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Abstract

The evolution of convergent phenotypes is of major interest in biology because of their omni-

presence and ability to inform the study of evolutionary novelty and constraint. Convergent

phenotypes can be combinations of traits that evolve concertedly, called syndromes, and

these can be shaped by a common environmental pressure. Parasitoid wasps which use a

wide variety of arthropod hosts have also repeatedly and convergently switched host use

across their evolutionary history. They thus represent a natural laboratory for the evolution

of trait syndromes that are associated with parasitism of specific hosts and host substrates.

In this study, we tested the evolution of co-evolving characters in the highly diverse family

Ichneumonidae associated with ovipositing in a specific and well-defined substrate: wood.

Using a newly constructed phylogeny and an existing morphological dataset, we identified

six traits correlated with the wood-boring lifestyle that demonstrate convergent evolution. At

least one trait, the presence of teeth on the ovipositor, typically preceded the evolution of

other traits and possibly the switch to parasitism of wood-boring hosts. For each trait, we

provide a historical review of their associations with wood-boring parasitoids, reevaluate the

function of some characters, and suggest future coding improvements. Overall, we demon-

strate the convergent evolution of multiple traits associated with parasitism of woodboring

hosts and propose a syndrome in a hyper diverse lineage of parasitoid wasps.

Introduction

Convergent evolution is a cornerstone concept in evolutionary biology for several compelling

reasons. As articulated by Stayton [1] its significance is underscored by two primary factors:

(1) its pervasive occurrence throughout the history of life on Earth; and (2) its interpretation as

a predictable consequence of evolution driven by natural selection. Phenotypic convergence

provides visual evidence of the power of natural selection, particularly when considering
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adaptations due to shared environmental pressures [2]. More practically, convergent evolution

serves as a valuable tool for biologists, providing a natural laboratory for repeated experiments

in evolution and providing researchers with the replicated events needed for statistical power

[1–5]. The study of convergent evolution is broad, encompassing a wide range of taxa and

includes examinations of morphology (such as phenotypic convergence) and behavior, as well

as investigations across different timescales [6–8].

Definitions of convergent evolution have varied depending on whether or not adaptation is

invoked or whether a process for convergence is defined, such as the use of similar develop-

mental or genetic pathways to achieve the same phenotype [2,3,9,10]. Here we employ the defi-

nition given by Losos [3], which defines convergence as the “independent evolution of similar
features in different evolutionary lineages.” Characters can be deemed "similar" if they share

similarities in their phenotype, independently or dependently from the genetic underpinning.

This aspect requires careful morphological assessment, because what may appear near iden-

tical externally could exhibit significant differences in skeletal-musculature organization

[11,12]. This is especially true for insects where external morphology is far more frequently

used than internal morphology. Examples range from the eyes of Siphonaptera, which are

actually ocelli [13], to the increase of leg dimensions in independent insect lineages, which

represent a complex evolution involving multiple leg expansions [14]. This morphological

similarity is primarily determined by comparative morphologists, who propose homology

statements of characters if they occupy the same area (topology) or if the relations with

other sclerites and/or muscles are maintained (connectivity) in multiple taxa [15]. Vogt

et al. [16] termed this sameness structural equivalence, differentiating it from the classical

concept of homology, which usually requires a phylogenetic context (similarity due to com-

mon ancestry) [17].

Characters could also be considered “similar” if their function is the same, even though

they have a different genetic pathway and morphological organization, as natural selection acts

upon the functional consequences of traits, rather than the traits themselves [e.g., 3,18]. In par-

asitoid wasps, for example, unrelated taxa have different mechanisms for bracing the oviposi-

tor during oviposition into a wood-boring substrate. In Labeninae there are modifications of

the coxae, whereas members of Rhyssinae have ovipositor guides [19]. Here, we focus on struc-

tural rather than functional equivalence to determine similarity.

When convergence involves the co-appearance of multiple traits, it is often referred to as

a syndrome, defined as multiple traits that evolved concurrently in response to a common

environmental pressure [20–23]. Syndromes remain poorly studied, with various factors

that may contribute to their formation. Possible mechanisms for multi-trait convergence

include: supergenes created by chromosomal inversions that link multiple genetic elements;

genetic linkage due to chromosomal proximity; and/or pleiotropic effects of single genes

[e.g., 20,24–26]. Interesting is the role of evolutionary precursors in trait formation–ances-

tral traits or states that potentially facilitate the convergent evolution of related traits (often

referred to as positive constraints)–which could set the stage for parallel evolution in related

taxa [e.g., 27,28].

Hyperdiverse taxa, like parasitoid wasps, present an intriguing opportunity for testing con-

vergent evolution and syndromes. The notable rate of convergence observed across diverse lin-

eages [29] provides a substantial number of replications. Parasitoid wasps live off arthropod

hosts, mainly insects, by laying eggs in or on hosts, subsequently developing off the host’s tis-

sues until its death, and emerging as an adult after pupation to complete the life cycle. As para-

sitoid wasps rely on hosts to complete their lifecycle, the type of host drives the evolution of

several morphological traits related to finding, ovipositing, developing on, and ultimately exit-

ing from the host [30]. Hosts may be exposed or may be more hidden within a substrate. The
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types of substrates are numerous, ranging from various plant tissues [31,32] to insects eggs

[33,34] and spider sacs [35,36]. The host substrate can present a formidable obstacle that the

wasp must overcome to reach its host [37] and thus likely plays a pivotal role in morphological

evolution. Thus, for parasitoids, the evolution of several morphological traits is host-driven

and thus, specific traits should be tightly correlated with specific hosts or host substrates.

Ichneumonidae is an especially ideal parasitoid wasp lineage for examining convergent evo-

lution and trait syndromes because of their extensive species diversity, varied life history strate-

gies, including diverse hosts, and convergent adaptations related to host use [29,30,38–41].

With more than 25,000 described species, Ichneumonidae is considered one of the largest fam-

ilies of Hymenoptera [42,43]. The remarkable species diversity is paralleled by the numerous

and diverse parasitism strategies, showcasing a broad spectrum of host specificity that spans

from holometabolous insects to spiders [30,44,45]. Additionally, the variety of substrates uti-

lized by their hosts is extensive and there have been repeated host shifts across the phylogeny

[30,32].

Parasitism of hosts within a woody substrate has been shown to be ancestral for Ichneumo-

nidae [32,42] but also for the evolution of parasitism itself within Hymenoptera [19,46]. Hosts

use the wood for food, but also for concealment and protection against predators and environ-

mental extremes [47]. In response to the challenges of wood, parasitoid wasps have developed

specific characters associated with both ovipositing into and emerging from wood, some of

which have been referred to as adaptions given the impact these traits have on successful para-

sitism and thus survival [19]. Wasps that want to utilize hosts found in these substrates have

three main obstacles that must be overcome: 1) locating the host inside the wood, 2) oviposit-

ing within or onto the host; and 3) emerging from the substrate after larval development [19].

The life cycle of a woodboring Ichneumonid parasitoid, Megarhyssa atrata (Fabricius, 1781) is

provided in Fig 1 as an example.

It is important to differentiate between subcortical parasitoids, which target hosts located

under bark (e.g., the genus Rhimphoctona Förster, Ichneumonidae: Campopleginae) [48], and

woodboring parasitoids, which target specimens deeply concealed within lignified plant tissue

(e.g., Ichneumonidae: Rhyssinae). Here we focus only on wood-boring parasitoids, as subcorti-

cal parasitoids may not face the same challenges to locate and reach their hosts and thus may

not have the same distinctive morphologies commonly associated with wood-boring parasit-

oids, as identified by previous authors [e.g., 19,49].

Here we look at traits associated with parasitism of wood-boring hosts across the entire

family of Ichneumonidae to: (1) test for traits correlated with having a host within a woody

substrate; (2) determine if these traits co-evolved, thereby forming a syndrome; and (3) to ana-

lyze and discuss the syndrome itself through careful examination of the traits. To complete

these objectives, we utilized morphological characters from Bennett et al. [32] as this study

contains the most comprehensive morphological dataset to date for Ichneumonidae, covering

almost all major lineages. Based on the literature, we selected traits from this dataset that are

putatively associated with utilizing wood-boring hosts. Next, we constructed a chimeric phy-

logeny by combining the taxon-rich dataset from Bennett et al. [32] and the gene-rich dataset

from Sharanowski et al. [42]. We then tested for phylogenetic correlation for select traits and

performed ancestral state reconstructions (ASR) to examine the relative timing of trait evolu-

tion. Finally, to facilitate further study on this trait syndrome, we provide (1) a thorough

review of each correlated character in light of our results; (2) critical discussions on the limita-

tions associated with each character; (3) considerations for enhancing the coding of these char-

acters in future studies; and (4) alignment of the terminology with the Hymenoptera Anatomy

Ontology (HAO) [50].
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Fig 1. Life cycle of the woodboring idiobiont ectoparasitoid Megarhyssa atrata (Fabricius, 1781). (1) female wasp locating potential host by tapping the

antennae; (2) wasp ovipositing within wood trying to reach the deeply concealed larvae; (3) host larvae with parasitoid egg attached; (4) parasitoid larvae fully

developed (on top) and feeding on the host larvae (underneath); (5) pupal stage of the parasitoid wasp (on top) and host larvae dead (below); (6) emergence of

the newly hatched parasitoid wasp adult with males waiting to mate.

https://doi.org/10.1371/journal.pone.0311365.g001
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Material and methods

The characters

We selected 20 characters from the141 coded by Bennett et al. [32] for analysis. The first char-

acter is the oviposition substrate itself, as in lignified tissue or not (Character 1, S1 File). Then,

we conducted a thorough review of the literature and identified 10 of Bennett et al.’s [32] char-

acters that have been historically associated with a woodboring lifestyle (see Table 1 and char-

acters 2–10, and 18, S1 File). Then, we chose eight additional characters not previously

documented but potentially relevant for ovipositing into wood, based on their overall shape

and body position. A rationale for these choices is provided in S1 File (characters 11–17, and

19). This approach was based on the premise that not all traits related to a wood-boring life-

style may have been previously identified. All other characters from Bennett et al.’s [32] study

were clearly unrelated to oviposition or emergence from wood (e.g., all larval characters) and

were thus excluded.

Although we tested 20 characters from Bennett et al. [32], only eight were significantly cor-

related with parasitism of wood-boring hosts (see results). Detailed descriptions of all 20 char-

acters and the coding modifications we made can be found in S1 Table. Terminological

alignment of the characters with the Hymenoptera Anatomy Ontology [50] can be found in

S1 Table.

To facilitate understanding, we introduce here the eight correlated characters and the

woodboring substrate. We have provided a number for both the substrate and each character,

corresponding to its reference number used throughout the paper. The statements in square

brackets indicate how the character is alternatively referred to in S1 Table. For each of these

characters, we also provided the modified coding (from Bennett et al. [32]) that we employed

for our analyses.

1-Woodboring substrate [Host substrate, type; Substrate, woodboring]. Several Hyme-

nopteran morphological characters have been associated with the woodboring substrate, either

living in wood as immatures or parasitizing hosts living in wood. We provide a complete list of

these characters across Hymenoptera accompanied by their proposed functions and a list of

references associated with them (Table 1). For this study focusing on Ichneumonidae, we used

Bennett et al.’s [32] coding for “Oviposition location” (character 140) as follow: (0) lignified

plant tissue; (1) other substrates.

2–First valvula (1vv) with teeth [1vv, teeth]. The presence of teeth (serration) on the api-

cal tip of the terebra are integral to the mechanical aspects of wood penetration

[19,30,56,68,71,87]. The teeth facilitate the drilling process by either rasping or breaking the

wood fibers to either reach the host or lay free living wasp larvae (e.g., wood wasps) [88]. We

used Bennett et al.’s [32] coding for “Ovipositor ventral valve” (character 97) as follows: (0)

with teeth apically; (1) without teeth apically.

3–Elongated terebra [Terebra, length]. In order to access hosts deeply concealed within

wood, parasitoid Hymenoptera tend to develop a longer terebra compared to their non-wood-

boring counterparts [19,72]. Lengths of terebra can vary, exceeding eight to nine times the

body size in some taxa, like in Megalyridae and some Ichneumonoidea [19,56,72,89]. We used

Bennett et al.’s [32] coding for “Ovipositor length” (character 96) as follows: (0) Terebra shorter

than the metasoma, and (1) terebra longer than the metasoma.

4–Modified ventral margin of clypeus [Ventral clypeal margin, shape; Clypeus, modifi-

cation]. Modifications of the apical margin of the clypeus have been historically correlated

with emergence from wood [19]. According to Turrisi and Vilhelmsen [47], Aulacidae

employs tooth-like processes on the medio-apical margin of clypeus to facilitate the disintegra-

tion of the surface during emergence from wood. Similar structures with analogous functions
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Table 1. List of the characters associated with the wood-boring lifestyle in Hymenoptera (some part of the lifecycle in wood, either as wood wasps or as parasitoids

of wood-boring hosts).

Body part Location Character Function References

Head Antennae Multiporous plate sensillae Collection chemical cue Basibuyuk and Quicke [51], Broad and

Quicke [52]

Head Antennae *Hammer-like distal flagellomere Generating vibrational sound Broad and Quicke [52], Vilhelmsen et al.

[53]

Head Clypeus *Clypeus with a median tooth-like

process

Crumbling and removing debris Turrisi and Vilhelmsen [47], Turrisi et al.

[54], Quicke [55]

Head Clypeus Concave clypeus (Cyclostome

condition)

Allowing a wider range of movement of the

mandibles

Belokobylskij [56]

Head Labrum Labrum upcurved with an anteroventral

brush of setae

Functioning as a broom to sweep dust and debris

away from the mandibles

Vilhelmsen [57]

Head Mandible Presence of zinc Reinforcement of the teeth for chewing during

emergence

Quicke et al. [58]

Head Mandible Baso-lateral mandibular groove Lateral movability of mandibles; extension of the

subantennal groove

Turrisi and Vilhelmsen [47]

Head Occiput Very broad occipital carina Prevent debris from fouling the back of the head Turrisi et al. [54]

Head Vertex Ocellar corona; parascrobal crests Anchor the head while the mandibles are chewing

to exit the wood chamber; remove debris from the

galleries; drag the wasp through the galleries

Turrisi and Vilhelmsen [47], Engel and

Grimaldi [59], Gibson [60], Krogman and

Burks [61], LaSalle and Stage [62]

Head Vertex Subantennal grooves; supra-antennal

grooves (not always correlated with

wood in Ichneumonoidea)

Accommodate antennal base, to protect them

during emergence

Turrisi and Vilhelmsen [47], Turrisi et al.

[54], Vilhelmsen [63], Vilhelmsen et al.

[64], Vilhelmsen [65]

Mesosoma Fore leg Apical tibial spur (calcar) with comb

and a notched basitarsus

Antennal cleaning after emergence Basibuyuk and Quicke [66]

Mesosoma Fore tibia Enlarged and containing subgenual

organ

Pick up vibrational sounds and transduce them

into nerve impulses

Vilhelmsen et al. [53], Vilhelmsen et al.

[67]

Mesosoma Hind coxa Presence of a groove Grip of the terebra during drilling Gauld and Wahl [68]

Mesosoma Hind leg Apical margin of hind tibia with setae

arranged in a spatula

Wing cleaning Basibuyuk and Quicke [69], Vilhelmsen

et al. [70]

Mesosoma Mesoscutellum Parascutal lobe; supra-tegular tooth-like

process (close to the tegula)

Cover and protect the fore wing base from

abrasion

Turrisi & Vilhelmsen (2010)

Mesosoma Mesoscutum *Transverse sculpture; transverse

anterior projection

Facilitate removing debris; bracing the thorax Vilhelmsen and Turrisi [19], Turrisi and

Vilhelmsen [47], Quicke [55], Krogman

and Burks [61], Gauld and Wahl [68]

Metasoma 2nd valvula *Serration or teeth-like processes Cut substrate (mostly wood) Vincent and King [71]

Metasoma 2nd valvulae *Enclosing first valvulae Stabilizing the ovipositor during drilling Santos and Perrard [23]

Metasoma Ovipositor *Long terebra Reach host deeply concealed in substrate (usually

wood)

Vilhelmsen and Turrisi [19], Nénon et al.

[72]

Metasoma Ovipositor Internalization of terebra, either

entirely (e.g., Orussidae) or during

oviposition (e.g., Rhyssinae)

Facilitate the carrying of a long ovipositor Vilhelmsen [49], Vilhelmsen et al. [53],

Vilhelmsen et al. [67], Le Lannic and

Nénon [73], Sivinski and Aluja [74]

Metasoma Ovipositor Transverse striation on ovipositor

sheaths (flexibility)

Anchoring the tip of the terebra in the initial

phase of ovipositing

Vilhelmsen [75], Rodd [76]

Metasoma Ovipositor Steering mechanism Steering the terebra during probing Eggs et al. [37], Quicke and Fitton [77],

Quicke et al. [78], Spradbery [79], Quicke

[80], Quicke and Marsh [81]

Metasoma Sternites *Ovipositor guides Handling a very long ovipositor during

oviposition

Vilhelmsen and Turrisi [19], Vincent and

King [71], Gardiner [82]

Metasoma Terebra Presence of zinc or manganese or

calcium

Reinforcement of the tip for drilling Quicke et al. [58], Vincent and King [71],

Quicke et al. [83]

Metasoma Terebra Sensillae and secretory structures Lubricate the ovipositor and possibly degrade the

wood during drilling

Nénon et al. [72], Nénon et al. [84]

Metasoma Terebra Cross-section Minimize friction & maximize internal lumen of

the passage of the egg

Vilhelmsen and Turrisi [19], Quicke et al.

[85], Cooper [86]

(Continued)
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have been documented in other insect families, including Stephanidae and some Ichneumoni-

dae that pupate within wood [55] (Table 1). We used Bennett et al.’s [32] coding for “Clypeal
margin in anterior view” (character 3) as follows: (0) simple, truncate to slightly concave; (1)

modified, either bilobed or with a median denticles (or both).

5–Elongated abdominal tergum 9 [Abdominal tergum 9, elongation]. The enlargement

of the apical tergites in Ichneumonidae, such as the abdominal tergum 9, has been correlated

with hard substrate penetration [55]. Santos and Perrard [23] used this enlargement as a proxy

for augmented oviposition muscles with the presumed function that these enlarged muscles

facilitate the penetration of hard substrates, such as wood or mud. We used Bennett et al.’s

[32] coding for “Apical segment of female metasoma” (character 92) as follows: (0) short, not

elongated; (1) elongated, with or without horn or bosses.

6–Modified apical flagellomere [Apical flagellomere, shape]. Some parasitoid Hyme-

noptera have an antennal modification of the distal portion of the apical segment to be distally

flat (hammer-like) with a surface that does not bear any hairs or sensillae [52: Fig 1]. This mod-

ification enables the direct creation of vibrational sounds by tapping the substrate, and thereby

facilitating the detection of the host within the woody substrate [19,52]. Subsequently, these

vibrations are collected by the subgenual organ located in the hind legs, functioning as a hear-

ing device for the wasps [19,47,52,53]. Within Ichneumonidae, the adaptive significance of

vibrational sounds associated with a deeply concealed host has been recently analyzed via phy-

logenetic comparative analyses [52]. We used Bennett et al.’s [32] coding for “Apical flagello-
mere of female” (character 7) as follows: (0) simple, not flattened; (1) flattened.

7–Rugulose mesoscutum [Mesoscutum, dorsal surface]. A mesoscutum with a strong

rugulose dorsal sculpture has been associated with the wood-boring lifestyle [19,30,47,55], and

has been recorded in several Hymenopteran taxa, mainly Ibaliidae (Cynipoidea) [90], Ichneu-

monoidea [e.g., 44,91], and Chalcidoidea [e.g., 61] (Table 1). Quicke [30] listed this trait as one

of the convergent features in parasitoid wasps. Turrisi and Vilhelmsen [47] suggested that

these pronounced sculptures may serve different purposes: providing structural support to the

body, aiding in the removal of debris during wood penetration, and protecting delicate struc-

tures, such as the proximal section of the wings. Additionally, Quicke [55] postulated that the

rugulose mesoscutum plays a crucial role in securing a grip on the sides of its burrow, facilitat-

ing the wasp’s escape from the substrate. We used Bennett et al.’s [32] coding for “Mesoscu-
tum” (character 21) as follows: (0) smooth; (1) with transverse rugae.

8–Ovipositor guides [Ovipositor guides]. Handling and maneuvering an extended ovi-

positor poses a considerable challenge, causing various taxa to evolve external supports for ver-

tically orienting the terebra [19]. Within Ichneumonidae, the subfamily Rhyssinae employs a

distinctive mechanism known as ovipositor guides, which involves a median groove in the

sternal region of the metasoma, paired by clips on multiple sterna, in which the terebras runs

during the oviposition process, securing it close to the metasoma and thereby enhancing the

Table 1. (Continued)

Body part Location Character Function References

Metasoma Tergites *Elongated abdominal tergum 9 Hosting stronger ovipositional muscle Santos and Perrard [23]

Metasoma Valvulae Thick cuticle Reinforcement of the terebra during drilling Quicke et al. [85]

Body part = Specific tagma on insects; Location = Location of the character within the associated body part; Function = Proposed functionality for the character from

the literature; References = List of references that propose a specific association of the character with woodboring lifestyle and/or function of the character

* = Identify the characters tested in our study.

https://doi.org/10.1371/journal.pone.0311365.t001
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overall stability of the process [19,71,82]. We used Bennett et al.’s [32] coding for “Posterior
sternites of females” (character 93) as follows: (0) absent; (1) present.

9–First valvula (1vv) enclosing second valvula (2vv) [1vv, enclosing 2vv]. One intrigu-

ing modification of the terebra is the dorsal expansion of the first valvula, forming a distinctive

lobe that envelops the second valvula [e.g., 92,93]. Although the literature provides limited (if

any) insights into the functionality of this lobe, Santos and Perrard [23] treated it as a possible

mechanism to stabilize the ovipositor while probing into wood. We used Bennett et al.’s [32]

coding for “Ovipositor ventral valve” (character 98) as follows: (0) not enclosing 2vv; (1)

enclosing 2vv.

Phylogenetic analyses

To obtain a robust phylogeny with good taxonomic sampling, we combined the morphological

and molecular data from Bennett et al. [32] and the amino acid data from Sharanowski et al.

[42]. Bennett et al.’s [32] data included 141 morphological characters for 134 taxa and 1,309

nucleotides from the following genes (28S rDNA, COI mtDNA, and the protein-coding gene

EF1-alpha). Sharanowski et al.’s [42] data included 50,145 amino acids characters from 541

genes derived from an anchored hybrid enrichment approach using the Hymenoptera probe

set [94]. To combine the datasets, we integrated the data of shared species between these two

datasets. In cases where we couldn’t find a species-specific match, we proceeded to integrate

data at the genus level. Two notable exceptions to this procedure were: 1) the integration of an

unidentified Ichneumonini (referred as “Ichneumonini_1”) from Sharanowski et al. [42] with

Coelichneumon eximius in Bennett et al. [32]; and 2) the association of the AHE data of Rhyssa-
lus sp. from Sharanowski et al. [42] with Doryctes erythromelas in Bennett et al. [32] because

we wanted both outgroups to have data for all genes. See S2 Table for a complete list of gener-

ated chimeras across taxa.

The resulting dataset was analyzed using IQ-Tree v.2.2.2.7 [95] on the CIPRES Science

Gateway [96]. The analysis involved a partitioned approach, where the following models were

applied based on the respective data types: the MK model for morphology, GTR+G for nucleo-

tide data, and WAG+G for the amino acid data. We also performed 1000 ultra-fast bootstraps

to assess nodal support.

When the entire dataset was analyzed, the subfamily Lycorininae was recovered out of the

Ichneumonidae, in a polytomy with Braconidae. Long branch attraction was suspected across

Lycorininae and a few other taxa, so we conducted a series of long branch exclusion tests [97].

These tests revealed several rogue taxa (with highly variable placement across the tree) whose

inclusion impacted other phylogenetic relationships. See S2 File for a more a summary of the

exclusion test results. Consequently, we excluded rogue taxa from further analyses, including

Anomalon, Brachyscleroma, Brachycyrtus, and Therion. All of these taxa did not have a repre-

sentative in the Sharanowski et al. [42] dataset, and thus their labile placement was probably

due to the large amount of missing data for these taxa. Tree annotation was performed on the

Interactive Tree Of Life (iTOL) version 5 (available at: https://itol.embl.de) [98] and modified

in Adobe illustrator.

Trait correlations and ancestral state reconstructions

BayesTraits V4.1.1 [99; available from http://www.evolution.rdg.ac.uk/] was used to test for

correlated evolution between each of the 20 traits considered. For two discreet traits, two dif-

ferent models were tested for best fit: (1) an independent model, which assumes that the two

traits have evolved independently, and therefore a transition from 0 to 1 in the first character

is independent of the state of the second character; and (2) a dependent model, which assumes
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that the two traits are correlated and the rate of change in the first character is dependent on

the state of the second character. The models were evaluated using the MCMC setting, estimat-

ing the log marginal likelihood using the stepping stone method [100], with 100 and 1,000 iter-

ations per stone and setting all the priors to an exponential with a mean of 10. Log Bayes

Factors (logBF) were used to determine which of the two models better fit the data following

Mitchell et al. [101]: logBF = 2–4 as having weak support, logBF = 5–9 as having moderate sup-

port, and logBF > 10 as having strong support.

In Bennett et al. [32], Rhimphoctona (Campopleginae) was coded as a wood-boring parasit-

oid. However, the taxon appears to be an outlier, lacking many of the characters included in

the wood boring syndrome. According to the literature [e.g., 45,102], members of this genus

typically target xylophagous insects (e.g., Cerambycidae). However, as noted by Wahl [48],

Rhimphoctona seems to preferentially attack host larvae living right under bark (subcortical),

possibly through probing rather than drilling. To enhance the precision of our analyses, we

conducted a second correlation analysis, recoding the substrate for Rhimphoctona as not

woodboring ("other substrates") to assess its impact on the analyses.

To better identify a putative syndrome, we wanted to know on which branch each trait

arose across the tree and see if multiple traits evolved concurrently and repeatedly. To accom-

plish this, we performed ancestral state reconstructions (ASR) in Mesquite v3.81 [103] on each

trait that had a moderate or strong correlation with the woodboring substrate (nine characters

in total, including the character for the woodboring substrate). Each character was tested for

whether an equal rates (Mk1) or a differential rates model (Asymm2) of character gains and

losses best fit the data (S3 Table) using a maximum likelihood reconstruction. Reconstructions

of the nine characters can be found in S3 File.

Results

The resulting phylogenetic tree (Fig 2) is largely consistent with the findings of Bennett et al.

[32] and Sharanowski et al. [42] regarding higher-level relationships. The main exception is

observed in the placement of Campopleginae, which here is recovered as sister to Ophioninae

+ Cremastinae. In Sharanowski et al. [42], Ophioninae were identified as sisters to Campople-

ginae, while in Bennett et al. [32], Cremastinae and Campopleginae formed a polytomy along

with Anomaloninae + Ophioninae. These different relationships are not expected to impact

the present study, as higher-level Ophioniformes are not known to be wood-boring

parasitoids.

Among the 20 characters putatively associated with parasitizing woodboring hosts, only six

were strongly correlated (> 10) with the woodboring substrate: the presence of teeth on the first
valvulae, elongated terebra, modified ventral clypeal margin, elongated abdominal tergum 9,

rugulose mesoscutum, and 1vv enclosing 2vv (Table 2). Two other characters (modification of

the apical flagellar segment and the presence of ovipositor guides) exhibited a moderate corre-

lation (5–10 LogBF) (Table 2 and 3). All remaining characters tested showed weak or no corre-

lation at all (<5 LogBF). Changing the coding for Rhimphoctona yielded only a slight

difference in the strength of the correlation for the modified clypeus, which reduced from

strong to moderately correlated (Table 2). Importantly, all other characters remained in the

same category for strength of correlation.

Examining all other trait-trait correlations, all characters were strongly correlated with at

least one other character, with most traits being at least moderately correlated with four or

more other traits (Table 3). Character 5, an elongated abdominal tergum 9, had at least moder-

ate correlations with six out of the seven other wasp traits, five of which were strongly corre-

lated (Table 3). Character 6, the modified apical flagellomere had the least number of
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correlations to other traits. The Log marginal likelihood for both the more complex model

(dependent) and the less complex model (independent), together with the resulting Bayes Fac-

tors are reported in S4 Table, including the coding with and without Rhimphoctona as

woodboring.

Ancestral state reconstructions

The asymmetrical model (with separate rates for character gains versus losses) was preferred

for five characters (wood-boring substrate, teeth on 1vv, long terebra, elongated abdominal

tergum 8, and modified apical flagellomere). The equal rates model was preferred for the

remaining characters (S3 Table).

For Ichneumonidae, parasitism of wood-boring hosts occurred independently a minimum

of 7 times, including Xoridinae. No woodboring parasitoids are present within the Ophioni-

formes if Rhimphoctona is coded as a subcortical parasitoid and thus not woodboring (Fig 2B).

Teeth on the first valvula appeared independently 11 times. Four out of five of the appearances

occur on a branch preceding the shift to a woodboring host and only one co-occurrence with

Fig 2. Maximum-likelihood phylogeny of the subfamily Ichneumonidae based on data from Bennett et al. [32]and Sharanowski et al. [42]. (A)

Braconidae (outgroup) and non-Ophioniformes (Ichneumonidae). (B) Ophioniformes (Ichneumonidae). Characters states for each taxon is present beside the

taxon name, where filled in squares indicate character presence and empty squares indicate absence. Parasitism in woodboring hosts is presented as a filled in

star symbol for easy viewing. Annotation of the characters in circle or star format on the tree highlight where in the phylogeny that character evolved according

to the ancestral state reconstructions, where a full circle indicates the appearance of the character and an empty circle indicates a reversal.

https://doi.org/10.1371/journal.pone.0311365.g002
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the host shift (in Xoridinae). The seven other appearances of the character were not associated

with parasitoids of woodboring hosts. Also, a reversal of the character happened twice, one

within the Ichneumoninae (Dilopharius otomitus + Patrocloides montanus clade) and the

other within Pimplinae (Clystopyga recurva).

An elongated terebra arose independently 13 times. This trait appeared on the same branch

as the host shift to woodboring parasitism five times, and on the preceding branch once. All

other times this character was not associated with parasitism of wood-boring hosts but were

associated with hosts that are deeply concealed (e.g. P. nigromaculatus (Labeninae) on the

eucalypt gall-forming fly, Fergusonina flavicornis). Interestingly, only in one taxon that parasit-

izes wood boring hosts does a long terebra not occur, Agonocryptus chichimecus (Cryptinae).

A modified ventral margin of the clypeus occurred independently a minimum of 11 times,

two of which occur in the branch following the host shift to a woodboring host and two times

co-occurring on the same branch (in Dolichomitus irritator, Pimplinae, and Echthrus relucta-
tor, Cryptinae). All the other times, the character was not associated with parasitoids of wood-

boring hosts. An elongated abdominal tergum nine arose independently a minimum of six

times, five of which occurred after the woodboring host shift. This character, when present,

always cooccurs with parasitism of woodboring hosts. A modified apical flagellomere appeared

independently four times, 2 of which occur on the same branch as the woodboring host shift

and once on the following branch. Only one taxon with this character was not associated with

a woodboring host.

A rugulose mesoscutum arose independently only two times, all of which occur after the

woodboring host shift, while ovipositor guides appeared only once in Ichneumonidae (apo-

morphy). First valvula enclosing the second valvula occurred independently three times, one

occurring after the woodboring host shift (in Poemeninae), one on the same branch (in

Table 2. Bayes factors from the correlation analyses between all characters and the woodboring lifestyle when Rhimphoctona (Campopleginae) was coded as a

woodboring and not coded as a woodboring.

Characters Rhimphoctona coded as woodboring Rhimphoctona not coded as woodboring

2–1vv, teeth [97] 13.458875* 13.351593*
3–Terebra, length [96] 20.932078* 22.083219*
4–Ventral clypeal margin, shape [3] 14.524531* 8.610323*
5–Abdominal tergum 9, elongation [92] 33.289584* 33.767248*
6–Apical flagellomere, apical margin, shape [7] 6.137501* 6.990751*
7֪–Mesoscutum, dorsal sculpture [21] 11.086291* 11.578199*
8–Ovipositor guides [93] 6.242104* 5.706375*
9–1vv, enclosing 2vv [97] 13.871229* 15.570604*
10–Mandible, shape [5] -4.894608 -5.903128

11–Notaulus, shape [22] 0.499874 0.651516

12–Flagellum, color [8] -3.434198 -4.443347

13–Genae, shape [12] 0.596939 0.472353

14–Epomia [20] -1.729819 -2.309894

15–Metathoracic spiracle, shape [34] 3.622878 3.758991

16–Abdominal tergum 2, shape [79] 0.69309 -1.075364

17–Glymma [78] 0.375115 0.189443

18–Gastrocoelus [84] -4.264585 -5.109145

19–Abdominal Sternum 8, shape [94] 1.82945 2.277286

20–Thyridium [82] -3.110991 -4.120656

* = characters correlated with woodboring; Bold = Change of strength of correlation category in the Bayes factor between the two treatments.

https://doi.org/10.1371/journal.pone.0311365.t002
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Echthrus reluctator, Cryptinae), and one on the preceding branch (in Labeninae). This charac-

ter is largely associated with woodboring hosts with the exception of some taxa within

Labeninae.

Discussion

The wood-boring syndrome

Of the eight characters associated with wood boring hosts, we have identified at least six that

constitute the wood-boring syndrome: (1) first valvula (1vv) with teeth; (2) elongated terebra;

(3) elongated abdominal tergum 9; (4) modified apical flagellomere; (5) rugulose mesoscutum;

and (6) first valvula enclosing second valvula. We exclude the other two characters–ovipositor

guides and modified ventral margin of clypeus–from the wood-boring syndrome. The former

is an autapomorphy, while the latter is ambiguously coded (see below for details). While we

have identified these characters as part of the syndrome, there are likely a few others that were

not captured in the Bennet et al. [32] dataset, such as the striation on the ovipositor sheaths or

the presence of a steering mechanism (see Table 1 for more details).

Table 3. Strength of the correlation of wasp traits.

Correlated Wasp Traits

# Character Strong: Log BF >10 Moderate: Log BF 5–10

1 Substrate (2) Teeth on 1vv
(3) Long terebra
(4) Modified clypeal margin
(5) Elongated abdominal tergum 9
(7) Rugulose mesoscutum
(9) 1vv enclosing 2vv

(6) Modified apical flagellomere
(8) Ovipositor guides

2 Teeth on 1vv (5) Elongated abdominal tergum 8
(9) 1vv enclosing 2vv

(3) Long terebra
(4) Modified clypeal margin

3 Long terebra (5) Elongated abdominal tergum 9 (2) Teeth on 1vv
(4) Modified clypeal margin
(7) Rugulose mesoscutum
(9) 1vv enclosing 2vv

4 Modified clypeal margin (5) Elongated abdominal tergum 8
(9) 1vv enclosing 2vv

(2) Teeth on 1vv
(3) Long terebra
(7) Rugulose mesoscutum
(8) Ovipositor guides

5 Elongated abdominal tergum 9 (2) Teeth on 1vv
(3) Long terebra
(4) Modified clypeal margin
(7) Rugulose mesoscutum
(8) Ovipositor guides

(9) 1vv enclosing 2vv

6 Modified apical flagellomere (9) 1vv enclosing 2vv
7 Rugulose mesoscutum (5) Elongated abdominal tergum 9

(8) Ovipositor guides
(3) Long terebra
(4) Modified clypeal margin

8 Ovipositor guides (5) Elongated abdominal tergum 9
(7) Rugulose mesoscutum

(4) Modified clypeal margin

9 1vv enclosing 2vv (3) Long terebra
(4) Modified apical flagellomere

(4) Modified clypeal margin
(5) Elongated abdominal tergum 9

A list of the wasp traits at least moderately correlated (Log BF at least 5) with parasitizing hosts within a wood

substrate (row 1). All subsequent rows are all trait-trait correlations grouped by their correlation strength according

to log Bayes Factors. Character Number (#) refers to the trait number in the coded character matrix, see methods and

S1 File.

https://doi.org/10.1371/journal.pone.0311365.t003
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In the following sections, we conduct an in-depth analysis of all eight characters, highlight-

ing the limitations identified in Bennett et al.’s [32] coding and suggesting future research

directions. Characters identified as part of the syndrome are marked with an asterisk (*) for

clarity. The remaining two characters, that we are not including within the syndrome, are dis-

cussed without any symbol.

*First valvula (1vv) with teeth. Based on the literature (Table 1), teeth on the first valvu-

lae are necessary for drilling to reach the host. However, our results suggest their presence is

not exclusive to wood-boring taxa (Fig 2). This trait may precede the development of the long

terebra and the host shift, emerging four times before the switch to a wood-boring host. Thus,

the presence of teeth may serve as an early adaptation facilitating the evolution of a wood-bor-

ing lifestyle.

In Bennett et al.’s [32] original coding, the teeth on 1vv are coded as a presence/absence

character. This coding worked here as we found a strong correlation between the teeth on 1vv

and the wood-boring host shift. However, we also recorded the characters in other non-wood-

boring parasitoids (e.g., Pimplinae), suggesting the idea that the presence of teeth on the tere-

bra in Hymenoptera can be used for different purposes other than ovipositing into a

woodboring host. For example, Ass and Funtikow [104] highlighted how some of the teeth in

basal Hymenoptera may serve the purpose of sawdust removal during probing, while Fritzén

and Sääksjärvi [105] reported that Clistopyga Gravenhorst, 1829 (Pimplinae) teeth on the 1vv

are used to cling to the spider host if it attempts to escape.

*Elongated terebra. An elongated terebra is highly convergent within Ichneumonidae,

having evolved independently at least 13 times (Fig 2). Our results highlight a very strong cor-

relation between the wood-boring substrate and the presence of an elongated terebra, which

co-occurs five times with the host shift. Clearly the elongated terebra provides an important

function to address the unique challenges posed by wood as a host substrate. However, excep-

tions such as the genus Agonocryptus (Cryptinae), which lacks a long terebra, exist. Addition-

ally, numerous non-wood-boring taxa possess an elongated terebra, such as Stethantyx and

Tersilochus (Tersilochinae), indicating a broader functionality.

While a long terebra is undoubtedly crucial for reaching hosts within wood, it is also neces-

sary for reaching any kind of host which is concealed within its substrates (e.g., hosts within

fruits or galls). More importantly, even when the host is in close proximity to the substrate sur-

face, and thus not deeply concealed, a long ovipositor may be essential for locating the host. In

some Hymenoptera, indirect mechanisms employed to steer the terebra for locating hosts have

been previously documented [e.g., 37,77,78], typically associated with taxa possessing a long

terebra (e.g., Banchinae, Glyptini).

In Bennett et al.’s [32] original coding, the terebra is coded as discrete binary character (lon-

ger than the metasoma or not). This coding worked here as we recovered a significant correla-

tion of a long terebra with wood-boring parasitism. However, a continuous quantitative

measurement would better assess the full spectrum of variation in terebra length across Ich-

neumonidae. Dissections would also improve the measurements to better capture the length of

the entire ovipositor, rather than just the extruded portion. Further, dissections would allow

for assessment of the rotation of the ovipositor capsule which may impact the measurement.

For example, when the rotation of the capsule is ~90˚ (e.g., many Pimplinae), the bulb (ante-

rior area of the second valvula) is exposed and the entire length can be measured. However,

when little to no rotation occurs, the anterior area of the second valvula (2vv) remains hidden,

and the measurement would underestimate the length.

*Elongated abdominal tergum 9. Our results show that an elongated abdominal tergum

9 is exclusively associated with wood-boring (evolved independently five times), and in most

lineages (4/5), it appears to evolve after the host switch. This contrasts with Santos and Perrard
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[23], who did not find a significant correlation between this character and the wood-boring

substrate in Cryptinae.

Bennett et al. [32] coded the dimension of abdominal tergum 9 as a multistate character,

coding together the elongation of the tergite with the presence/absence of “horn and bosses”.

We adjusted the coding for our analysis (see S1 File). Future analyses could involve the sepa-

rate coding for the presence or absence of horns or bosses to assess if these characters are

exclusively correlated with an elongated T9 (and therefore to a woodboring host shift) or if

they are present more broadly across Ichneumonidae. Further, the length could be a quantita-

tive character to provide a more refined understanding of the evolution of this trait.

A recent study suggested the enlargement of these apical segments may relate to muscle

strength during oviposition [106]. However, there are no muscles external to the ovipositor

capsule directly involved in the oviposition process. As elucidated by various authors [e.g.,

107,108], only one muscle connects T9 with the 1st valvifer, and it does not significantly

impact strength during oviposition. The remaining 11 muscles are located internally within

the ovipositor, either alternately moving the two pairs of valvifer or indirectly manipulating

the valvulae (and consequently, the terebra) [107–109]. Thus, the enlarged apical segments

could likely serve a different function, potentially related to sensory or mechanical activities,

aiding in maneuvering, or providing tactile feedback for the elongated terebra.

*Modified apical flagellomere. Our results highlight a moderate correlation between the

hammer-like flattened apical flagellomere and the wood-boring lifestyle. This character is pre-

dominantly associated with wood-boring parasitism (Fig 2), though one species, Baryceros tex-
anus (Cryptinae), does not target wood-boring hosts but still must locate a concealed host

(within the non-lignified plant tissue). Thus, this antennal modification is not exclusive to the

wood-boring lifestyle, but certainly is important for deeply concealed host location.

In Bennett et al.’s [32] original coding, the modified apical flagellomere is a multistate char-

acter with states for a hammer-like modification and another state for apical projections. We

transformed this character to be binary with either having a hammer-like modification of the

segment or not (see S1 File). Certainly other modifications may be useful for finding hosts as

noted by Broad and Quicke [52]. A comprehensive comparative anatomy study of the entire

antennae in Ichneumonidae would be helpful for understanding all modes of host detection

that parasitoid wasps utilize, like the presence of sensilla at the tip (for a comprehensive review

of their morphology, refer to Beutel et al. [110]). For instance, Rhyssinae relies on vibrational

rather than chemical cues [111]. Studies conducted on Cynipidae (Hymenoptera, Cynipoidea)

[112], Encyrtidae (Hymenoptera, Chalcidoidea) [113], and Braconidae (Hymenoptera, Ich-

neumonoidea) [114] showed diverse sensillae functions that could serve as a baseline for simi-

lar studies in Ichneumonidae.

*Rugulose mesoscutum. A mesoscutum with strong rugulose dorsal sculpture is found

exclusively in taxa associated with a woodboring lifestyle, but having evolved independently

only twice within Ichneumonidae (Fig 2). In Bennett et al.’s [32] original coding, the character

is coded as discrete binary that captures whether or not the dorsal sculpture of mesoscutum

has transverse rugae. This coding worked here as we recovered a significant correlation of a

rugulose mesoscutum with wood-boring parasitism. However, future research should evaluate

the skeleto-musculature of the mesosoma in Ichneumonidae to determine if muscle and skele-

tal organization influence the observed variations in mesoscutum surface sculpture. Internal

morphological analysis is indispensable for evaluating seemingly identical external traits [e.g.,

11,12,115].

*First valvula (1vv) enclosing second valvula (2vv). Differently from Santos and Perrard

[23], our results highlight a strong correlation between the 1vv enclosing 2vv and the wood-

boring lifestyle. This character evolved four times (Fig 2), once in a non-woodboring clade
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(e.g., Labium). In Bennett et al.’s [32] original coding, the character is coded as a discrete

binary character that captures whether or not the 1vv encloses the 2vv was sufficient for this

study. Santos and Perrard [23] suggested that this character helps stabilize the terebra during

probing. Another possibility is that it contributes to the actual drilling process by enhancing

the surface area, possibly allowing for an expansion of the number of teeth or a more ideal

placement for drilling. Understanding the functionality of this character would be helpful to

understand its evolution, which will likely require a detailed analysis of the components of the

second valvula that expand into a lobe, the number, placement, and direction of teeth, and the

overall organization of the terebra. Quicke et al. [85] conducted transverse sections across

nearly all subfamilies of Ichneumonidae, revealing a remarkable diversity of modifications

within terebra organization. However, this work could be expanded on through investigations

on taxa with a dorsal lobe, such as Pimplinae and Labeninae.

Ovipositor guides. In Bennett et al.’s [32] original coding, the character is coded as dis-

crete binary character that captures whether or not there are ovipositor guides. The moderate

correlation between the ovipositor guides and the wood-boring lifestyle we recovered (Fig 2)

was surprising given that this character appears autapomorphic for Rhyssinae [32,116]. The

need for ovipositor guides is likely necessary to brace the extremely long terebra of Rhyssinae

during oviposition into a hard substrate, as noted by observational data [71,82]. This character

is also functionally convergent with other strategies used to maneuver and brace a long ovipos-

itor to drill into wood. For instance, members of the subfamily Labeninae possess a groove

either proximo-ventrally on the metasoma or medially on the hind coxae to guide the oviposi-

tor [19,68]. Similarly, some Cryptinae (e.g., genus Mesostenus Gravenhorst, 1829) support the

long ovipositor by means of a groove in the hind femora [117]. Thus, functionally equivalent

traits may need to be considered in addition to trait similarity for a more comprehensive

understanding of host-driven syndromes in parasitic wasps [3,118]. Further, understanding

the specific muscles within the metasoma may reveal further convergences across other wood-

boring taxa that are less visible through just external morphological evaluation.

Modified ventral margin of clypeus. Our results highlight a very strong correlation

between a wood-boring lifestyle and the development of tooth-like processes (denticles) or the

reduction of the clypeus to a concave, bilobed structure (see S1 File). However, as the reduc-

tion and denticles are combined here for binary coding, we think we cannot adequately cap-

ture this character’s association with a woodboring host and thus refrain from drawing any

definitive conclusions. When this character is mapped onto the phylogeny (Fig 2), it is clear

that there are instances where these clypeal modifications are present without a corresponding

association with oviposition within wood. This is notably observed in genera such as Mastrus
(Cryptinae), Erythrodolius (Sisyrostolinae), and Collyria (Collyriinae), which attack concealed

but not woodboring larvae. Consequently, it is possible that the modifications in the clypeus

represent a convergent evolution among wasps emerging from hosts and exiting substrates,

rather than being exclusively linked to wood-boring oviposition.

Future research should focus on the reduction of the clypeus rather than the modifications of

the ventral margin. In fact, in the sister family Braconidae, taxa attacking wood-boring hosts either

have a concave clypeus and labrum, which form a depression behind the mandible (cyclostome

Braconidae), or the clypeus appears reduced without a depressed labrum (e.g. in Helconinae, a

non-cyclostome). Both these modifications are thought to enhance the range of movement of the

mandible during the gnawing process required for emerging from the pupal chamber [56]. There-

fore, a comparative anatomy study on the oral cavity of Ichneumonoidea could provide potential

characters associated both with feeding behavior and emergence from the host as highlighted in

other taxa by various authors [e.g., 57,119,120]. For the moment, given the uncertainty, we pre-

ferred to avoid including this character into the woodboring syndrome.
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Limitations of the dataset

The strength of our study lies in the comprehensive testing of these characters through correla-

tion analyses and Ancestral State Reconstructions (ASR). Correlation analyses provide statisti-

cal support, while ASR offers deeper insights into the evolution and functionality of these

characters based on existing literature. However, as we utilized characters from an existing

dataset originally intended for phylogenetic reconstruction and not syndrome testing, we

acknowledge certain limitations. First, not all characters associated with wood-boring parasit-

ism, as detailed in Table 1, were present in the utilized dataset. It is foreseeable that more char-

acters will be included into the woodboring syndrome once they are scored in a more

comparative analysis. Second, trait coding was not always adequate to analyze specific traits

for syndrome testing, such as the clypeal margin or clypeal reduction that may be associated

with woodboring or deeply concealed larvae. It would be ideal to also test traits associated with

deeply concealed hosts, not just woodboring hosts to see which traits have a broader function-

ality for reaching the host beyond the specific substrate. Finally, including trait data from the

sister-group Braconidae would likely provide a stronger comparative dataset, enhancing our

understanding of the wood-boring syndrome on a broader evolutionary scale.

Conclusions and future directions

In this study, we investigated the existence of a convergent trait syndrome in Ichneumonidae

correlated with a wood-boring lifestyle. Our findings indicate that there are at least six charac-

ters involved in the wood boring syndrome, namely first valvula (1vv) with teeth, elongated
terebra; elongated abdominal tergum 9, modified apical flagellomere, rugulose mesoscutum, and

the first valvula enclosing second valvula. Another character–ventral margin of the clypeus–
remains uncertain, and we foresee its potential inclusion in the syndrome following further

refinement of its coding, specifically to look at clypeal reduction. We also found that the first
valvula enclosing second valvula is strongly correlated with the woodboring substrate, differ-

ently from what Santos and Perrard [23] found, even though its functionality is still uncertain.

This study was limited by the use of an existing morphological dataset that was not specifi-

cally designed to test syndromes. While we were able to modify some character coding for pur-

poses of this study, some traits that have been associated with the woodboring lifestyle were

not tested in this study. Future studies would benefit from more detailed morphological exam-

inations that involve both internal and external characters. The morphological exploration of

Ichneumonidae has been historically limited, with characters often reused without substantial

refinement [e.g., 11]. While progress in defining certain characters within Hymenoptera has

been evident in recent years (e.g., the mesopleural sulcus in de Brito et al. [121]), similar

advancements in Ichneumonoidea have been lacking. Myrmecologists have made significant

strides in exploring and defining internal skeleto-musculature [e.g., 122,123]. In Ichneumoni-

dae, aside from the terebra, the exploration of head capsule and metasoma remains limited but

promises to reveal intriguing characters that could reshape our understanding of the group’s

evolution, potentially challenging previously assumed evolutionary pathways. Recent studies

[e.g., 124], have also underscored the unexplored role of glands in parasitoids, prompting

questions not only about their evolutionary significance but also their implications during ovi-

position. Expanding research efforts in these directions will be crucial for advancing our

knowledge of host-driven convergent evolution in Ichneumonidae.

Supporting information

S1 File. Select morphological characters from Bennett et al. [1]. We modified some charac-

ters to better suit the analysis of the current study, mainly creating binary characters from
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multistate characters. We followed Sereno’s [2] logical basis, in which there are characters and

statements. The characters have 3 components: (1) the primary locator (L1), the entity bearing

the quality and that alone cannot unambiguously identify the feature of interest; (2) the sec-

ondary locator (L2), the containing structure (not always necessary); and (3) the variable (V),

which is the aspect that varies; and (4) the variable qualifier (q) which is the phrase that modi-

fies the variable. The statement has only one component which is the character state (vn)

which is the mutually exclusive condition of characters. Below, we use the abbreviation in

brackets for each part of the character description to facilitate understanding. A rationale for

selecting some of the characters not historically correlated with woodboring are provided

below characters 11–17, and 19. Alignment of terminology with the HAO can be found in Sup-

plemental Data S2.

(PDF)

S2 File. Long branch exclusion tests, summary of results.

(PDF)

S3 File. Ancestral State Reconstructions of the nine characters.

(PDF)

S1 Table. Anatomical terms used for skeletal features, cross-referenced to an ontological

(formal) definition (Hymenoptera Anatomy Ontology; URI = Uniform Resource Identi-

fier).

(DOCX)

S2 Table. Chimeric alignment of the taxa between Sharanowski et al. [1] dataset and Ben-

nett et al. [2].

(DOCX)

S3 Table. Summary of the chi-square test for best-fitting model for the Ancestral State

Reconstructions (ASR) for the woodboring substrate (#1) and the eight characters with a

moderate to strong correlation with the wood-boring substrate. Character # is based on the

character matrix in Supplementary Data S1. The shaded boxes indicate the best fitting model

for that character. MK1 is state transitions occur at equal rates, Asymm2 is state transitions

occur at different rates.

(DOCX)

S4 Table. Results of the correlation analyses. (A) Characters vs. substrate (woodboring), with

Rhimphoctona (Campopleginae) as originally coded as a woodborer; (B) Characters vs. sub-

strate (woodboring), with Rhimphoctona (Campopleginae) not coded as a woodborer; (C)

Characters vs. character correlated with the substrate (see above), with Rhimphoctona (Cam-

popleginae) as originally coded as a woodborer. The two model, dependent and independent

are presented with the two runs, and the Bayes factor (BF) for each the two runs is presented.

A calculation of the average of the two BF results is also provided. Number preceding the

parenthesis refers to the numbering in Supplemental S1, while the one in parenthesis reflects

the number of the character in Bennet et al. [1].

(DOCX)
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11. Dal Pos D, Mikó I, Talamas EJ, Vilhelmsen L, Sharanowski BJ. A revised terminology for male genita-

lia in Hymenoptera (Insecta), with a special emphasis on Ichneumonoidea. PeerJ. 2023; 11:e15874.

https://doi.org/10.7717/peerj.15874 PMID: 37868054
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