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Abstract

Plastic pollution, amounting to 12 million tons annually, necessitates sustainable alternatives to single-use plastics.
Compostable thermoplastic starch (TPS) films show promise but lack strength and durability compared to traditional
plastics. This study employs an adaptive design of experiments (DoE) approach to enhance TPS films by optimizing
testing points. The research focuses on varying concentrations of plasticizers (acetic acid and glycerol) in a water and
potato starch mixture, aiming to identify the optimal ratio maximizing tensile strength and % elongation at break.
Gaussian process regression (GPR) with uncertainty estimation and Bayesian optimization (BO) utilizing an acquisi-
tion function (AF) are employed. The AFs are compared to determine the best-suited one, iteratively updating the
model until minimal improvement is predicted. Results indicate TPS films with 1.06% plasticizer weight exhibit the
highest tensile strength (2.33 MPa) and % elongation at break (93.45%). Further testing is recommended to validate
GPR and BO models and explore additional factors like adjusting the potato starch to plasticizer ratio for enhanced
TPS film properties.
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INTRODUCTION

Fossil-based plastic bags are detrimental to the environ-
ment as they do not biodegrade into safe by-products.
Instead, they break down into microplastics that pollute
the marine and terrestrial ecosystems. Every year, five
trillion fossil-based plastic bags are produced in the
world, and less than 1% are recycled (The World Counts,
2023). When a plastic bag reaches the ocean, it takes up
to 1,000 years to decompose despite being used for only
12 minutes (Bruhns, 2022). Humans are also affected by
plastic pollution since when plastic breaks down into
smaller particles, it turns up in the food we eat. Unless
serious action is taken to mitigate this problem, it is
estimated that the weight of ocean plastics will exceed
the combined weight of all the fish in the seas by 2050
(Reddy, 2018).

This paper addresses the urgent need for environmen-
tally friendly alternatives to petroleum-based plastic
bags. This study focuses on improving these thermo-
plastic starch (TPS) films to make them a more sustain-
able replacement not just for traditional bags, but also
for current TPS films on the market today. This research
aims to create a film that biodegrades into food-safe
molecules that pose no threat to plant and animal life
and are produced in a more environmentally conscious
manufacturing process in which the film takes less
energy to create than traditional plastics. Current TPS
films lack the mechanical properties, primarily tensile
strength and elongation at break, necessary to replace the
typical petroleum-based plastics (Diyana et al., 2021).

To optimize the formulation of the TPS films, this paper
introduces an innovative approach that employs differ-
ent machine-learning techniques like Bayesian optimiza-
tion (BO) with an adaptive design of experiments (DoE).
Gaussian process regression (GPR) is used to model the
data and guide the BO process (Valladares, 2020). This
method is groundbreaking since the optimal formula

of TPS films is estimated to be reached more efficiently
and faster due to applications of machine learning soft-
ware. This software predicts the next testing points based
on a trendline that the computer observes (Frazier,
2018). Varying the plasticizer concentration in a water
and potato starch mixture allows the film’s mechanical
properties, primarily elongation at break and tensile

strength, to be visualized and modified. As this research
has seen so far, tensile strength and elongation at break
are inversely related, so an optimal point where they are
both maximized is of great interest.

The preliminary results for this study suggest optimal
plasticizer concentrations, and the research presents

the potential for eco-friendly TPS films with improved
properties, offering a sustainable alternative to
petroleum-based plastics in many different applications.
Further research in the TPS field using an adaptive
design of experiments and machine learning will explore
different factors, such as varying the concentration of
plasticizer and potato starch, and additives like calcium
chloride to refine the TPS film’s mechanical properties.
Additional research will also analyze the effects of mul-
tiple factors at a time on the TPS film, seeing if there is
a correlation between strength and elasticity that can be
maximized within the design space.

PROPOSED USE OF
THE POTATO STARCH

The plastic film that we are aiming to improve utilizes
potato starch to be converted into TPS film for applica-
tions in the food packaging industry. This TPS film is
more improved than the traditional petroleum-based
plastic currently on the market, in that it is renewable
and eco-friendly. Our plastic film is compostable and
created with all food-safe ingredients, meaning that it
will not decompose and leave toxic chemicals behind.
Additionally, our TPS film has a degradation rate like that
of cellulose (Zhang et al., 2014). This means that the TPS
is biocompatible, making it suitable for various applica-
tions involving contact with food or sensitive materials,
like plastic film for food (Ncube et al., 2020). TPS films
have a lower carbon footprint due to their production
methods requiring significantly less energy and methane
than traditional plastics (Pavon et al., 2021). Lastly, these
films can be utilized for many different applications based
on their specific mechanical properties, primarily their
high tensile strength and elongation at break. They can
achieve varying levels of flexibility, moisture resistance,
and strength, making them suitable for applications in
liquid deposition modeling (LDM) and other additive
manufacturing processes.
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COMPOSITION OF THE TPS FILM

The TPS film is made of three main ingredients: potato
starch, plasticizer, and water. The potato starch is the
primary component and allows the long chain of glucose
molecules within the starch to cross-link, forming the
biopolymer film structure (Collier et al., 2022). The plas-
ticizer we used is composed of glycerol and white vine-
gar (5% acetic acid). Water, the final ingredient, acts as

a solvent to allow the starch and plasticizer to dissolve
uniformly for a more homogeneous solution. Water also
facilitates the gelatinization process of the potato starch
during production and the breakdown of the starch,
creating a mixture that can be poured to take the shape
of the mold that it is in.

For our film, we aimed to vary the plasticizer concentra-
tion to see if there would be an optimal point where
both elongation at the break and maximum strength are
maximized. This was a one-factor design of experiments,
meaning that the wt% of one factor was varied (plasti-
cizer) while other factors, such as the amount of water
and the boiling time, remained constant.

TAILORING OF THE TPS
FILM PROPERTIES

To tailor the tensile strength and elongation at the break
of the TPS film, our research group developed machine
learning methods, primarily GPR and BO, to discover
the optimal weight fraction of the plasticizer for the TPS
composition. These machine learning methods use dif-
terent kernels for the GPR to minimize the effects of the
noisy data, but for the results in this paper, the Matern 32
kernel was utilized.

GPR is a machine learning technique to solve regression
problems by defining a probability distribution over
infinitely many possible solutions (Valladares et al.,
2020). Therefore, instead of modeling a specific function,
it models the distribution of functions that could
describe the data. As the output, GPR provides a prob-
abilistic estimation of the model describing the data,
which allows us to compute empirical confidence inter-
vals and make decisions regarding the optimal TPS com-
position within a BO framework.
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BO is an iterative search process grounded in Bayesian
inference. It aims to find designs or inputs likely to
optimize an objective function (Packwood, 2017). In

this research, the objective function corresponds to the
desired properties of the TPS film, such as the ultimate
tensile strength and elongation at break. BO utilizes the
probabilistic outputs of GPR, including the mean and
variance functions, to construct an acquisition function
(AF). This AF balances exploiting known promising
regions (based on the mean) and exploring uncertain
areas (based on the variance). By iteratively evaluating
the acquisition function, BO guides the search toward
the optimal composition of the TPS film, enabling efhi-
cient and effective optimization. Our work implements
various AFs, including the statistical upper bound of the
GPR, expected improvement, and knowledge gradient.
Combined with an adaptive DoE, the use of GPR within
a BO framework successfully modifies the exploration of
the TPS composition to find an optimal design efliciently.

METHODOLOGY

This research employed an adaptive DoE as opposed to

a traditional DoE to have testing points that are centered
around the trends that the data is exhibiting (Myung et
al,, 2013). Our testing procedures involved testing the
same control point for every experiment, and then test-
ing additional points that both the GPR mean function
and AFs predicted would present the most improvement.
Five formulas of TPS films were tested for the first iter-
ation, and 9 formulas of TPS film were tested for the
second. Each of these 14 formulas was tested 5 times for
a total of 70 films. We then averaged the 5 values col-
lected from testing each formula and used this value to
compute our mean and uncertainty functions. By follow-
ing this process, our testing points were tailored to the
material properties. This makes researchers believe that
this will help us reduce the total number of experiments
needed to reach a maximum point.

GAUSSIAN PROCESS REGRESSION
WITH NOISY DATA

GPR is a mathematical machine-learning technique
to solve regression problems by defining a probability



distribution over infinitely many possible solutions
(Zhikun et al., 2013). Therefore, instead of modeling a
specific function, it models the distribution of functions
that could describe the data. This makes Gaussian pro-
cesses (GPs) flexible and better suited to handle complex
and nonlinear relationships between data points. In
short, GPs are basic supervised learning methods that
aim to solve regression and probabilistic classification
problems.

A GPR model is defined by two key components: a mean
function and a covariance function (also known as a ker-
nel function). The mean function represents the expected
value of the function at each point, while the covariance
function determines how the function values at different
points in the input space are related to each other.

The covariance function plays a crucial role in a GPR. It
captures the similarity or correlation between different
input points and assigns higher values to points expected
to have similar function values. By leveraging this cova-
riance structure, the Gaussian process can make pre-
dictions and generate new function values based on the
observed data at unobserved points.

One of the advantages of GPRs is that since the predic-
tion is probabilistic, one can compute empirical con-
fidence intervals and make decisions based on those
about whether one should refit the prediction model in a
specific region. Additionally, GPs work well for small to
large data sets, even though GPs can be computationally
intensive.

Some disadvantages of these GPs are that they use the
whole sample or feature information to perform the
prediction and tend to lose efficiency when the space is
multidimensional. In our approach, the data is corrupted
by noise; rather than observing exact measurements y,

it observes

z=y+e (1)

where ¢ is a vector of random errors independent of y. If
we are not able to observe y exactly, we then have some
added Gaussian noise within our data. Observations

of an objective function are typically corrupted by this
noise due to limitations of measurement or statistical

approximation. In many real-world scenarios, noise will
be present, so it is important to be able to handle these
noisy observations to maximize the utility. After condi-
tioning GPs on data corrupted with noise, as the noise
increases, we can create different levels of credibility, so
the observations have less influence on our beliefs. As
these measurements in Eq. (1) are assumed to be varia-
tions from the true function, the posterior mean is not
compelled to interpolate perfectly through the observa-
tions as the model would do with no noise present.

BAYESIAN OPTIMIZATION

BO is a helpful tool in black-box optimization, especially
for problems with a limited number of function evalua-
tions. It is an optimization method that updates a surro-
gate model and uses an acquisition function to deter-
mine the solution that would give the best additional
information value when added to the current data set.

BO typically uses a GPR to predict the function that
needs to be optimized. One reason for this is that these
GPs can estimate the uncertainty of the prediction at a
given point. Once the uncertainty is evaluated, the model
is then able to estimate the possible gains at the points
that are unknown. After each query, the AF is reeval-
uated, and a new query is chosen to maximize the AE.
The most used acquisition function is called expected
improvement (EI), defined by

EL(x) = (p(x) = f(f))%%)

it @
ro) ¢(u<x)a(xj)‘<x ))

where u(x) and o(x) are the mean and variance of the GP
regressor at x (respectively), fis the function to be opti-
mized with an estimated maximum at x*, and y(z), y(z)
denotes the cumulative distribution function and density
function of a standard Gaussian distribution (Garnett,
2023). EI measures the expected improvement over the
current best solution in terms of the objective function
value. Additionally, it evaluates the potential of a can-
didate solution by comparing its performance against
the current best solution and the uncertainty associated
with the objective function. It focuses more on explora-
tion, or exploring areas of the search space where there is
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a higher probability of finding better solutions than the
current best.

The knowledge gradient (KG) is another AF that can
quantify the expected increase in the maximum of the
modeled black-box function f from obtaining additional
random observations collected at the candidate set x.
Adopting the definition from Garnetts book Bayesian
Optimization, the knowledge gradient AF is defined as

A (%D) = f[gggug(i)]p(y [ % D)dy — maxur(x)  (3)

where 1, is the posterior mean of the prediction in the
dataset D for the entire domain X'. The KG AF aims to
maximize the expected improvement of the objective
function and quantifies the potential of gathering addi-
tional information at different points in the search space.

Typically, the KG AF shows improved BO performance
with simpler acquisition functions like the previously
mentioned EI AF. However, the exact computation of
the KG AF is more costly than EI, due to the maximiza-
tion within the expected value. While KG quantifies the
value of information gathered from evaluating the can-
didate solutions, EI assesses the hypothesized gain over
the current best solution. These two different acquisition

1. Sampling plan <

functions have different approaches to balancing the
exploration and exploitation of the data space in the
optimization process.

ADAPTIVE EXPERIMENTAL DESIGN

The adaptive DoE adopted in this study uses a GPR model
within a BO framework (Figure 1). An initial dataset is
obtained by varying a single factor, in this research, plas-
ticizer content. Observations result from tensile testing of
TPS films using a UTM machine. The resulting data col-
lected, tensile strength and elongation at break, is utilized
to train a GPR model. Our model utilized the Matern 32
kernel using GPflow (The GPflow Contributors, 2023).
The statistical output of the model defines AFs such as EI
and KG, as well as a statistical upper bound (SUB) and
GPR mean. New TPS film formulations are obtained by
maximizing the AFs and adding them to the sampling
plan. This process continues until no further formula-
tions can be obtained from the AFs and the prediction for
improvement at each point is low.

Each TPS film was made with varying amounts of plas-
ticizer (white vinegar with 5% acetic acid and glycerin),
in a potato starch and water mixture. Throughout the

X e Rnxk

v

2. Observations
y € R"

v

3. GPR model
fx):x € R¥ - NV (9,82)

v

4. Acquisition function
maximization

5. Add new TPS formulation
x € Rk

A

(e.g., El, KG, SUB, GPR mean)

FIGURE 1. Adaptive experimental design using a Bayesian optimization

framework.

Journal of Purdue Undergraduate Research: Volume 14, Fall 2024



FIGURE 2. TPS film specimens. (a) TPS film poured into
Petri dishes showing different concentrations of plasticizer.
(b) TPS film coupons. (c) Tensile testing of TPS coupons
using a UTM machine.

experiment, the ratio of glycerol to acetic acid was con-
stant but the overall percent weight of the plasticizer var-
ied from 0.30% to 5.00%. Each sample was boiled until
80 °C and then centrifuged for 2 minutes. Twelve grams
of the TPS mixture were weighed, poured into a petri
dish (Figure 2a), and allowed to dry for 48 hours. Once
dry, samples were cut according to ASTM standards
D882 (Figure 2b) and tested in a universal testing
machine (Figure 2¢) (ASTM International, 2010). Since
our data is noisy, each batch had five testing points
within it where the mean and standard deviation were
recorded. The elongation and force applied to the sample
were recorded.

RESULTS

The mean value of GPR models predicted the greatest
tensile strength (2.53 MPa) at 0.81 wt% plasticizer and

the greatest elongation at break (37.42%) at 3.13 wt% of
plasticizer (Figure 3a and b). These values do not con-
sider the uncertainty of the models. Other AFs, such

as EI, KG, and SUB consider the uncertainty and mean

values. The maximization of these AFs leads to eight new
TPS designs, which are added to the dataset. The result-
ing GPR models after the addition of the new designs are
shown in Figure 4. These designs, along with the control
point are tested. The results are summarized in Table 1.

DISCUSSION

The findings of this study were that the maximum tensile
strength was 4.01 MPa * 1.44 at 0.30 wt% of plasticizer
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FIGURE 3. Gaussian process regression model for (a) tensile strength of the initial dataset, (b) elongation at break of the
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FIGURE 4. Gaussian process regression model for (a) tensile strength of the augmented dataset, and (b) elongation at
break of the augmented dataset. The augmented dataset includes nine additional training points based on the acquisition

function maximization.

and the maximum elongation at break was recorded at
38.12% =+ 4.84 at 5.00 wt% of plasticizer. One other paper
in the field reported that TPS film typically has tensile
strength below 5 MPa and an elongation at break of less
than 50% (Zhang et al., 2003). Our findings were consis-
tent with these results, but we believe that future itera-
tions of the Gaussian process regression model and using
additives like calcium chloride can help us exceed these
previous markers significantly.
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Our research effort aims to develop a TPS film formula-
tion with mechanical properties comparable to the tradi
tional petroleum-based plastic bags, which are predom-
inantly used in today’s market. These conventional bags
have tensile strength ranging from 17.42 to 25.95 MPa
and a typical elongation at break in the range of 121% to
413% (Kim et al., 2008; Radini et al., 2017). To replace
these bags, the mechanical properties of the films not
only need to achieve the same benchmarks of strength



TABLE 1. Varying formulas for each batch of TPS films, including the initial dataset (Batch 1.1-1.5) and the new designs
based on the acquisition function testing points (Batch 2.1-2.9). The data for tensile strength and elongation at break
include mean and standard deviation values (uncertainty bounds). The highest observed values are shaded.

Plasticizer Acquisition Tensile

Batch (Wt%) Function Strength (MPa) Elongation at Break (%)
1.1 1.00 — 2.48 £10.55 1194 £11.34
1.2 1.80 — 0.50 £ 0.12 9.79 + 3.88
1.3 2.50 — 0.38 £ 0.15 31.28 £7.82
1.4 3.30 — 0.36 £ 0.09 38.33 =+ 7.80
15 4.00 — 0.28 £ 0.11 23.88 £ 847
2l 0.30 ElI SUT 4,01 +1.44 713 £1.68
2.2 0.25 SUB SUT 257 £0.72 6.86 * 3.62
2.3 0.56 KG SUT 2.09 £ 0.86 527 £1.33
2.4 0.81 MEAN SUT 246 + 0.98 9.89 + 2.56
285 2.50 CONTROL 042 £0.21 2710 £ 431
2.6 2.98 SUB ELO 0.67 £ 0.13 27.69 £ 4.25
2.7 3.08 KG ELO 0.7+ 0.05 30.78 £ 13.00
2.8 3.13 MEAN ELO 091 £0.12 25.65 £ 4.54
2.9 5.00 El ELO 0.22 = 0.05 38.12 + 4.84

and elongation but also add something that these widely
used bags lack, like the ability to be composted. While
we acknowledge that we are still far from surpassing
these mechanical goals, the application of an adaptive
DoE and the utilization of the previously mentioned
machine learning methods bring us closer to this goal
than ever before.

This research had some limitations in that we only ana-
lyzed one factor at a time with our adaptive design of
experiments and did not specifically look at the inter-
section of varying percent weights of plasticizers and
other factors. This is an area we hope to expand on in the
future, and we plan to test multiple factors to further the
experimental design space. Another limitation of this
work is that with the adaptive design of the experiment,
we only completed two iterations of the Bayesian optimi-
zation cycle. Ideally, we would repeat this cycle until the
model converges and suggests less than 1% improvement
predicted.

CONCLUSION

The research aimed to develop an eco-friendly TPS film
with enhanced tensile strength and elongation at break

compared to traditional petroleum-based plastic film.
Using an adaptive DoE, it was found that lower plasti-
cizer content led to higher tensile strength, with values
of plasticizer concentration below 0.3 wt%. Additionally,
it was observed that higher plasticizer content resulted
in greater elongation at break, with values of plasticizer
concentration above 5.0 wt%. The data displayed that the
EI AF most accurately predicted the optimal plasticizer
concentrations, but future work is needed to test addi-
tional BO iterations until the TPS film design converges.
In the future, our group aims to explore additional fac-
tors like varying the percent weights of both plasticizer
and potato starch to provide more insight into the inter-
actions between the two factors, using additives such

as natural fibers and calcium chloride, and increasing
mechanical properties.
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