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Abstract
Plastic pollution, amounting to 12 million tons annually, necessitates sustainable alternatives to single-use plastics. 
Compostable thermoplastic starch (TPS) films show promise but lack strength and durability compared to traditional 
plastics. This study employs an adaptive design of experiments (DoE) approach to enhance TPS films by optimizing 
testing points. The research focuses on varying concentrations of plasticizers (acetic acid and glycerol) in a water and 
potato starch mixture, aiming to identify the optimal ratio maximizing tensile strength and % elongation at break. 
Gaussian process regression (GPR) with uncertainty estimation and Bayesian optimization (BO) utilizing an acquisi-
tion function (AF) are employed. The AFs are compared to determine the best-suited one, iteratively updating the 
model until minimal improvement is predicted. Results indicate TPS films with 1.06% plasticizer weight exhibit the 
highest tensile strength (2.33 MPa) and % elongation at break (93.45%). Further testing is recommended to validate 
GPR and BO models and explore additional factors like adjusting the potato starch to plasticizer ratio for enhanced 
TPS film properties.
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strength, to be visualized and modified. As this research 
has seen so far, tensile strength and elongation at break 
are inversely related, so an optimal point where they are 
both maximized is of great interest. 

The preliminary results for this study suggest optimal 
plasticizer concentrations, and the research presents 
the potential for eco-friendly TPS films with improved 
properties, offering a sustainable alternative to 
petroleum-based plastics in many different applications. 
Further research in the TPS field using an adaptive 
design of experiments and machine learning will explore 
different factors, such as varying the concentration of 
plasticizer and potato starch, and additives like calcium 
chloride to refine the TPS film’s mechanical properties. 
Additional research will also analyze the effects of mul-
tiple factors at a time on the TPS film, seeing if there is 
a correlation between strength and elasticity that can be 
maximized within the design space.

PROPOSED USE OF  
THE POTATO STARCH

The plastic film that we are aiming to improve utilizes 
potato starch to be converted into TPS film for applica-
tions in the food packaging industry. This TPS film is 
more improved than the traditional petroleum-based 
plastic currently on the market, in that it is renewable 
and eco-friendly. Our plastic film is compostable and 
created with all food-safe ingredients, meaning that it 
will not decompose and leave toxic chemicals behind. 
Additionally, our TPS film has a degradation rate like that 
of cellulose (Zhang et al., 2014). This means that the TPS 
is biocompatible, making it suitable for various applica-
tions involving contact with food or sensitive materials, 
like plastic film for food (Ncube et al., 2020). TPS films 
have a lower carbon footprint due to their production 
methods requiring significantly less energy and methane 
than traditional plastics (Pavon et al., 2021). Lastly, these 
films can be utilized for many different applications based 
on their specific mechanical properties, primarily their 
high tensile strength and elongation at break. They can 
achieve varying levels of flexibility, moisture resistance, 
and strength, making them suitable for applications in 
liquid deposition modeling (LDM) and other additive 
manufacturing processes.

INTRODUCTION

Fossil-based plastic bags are detrimental to the environ-
ment as they do not biodegrade into safe by-products. 
Instead, they break down into microplastics that pollute 
the marine and terrestrial ecosystems. Every year, five 
trillion fossil-based plastic bags are produced in the 
world, and less than 1% are recycled (The World Counts, 
2023). When a plastic bag reaches the ocean, it takes up 
to 1,000 years to decompose despite being used for only 
12 minutes (Bruhns, 2022). Humans are also affected by 
plastic pollution since when plastic breaks down into 
smaller particles, it turns up in the food we eat. Unless 
serious action is taken to mitigate this problem, it is 
estimated that the weight of ocean plastics will exceed 
the combined weight of all the fish in the seas by 2050 
(Reddy, 2018). 

This paper addresses the urgent need for environmen-
tally friendly alternatives to petroleum-based plastic 
bags. This study focuses on improving these thermo-
plastic starch (TPS) films to make them a more sustain-
able replacement not just for traditional bags, but also 
for current TPS films on the market today. This research 
aims to create a film that biodegrades into food-safe 
molecules that pose no threat to plant and animal life 
and are produced in a more environmentally conscious 
manufacturing process in which the film takes less 
energy to create than traditional plastics. Current TPS 
films lack the mechanical properties, primarily tensile 
strength and elongation at break, necessary to replace the 
typical petroleum-based plastics (Diyana et al., 2021). 

To optimize the formulation of the TPS films, this paper 
introduces an innovative approach that employs differ-
ent machine-learning techniques like Bayesian optimiza-
tion (BO) with an adaptive design of experiments (DoE). 
Gaussian process regression (GPR) is used to model the 
data and guide the BO process (Valladares, 2020). This 
method is groundbreaking since the optimal formula 
of TPS films is estimated to be reached more efficiently 
and faster due to applications of machine learning soft-
ware. This software predicts the next testing points based 
on a trendline that the computer observes (Frazier, 
2018). Varying the plasticizer concentration in a water 
and potato starch mixture allows the film’s mechanical 
properties, primarily elongation at break and tensile 
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BO is an iterative search process grounded in Bayesian 
inference. It aims to find designs or inputs likely to 
optimize an objective function (Packwood, 2017). In 
this research, the objective function corresponds to the 
desired properties of the TPS film, such as the ultimate 
tensile strength and elongation at break. BO utilizes the 
probabilistic outputs of GPR, including the mean and 
variance functions, to construct an acquisition function 
(AF). This AF balances exploiting known promising 
regions (based on the mean) and exploring uncertain 
areas (based on the variance). By iteratively evaluating 
the acquisition function, BO guides the search toward 
the optimal composition of the TPS film, enabling effi-
cient and effective optimization. Our work implements 
various AFs, including the statistical upper bound of the 
GPR, expected improvement, and knowledge gradient. 
Combined with an adaptive DoE, the use of GPR within 
a BO framework successfully modifies the exploration of 
the TPS composition to find an optimal design efficiently.

METHODOLOGY

This research employed an adaptive DoE as opposed to 
a traditional DoE to have testing points that are centered 
around the trends that the data is exhibiting (Myung et 
al., 2013). Our testing procedures involved testing the 
same control point for every experiment, and then test-
ing additional points that both the GPR mean function 
and AFs predicted would present the most improvement. 
Five formulas of TPS films were tested for the first iter-
ation, and 9 formulas of TPS film were tested for the 
second. Each of these 14 formulas was tested 5 times for 
a total of 70 films. We then averaged the 5 values col-
lected from testing each formula and used this value to 
compute our mean and uncertainty functions. By follow-
ing this process, our testing points were tailored to the 
material properties. This makes researchers believe that 
this will help us reduce the total number of experiments 
needed to reach a maximum point. 

GAUSSIAN PROCESS REGRESSION 
WITH NOISY DATA

GPR is a mathematical machine-learning technique 
to solve regression problems by defining a probability 

COMPOSITION OF THE TPS FILM

The TPS film is made of three main ingredients: potato 
starch, plasticizer, and water. The potato starch is the 
primary component and allows the long chain of glucose 
molecules within the starch to cross-link, forming the 
biopolymer film structure (Collier et al., 2022). The plas-
ticizer we used is composed of glycerol and white vine-
gar (5% acetic acid). Water, the final ingredient, acts as 
a solvent to allow the starch and plasticizer to dissolve 
uniformly for a more homogeneous solution. Water also 
facilitates the gelatinization process of the potato starch 
during production and the breakdown of the starch, 
creating a mixture that can be poured to take the shape 
of the mold that it is in. 

For our film, we aimed to vary the plasticizer concentra
tion to see if there would be an optimal point where 
both elongation at the break and maximum strength are 
maximized. This was a one-factor design of experiments, 
meaning that the wt% of one factor was varied (plasti-
cizer) while other factors, such as the amount of water 
and the boiling time, remained constant. 

TAILORING OF THE TPS 
FILM PROPERTIES

To tailor the tensile strength and elongation at the break 
of the TPS film, our research group developed machine 
learning methods, primarily GPR and BO, to discover 
the optimal weight fraction of the plasticizer for the TPS 
composition. These machine learning methods use dif-
ferent kernels for the GPR to minimize the effects of the 
noisy data, but for the results in this paper, the Matern 32 
kernel was utilized.

GPR is a machine learning technique to solve regression 
problems by defining a probability distribution over 
infinitely many possible solutions (Valladares et al., 
2020). Therefore, instead of modeling a specific function, 
it models the distribution of functions that could 
describe the data. As the output, GPR provides a prob-
abilistic estimation of the model describing the data, 
which allows us to compute empirical confidence inter-
vals and make decisions regarding the optimal TPS com-
position within a BO framework.
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approximation. In many real-world scenarios, noise will 
be present, so it is important to be able to handle these 
noisy observations to maximize the utility. After condi-
tioning GPs on data corrupted with noise, as the noise 
increases, we can create different levels of credibility, so 
the observations have less influence on our beliefs. As 
these measurements in Eq. (1) are assumed to be varia-
tions from the true function, the posterior mean is not 
compelled to interpolate perfectly through the observa-
tions as the model would do with no noise present.

BAYESIAN OPTIMIZATION

BO is a helpful tool in black-box optimization, especially 
for problems with a limited number of function evalua-
tions. It is an optimization method that updates a surro-
gate model and uses an acquisition function to deter-
mine the solution that would give the best additional 
information value when added to the current data set.

BO typically uses a GPR to predict the function that 
needs to be optimized. One reason for this is that these 
GPs can estimate the uncertainty of the prediction at a 
given point. Once the uncertainty is evaluated, the model 
is then able to estimate the possible gains at the points 
that are unknown. After each query, the AF is reeval-
uated, and a new query is chosen to maximize the AF. 
The most used acquisition function is called expected 
improvement (EI), defined by
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where m(x) and s(x) are the mean and variance of the GP 
regressor at x (respectively), f is the function to be opti-
mized with an estimated maximum at x+, and (z), (z) 
denotes the cumulative distribution function and density 
function of a standard Gaussian distribution (Garnett, 
2023). EI measures the expected improvement over the 
current best solution in terms of the objective function 
value. Additionally, it evaluates the potential of a can-
didate solution by comparing its performance against 
the current best solution and the uncertainty associated 
with the objective function. It focuses more on explora-
tion, or exploring areas of the search space where there is 

distribution over infinitely many possible solutions 
(Zhikun et al., 2013). Therefore, instead of modeling a 
specific function, it models the distribution of functions 
that could describe the data. This makes Gaussian pro-
cesses (GPs) flexible and better suited to handle complex 
and nonlinear relationships between data points. In 
short, GPs are basic supervised learning methods that 
aim to solve regression and probabilistic classification 
problems. 

A GPR model is defined by two key components: a mean 
function and a covariance function (also known as a ker-
nel function). The mean function represents the expected 
value of the function at each point, while the covariance 
function determines how the function values at different 
points in the input space are related to each other.

The covariance function plays a crucial role in a GPR. It 
captures the similarity or correlation between different 
input points and assigns higher values to points expected 
to have similar function values. By leveraging this cova-
riance structure, the Gaussian process can make pre-
dictions and generate new function values based on the 
observed data at unobserved points. 

One of the advantages of GPRs is that since the predic-
tion is probabilistic, one can compute empirical con-
fidence intervals and make decisions based on those 
about whether one should refit the prediction model in a 
specific region. Additionally, GPs work well for small to 
large data sets, even though GPs can be computationally 
intensive. 

Some disadvantages of these GPs are that they use the 
whole sample or feature information to perform the 
prediction and tend to lose efficiency when the space is 
multidimensional. In our approach, the data is corrupted 
by noise; rather than observing exact measurements y, 
it observes

	 z = y + e	 (1)

where e is a vector of random errors independent of y. If 
we are not able to observe y exactly, we then have some 
added Gaussian noise within our data. Observations 
of an objective function are typically corrupted by this 
noise due to limitations of measurement or statistical 
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functions have different approaches to balancing the 
exploration and exploitation of the data space in the 
optimization process.

ADAPTIVE EXPERIMENTAL DESIGN

The adaptive DoE adopted in this study uses a GPR model 
within a BO framework (Figure 1). An initial dataset is 
obtained by varying a single factor, in this research, plas-
ticizer content. Observations result from tensile testing of 
TPS films using a UTM machine. The resulting data col-
lected, tensile strength and elongation at break, is utilized 
to train a GPR model. Our model utilized the Matern 32 
kernel using GPflow (The GPflow Contributors, 2023). 
The statistical output of the model defines AFs such as EI 
and KG, as well as a statistical upper bound (SUB) and 
GPR mean. New TPS film formulations are obtained by 
maximizing the AFs and adding them to the sampling 
plan. This process continues until no further formula-
tions can be obtained from the AFs and the prediction for 
improvement at each point is low.

Each TPS film was made with varying amounts of plas-
ticizer (white vinegar with 5% acetic acid and glycerin), 
in a potato starch and water mixture. Throughout the 

a higher probability of finding better solutions than the 
current best. 

The knowledge gradient (KG) is another AF that can 
quantify the expected increase in the maximum of the 
modeled black-box function f from obtaining additional 
random observations collected at the candidate set x. 
Adopting the definition from Garnett’s book Bayesian 
Optimization, the knowledge gradient AF is defined as 
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where m
D

 is the posterior mean of the prediction in the 
dataset D for the entire domain X. The KG AF aims to 
maximize the expected improvement of the objective 
function and quantifies the potential of gathering addi-
tional information at different points in the search space. 

Typically, the KG AF shows improved BO performance 
with simpler acquisition functions like the previously 
mentioned EI AF. However, the exact computation of 
the KG AF is more costly than EI, due to the maximiza-
tion within the expected value. While KG quantifies the 
value of information gathered from evaluating the can-
didate solutions, EI assesses the hypothesized gain over 
the current best solution. These two different acquisition 

FIGURE 1. Adaptive experimental design using a Bayesian optimization 
framework.
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the greatest elongation at break (37.42%) at 3.13 wt% of 
plasticizer (Figure 3a and b). These values do not con-
sider the uncertainty of the models. Other AFs, such 
as EI, KG, and SUB consider the uncertainty and mean 
values. The maximization of these AFs leads to eight new 
TPS designs, which are added to the dataset. The result-
ing GPR models after the addition of the new designs are 
shown in Figure 4. These designs, along with the control 
point are tested. The results are summarized in Table 1.

DISCUSSION

The findings of this study were that the maximum tensile 
strength was 4.01 MPa ± 1.44 at 0.30 wt% of plasticizer 

experiment, the ratio of glycerol to acetic acid was con-
stant but the overall percent weight of the plasticizer var-
ied from 0.30% to 5.00%. Each sample was boiled until 
80 ºC and then centrifuged for 2 minutes. Twelve grams 
of the TPS mixture were weighed, poured into a petri 
dish (Figure 2a), and allowed to dry for 48 hours. Once 
dry, samples were cut according to ASTM standards 
D882 (Figure 2b) and tested in a universal testing 
machine (Figure 2c) (ASTM International, 2010). Since 
our data is noisy, each batch had five testing points 
within it where the mean and standard deviation were 
recorded. The elongation and force applied to the sample 
were recorded.

RESULTS

The mean value of GPR models predicted the greatest 
tensile strength (2.53 MPa) at 0.81 wt% plasticizer and 

FIGURE 2. TPS film specimens. (a) TPS film poured into 
Petri dishes showing different concentrations of plasticizer. 
(b) TPS film coupons. (c) Tensile testing of TPS coupons 
using a UTM machine.

(C) 

(B) (A) 
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Our research effort aims to develop a TPS film formula-
tion with mechanical properties comparable to the tradi-
tional petroleum-based plastic bags, which are predom-
inantly used in today’s market. These conventional bags 
have tensile strength ranging from 17.42 to 25.95 MPa 
and a typical elongation at break in the range of 121% to 
413% (Kim et al., 2008; Radini et al., 2017). To replace 
these bags, the mechanical properties of the films not 
only need to achieve the same benchmarks of strength 

and the maximum elongation at break was recorded at 
38.12% ± 4.84 at 5.00 wt% of plasticizer. One other paper 
in the field reported that TPS film typically has tensile 
strength below 5 MPa and an elongation at break of less 
than 50% (Zhang et al., 2003). Our findings were consis-
tent with these results, but we believe that future itera-
tions of the Gaussian process regression model and using 
additives like calcium chloride can help us exceed these 
previous markers significantly. 

FIGURE 3. Gaussian process regression model for (a) tensile strength of the initial dataset, (b) elongation at break of the 
initial dataset.

FIGURE 4. Gaussian process regression model for (a) tensile strength of the augmented dataset, and (b) elongation at 
break of the augmented dataset. The augmented dataset includes nine additional training points based on the acquisition 
function maximization.

(A) 

(A) 

(B) 

(B) 
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compared to traditional petroleum-based plastic film. 
Using an adaptive DoE, it was found that lower plasti-
cizer content led to higher tensile strength, with values 
of plasticizer concentration below 0.3 wt%. Additionally, 
it was observed that higher plasticizer content resulted 
in greater elongation at break, with values of plasticizer 
concentration above 5.0 wt%. The data displayed that the 
EI AF most accurately predicted the optimal plasticizer 
concentrations, but future work is needed to test addi-
tional BO iterations until the TPS film design converges. 
In the future, our group aims to explore additional fac-
tors like varying the percent weights of both plasticizer 
and potato starch to provide more insight into the inter-
actions between the two factors, using additives such 
as natural fibers and calcium chloride, and increasing 
mechanical properties.
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