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Abstract: The development of thermoplastic starch (TPS) films is crucial for fabricating sustainable
and compostable plastics with desirable mechanical properties. However, traditional design of exper-
iments (DOE) methods used in TPS development are often inefficient. They require extensive time
and resources while frequently failing to identify optimal material formulations. As an alternative,
adaptive experimental design methods based on Bayesian optimization (BO) principles have been
recently proposed to streamline material development by iteratively refining experiments based on
prior results. However, most implementations are not suited to manage the heteroscedastic noise
inherently present in physical experiments. This work introduces a heteroscedastic Gaussian process
(HGP) model within the BO framework to account for varying levels of uncertainty in the data,
improve the accuracy of the predictions, and increase the overall experimental efficiency. The aim is
to find the optimal TPS film composition that maximizes its elongation at break and tensile strength.
To demonstrate the effectiveness of this approach, TPS films were prepared by mixing potato starch,
distilled water, glycerol as a plasticizer, and acetic acid as a catalyst. After gelation, the mixture was
degassed via centrifugation and molded into films, which were dried at room temperature. Tensile
tests were conducted according to ASTM D638 standards. After five iterations and 30 experiments,
the films containing 4.5 wt% plasticizer and 2.0 wt% starch exhibited the highest elongation at break
(M = 96.7%, SD = 5.6%), while the films with 0.5 wt% plasticizer and 7.0 wt% starch demonstrated the
highest tensile strength (M = 2.77 MPa, SD = 1.54 MPa). These results demonstrate the potential of the
HGP model within a BO framework to improve material development efficiency and performance in
TPS film and other potential material formulations.

Keywords: thermoplastic starch; potato starch; compostable plastic; Bayesian optimization;
heteroscedastic noise; material design; physical experiments; mechanical properties

1. Introduction

The growing need to reduce plastic environmental pollution [1] and mitigate microplas-
tic health risks [2] demands sustainable alternatives to traditional fossil-based plastics. One
alternative is thermoplastic starch (TPS), a biodegradable material derived from natural
polymers [3]. TPS has been used in applications like food packaging [4,5] and as a substitute
for single-use plastics [6]. However, its mechanical properties are considerably inferior
to those of fossil-based plastics [7]. For example, film-grade high-density polyethylene
(HDPE), a fossil-based plastic commonly used in packaging, exhibits an elongation at
break (EB) between 350% and 1700% and tensile strength (TS) ranging from 23.0 MPa to
89.2 MPa [8]. In contrast, typical TPS film shows EB values around 11% to 31%, and TS
values around 1.03 MPa to 2.04 MPa [9,10].

Although the performance of TPS can be enhanced with additives such as Aloe vera [9],
chitin nanocrystals [11], zinc oxide [12], nanoclay [13], agar [14], psyllium husk [15], and
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different plasticizers [10,16–18], the development and optimization of new compositions
is a lengthy and expensive process that typically involves trial-and-error and design of
experiments (DOE) methods. While DOE methods such as grid searching and response
surface can help us understand the effect of material parameters on its properties, they are
often resource-intensive when used for optimization due to the large number of design
evaluations required [19]. Experimental noise further complicates the process, especially
when time and resource constraints prevent accurate uncertainty quantification. To over-
come these challenges, adaptive experimental methods supported by BO are becoming
increasingly prevalent as they offer more efficient solutions than traditional DOE methods.

1.1. Bayesian Experimental Design

Bayesian optimization (BO) is a gradient-free, global optimization method suitable for
expensive-to-evaluate functions. It uses a probabilistic model, typically a Gaussian process
(GP), to predict the function mean and variance (Section 2). It balances the exploration
and exploitation of the design space via an acquisition function that selects the next design
while minimizing the number of costly and time-consuming experiments (Section 3). In
material design, BO offers a probabilistic framework that iteratively plans experiments
based on prior results. This enables a more informed and efficient experimental process
that guides decision-makers toward a globally optimal design [20–22].

In recent years, BO has gained attention in optimal material design and fabrication
for its ability to efficiently navigate high-dimensional search spaces and identify opti-
mal formulations and process parameters with fewer experimental evaluations [23,24].
Packwood [25] optimized the processing parameters of metal alloys and polymer blends,
focusing on tuning processing conditions like temperature, pressure, and material composi-
tion. Yamashita et al. [26] optimized material atomic configurations, such as crystal, surface,
and interface structures, and predicted the most stable structure for given chemical compo-
sitions. Talapatra et al. [27] introduced Bayesian objective under model uncertainty (BOMU)
to explore the materials design space, accounting for resource constraints and model uncer-
tainty. Liu et al. [28] introduced a BO approach for categorical and non-categorical variables
for multimaterial vehicle structures. Xiong et al. [29] improved the mechanical properties
of metals for additive manufacturing. Zhang et al. [30] accommodated mixed quantitative
and qualitative variables and efficiently identified materials with desired dielectric char-
acteristics. Zhang et al. [31] enhanced the precision and material properties in additive
manufacturing, focusing on parameters like layer thickness, build speed, and material feed
rate. Gao et al. [32] identified monomers and fabrication conditions of membranes for water
purification. Iwama et al. [33] applied a Bayesian adaptive experimental design to optimize
the operating conditions and reaction parameters in an ethylene oxide production plant.
Valladares et al. [34] introduced a goal-based acquisition function that enables the parallel
Bayesian optimization of lithium-ion battery cathode composition. Hickman et al. [35]
fine-tuned reaction parameters such as temperature, pressure, and catalyst concentration to
maximize reaction yield and selectivity. Guo et al. [36] improved high-throughput reaction
screening by optimizing multiple reaction parameters simultaneously, allowing for faster
identification of optimal CO2 and green hydrogen production conditions. Qian et al. [37]
leverage BO with the mean objective cost of uncertainty (MOCU) to optimize functional
materials. Sattari et al. [38] incorporated physical constraints and process knowledge to
improve process precision and mechanical performance of additively manufactured parts.

Although Bayesian optimization is emerging as a valuable tool for material design
and has been successfully applied to optimize various material systems, its application in
physical experiments is still in the early stages of development, with several challenges yet
to be addressed. The challenges addressed in this work include the following: (1) Modeling
heteroscedastic noise in physical experiments; (2) The adaptive exploration of the design
space; (3) The application toward locating optimal TPS film formulations.
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1.2. Heteroscedastic Noise

In most adaptive material design applications, the GP regression model supporting BO
captures the underlying relationships between experimental parameters (design variables)
and the material properties (objective function). However, traditional GP models assume
that noise levels are uniformly distributed across the design space [39]. Since noise levels
are not uniform across the design space in many real-world situations, the homeostatic
noise assumption presents a challenge in experimental research, specifically relating to
the field of materials science [40]. Heteroscedastic noise, which refers to variable levels of
uncertainty across the design space, can significantly affect experimental outcomes and
data interpretation. This can lead to inaccurate uncertainty quantification and statistical
outcomes. Uncertainty in observations may even follow a random distribution, making
heteroscedastic inferences analytically intractable [41].

Previous work has yielded methods to approximate the posterior noise variance
using heteroscedastic Gaussian process (HGP) interfaces, with the gold standard being the
Markov chain Monte Carlo (MCMC) method [42]; however, methods such as MCMC come
at a high cost since they require many additional experimental design evaluations and time
to evaluate [43]. Therefore, a practical HGP model is needed for the adaptive experimental
design of materials within a BO framework.

The first contribution of this work is introducing a practical HGP model suitable for
Bayesian experimental design (Section 2.3). The proposed HGP model uses two uncoupled
GPs: one to model the mean of the material properties and one to model the variance (noise).
Since the heteroscedastic noise function is modeled independently from the material
properties, the mean GP model does not require prior noise information, making its
implementation practical and efficient. The four statistical outcomes (two per GP) provide
a simple and accurate way to estimate the expected value of the material properties and
quantify their uncertainty.

1.3. Adaptive Exploration

Most BO implementations for physical experiments follow the same general steps as
the ones used for computational experiments. In this configuration, an acquisition function
identifies one promising design to be evaluated at a time based on the outputs of the GP
(mean and variance). In a physical setting, evaluating one design per iteration causes
experiments to advance unnecessarily slowly, especially considering situations where
individual designs are timely and expensive to evaluate. Since many physical experiments
inherently require time-consuming setups, considering more than one design candidate
per iteration is manageable and more efficient. Therefore, there is a need for an approach to
identify multiple candidate designs systematically.

Additionally, most implementations use fixed design space boundaries; however, too
large boundaries can lead to unfeasible material designs, while boundaries that are too
small may leave important regions unexplored. Thus, the boundaries must be adapted as
the experiment progresses, allowing the exploration region to be refined based on prior
experimental results.

The second contribution of this work is the application of two acquisition functions
while managing the size of the exploration within a BO framework. The two acquisition
functions are the lower confidence bound (LCB) and expected improvement (EI). The
LCB function allows for increased diversity of new design candidates by promoting more
exploration or exploitation than the traditional EI (Section 3.1). In addition, an exploration
region management algorithm is implemented to dynamically adjust the size of the explo-
ration region based on the inclusion of new designs in the sampling plan to ensure a more
comprehensive modeling approach.

1.4. Optimal Formulation of TPS Film

BO has been applied successfully to optimize various material systems, including
metal alloys, crystal structures, battery cathodes, and polymer blends. This work presents
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the first application of BO for formulating TPS films. The specific objective of this work is to
determine the optimal starch and plasticizer weight percentages (wt%) in the composition
of TPS films to maximize elongation at break and tensile strength (Section 4). This marks
the first use of BO in the design of TPS films.

In summary, the three main contributions of this work are as follows: (1) The introduc-
tion of a practical HGP model suitable for Bayesian experimental design; (2) An adaptive
exploration of the design space based on acquisition functions and exploration region
management; (3) The optimal TPS film formulation for the maximization of elongation at
break and tensile strength. This work shows the potential of Bayesian experimental design
in advancing the development of sustainable materials, with a particular focus on TPS
films. By leveraging HGP modeling and adaptive exploration, this work contributes to the
broader field of material science and offers a blueprint for future research in optimizing
renewable materials.

2. Gaussian Process Regression

A Gaussian process (GP) is a collection of random variables such that every finite set
of those variables has a multivariate Gaussian distribution. In the context of regression, a
GP regression model can be defined as a distribution over functions with inference taking
place directly in the space of functions [44]. A GP regression model defines a distribution of
functions f (x) such that, for any set of input points X = {x1, . . . , xn}, the function values
f = f (X) = { f (x1), . . . , f (xn)} follow a multivariate normal distribution [45]. Unlike
traditional regression techniques that assume a specific functional form for the relationship,
a GP regression model defines a distribution over possible functions that fit the data,
allowing for a more adaptable and probabilistic modeling approach.

2.1. Gaussian Process Regression of Noiseless Data

A Gaussian process (GP) is fully specified by its mean function and covariance function
(kernel). A random function f (x) that follows a GP is expressed as

f (x) ∼ GP
(
m(x), k(x, x′)

)
, (1)

where m(x) is the mean function and k(x, x′) is the covariance function defined as

m(x) = E[ f (x)] , (2)

k(x, x′) = E[( f (x)− m(x))( f (x′)− m(x′))] , (3)

respectively. The joint prior distribution of the observations f = { f (x1), . . . , f (xn)} and the
predictions f∗ at the test locations X∗ is[

f
f∗

]
∼ N

(
0,
[

K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
, (4)

where K(X, X) is the covariance matrix of the observed data, K(X, X∗) is the covariance
matrix between the observed data and the predicted data, and K(X∗, X∗) is the covariance
matrix of the predictions. The components of the covariance matrices are generated by the
evaluation of the covariance function k(x, x′). Valid covariance functions produce positive
semi-definite matrices regardless of the chosen pair of points (x, x′) [46].

2.2. Gaussian Process Regression of Noisy Data

In modeling problems involving experimental observations, the data do not corre-
spond to observations of f (x), but noisy values, y = f (x) + ϵ, where ϵ ∼ N (0, σ2

n). Given
a set of noisy observations, y = {y(1), . . . , y(n)}, the joint prior distribution of y and the
predictions f∗ at the test locations X∗ is
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[
y
f∗

]
∼ N

(
0,
[

K(X, X) + σ2
nI K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
, (5)

where σ2
n is the noise in the data (under the assumption of independent Gaussian noise),

and I is the identity matrix.
In most cases, the covariance function k(x, x′) is flexible enough to fit the data, and the

mean function is often assumed to be zero, m(x) = 0 [47]. Then, the predictive equations
of a zero-mean GP regression model are obtained by conditioning Equation (5) on the
observed data by setting the following condition:

f∗ | X, y, X∗ ∼ N
(
f̄∗, cov(f∗)

)
. (6)

where f̄∗ and cov(f∗) are the mean and the covariance of the prediction, which are given
by the posterior distribution mean and variance:

f̄∗ = K(X∗, X)[K(X, X) + σ2
nI]−1y, (7)

cov(f∗) = K(X∗, X∗)− K(X∗, X)[K(X, X) + σ2
nI]−1K(X, X∗). (8)

where the diagonal of cov(f∗) is the predictive variance [44]. Since the mean function
becomes irrelevant, the covariance function (kernel) defines the characteristics of the
prediction. Notably, the covariance prediction does not require the observations y because
it is a property of the GP model and the distribution of the inputs only, regardless of the
observed values.

2.3. Heteroscedastic Gaussian Process Regression

Heteroscedastic Gaussian Process (HGP) regression is an extension of traditional GP
regression that deals with situations where the noise ϵ ∼ N (0, σ2

n) is not constant across the
input space. While standard GP regression assumes a constant σ2

n across all inputs, HGP
regression allows noise variance to change depending on the input, making it more flexible
and accurate for physical world scenarios where uncertainty is not uniform.

The model is structured in HGP regression with two main components: a mean
function and a variance function drawn from different Gaussian processes. This is shown
below:

f1(x) ∼ GP
(
0, k1(x, x′)

)
(9)

f2(x) ∼ GP
(
0, k2(x, x′)

)
. (10)

where f1 follows a mean function GP that captures the underlying relationship between
inputs x and outputs y, while f2 follows the noise variance function GP that captures the
relationship between inputs x and the noise variance σ2

n . In this work, the HGP model
outputs are given by the following:

f̄1∗ = K(X∗, X)K(X, X)−1y (11)

cov(f1∗) = K(X∗, X∗)− K(X∗, X)K(X, X)−1K(X, X∗) + diag(f2∗) + cov(f2∗) (12)

f̄2∗ = K(X∗, X)[K(X, X) + λI]−1σσσ2
n (13)

cov(f2∗) = K(X∗, X∗)− K(X∗, X)[K(X, X) + λI]−1K(X, X∗) . (14)

where f̄1∗ and cov(f1∗) are the mean and the covariance of the function prediction, f̄2∗ and
cov(f2∗) are the mean and the covariance of the noise variance, and diag(f) is the diagonal
matrix constructed from the vector f. Here, σ2

n is the noise variance, and λ is a trainable
hyperparameter representing its variance—the variance of the noise variance.
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2.4. Covariance Function

The covariance function k(x, x′) encodes assumptions about the smoothness, periodic-
ity, and other properties of the function to be modeled. The choice of covariance function is
crucial in GP regression as it defines the shape and properties of the functions that the GP
can model. Commonly used covariance functions include the squared exponential kernel,
the Matérn kernel, and the periodic kernel.

The squared exponential kernel, also referred to as the radial basis function (RBF), is
defined as

k(x, x′) = σ2
f exp

(
−∥x − x′∥2

2ℓ2

)
. (15)

where σ2
f is the signal variance, and ℓ is the length scale, controlling the smoothness of the

function. Similarly, the Matérn kernel is given by

k(x, x′) = σ2
f

21−ν

Γ(ν)

(√
2ν∥x − x′∥

ℓ

)ν

Kν

(√
2ν∥x − x′∥

ℓ

)
. (16)

where Kν() is a modified Bessel function and Γ(ν) is the Gamma function [44]: for a
positive integer ν, Γ(ν) = (ν − 1)! . Here, ν controls the smoothness, and the Gamma
function Γ(ν) normalizes the kernel function and ensures that it correctly describes the
covariance structure of the process. The Matérn covariance function becomes simpler when
ν is a half-integer, such as 1/2, 3/2, 5/2, 7/2, and so on. For ν = 1/2, the process becomes
very rough, while ν ≥ 7/2 may be indistinguishable from ν → ∞ [44]. The most common
cases in GP regression are ν = 3/2 and ν = 5/2, resulting in

kv=3/2(x, x′) = σ2
f

(
1 +

√
3∥x − x′∥

ℓ

)
exp

(
−
√

3∥x − x′∥
ℓ

)
, (17)

kv=5/2(x, x′) = σ2
f

(
1 +

√
5∥x − x′∥

ℓ
+

5∥x − x′∥2

3ℓ2

)
exp

(
−
√

5∥x − x′∥
ℓ

)
, (18)

respectively. Finally, a periodic kernel can be defined as

k(x, x′) = σ2
f exp

(
−2 sin2(π∥x − x′∥/p)

ℓ2

)
. (19)

where p is the period of the function.

2.5. Training

Training involves finding the optimal values of the unknown kernel parameters, such
as σ2

f , ℓ, and p, which is crucial for achieving good model performance. This task can be
accomplished by maximizing the likelihood of the observed data,

L(θ | y) = p(y | X, θ) = N (y | 0, K(X, X; θ) + σ2
nI) , (20)

where K(X, X; θ) is the covariance matrix defined by the kernel function with hyperparam-
eters θ. To facilitate the optimization process, the log-likelihood is often used instead of the
likelihood, Equation (20) [44]. This log-likelihood is given by

log p(y | X, θ) = −1
2

yT
(

K(X, X; θ) + σ2
nI
)−1

y − 1
2

log
∣∣∣K(X, X; θ) + σ2

nI
∣∣∣− n

2
log 2π . (21)

This function can be maximized using a gradient-based algorithm such as L-BFGS-B
(limited-memory Broyden–Fletcher–Goldfarb–Shanno with box constraints). The imple-
mentation in this work uses the Python library gpflow version 2.9.1 (https://www.gpflow.
org/, accessed on 10 September 2024).

https://www.gpflow.org/
https://www.gpflow.org/
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2.6. Heteroscedastic Gaussian Process Regression Algorithm

The steps involved in generating the posterior mean and variance of a given set of
observed data from a noisy (unknown) function are the following:

Step 1: Input points. Define the input points X = {x1, . . . , xn} using a sampling
plan. This set of points can be selected from a predefined grid, a traditional DOE, or
quasi-randomly.

Step 2: Observations. Evaluate the noisy function at every xi a given number of times
to obtain the corresponding observations yi. For example, one can evaluate the noisy
function five times at each input point.

Step 3: HGP Regression. At each input point, obtain the observed data’s mean and
variance. Use these values to obtain the posterior mean and variance as defined by (11) and (12).

2.7. Numerical Example

Let us consider a noisy version of Forrester’s test function defined by

f (x) = (6x − 2)2 sin(12x − 4) + ϵ(x) , (22)

defined in the interval x ∈ [0, 1] with heteroscedastic Gaussian noise ϵ(x) ∼ N (0, σ2(x))
with variance

σ2(x) = 10(x − 0.3)2 . (23)

Let us consider the sampling plan

X = [0, 1/8, 1/4, 3/8, 1/2, 5/8, 3/4, 7/8, 1] ,

with five random observations per point. Figure 1 shows the comparison of the vanilla
GP regression from (7) and (8), and the HGP regression from (11) and (12). Both models
utilized the Matérn 3/2 kernel (17). Since the vanilla GP cannot capture the noise variance,
it fits a constant value across the design space, increasing the prediction’s uncertainty. The
predicted mean significantly differs from the true mean of the function. On the other hand,
the HGP better fits both the variance and the mean of the true function.

(a) Vanilla GP (b) Heteroscedastic GP

Figure 1. Gaussian process regressions of the noisy Forrester’s function. The red dots represent the
random samples. The dotted line and gray-shaded area correspond to the 95% confidence interval.
The black line and blue-shaded area correspond to the prediction based on the posterior distributions
for the following: (a) The vanilla GP; (b) The HGP.
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3. Bayesian Optimization

Bayesian optimization (BO) is an efficient method for optimizing expensive black-box
functions [21,22]. Unlike traditional optimization techniques, which often rely on gradient
information or extensive sampling of the parameter space, BO leverages a probabilistic
model to guide the search for optimal solutions. This approach is particularly well-suited
for applications where each function evaluation is costly in terms of time or resources [48].

In this work, BO begins by modeling the noisy objective function f (x) using a HGP
regression (Section 2.6). The HGP predicts the posterior mean (11) and variance (12) of
f (x). Then, an acquisition function is defined to determine the next points to sample based
on the HGP outcomes (Section 3.1). The function is evaluated in the new points, the HGP
model is updated, and this process continues until no improvement is possible. The next
sections explain in more detail the acquisition functions implemented in this work, the
exploration region management, and the convergence criteria of the BO algorithm.

3.1. Acquisition Functions

This work implements two acquisition functions: lower confidence bound (LCB) and
the expected improvement (EI). Both functions are designed to balance exploration and
exploitation by considering the GP model’s predicted mean function µ(x) defined from (11)
and the predicted standard deviation σ(x) obtained from (12).

Lower Confidence Bound. The Lower Confidence Bound (LCB) is an acquisition
function defined for minimizing a function f (x). The LCB for a given input x is defined by:

LCB(x) = µ(x)− κ σ(x) , (24)

where κ is a positive parameter that controls the trade-off between exploration (κ → ∞)
and exploitation (κ = 0). If the objective is to minimize f (x), then the new point to be
added to the sampling plan is

xnew = arg min LCB(x) . (25)

In the proposed algorithm, the value of κ is incrementally increased until xnew is different
than the one from maximizing the expected improvement.

Expected Improvement. Given the mean best-observed value of the function so far
f (xbest) of the function f (x) to be minimized, the Expected Improvement (EI) at a given
point x is defined as:

EI(x) = E[max(0, f (x)− f (xbest))] . (26)

When the function f (x) is modeled as a GP, the EI function can be expressed as:

EI(x) = (µ(x)− f (xbest))Φ
(

µ(x)− f (xbest)

σ(x)

)
+ σ(x)ϕ

(
µ(x)− f (xbest)

σ(x)

)
, (27)

where Φ(·) is the cumulative distribution function (CDF) of the standard normal distribu-
tion, and ϕ(·) is the probability density function (PDF) of the standard normal distribution.
Then, the new point to be added to the sampling plan is

xnew = arg max EI(x) . (28)

3.2. Exploration Region Management

The exploration region is defined as

Γ = {x ∈ Rn | xLB ≤ x ≤ xUB} , (29)
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where xLB and xUB are the lower and upper boundaries, respectively. The boundaries are
defined as a function of the distance between the designs x in Γ along every dimension
k = 1, . . . , n. This is

xUB
k − xLB

k = r
(

xmax
k − xmin

k

)
, (30)

where (xmax
k and xmin

k are the maximum and minimum values along the dimension k and
r > 1 is the expansion ratio. In this work, r = 1.5 by default. The corners of the exploration
region Γ are also added to the sampling plan. Hence, the exploration grows by a factor r in
every iteration until it reaches absolute limits, such as a fraction xk = 0 or xk = 1 of a given
ingredient xk.

3.3. Convergence Criterion

Soft convergence is achieved when there is no significant change in the value of
max EI(x) and xbest in three consecutive iterations. This is shown below:

∆3 max EI(x) ≤ ϵe (31)

∆3xbest ≤ ϵx , (32)

where ϵe and ϵx are small quantities. Hard convergence occurs when the allotted number
of experiments has been exhausted.

3.4. Bayesian Optimization Algorithm

The steps involved in the proposed Bayesian optimization (BO) approach are summa-
rized in (Figure 2) and include the following steps:

Step 1: Objective Function Regression. BO begins by modeling the objective function
f (x) using a HGP regression. The HGP predicts the posterior mean (11) and variance (12)
of the noisy objective function f (x) as a distribution over possible functions that fit the
observed noisy data y from the sampling plan X.

Step 2: Acquisition Function Optimization. An acquisition function is defined to deter-
mine the next point to sample based on the HGP posterior mean and variance. In this work,
the new points to be added to the sampling plan correspond to the solutions of (25) and (28).

Step 3: Check Convergence. If the convergence conditions (31) and (32) are satisfied,
and the exploration region Γ has reached its maximum size, then the arg min µ(x) is the
optimal design x∗. Otherwise, the process continues by adding xnew to the sampling plan.

Figure 2. BO adaptive experimental design algorithm implementing an HGP surrogate model and an
exploration region.
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3.5. Numerical Results

To illustrate the implementation of the BO algorithm, let us consider two benchmark
problems: Forrester’s function (1D) and the three-hump camel function (2D).

Forrester’s function (1D). The first problem is the minimization of the noisy Forrester’s
function defined in (22). The global minimizer of this function is x∗ ≈ 0.7572. For this
study, let us consider random initial sampling plans with five random designs. To replicate
typical physical experiments, the data are defined as

X = {xr − 2δ, xr − δ, xr, xr + δ, xr + 2δ} ,

where xr and δ are random numbers such that all x in X is in the interval [0, 1]. The
minimum distance between adjacent designs is set to 0.01. The results are summarized
in Figure 3. These results show that, in most cases, convergence can be achieved in about
five iterations.

(a) Function evaluations (b) Best evaluated design (c) Expected improvement

Figure 3. Bayesian optimization of the noisy Forrester’s function. Results summarize ten optimization
algorithm runs. Each optimization algorithm was initialized with five random initial designs and
ran for 30 iterations. The red dots represent the designs evaluated during all the optimization runs.
(a) The black dotted line is the mean of the true function, and the gray shaded area is the 95%
confidence interval. Most of the function evaluations were around the minimizer. (b) The algorithm
usually finds the minimizer or a close design in less than five iterations. The black solid line represents
the minimizer x∗ ≈ 0.7572. (c) Accordingly, the expected improvement also remains at a constant
value after the fifth iteration.

Three-hump camel function (2D). The second problem is the minimization of the
noisy three-hump camel function:

f (x1, x2) = 2x2
1 − 1.05x4

1 +
x6

1
6

+ x1x2 + x2
2 + ϵ(x1, x2) , (33)

defined in the region −2 ≤ x1 ≤ 2 and −2 ≤ x2 ≤ 2, with heteroscedastic Gaussian noise
ϵ(x1, x2) ∼ N (0, σ2(x1, x2)) with variance

σ2(x1, x2) =
1
50

[
(x1 + 1)2 + (x2 + 1)2

]
. (34)

The global minimizer of this function is x∗ = [0, 0]. For this study, let us consider initial
sampling plans with nine random designs, X = {x1, . . . , x9}, as shown in Figure 4. Re-
sults summarized in Figure 5 show that in the case of 2D, the algorithm usually reaches
convergence in about ten iterations.
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(a) Noiseless function (b) Noise variance (c) Noisy function

Figure 4. Three-hump camel function prior to optimization. Heteroscedastic noise and variance are
to be added to the black box function to simulate physical experimental conditions. (a) Noiseless
three-hump camel function. (b) Heteroscedastic noise variance of the three-hump camel function.
(c) Noisy three-hump camel function to be optimized.

(a) Random initial designs (b) Best evaluated design (c) Expected improvement

Figure 5. Bayesian optimization of the noisy three-hump camel function. Results summarize ten
optimization algorithm runs utilizing an exploration region for each model iteration. Each algorithm
was initialized with nine random design points and ran for 30 iterations. The red dots represent
the random initial designs. (a) The initial designs prior to noisy observations. Most of the initial
function evaluations were around local minima, with only one near the minimizer. (b) With noisy
observations in two dimensions, the algorithm usually finds the minimizer or a close design in less
than ten iterations. The black solid line indicates the minimizer values, x∗1 = 0 and x∗2 = 0. (c) The
maximum expected improvement remains about constant after the tenth iteration.

4. Thermoplastic Starch Film Optimization

The proposed Bayesian experimental design is applied to the formulation of TPS
film, aiming to optimize the plasticizer (x1) and potato starch (x2) weight percentages to
maximize the film’s elongation at break (y1) and tensile strength (y2). Given the conflicting
effects of plasticizer and starch content on the mechanical properties of TPS films and the
difference in their noise effect, this application provides a template for tackling similar
material optimization challenges.

4.1. Materials

The materials used in this study were sourced as follows: potato starch was obtained
from Gefen Foods (Bayonne, NJ, USA); distilled white vinegar, 5 (m/v)% acetic acid, from
Walmart’s Great Value (Bentonville, AR, USA); distilled water from Sigma-Aldrich (Burlington,
MA, USA); and vegetable glycerol from Florida Laboratories (Fort Lauderdale, FL, USA).

Polymers are sourced from potato starch, and glycerol:vinegar mixture (in a 2:1 ratio)
is utilized as the plasticizer. The acetic acid in the vinegar acts as an acid catalyst for
facilitating the plasticization process [10]. Distilled water is used as a solvent to maintain a
homogeneous mixture. It also acts as an additional plasticizing agent in the plasticization
of TPS [49].
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All ingredients utilized in this study adhere to the Food Chemical Codex (FCC) grade
standards, ensuring their compostability. The TPS formation process outlined in Section 4.1
is designed to preserve the compostability characteristics of these ingredients and the
TPS films.

4.2. Synthesis Protocol

The synthesis protocol for all experimental compositions is as follows:
Mixing. Wet ingredients (glycerol, vinegar, distilled water) are first combined in a

600 mL beaker. Potato starch is sifted using a 60-mesh sieve to ensure uniform granules,
and is added while stirring continuously to achieve a homogeneous mixture. For all
experimental compositions, the total initial mass of the mix is maintained at 120 g.

Gelatinization. The beaker containing the solution is placed on an electric hot plate
and brought to the gelatinization temperature at around 80 °C at a heating rate of about
10 °C/min while stirring consistently. At the gelatinization point, the TPS color changes
from milky to colorless and becomes more viscous. At this point, the beaker is taken off
heat and cooled to about 60 °C.

Degassing. The TPS mixture is then centrifuged for two minutes at 2000 rpm to
remove bubbles (Figure 6). The remaining mass of the TPS solution usually ranges between
72 and 78 g at this point.

Drying. The TPS mixture is poured into Petri dishes (12 g per Petri dish) and left to
air dry in controlled laboratory ventilated air at room temperature (20 to 23 °C) for 72 h.

Film preparation. Finally, the dried film is detached from the Petri dish, and testing
specimens are prepared for mechanical testing (Section 4.3).

Figure 6. Centrifuging of TPS slurry effectively degases solution before air drying, leading to higher
quality film. Left: 12 g of TPS slurry in a Petri dish without centrifuging. The solution is cloudy with
many air bubbles. Right: 12 g of TPS slurry in a Petri dish after being centrifuged for two minutes at
2000 rpm. The solution is degassed and translucent.

4.3. Tensile Testing

TPS film samples were prepared to fit coupon-sized rectangles with a nominal di-
mension of 88 mm long by 13 mm wide, according to ASTM standard D638 [50]. Film
thickness was measured with a Mitutoyo Digimatic digital micrometer with a 0.5 µm
resolution. The specimen’s width was measured using a Mitutoyo Digimatic digital caliper
with a 0.01 mm resolution. Three measurements were taken for each film sample and
then averaged to estimate the film’s cross-sectional area. Tensile strength and elongation
at break were determined by tensile testing on a universal testing machine (UTM) from
Jinan Focus Test Instrument Co., Ltd. (Jinan City, Shandong, China). Five samples per
formulation were tested, EB and TS were recorded, and the mean and variance of each
property were determined.

4.4. Optimization

The iterative steps of the BO process, summarized in Figure 2, are the following:
Initial sampling plan. The initial sampling plan used in this work follows a full-

factorial design of experiments (DOE) with two factors, x1 and x2, each at three levels,
resulting in a sampling plan of nine points.
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Update exploration region. The initial size of the exploration is 1.5 times larger
than the initial DOE grid. The exploration region is updated dynamically, and when
new experimental data are added, the region boundaries are adjusted based on the new
sampling plan (Section 3.2).

Observations. One observation corresponds to the evaluation of a mechanical property
(Section 4.3). After each new experiment, the observed data for the EB and TS properties,
y1 and y2, and corresponding compositions, x1 and x2, are recorded. These observations
provide the data to train the HGP model.

HGP model. Two GP models are trained for each property (y1 and y2) for a total
of four GP models: mean(Y1), var(Y1), mean(Y2), and var(Y2). Each GP model has two
outputs: mean and variance; therefore, the total number of outputs of the HGP model is
eight: mean(mean(y1)), var(mean(y1)), mean(var(y1)), var(var(y1)), mean(mean(y2)),
var(mean(y2)), mean(var(y2)), and var(var(y2)). The HGP model updates continuously
with new experimental results, refining the predictions and uncertainty quantification
predictions and providing data to the acquisition functions.

Acquisition function. The acquisition functions, LCB (25) and EI (28), guide the
selection of new sampling points based on the HGP model’s outputs. In each iteration, four
new points are located: one from EI and one from LCB point for each targeted mechanical
property. The four corners of the exploration region Γ are evaluated to promote broader
exploration. While up to eight distinct points can be added per iteration, in practice,
some points may overlap or already be included in the sampling plan, resulting in fewer
new additions.

Convergence. The convergence criteria are satisfied when there is minimal improve-
ment in material properties over successive iterations or when a predefined number of
experiments is met (Section 3.3). At the point of convergence, an optimal or near-optimal
solution within the explored region has been found. If the convergence is reached, the
optimal design corresponds to xbest. This application will have one optimal design for each
material property y1 and y2.

Update sampling plan. If the convergence criteria are not satisfied, the new designs
are tested, and the sampling plan is updated. The BO process iterates until a convergence
criterion is met.

5. Results and Discussion

Five experimental iterations were evaluated. Each iteration takes roughly one week
to complete. The TPS elongation at break (EB) and tensile strength (TS) are affected by the
plasticizer (glycerol:vinegar) (x1) and starch content (x2) in a nonlinear manner (Figure 7).
Specifically, higher content of plasticizer (up to about 4.5 wt%) and low starch content (down
to about 2.0 wt%) maximize EB. In contrast, low content of plasticizer (down to about 0.5 wt%)
and medium-level content of starch (about 7.0 wt%) maximize TS. Notably, an excessive
amount of plasticizer (above 6.0 wt%) or excessive amount of starch (above 12.0 wt%) has
a negative effect on the overall structural stability of the film and its mechanical properties,
leading to increased film brittleness and decreased EB. Figure 8 displays the variations in film
quality with varying amounts of starch and plasticizer content. Furthermore, our approach
allows quantifying the uncertainty of the response as a function of the material content
(Figure 9). For EB, higher variance is observed in specimens with higher content of both
plasticizer and starch. The variance function is more flat for TS but increases with the
starch content.

As summarized in Table 1, the optimal formulation for the highest EB was found in the
last iteration to be 4.5 wt% plasticizer, 2.0 wt% starch, and 93.5 wt% water (Figure 9). The
corresponding optimal TPS contains 3.6 g glycerol, 1.8 g vinegar, 2.4 g starch, and 112.2 g
water. Compared to the EB value of about 11% to 31% reported in previous studies [9,10],
this composition leads to a higher EB value (M = 96.7%, SD = 5.6%), which represents an
increase of about 212%.
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Figure 7. Results from HGP predictions from TPS DOEs for five experimental iterations. As in the
numerical experiments, an initial design was evaluated, and an exploration region was initialized.
BO guided the subsequent experiments until formulations yielding optimal mechanical properties
were achieved. The red dots represent the design points evaluated in each iteration. HGP models
were used to predict the mean and variance of EB and TS for varying compositions of plasticizer (x1)
and starch content (x2). The far left column displays HGP predictions for EB, with the second column
showing the predicted variance for EB. The next column shows the mean TS predictions, with the
final column showing the predicted variance for TS.

On the other hand, the optimal formulation for the highest TS was found in the
first experimental iteration to be 0.5 wt% plasticizer, 7.0 wt% starch, and 93.5 wt% water
(Figure 9 and Table 2). The corresponding optimal TPS contains 0.4 g glycerol, 0.2 g vinegar,
8.4 g starch, and 111.0 g water. Compared to the TS value of about 1.03 MPa to 2.04 MPa
from previous studies [9,10], this formulation leads to around a higher TTS value (M = 2.77
MPa, SD = 1.54 MPa), which represents a 38% increase.

Figure 8. TPS film: Increased starch content with decreased plasticizer content to decreased starch
content with increased plasticizer content. TPS film with increased and decreased starch content led
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to brittleness and warping. Similarly, decreased starch and increased plasticizer content also caused
film warping and moisture. (a) The film specimen with the highest starch content and least plasticizer
content. The film is warped and extremely brittle, with low mechanical properties. (b) The film
specimen with increased plasticizer content. The film is less brittle and exhibits optimal TS. (c) The
film specimen has roughly equal parts of plasticizer and starch content. Mechanical properties are
suitable for both EB and TS. (d) The film specimen with slightly more plasticizer than starch. EB
is increased, but subsequently, the TS begins to diminish. (e) Increased plasticizer leads to slight
warping, films retain more moisture and exhibit optimal EB, and diminished TS. (f) Film specimen
with the highest plasticizer concentration and the lowest starch concentration. Films are extremely
deformed and moist. TS is diminished, and EB begins to decrease with worsening film quality.

(a) Best observed EB per iteration. (b) Best observed TS per iteration.

Figure 9. Best observed properties. The black dots represent the mean best-observed property per
experimental observation. The vertical bar and blue-shaded region indicate the 95% confidence
interval. (a) The optimal formulation for maximizing EB was found after four iterations, with
increased plasticizer concentrations leading to greater EB variability. (b)The optimal formulation for
TS was found after the first iteration, with relatively constant variability.

Table 1. Summary of iterative results for elongation at break (EB). Results include the plasticizer and
starch composition of the best design, the EB mean and standard deviation, the expected improvement
at the end of the iteration, and the cumulative number of experiments.

Iter Plast (wt%) Starch (wt%) EB (%) EI Exp
1 1.5 7.0 23.9 ± 2.7 6.06 9

2 2.0 2.0 69.8 ± 3.0 32.5 15

3 2.0 2.0 69.8 ± 4.2 2.97 20

4 2.0 2.0 69.8 ± 4.2 2.23 25

5 4.5 2.0 96.7 ± 5.6 3.16 30

Table 2. Summary of iterative results for tensile strength (TS). Results include the plasticizer and
starch composition of the best design, the TS mean and standard deviation, the expected improvement
at the end of the iteration, and the cumulative number of experiments.

Iter Plast (wt%) Starch (wt%) TS (MPa) EI Exp
1 0.5 7.0 2.77 ± 1.51 0.615 9

2 0.5 7.0 2.77 ± 1.54 0.609 15

3 0.5 7.0 2.77 ± 1.54 0.605 20

4 0.5 7.0 2.77 ± 1.54 0.604 25

5 0.5 7.0 2.77 ± 1.54 0.604 30

Plasticizing agents, extracted starch, and acid catalysts significantly affect the me-
chanical, structural, and physical properties of TPS films [18]. Additional factors, such as
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the time and temperature of film preparation, may also affect the material’s mechanical
properties. Previous studies have investigated the effects of various plasticizing agents such
as choline chloride and urea [10], xylitol and sorbitol [51], and glycerol-sorbitol [16]. The
most commonly utilized plasticizer in the fabrication of TPS films is glycerol/water [49].
The presence of low-weight amide plasticizing structures in the addition of water, such as
glycerol, has been shown to perform significantly better at suppressing starch retrograda-
tion as opposed to other plasticizing agents [17]. Additionally, other low-weight organic
acids such as acetic acid or citric acid [52] further contribute to suppressing starch reinte-
gration, effectively reducing the material’s degradation rate while also acting as a catalyst
for plasticization [53].

Increased amounts of glycerol in relation to starch tend to amplify variations in the
observed mechanical properties of TPS film [54]. This is most likely explained by changes
in the starch’s crystalline structure post-retrogradation. Studies such as those by Paluch
et al. [55] and Surendren et al. [6] highlight that the addition of plasticizers disrupts the
natural crystalline structure of starch, leading to a higher proportion of amorphous regions.
This structural transformation results in increased chain mobility and free volume within
the polymer matrix, which promotes more efficient starch gelatinization and flexibility.
However, this increase in flexibility is accompanied by a reduction in material strength since
the crystalline regions responsible for stiffness are diminished by the plasticizer-induced
amorphous structures.

Since amorphous regions are more flexible and less rigid than crystalline regions,
the overall mechanical properties (such as tensile strength and elongation at break) of
the material become more sensitive to small changes in the glycerol concentration. With
more glycerol, the proportion of amorphous regions in the starch increases while the
amount of crystalline regions decreases. This sensitivity contributes to greater variability
in the observed properties of TPS film because the balance between amorphous and
crystalline regions can significantly affect the material’s properties. Starch content and the
presence of amylose have little effect on TS because the overall balance of crystalline and
amorphous regions in TPS is more dependent on plasticizer content and is not dramatically
altered by varying starch content [56,57]. On the contrary, increased amounts of starch
content are found to decrease the EB and, in large concentrations, contribute to severe film
brittleness [56,58].

The trade-off between TS and EB must be carefully managed depending on the desired
application of the TPS film by carefully identifying optimal starch and plasticizer concen-
trations. Plasticizers like glycerol disrupt the intermolecular hydrogen bonding between
starch molecules, leading to a more amorphous and flexible material, but at the cost of
TS. While starch content may not significantly influence the mechanical properties of TPS
due to its limited effect on the overall crystalline-amorphous balance, plasticizers weaken
these interactions, resulting in lower TS values across most TPS formulations. Increasing
plasticizer content leads to softer, more deformable films with reduced tensile strength
and increased EB; however, it contributes to more variation in the observed properties.
Increased starch content results in a reduction of EB, with little impact on the TS; however,
it also leads to increased film brittleness. A balance between plasticizer and starch content is
needed to maintain satisfactory film quality free of warping, brittleness, or excess moisture
retention that may negatively impact the mechanical properties.

6. Conclusions

This study presents a novel Bayesian optimization approach for maximizing the
elongation at break and tensile strength of TPS film by varying the plasticizer and starch
content. The proposed framework addresses the challenges of DOE methodologies and
traditional Bayesian approaches, including inefficiency, handling of heteroscedastic noise,
and exploration region management. The proposed Bayesian approach leverages an HGP
model suitable for physical experiments. This model independently predicts the mean and
variance of the material properties, allowing for more accurate predictions of non-uniform
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noise. The optimization process is guided by two acquisition functions (LCB and EI) and
a dynamic exploration strategy to adjust the design space boundaries. Validation via
numerical benchmark tests, including the Forrester’s and three-hump camel functions,
demonstrated the framework’s capability to efficiently handle noise in multidimensional
optimization problems. When applied to TPS films, the approach iteratively achieved EB
and TS improvements, highlighting its potential to accelerate material optimization and
enhance sustainable material performance.

This work’s main contributions are as follows: First, it introduces a practical HGP
model for Bayesian experimental design built from traditional GP models. The HGP
implementation allows the use of established modeling tools with minimal modifications.
Second, it presents an adaptive exploration scheme that systematically expands the design
space by managing the exploration region. The two acquisition functions, along with
the samples from the corner of the exploration region, enhance the diversity of candidate
designs. In practice, this approach enables the generation of multiple designs per iteration,
making it more feasible for physical experiments. Finally, this work pioneers a BO approach
to formulate TPS films.

The results of this work are limited by the number and nature of design variables, the
number of experiments, and the number of objectives. Only two variables are considered:
plasticizer and starch content. Additional variables include additives, process parameters,
or the relative molecular weight of TPS polymers through Gel permeation chromatogra-
phy (GPC), which may positively affect the film’s mechanical properties. Additionally,
this work is constrained by having only 30 total experiments. More experiments could
refine the results and further validate the optimization framework. Finally, this study
focused on optimizing two objectives: elongation at break and tensile strength. Expanding
the optimization framework to include additional properties such as hydrophobicity or
compostability could offer deeper insights. Moreover, further characterization that can be
gathered from stress–strain curves such as Young’s modulus, yield strength, and strain
hardening could provide a more comprehensive understanding of the material’s potential
to replace traditional plastic films. Despite the limitations of this study, the proposed work
serves as a template to optimize material systems more efficiently.
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