies PCDH
N,m2

in the canonical
manner. Therefore, it suffices to prove the latter one.

Lemma 1. PCDH
N,m1

does not exist relative to O.

To establish the proof, we first pin down an intermediary primitive, i.e.,
PNIKE

N,m1
(within the same security parameter), defined in Sect. 2.1, and then prove

that:

1. PCDH
N,m1

implies PNIKE
N,m1

;
2. PNIKE

N,m1
does not exist relative to O.

The first statement holds straightforwardly. Next, we establish our theorem
by proving the following lemma.

On the Complexity of Cryptographic Groups and Generic Group Models 23

Lemma 2. PNIKE
N,m1

does not exist relative to O.

Intuitively, to prove that PNIKE
N,m1

does not exist relative to O, it is suffi-
cient to build a ppt oracle adversary AO that breaks any construction ΠO :=
(KGenO,SHKO). Observe that AO has access to a PSPACE-complete oracle,
which means that AO implies a computationally unbounded but query-efficient
adversary that only has access to GN,m2

16. Therefore, it suffices to construct such
an adversary AGN,m2 . In Fig. 3, we illustrate the description of the adversary.

We first clarify some undefined notions: Let n be a sufficiently large
integer that will be specified below. By

{

(que1, res1), . . . , (queq, resq)
} query←−

KGenGN,m2 (ri), we mean that when running the algorithm KGenGN,m2 (ri), the
algorithm makes queries (que1, . . . , queq) to the oracle GN,m2 and obtains
(res1, . . . , resq)17.

Next, we prove that AGN,m2 outputs the valid shared key with noticeable
probability. Let SB-label be the set of the valid group elements that appear
when running KGenGN,m2 (skB) and SHKGN,m2 (pkA, skB); those group elements
are either the responses of labeling/addition queries or the valid inputs of the
addition queries. It is apparent that |SB-label| ≤ 6q, due to the fact that each
algorithm makes at most q queries. Now, we define:

SB := {(x, h)|h ∈ SB-label, G label
N,m2

(x) = h}.

Note that, for any iteration, if the adversary successfully guesses SB in ŜA,
then the shared key computed in this iteration would be valid. Specifically, in
such a context, there exists an instance of the GGM that is consistent with
the query views of both the adversary and the user B, and the validity of the
shared key follows by the perfect correctness of ΠGN,m2 . However, without the
knowledge of skB , A might not guess SB correctly with a good probability. In
fact, there are three events:

– Event 1: There exist (queA, resA) ∈ ŜA and (queB , resB) ∈ SB such that
queA = queB but resA �= resB .

– Event 2: There exist (queA, resA) ∈ ŜA and (queB , resB) ∈ SB such that
queA �= queB but resA = resB .

– Event 3: For any (queA, resA) ∈ ŜA, (queB , resB) ∈ SB, we have that if queA =
queB then resA = resB , and vice versa.

16 Any computationally unbounded but query-efficient adversary can be simulated by a
ppt oracle machine with access to a PSPACE-complete oracle, that is because what
we need are specific labeling query-response tuples of GGM. These tuples can be
picked by using a PSPACE-complete oracle. See [MM11] for more details.

17 As explained above, we stress that KGenGN,m2 only makes labeling queries.

24 K. Ji et al.

Fig. 3. The description of the adversary that breaks ΠGN,m2 .

We immediately observe that event 1 occurs at most 6q times, because the
updating phase would eliminate at least one pair in SB. Therefore, it suffices
to prove that event 2 never occurs except for negligible probability and event
3 would deduce the valid shared key with high probability. According to the
description of the adversary Fig. 3, we have that in event 3, the set ŜA ∪ Sque-res

responds to the labeling queries perfectly and converts the addition queries into
labeling queries properly. Concretely, let que := (h1, h2) be an addition query,
there are two cases: (1) ŜA∪Sque-res covers (x1, h1), (x2, h2), and (x1+x2, h3); (2)
either h1 or h2 is not stored in ŜA ∪ Sque-res. For the former case, the response
is valid; for latter one, the response is invalid if and only if both h1 and h2

are valid group encodings. Therefore, the only bad case that prevents event 3
from deducing the valid shared key is that the adversary outputs a valid group
encoding h without knowing the discrete logarithm.

On the Complexity of Cryptographic Groups and Generic Group Models 25

Moreover, in the simulation phase, ŜA must be consistent with Sque-res, which
indicates that when event 2 occurs, the adversary successfully outputs a valid
group encoding h without making labeling query. To bound the probability, we
define that, for any sk ∈ ZN :

Qsk :=
{

(que1, res1), . . . , (queq, resq)
} query←− KGenGN,m2 (sk).

Note that the adversary only takes pkA and pkB as inputs, where pkA =
KGenGN,m2 (skA) and pkB = KGenGN,m2 (skB). It is apparent that the group
encoding h /∈ Sque-res, and we next establish our analysis by considering the
following four cases:

– Case 1: (Independent group encoding) h /∈ QskA
∪ QskB

– Case 2: (Frequent group encoding) h ∈ QskA
∩ QskB

– Case 3: (Dependent but hard to extract) h ∈ QskA
\ QskB

.
– Case 4: (Dependent but hard to extract) h ∈ QskB

\ QskA
.

It is apparent that, for any query-efficient adversary (might be computation-
ally inefficient), if the probability that it outputs such an h (for all cases) is
bounded, then we are done.

Case 1. We note that, h is independent of pkA and pkB , indicating that the
probability that any adversary outputs such a h is bounded by O(q)·N

2m2 ≤ negl(λ).
Case 2. We first define the frequent group encodings. Specifically, let t :=

26q2, we say a group encoding res is frequent if

Pr[(que, res) ∈ Qz : z
$← ZN] ≥ 1

t
.

In such a case, we also call (que, res) as a frequent query. Note that skA and skB

are uniformly sampled, therefore, for any (que, res) ∈ QskA
, if it is not a frequent

query, then Pr[(que, res) ∈ QskB
] ≤ 1

t , indicating that

Pr[QskA
∩ QskB

are all frequent queries] ≥ 1 − q

t
= 1 − 1

26q
.

Next, we bound the probability that h /∈ Sque-res conditioned on that QskA
∩QskB

are all frequent queries. Let n := t·λ, we then prove that, with a high probability,
Qr1 ∪ · · · ∪Qrn

contains all frequent queries. Essentially, there are at most qf :=
q · t frequent queries, denoted as {(que′

i, res
′
i)}i∈[qf]. For each (que′

i, res
′
i), we have

that

Pr[(que′
i, res

′
i) /∈ Qr1 ∪ · · · ∪ Qrn

] ≤
(

1 − 1
t

)n

≤ e−λ,

which means

Pr[(que′
i, res

′
i) ∈ Qr1 ∪ · · · ∪ Qrn

: ∀i ∈ [qf]] ≥ 1 − (q · t)e−λ.

Therefore,

Pr[Case 2] = Pr[h ∈ QskA
∩ QskB

∧ h /∈ Sque-res] ≤ 1

26q
+ (q · t)e−λ ≤ 1

26q
+ negl(λ).

26 K. Ji et al.

Case 3. We immediately observe that pkB is independent of h, which means
that only pkA carries the information of h. Note that the length of pkA is m1; in
contrast, the length of h is m2; this intuitively indicates that, over the probability
of sampling the GGM instance, it is impossible to extract a valid group encoding
in QskA

\ (QskB
∪ Sque-res) except for negligible probability.

To establish the formal analysis, we strengthen the adversary A by providing
A the unbounded computational power, and the following information: the tuple
(skA, skB, pkA, QskB

, Sque-res). It is easy to see that A itself can compute pkA, pkB

and Sque-res, therefore it suffices to prove that

Pr[A outputs h ∈ QskA
\ (QskB

∪ Sque-res)] ≤ negl(λ)

where the probability is over the sampling of skA, skB and the GGM instance18.
Observe that, pkB is independent of h, which indicates that knowing skB would
not increase A’s winning probability. To further simplify the analysis, we prove
a more general statement: for any secret key sk and any S (set of query-response
tuples, poly-size),

Pr[A(sk,KGenGN,m2 (sk), S) → h : h ∈ Qsk \ S] ≤ negl(λ)

where the probability is only over the sampling of the GGM instance, conditioned
on that the GGM instance GN,m2 is consistent with S.

Note that, for any fixed poly-size S, the total number of the GGM instances
(mapping from N to {0, 1}m2) that are consistent with S is

(2m2 − |S|) · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)).

Next, we introduce some notations. Note that, once the secret key sk and the
GGM instance GN,m2 are fixed, the algorithm KGenGN,m2 (sk) is deterministic
(including the queries made to GN,m2). We here define Qsk-G as the sequence of
the query-response tuples, denoted as

Qsk-G := {(que1, res1), . . . , (queq, resq)}.

More clearly, when running the algorithm KGenGN,m2 (sk), the i-th query that
the algorithm makes to GN,m2 is quei and the corresponding response is resi.
Besides, for each (sk,GN,m2), the algorithm KGenGN,m2 (sk) outputs a public key.
Next, we categorize the public keys into two types, namely the “good public
keys” and the “bad public keys”, with respect to the fixed secret key sk. We
denote

T = 2
m2−m1

2 · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)),

and for any public key pk we denote Spk as the set of the GGM instances such
that KGenGN,m2 (sk) = pk. Now, we say a public key pk (with respect to sk) is
bad if |Spk| ≤ T , otherwise we say the public key is good. Note that, given a

18 The instance of GGM must be consistent with QskB ∪ Sque-res.

On the Complexity of Cryptographic Groups and Generic Group Models 27

bad public key pk (e.g., |Spk| = 1), the adversary might output a valid group
encoding, thus we need to prove that, over the sampling of the GGM instance,

Pr[KGenGN,m2 (sk) is bad] ≤ negl(λ).

Note that the space of public keys is {0, 1}m1 , which means that there are at
most 2m1 public keys. Therefore, the counting of the GGM instances that induce
to a bad public key is bounded by 2m1 × T , referring to

Pr[KGenGN,m2 (sk) is bad] ≤ 2m1 · 2
m2−m1

2

(2m2 − |S|) ≤ 1

2
m2−m1

2 − |S|
≤ negl(λ).

Hence, it suffices to prove that, given any good public key, any adversary A can-
not extract a valid group encoding h ∈ Qsk \ S except for negligible probability.

For readability, we first elaborate the analysis in the case that S = ∅, where
the adversary only has knowledge of (sk,KGenGN,m2 (sk)). Let str be any string
in {0, 1}m2 , we denote Sstr as the set of GGM instances such that str ∈ Qsk-G .
Therefore it is sufficient to prove that, for any str ∈ {0, 1}m2 , the size of Sstr is
much smaller than T (in this special case, |S| = 0). Specifically, by having that

T > 2
m2−m1

2 · (2m2 − 1) · · · (2m2 − (N − 1))

we prove that
|Sstr| ≤ q · (2m2 − 1) · · · (2m2 − (N − 1))

Note that, once the secret key sk and the GGM instance GN,m2 are fixed,
the algorithm KGenGN,m2 (sk) is deterministic. We next illustrate an observation
about Qsk-G . Let GN,m2 and G′

N,m2
be two different instances of GGM, and we

denote

Qsk-G := {(que1, res1), . . . , (queq, resq)}
Qsk-G′ := {(que′

1, res
′
1), . . . , (que

′
q, res

′
q)}

We claim that either Qsk-G = Qsk-G′ or ∃i ∈ [q] such that resi �= res′i. In other
words, it is impossible that Qsk-G �= Qsk-G′ but (res1, . . . , resq) = (res′1, . . . , res

′
q).

In fact, if such an event occurs, then there exists an index j ∈ [q] such that
(1) ∀i < j, (quei, resi) = (que′

i, res
′
i); (2) quej �= que′

j , which contradicts to that
KGenGN,m2 (sk) is deterministic.

This observation illustrates that Qsk-G can be represented only by
(res1, . . . , resq); that is, once the sequence of the responses is fixed, then the
corresponding sequence of the queries is also settled down. We denote

V = ((2m2 − q) · · · (2m2 − (N − 1)))

and note that for each response sequence (res1, . . . , resq), there are exactly V
numbers of GGM instances that would induce it.

Next, we compute the upper bound of |Sstr|. If str appears in the sequence
(res1, . . . , resq), then there exists an index i such that resi = str. For the rest,

28 K. Ji et al.

we maximize the possibility and have that the number of all possible sequences
that contain str is bounded by

q · ((2m2 − 1) · · · (2m2 − (q − 1))).

Combining the above together, we have that

|Sstr| ≤ q · (2m2 − 1) · · · (2m2 − (N − 1)).

In the following, we extend our analysis into the general case, where S is
poly-size and

T = 2
m2−m1

2 · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1))

We immediately observe that, the upper bound above does not serve our
purpose any more. The reason is that the upper bound above is calculated over
all possible GGM instances, while what we need to count are the ones over the
GGM instances that are consistent with S.

It is apparent that Qsk-G can be still represented by the sequence of responses
when S �= ∅. To complete the analysis, we then illustrate an additional obser-
vation about Qsk-G . Let (res1, . . . , resq) and (res′1, . . . , res

′
q) be two different

sequences. We claim it is impossible that there exists an index j ∈ [q] such
that(1) ∀i < j, resi = res′i; (2)resj ∈ S but res′j /∈ S19. More specifically, given
the statement that ∀i < j, resi = res′i, it is apparent that quej = que′

j . More-
over, by having (quej , resj) ∈ S, we claim that the response of que′

j must be
resj , because the GGM instances must be consistent with S. Based on this new
observation, we next prove the upper bound by induction.

Let str be a string such that str /∈ S (note that the adversary’s goal is to out-
put a valid group encoding without knowing the discrete logarithm), we denote
Sstr-k as the set of the GGM instances such that: (1) the algorithm KGenGN,m2 (·)
makes k queries; (2) str ∈ Qsk-G \ S. We then prove that for any k,

|Sstr-k| ≤ k · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)).

We first compute |Sstr-1|. Note that que1 is always fixed, and if que1 ∈ S20,
then |Sstr-1| = 0 because str would never appear. On the other hand, if que1 /∈ S,
then the response must be str because str appears. Thus, the counting of the
GGM instances that are consistent with S ∪ {(que1, str)} is

1 · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1))

Note that, the response of que1 is str if and only if those GGM instances are
sampled. Moreover, based on our second observation, we have that, either res1 ∈
S or res1 /∈ S. Hence,

|Sstr-1| ≤ max{0, 1 · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1))}.

19 We here abuse the notation resj ∈ S by meaning that there exists a query/response
tuple in S with the response resj .

20 We here abuse the notation que1 ∈ S by meaning that there exists a query/response
pair in S with the query is que1.

On the Complexity of Cryptographic Groups and Generic Group Models 29

Next, given the assumption that

|Sstr-i| ≤ i · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)),

we prove

|Sstr-(i+1)| ≤ (i + 1) · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)),

Again, que1 is always fixed, and if que1 ∈ S, then |Sstr-(i+1)| is bounded by
|Sstr-i|, because the response of que1 is always fixed by S, and str must appear in
the last i queries. Thus, it suffices to prove that |Sstr-(i+1)| is properly bounded
when que1 /∈ S. Next we consider two scenarios:

– Scenario 1: res1 = str;
– Scenario 2: res1 �= str.

Observe that scenario 1 occurs if and only if the GGM instances that are
consistent with S ∪ {(que1, str)} are selected. Therefore, the counting of those
GGM instances is:

1 · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)).

When scenario 2 occurs, there are at most 2m2−(|S|+1) options for res1. Once
the response of que1 is fixed, say (que1, str′), we apply the induction. Specifically,
we denote S′ = S ∪ {(que1, str′)} (|S′| = |S| + 1). Note that scenario 2 occurs
means that str appears in the last i queries conditioned on that all the GGM
instances are consistent with S′. Applying the assumption, we have that the
counting of the GGM instances is bounded by

(2m2 − (|S| + 1)) · i · (2m2 − (|S′| + 1)) · · · (2m2 − (N − 1))
=i · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)).

Now, we see that, if que1 /∈ S (combining both scenario 1 and scenario 2), then

|Sstr-(i+1)| ≤ (i + 1) · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1)).

Again, res1 is either in S or not in S. We have that

|Sstr-(i+1)| ≤ max{|Sstr-i|, (i + 1) · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1))}
= (i + 1) · (2m2 − (|S| + 1)) · · · (2m2 − (N − 1))

By setting sk := skA and S := Sque-res, we have that the probability that the
adversary outputs h ∈ QskA

\ Sque-res is bounded by O(q2)

2
m2−m1

2
≤ negl(λ).

Case 4. It is trivial that

Pr[Case 4] = Pr[Case 3].

Combining together, we have that

Pr[AGN,m2 outputs the valid shared key] ≥ 1 − (6q + 1)(
1

26q
+ negl(λ))

≥ 2
3

− negl(λ).

30 K. Ji et al.

4 The Hierarchy of GGMs

In this section, we establish a hierarchy among GGMs, varying in distinct lengths
of group encodings and prove that the shorter GGM is strictly stronger than the
longer GGM. Specifically, we show that one can construct an indifferentiable
longer generic group from a shorter one plus an additional independent random
oracle, but the shorter generic group model is computationally indifferentiably
separated from the longer generic group (when the gap between the lengths is
sufficiently large).

4.1 GN,m1 Statistically Implies GN,m2

In this section, we show how to build an longer indifferentiable generic group
model from a shorter one plus an additional independent ROM. Here are the
building blocks:

– GN,m1 := (G label
N,m1

,Gadd
N,m1

) is a generic group model that maps ZN to {0, 1}m1 ;
– E : {0, 1}m2 → {0, 1}m2 is a random permutation oracle with its inverse E−1.

For simplicity, we denote O as the tuple (GN,m1 , (E , E−1)). The following is
the construction ΠO

L-GGM := (LO
L-GGM, AO

L-GGM), depicted in Fig. 4. Correctness
easily follows, and it rests to prove the indifferentiability. Formally,

Fig. 4. The construction ΠO
L-GGM in the GN,m1 and RPM.

Theorem 5. Let m1,m2 be two integers that m2 ≥ m1. The scheme ΠO
L-GGM

in Fig. 4, with access to a generic group GN,m1 , a random permutation E and
its inverse E−1, is indifferentiable from a generic group GN,m2 . More precisely,
there exists a simulator S such that for all (qG label

N,m1
, qGadd

N,m1
, qE , qE−1)-query dis-

tinguisher D with qG label
N,m1

+ qGadd
N,m1

+ qE + qE−1 ≤ q, we have

Advindif
ΠO

L-GGM,GN,m2 ,S,D ≤ 6q2

N
+

10q2 + 4q

2m1
+

3q

2λ
+

2q

2m1 − 2q
.

The simulator makes at most 3q queries to GN,m2 .

Due to space limit, we leave the proof in the full version of this
paper [ZJW+24].

On the Complexity of Cryptographic Groups and Generic Group Models 31

4.2 GN,m2 Does Not Computationally Imply GN,m1

In this section, we show that the shorter GGM is computationally indifferentiably
separated from the longer one. Formally,

Theorem 6. Let λ be the security parameter. Let GN,m1 and GN,m2 be two
generic group models. If (m2 − m1) ≥ ω(log λ), then GN,m1 is computationally
indifferentiably separated from GN,m2 .

To prove it, we adopt the discrete logarithm identification (DLI) problem pro-
posed by [ZZ23]. To absorb Zhang and Zhandry ’s analysis into our setting, we
propose the DLI problem w.r.t the shorter groups in the longer GGM. Below,
we give the proof sketch of Theorem 6 and the formal proof can be found in the
full version of this paper [ZJW+24].

Proof Sketch. Suppose ΠGN,m2 := (LGN,m2 , AGN,m2) is indifferentiable from
GN,m1 in the longer GGM GN,m2 . The argument goes in three steps:

1. DLI w.r.t. ΠGN,m2 is easy.
2. If ΠGN,m2 is indifferentiable from GN,m1 and DLI w.r.t. ΠGN,m2 is easy, then

DLI w.r.t. GN,m1 is also easy.
3. Yet, DLI w.r.t. the generic group GN,m1 is hard.

The above three steps draw a contradiction, so the statement “ΠGN,m2 is
indifferentiable from GN,m1” cannot be true, completing our proof. Note that,
Step 2 is already proven in [ZZ23]; and the proof of Step 3 is straightforward
according to Definition 9 for indifferentiability. Due to the space limit, we skip
them here. Below, we prove Step 1.

By the definition of indifferentiability, the algorithms LGN,m2 and AGN,m2

are deterministic; and they shall support group operations correctly with high
probability. We stress that LGN,m2 only makes labeling queries. Let q be an
integer in poly(λ). We assume that both LGN,m2 and AGN,m2 make at most q
queries to GN,m2 . Next, we prove that the DLI problem w.r.t. ΠGN,m2 is easy by
constructing an efficient adversary A and a query-free circuit CG-GGM in Fig. 5.
(Here, G-GGM denotes the shorter group in the longer GGM.)

We first clarify some undefined notions in Fig. 5. Let n be a sufficiently
large integer to be specified below. By

{

(que1, res1), . . . , (queq, resq)
} query←−

LGN,m2 (ri), we denote that on input ri, the algorithm LGN,m2 (ri) makes
queries (que1, . . . , queq) to GN,m2 and gets responses of (res1, . . . , resq); and
similar for the notation

{

(que1, res1), . . . , (queq, resq)
} query←− AGN,m2 (LGN,m2 (x −

z), LGN,m2 (z)).21 Given an input z ∈ ZN , the query-free circuit CG-GGM runs
algorithm LGN,m2 (z) except for replacing the querying oracle by looking up the
table Sque-res (and lazy sampling); we denote that as LSque-res .

We argue that the query-free circuit CG-GGM in Fig. 5 identifies x with a good
probability, which means DLI w.r.t. ΠGN,m2 is easy. Note that, we say CG-GGM

21 Here, we abuse the notation LGN,m2 (x−z) as both the group element and the labeling
operation on x − z.

32 K. Ji et al.

Fig. 5. Efficient Adversary AGN,m2 and query-free circuit CG-GGM w.r.t. ΠGN,m2 .

identifies x with a good probability if it satisfies following properties. Due to the
space limit, we leave the proof in the full version of this paper [ZJW+24].

– Pr[CG-GGM(x) = 1] ≥ 2
3 ;

– for any noticeable function ρ: Prx′ �=x[CG-GGM(x′) = 1] ≤ ρ.

Acknowledgment. Cong Zhang was supported by the National Key Research and
Development Program of China (Grant No. 2023YFB3106000). This work was also
supported by Ant Group through CCF-Ant Research Fund (Grant No. CCF-AFSG
RF20230308). Bingsheng Zhang was supported by the National Natural Science Foun-
dation of China (Grant No. 62072401 and No. 62232002) and Input Output (iohk.io).
Hong-Sheng Zhou was supported in part by NSF grant CNS-1801470 and a VCU
Research Quest grant.

On the Complexity of Cryptographic Groups and Generic Group Models 33

References

ABD+13. Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and
John P. Steinberger.On the indifferentiability of key-alternating ciphers.In
Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part I, volume
8042 of LNCS, pages 531–550. Springer, Heidelberg, August 2013.

Bar20. Elaine Barker. Recommendation for key management: Part 1 – general,
2020. https://doi.org/10.6028/NIST.SP.800-57pt1r5.

BF18. Manuel Barbosa and Pooya Farshim. Indifferentiable authenticated encryp-
tion. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part I, volume 10991 of LNCS, pages 187–220. Springer, Heidelberg, August
2018.

BKSY11. Zvika Brakerski, Jonathan Katz, Gil Segev, and Arkady Yerukhimovich.
Limits on the power of zero-knowledge proofs in cryptographic construc-
tions.In Yuval Ishai, editor, TCC 2011, volume 6597 of LNCS, pages 559–
578. Springer, Heidelberg, March 2011.

BR93. Mihir Bellare and Phillip Rogaway. Random oracles are practical: A
paradigm for designing efficient protocols. In Dorothy E. Denning, Ray-
mond Pyle, Ravi Ganesan, Ravi S. Sandhu, and Victoria Ashby, editors,
ACM CCS 93, pages 62–73. ACM Press, November 1993.

CDMP05. Jean-Sébastien Coron, Yevgeniy Dodis, Cécile Malinaud, and Prashant
Puniya. Merkle-Damg̊ard revisited: How to construct a hash function.In
Victor Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages 430–
448. Springer, Heidelberg, August 2005.

CDMS10. Jean-Sébastien Coron, Yevgeniy Dodis, Avradip Mandal, and Yannick
Seurin. A domain extender for the ideal cipher. In Daniele Micciancio, edi-
tor, TCC 2010, volume 5978 of LNCS, pages 273–289. Springer, Heidelberg,
February 2010.

CHK+16. Jean-Sébastien Coron, Thomas Holenstein, Robin Künzler, Jacques Patarin,
Yannick Seurin, and Stefano Tessaro.How to build an ideal cipher: The indif-
ferentiability of the Feistel construction.Journal of Cryptology, 29(1):61–
114, January 2016.

CMR+23. Lily Chen, Dustin Moody, Karen Randall, Andrew Regenscheid, and Angela
Robinson. Recommendations for discrete logarithm-based cryptography:
Elliptic curve domain parameters, 2023. https://doi.org/10.6028/NIST.SP.
800-186.

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography.
IEEE Trans. Inf. Theory, 22(6):644–654, 1976.

DHH+21. Nico Döttling, Dominik Hartmann, Dennis Hofheinz, Eike Kiltz, Sven
Schäge, and Bogdan Ursu.On the impossibility of purely algebraic signa-
tures.In Kobbi Nissim and Brent Waters, editors, TCC 2021, Part III, vol-
ume 13044 of LNCS, pages 317–349. Springer, Heidelberg, November 2021.

DRS09. Yevgeniy Dodis, Thomas Ristenpart, and Thomas Shrimpton. Salvaging
Merkle-Damg̊ard for practical applications. In Antoine Joux, editor, EURO-
CRYPT 2009, volume 5479 of LNCS, pages 371–388. Springer, Heidelberg,
April 2009.

DSSL16. Yevgeniy Dodis, Martijn Stam, John P. Steinberger, and Tianren Liu. Indif-
ferentiability of confusion-diffusion networks. In Marc Fischlin and Jean-
Sébastien Coron, editors, EUROCRYPT 2016, Part II, volume 9666 of
LNCS, pages 679–704. Springer, Heidelberg, May 2016.

https://doi.org/10.6028/NIST.SP.800-57pt1r5
https://doi.org/10.6028/NIST.SP.800-186
https://doi.org/10.6028/NIST.SP.800-186

34 K. Ji et al.

ElG85. Taher ElGamal. A public key cryptosystem and a signature scheme based on
discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–
472, 1985.

GMM17. Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed. When does
functional encryption imply obfuscation? In Yael Kalai and Leonid Reyzin,
editors, TCC 2017, Part I, volume 10677 of LNCS, pages 82–115. Springer,
Heidelberg, November 2017.

GWL23. Chun Guo, Lei Wang, and Dongdai Lin. Impossibility of indifferentiable iter-
ated blockciphers from 3 or less primitive calls. In Carmit Hazay and Martijn
Stam, editors, EUROCRYPT 2023, Part IV, volume 14007 of LNCS, pages
408–439. Springer, Heidelberg, April 2023.

HKT11. Thomas Holenstein, Robin Künzler, and Stefano Tessaro. The equivalence
of the random oracle model and the ideal cipher model, revisited. In Pro-
ceedings of the Forty-Third Annual ACM Symposium on Theory of Com-
puting, STOC ’11, page 89–98, New York, NY, USA, 2011. Association for
Computing Machinery.

HMQS23. Mohammad Hajiabadi, Mohammad Mahmoody, Wei Qi, and Sara Sarfaraz.
Lower bounds on assumptions behind registration-based encryption. In Guy
Rothblum and Hoeteck Wee, editors, Theory of Cryptography, pages 306–
334, Cham, 2023. Springer Nature Switzerland.

HR04. Chun-Yuan Hsiao and Leonid Reyzin. Finding collisions on a public road,
or do secure hash functions need secret coins? In Matthew Franklin, editor,
CRYPTO 2004, volume 3152 of LNCS, pages 92–105. Springer, Heidelberg,
August 2004.

IR89. Russell Impagliazzo and Steven Rudich. Limits on the provable conse-
quences of one-way permutations. In 21st ACM STOC, pages 44–61. ACM
Press, May 1989.

Mau05. Ueli M. Maurer. Abstract models of computation in cryptography (invited
paper). In Nigel P. Smart, editor, 10th IMA International Conference on
Cryptography and Coding, volume 3796 of LNCS, pages 1–12. Springer, Hei-
delberg, December 2005.

MM11. Takahiro Matsuda and Kanta Matsuura. On black-box separations among
injective one-way functions. In Yuval Ishai, editor, TCC 2011, volume 6597
of LNCS, pages 597–614. Springer, Heidelberg, March 2011.

MMN16. Mohammad Mahmoody, Ameer Mohammed, and Soheil Nematihaji. On the
impossibility of virtual black-box obfuscation in idealized models. In Eyal
Kushilevitz and Tal Malkin, editors, TCC 2016-A, Part I, volume 9562 of
LNCS, pages 18–48. Springer, Heidelberg, January 2016.

MPZ20. Ueli Maurer, Christopher Portmann, and Jiamin Zhu. Unifying generic
group models. Cryptology ePrint Archive, Report 2020/996, 2020. https://
eprint.iacr.org/2020/996.

MRH04. Ueli M. Maurer, Renato Renner, and Clemens Holenstein. Indifferentiability,
impossibility results on reductions, and applications to the random oracle
methodology.In Moni Naor, editor, TCC 2004, volume 2951 of LNCS, pages
21–39. Springer, Heidelberg, February 2004.

Nec94. Vassiliy Ilyich Nechaev. Complexity of a determinate algorithm for the dis-
crete logarithm. Mathematical Notes, 55(2):165–172, 1994.

PH78. Stephen Pohlig and Martin Hellman. An improved algorithm for computing
logarithms over GF(p) and its cryptographic significance (Corresp.). IEEE
Transactions on Information Theory, 24(1):106–110, 1978.

https://eprint.iacr.org/2020/996
https://eprint.iacr.org/2020/996

On the Complexity of Cryptographic Groups and Generic Group Models 35

Pol78. John M Pollard. Monte Carlo methods for index computation (mod p).
Mathematics of Computation, 32(143):918–924, 1978.

PRV12. Periklis A. Papakonstantinou, Charles W. Rackoff, and Yevgeniy Vahlis.
How powerful are the DDH hard groups? Cryptology ePrint Archive, Report
2012/653, 2012. https://eprint.iacr.org/2012/653.

RS08. Phillip Rogaway and John P. Steinberger. Constructing cryptographic
hash functions from fixed-key blockciphers. In David Wagner, editor,
CRYPTO 2008, volume 5157 of LNCS, pages 433–450. Springer, Heidel-
berg, August 2008.

RSS11. Thomas Ristenpart, Hovav Shacham, and Thomas Shrimpton. Careful with
composition: Limitations of the indifferentiability framework.In Kenneth G.
Paterson, editor, EUROCRYPT 2011, volume 6632 of LNCS, pages 487–506.
Springer, Heidelberg, May 2011.

RSS20. Lior Rotem, Gil Segev, and Ido Shahaf. Generic-group delay functions
require hidden-order groups. In Anne Canteaut and Yuval Ishai, editors,
EUROCRYPT 2020, Part III, volume 12107 of LNCS, pages 155–180.
Springer, Heidelberg, May 2020.

RTV04. Omer Reingold, Luca Trevisan, and Salil P. Vadhan. Notions of reducibility
between cryptographic primitives. In Moni Naor, editor, TCC 2004, volume
2951 of LNCS, pages 1–20. Springer, Heidelberg, February 2004.

SGS20. Gili Schul-Ganz and Gil Segev. Accumulators in (and beyond) generic
groups: Non-trivial batch verification requires interaction.In Rafael Pass
and Krzysztof Pietrzak, editors, TCC 2020, Part II, volume 12551 of LNCS,
pages 77–107. Springer, Heidelberg, November 2020.

SGS21. Gili Schul-Ganz and Gil Segev. Generic-group identity-based encryption: A
tight impossibility result. In Information Theoretic Cryptography, 2021.

Sho97. Victor Shoup. Lower bounds for discrete logarithms and related problems.
In Walter Fumy, editor, EUROCRYPT’97, volume 1233 of LNCS, pages
256–266. Springer, Heidelberg, May 1997.

Zha22. Mark Zhandry. To label, or not to label (in generic groups).In Yevgeniy
Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part III, volume
13509 of LNCS, pages 66–96. Springer, Heidelberg, August 2022.

ZJW+24. Cong Zhang, Keyu Ji, Taiyu Wang, Bingsheng Zhang, Hong-Sheng Zhou,
Xin Wang, and Kui Ren. On the complexity of cryptographic groups and
generic group models. In Cryptology ePrint Archive, Paper 2024/1452, 2024.
https://eprint.iacr.org/2024/1452.

ZZ18. Mark Zhandry and Cong Zhang. Impossibility of order-revealing encryp-
tion in idealized models. In Amos Beimel and Stefan Dziembowski, editors,
TCC 2018, Part II, volume 11240 of LNCS, pages 129–158. Springer, Hei-
delberg, November 2018.

ZZ20. Mark Zhandry and Cong Zhang. Indifferentiability for public key
cryptosystems. In Daniele Micciancio and Thomas Ristenpart, editors,
CRYPTO 2020, Part I, volume 12170 of LNCS, pages 63–93. Springer,
Heidelberg, August 2020.

ZZ23. Cong Zhang and Mark Zhandry. The relationship between idealized models
under computationally bounded adversaries. In ASIACRYPT 2023, 2023.

https://eprint.iacr.org/2012/653
https://eprint.iacr.org/2024/1452

	On the Complexity of Cryptographic Groups and Generic Group Models
	1 Introduction
	1.1 Our Results
	1.2 Interpretation
	1.3 Technical Overview
	1.4 Organization

	2 Preliminaries
	2.1 Primitives, Idealized Models, and Reduction Notions
	2.2 Indifferentiability

	3 Separation Between Cryptographic Groups
	4 The Hierarchy of GGMs
	4.1 GN,m1 Statistically Implies GN,m2
	4.2 GN,m2 Does Not Computationally Imply GN,m1

	References

