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Deep high-resolution imaging is capable of directly seeing

some nearby FFPs. For example, the James Webb Space

Telescope (JWST) discovered 540 FFP candidates in the

Trapezium cluster, including 40 Jupiter-Mass Binary Objects

(JuMBOs, Pearson & McCaughrean 2023). However, low-

mass FFPs (i.e., M . MJ ) are too faint to be detected by the

imaging method.

Unlike the imaging method which detects the light from

FFPs, the gravitational microlensing technique measures the

light from a background star deflected by the gravitational

field of an aligned foreground FFP. Thus, microlensing pro-

vides a unique perspective on detecting FFPs with masses

down to sub-Moon mass (Niikura et al. 2019; Gould et al.

2021, 2024) and at various Galactic distances to the Sun

(Johnson et al. 2020; Gould et al. 2021). In the past eight

years, wide-field high-cadence microlensing surveys con-

ducted by the Microlensing Observations in Astrophysics

(MOA, Sako et al. 2008) group, the Optical Gravitational

Lensing Experiment (OGLE, Udalski et al. 2015), and the

Korean Microlensing Telescope Network (KMTNet, Kim

et al. 2016) reported dozens of candidate FFPs. Among them,

nine have the measurement of the angular Einstein radius,

θE < 9 µas (Mróz et al. 2018, 2019, 2020a,b; Ryu et al.

2021; Kim et al. 2021; Koshimoto et al. 2023; Jung et al.

2024), where
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with DS and DL being the source and lens distances and ML

being the lens mass. The low θE values imply the masses

of these lenses are probably from Mars mass to sub-Saturn

mass. If these objects are real FFPs, the statistical samples

(Mróz et al. 2017; Gould et al. 2022; Sumi et al. 2023) sug-

gest that terrestrial mass and super-Earth mass FFPs are sev-

eral times more common than stellar objects and bound plan-

ets.

Among the three microlensing surveys, the KMTNet sur-

vey should be intrinsically more sensitive to planets be-

cause it has three identical 1.6 m telescopes equipped with

4 deg2 cameras in Chile (KMTC), South Africa (KMTS),

and Australia (KMTA), while the OGLE survey has one 1.3

m telescope equipped with a 1.4 deg2 camera in Chile and

the MOA survey has one 1.8 m telescope equipped with a

2.2 deg2 camera in New Zealand. This expectation has been

confirmed by the detections of bound planets. Among the ∼
240 microlensing planets discovered so far, KMTNet played

a major role in > 75% of them 1. Regarding the planet-to-

host mass ratio, q, KMTNet discovered the lowest-q planet,

OGLE-2016-BLG-0007Lb with log q = −5.17±0.13 (Zang

1 http://exoplanetarchive.ipac.caltech.edu as of 2024 August 21.

et al. 2025), which is six times lower than the record of the

OGLE and MOA surveys, i.e., log q = −4.354 ± 0.003

from the event OGLE-2013-BLG-0341 (Gould et al. 2014).

However, for FFP events, the lowest θE of KMTNet’s dis-

coveries is 4.35 ± 0.34 µas from the event OGLE-2019-

BLG-0551 (Mróz et al. 2020a), while OGLE and MOA re-

spectively found an FFP event with θE < 1 µas, with

θE = 0.84 ± 0.06 µas from the event OGLE-2016-BLG-

1928 (Mróz et al. 2020b) and θE = 0.90 ± 0.14 µas from

the event MOA-9y-5919 (Koshimoto et al. 2023). According

to Equation (1), θE ∝ M0.5
L , so the the smallest FFPs found

by OGLE and MOA may be 20 times less massive than that

of KMTNet, showing a two order of magnitude discrepancy

compared to the samples of bound planets.

This discrepancy could be caused by less precise photom-

etry used for the KMTNet FFP search. The current KMT-

Net full-frame difference image (FFDI) pipeline was built

based on the publicly available difference imaging analysis

(DIA, Tomaney & Crotts 1996; Alard & Lupton 1998) code

of Wozniak (2000). The DIA light curves of field stars ex-

tracted from this pipeline are used for the microlensing event

search with the KMTNet AlertFinder (Kim et al. 2018b) and

EventFinder (Gould 1996; Kim et al. 2018a) algorithms. For

discovered events, an automatic DIA pipeline based on the

pySIS (Albrow et al. 2009) package runs with the stamp im-

ages of 300 × 300 pixels centered on the event. The light

curves produced by the pySIS pipeline are shown in the

KMTNet web page 2 and are used for searching for plane-

tary signals by both visual searches (e.g., Han et al. 2021)

and automatic searches (AnomalyFinder, Zang et al. 2021a,

2022). Candidate planetary events are then further investi-

gated and published (if the planetary signal is real) using the

DIA light curves produced by a tender-loving care (TLC)

pySIS pipeline (e.g., Yang et al. 2024). Among the three

pipelines, the FFDI pipeline is the fastest, which satisfies the

daily KMTNet AlertFinder search requirements. However,

the photometry is less accurate than the other two pipelines.

For bound planets, because the microlensing signal of the

host stars typically lasts for several months, the deficient pho-

tometric quality of the FFDI pipeline has only a modest effect

on their discovery. However, the signal of FFP events typi-

cally lasts for . 1 day, with a flux change of as little as . 0.1

magnitude. Therefore, FFP events, especially for those with

θE < 4 µas, might still be buried in the KMTNet data due to

the current KMTNet FFDI pipeline.

The prospect of a higher-quality FFDI pipeline has been

demonstrated by known events. For the lowest-q planetary

event OGLE-2016-BLG-0007, the angular Einstein radius of

the planet itself is 1.9 µas. The planet is in a wide orbit

2 https://kmtnet.kasi.re.kr/∼ulens/
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with s = 2.83 ± 0.01, where s is the projected planet-to-

host separation scaled to the θE of the lens system. The in-

duced planetary signal is similar to the signal of an FFP. The

planetary signal was discovered by applying AnomalyFid-

ner to the online KMTNet pySIS data, with a significance of

∆χ2 ∼ 2000 despite large observing gaps between KMT-

Net sites at the end of the bulge season. Another example is

the lowest-θE FFP event OGLE-2016-BLG-1928. The signal

was first discovered by OGLE with a cadence of Γ ∼ 2 hr−1

and later confirmed by the KMTC data from the TLC pySIS

pipeline with a cadence of Γ ∼ 1 hr−1. For this event, the

KMTC TLC pySIS data have an accuracy equivalent to the

OGLE data. Therefore, the KMTNet TLC pySIS data have

the ability to independently discover such low-θE FFP events

from the ∼ 13 deg2 fields with cadences of Γ ≥ 2 hr−1 (see

Figure 12 of Kim et al. 2018a).

Recently, Yang et al. 2024 (hereafter Y24) optimized the

pySIS pipeline to be more automatic and more efficient.

Therefore, together with more computational resources avail-

able, we initiated a project to develop a new KMTNet FFDI

pipeline based on the Y24 pipeline and then utilize the pro-

duced photometric data to search for buried KMTNet FFP

events. We name this project “Systematic Search for FFPs

in KMTNet Full-Frame Images.” As the first paper of this

series, we introduce the pipeline setups and the preliminary

search results on a 1-year 1-deg2 subset of the full-frame im-

ages.

2. NEW FFDI PIPELINE

KMTNet camera has (K, M, T, N) four chips, and each

chip has 9216×9232 pixels with an average pixel scale of

∼ 0.4 arcsec. The field of view of each chip is about 1 deg2.

Most images are taken in I band, and 1/11 of images are

taken in V band for source color measurements. KMTNet

has ∼ 13 deg2 of prime fields, (BLG01, BLG02, BLG03)

and (BLG41, BLG42, BLG43), with ∼ 8′ shifts to fill the

gaps between CCD chips (Kim et al. 2018a). We start by es-

tablishing our pipeline on a subset of the images. They are

the I-band N-chip images of the BLG02 and BLG42 fields

taken in 2018. The field has the highest event rate (see Figure

7 in Kim et al. 2018a). The N chip of BLG02 and BLG42 is

centered at (R.A., Dec.) = (17:56:51.82, −29:35:02.28) and

(17:56:34.72, −29:42:31.01), respectively. An example im-

age is shown in Figure 1. The observing cadences of the

BLG02 and BLG42 fields are Γ = 2 hr−1 for KMTC02

and KMTC42 and Γ = 3 hr−1 for KMTA02, KMTA42,

KMTS02, and KMTS423. The subset has 14593 I-band im-

ages in total, including (2504, 2400, 2133, 2127, 2725, 2704)

3 For simplification, we denote the KMTC-BLG02 field as KMTC02, and so

on.

images from (KMTC02, KMTC42, KMTS02, KMTS42,

KMTA02, KMTA42), respectively.

The pipeline comprises frame registration, image segmen-

tation, image subtraction, and photometry. The pipeline op-

erates independently for each site-field combination, and the

light curves of the same stars are combined afterward for the

signal search. In the following sections, we describe the de-

tails of each step.

2.1. Frame Registration

To perform reliable image subtraction and photometry on

the input catalog, precise image registration in both relative

and absolute coordinate systems is required. Our registra-

tion procedure consists of two steps: the first is to align all

the KMTNet images to a designated master image frame,

and the second is to calibrate the master image coordinates

to the celestial coordinates. Both transformations are imple-

mented through catalog-level matching. We first extract the

star catalog on each image and then compute the transforma-

tion between the catalogs. When calculating the transforma-

tion, we start by estimating a coarse one and then refining it

iteratively. This approach achieves a registration accuracy of

∼ 0.1 arcsec in both relative and absolute coordinates. Sub-

sequent sections detail the implementation methodology.

2.1.1. Star Catalog Preparations

For each KMTNet image, we adopt the Bphot script in

ISIS 4 (Alard & Lupton 1998; Alard 2000) to extract the star

catalogs. The catalogs record the positions and rough fluxes

and magnitudes of all detected stars on the image. Position

measurements are derived from the light center of stars and,

therefore, remain independent of point spread function (PSF)

modeling. We only employ the 60,000 brightest unsaturated

stars for the subsequent cross-matching procedures. For each

site-field combination, a sharp-seeing and low-background

single image is designated as the master frame.

For the celestial coordinate transformations, we adopt the

Gaia DR3 catalog (Gaia Collaboration et al. 2016, 2023).

We also only employ the brightest 60,000 GRP > Isat stars

within each corresponding field for cross-matching and trans-

formation calculations, where GRP is the Gaia R-band mag-

nitude, Isat is the saturation limit of the master KMTNet im-

ages, and GRP ∼ I based on the relation between the Gaia

magnitudes and the Johnson-Cousins system (Riello et al.

2021).

2.1.2. Coarse Transformations

Generally, finding the astrometric solution between two

catalogs involves two steps: cross-matching stars and calcu-

lating transformations. The two steps depend on each other,

4 http://www2.iap.fr/users/alard/package.html
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Figure 1. An example BLG02 N-chip full-frame image taken by KMTC. The image has 9216×9232 pixels. The red box includes a zoomed-in

image of 470× 470 pixel2, which is the same as our stamp size for photometry in Section 2.2. The light green lines indicate the boundaries of

the eight CCD read-out channels on the chip. Difference image algorithms are needed for such a dense field.

meaning that at least one initial guess must be provided, and

an iterative approach is necessary. We begin by estimating

the initial transformations. The goal is to make the mutual

stars in two catalogs get close enough to enable the cross-

match.

For the initial transformation among KMTNet images from

the same site-field combination, we simply apply pure trans-

lation. The reason is that the discrepancies between these im-

ages are primarily due to overall shifts in pointing. The trans-

lations are estimated by locating the peaks of the catalog-

catalog star position cross-correlation functions. After ap-

plying the translation, the distances of mutual stars across

different image catalogs are reduced to . 2 arcsec or . 5

pixels. This distance is sufficiently small compared to the

average star distance of ∼ 18 pixels within a bright star cata-

log.

Transforming the master KMTNet image frames to celes-

tial coordinates requires more than a simple translation, as

the stellar sphere and the rotation and optical distortion can-

not be ignored. Fortunately, the translation approximation re-

mains adequate on smaller scales. Therefore, we first divide

the 1 deg2 field into 5× 5 sub-fields and find the translations

separately. Next, we combine these translations using a 5th

order Legendre polynomial function to obtain a global initial

transformation for the entire 1 deg2 field. After the trans-

formation, the distances of mutual stars between the master

KMTNet catalogs and the Gaia catalog are . 1 arcsec.

2.1.3. Refined Transformations

After obtaining the initial transformations, the next step

is to find mutual star pairs in the two catalogs, a process

known as cross-matching. When conducting the cross-match

between two catalogs, we search for pairs of stars that are

mutual nearest neighbors and regard them as the same star.

Star pairs with distances greater than 1arcsec are excluded.

The process is speeded up by the k-d tree algorithm using the

scipy.spatial.KDTree package.

After identifying the mutual stars in two catalogs, we fit the

transformation between their positions using Legendre poly-

nomials. We then update the cross-match iteratively with the

new transformation. The fit-and-match iteration converges in

approximately 15 iterations. During the iteration, we grad-

ually decrease the maximum allowed distance of the cross-
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culation of the convolutional kernel. After that, all pixels are

convolved and used to produce the output difference image.

2.3. Light Curve Extraction

After the difference images are generated, the pipeline

conducts PSF photometry on the sources in the subtracted

images to obtain the light curves. In the N-chip of the

BLG02/BLG42 field, the star number density of I < 21

is ∼ 107/deg2. As a test of the pipeline, we only extract

the flux from part of stars to save time and CPU cost. The

FFP events tend to show finite source effects (Witt & Mao

1994; Nemiroff & Wickramasinghe 1994), and the event rate

is proportional to the angular source radius, θ∗ (Gould & Yee

2012). The bright sources with large angular sizes have a rel-

atively higher event rate and a relatively small number that

requires fewer computational resources. Therefore, in this

paper we only extract these bright sources with I . 17. In

the N-chip of the BLG02/BLG42 field, the I-band extinction

is approximately from 1.3 to 2.5, and the giant branch in the

color-magnitude diagram occurs at I0 ≃ 16, so these bright

sources are most likely located in the giant branch.

The previous KMTNet photometry input star catalog is a

combination of the OGLE-III star catalog (Szymański et al.

2011) and the DECam Plane Survey catalog Schlafly et al.

(2018). However, the OGLE-III catalog is based on images

taken ∼20 years ago, so the proper motion can introduce

∼ 0.1 arcsec offsets with respect to the 2018 positions. The

DECam catalog is incomplete for bright stars because it sat-

urates at I ∼ 14.5. Therefore, instead of using the original

KMTNet input catalog, we construct a new input bright star

catalog based on Gaia DR3 (Gaia Collaboration et al. 2016,

2023) because the reference epoch (2016) of the Gaia DR3

catalog is closer to observation time of our images and is

complete for bright stars. We select GRP < 17 stars in the

Gaia catalog. Based on the relation between the Gaia mag-

nitudes and the Johnson-Cousins system (Riello et al. 2021)

and considering a typical (V − I) ∼ 1.9 in our field, it cor-

responds to I . 17. We use the transform derived in Section

2.1 to convert the Gaia catalog onto the master image frame.

The pipeline conducts the photometry independently for

all the stamp fields of each site-field combination. In the out-

put light curves, we remove the problematic data points if

(a) the image has a seeing of the full width at half maximum

(FWHM) higher than 8.5 pixels or a background higher than

15,000 ADU/pixel, where ADU is the Analog Digital Unit,

or (b) Y24 pySIS reports poor subtraction or poor photom-

etry (see Section 2 in Y24 for more details), or the source

position is within 5 pixels of any CCD bad columns.

In the current image sample, our pipeline extracts a to-

tal of 487,433 sources and obtains 483,068 effective light

curves, each having at least one site-field combination with

more than 100 remaining points. For the stars residing in

overlapping stamp regions, we only keep the light curve de-

rived from the stamp where the star’s position is nearest to

the sub-field centroid. Figure 3 shows an example compar-

ing the light curves from the previous FFDI pipeline and our

pipeline for two known events, which demonstrates that the

scatter is significantly reduced by our pipeline.

3. MICROLENSING EVENT SEARCH

In this section, we conduct a preliminary microlensing

event search for current yields of the new FFDI pipeline.

Then, we compare the results with the microlensing events

found by previous KMTNet searches and other surveys. The

final algorithm for our systematic FFP search may be further

optimized relative to the current version. We introduce the

details of the algorithm-based search in Section 3.1 and the

classification in Section 3.2.

3.1. Algorithm-based Search

A light curve of an FFP microlensing event has a long-

duration flat baseline and a short timescale bump of several

hours to days. Thus, similar to the KMTNet EventFinder

algorithm (Kim et al. 2018a) based on ideas originally pre-

sented by (Gould 1996), our search algorithm scans the light

curve by a series of time windows of [t0,k,l−3 teff,k, t0,k,l+

3 teff,k). Here the set of teff,k is a geometric series,

teff,k+1 = (4/3)teff,k. (2)

The combined cadence for the BLG02 and BLG42 fields is

Γ = 4− 6 hr−1 and we estimate that about 10 points within

±teff,k are required to characterize the FFP signal, so we set

the shortest effective timescale of teff,1 = 0.05 days. To

simultaneously search for long events, the longest effective

timescale is teff,23 = 0.05 × (4/3)22 = 28 days. The step

size of the window center, t0,k,l, is teff,k/3, and the grids

begin at teff,k/3 before the first epoch of the 2018 season and

end at teff,k/3 after the last epoch.

The KMTNet EventFinder algorithm fits data points in

time windows by an approximated point-source point-lens

(PSPL) model. However, because FFP events are likely to

show finite source effects and significantly deviate from the

PSPL model, the fit is inappropriate for the FFP search. In

addition, the improved data quality decreases the rate of false

positives, so we probably do not need a prior model to re-

quire correlations between data points. Therefore, we adopt

a model-independent search.

We first rescale the measured flux error bars to avoid com-

mon false positives caused by additional systematic errors

introduced by seeing and sky background correlations. We

estimate the rescaling factor k to satisfy

χ2 =
∑

i

(fi − fbase)
2

∆f2
i

≤ Ndata, ∆fi = k∆fi,0, (3)
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Table 1. Classification steps and the corresponding numbers of light curves.

Classification Number

GRP < 17 light curves in KMTNet 02/42 N 2018 483,068

Step 1: Automatic search

Whether passing the criteria (at least one time window):
∑

χ>0
∆χ2 > 250 + 0.1max(Nwindow − 20, 0)

χ10+ > 32

Continuous max(0.01Nwindow, 3) points higher than 3.5σ

Pass 11876

Step 2: Matched with known OGLE variable stars

Known OGLE variable stars 7682

Unknown 4194

Step 3: Visually check and classify Unknown light curves

Microlensing-like 53

Variable stars 2587

Photometric problems 1533

Unclear (multi-year data needed) 21

Step 4: Classify Microlensing-like light curves

KMTNet known events 25

OGLE & MOA events unknown to KMTNet 6

New microlensing candidates 5

Asteroids 7

Image problems 8

Variable stars or flares 2

where fi, ∆fi,0, and ∆fi are the measured flux, the native

flux error, and the rescaled flux error of the i-th data point,

respectively. Ndata is the number of data points, and fbase
is the 3σ-clipped median flux as a representation of the base-

line. Specifically, we divide the data points into several see-

ing and sky background bins, then calculate k in each bin and

rescale the errors accordingly. By experience, the seeing bins

are set to be (0–3, 3–5, 5–7, 7–10) pixels, and the sky back-

ground bins are (0–3000, 3000–3000
√
5, 3000

√
5–15000)

ADU/pixel. We require k ≥ 1, which means that if the native

χ2 is not larger than Ndata, we do not perform the rescaling.

Errors from each site-field combination are rescaled indepen-

dently.

After rescaling errors, the algorithm calculates the

∆χ2
window of each window by

∆χ2
window =

∑

fi>fbase

(fi − fbase)
2

∆f2
i

−Nwindow, (4)

where Nwindow is the number of data points in the window,

and fi > fbase means we only consider the data points

brighter than the baseline. Each source’s baselines are indi-

vidually calculated for each site-field combination. Because

the FFP microlensing events last only several hours to days

over the several months baseline, the median flux can well

represent the baseline flux. The χ2
i for each data point is

based on the baseline for the corresponding data set. For ev-

ery 10 consecutive points in the window, we calculate

χ10+ =

10
∑

i=0

fi − fbase
∆fi

, (5)

which is adapted from the χ3+ value of Sumi et al. (2011),

and we increase the number of data points because KMT-

Net’s 3-site mode has more data points.

If a window satisfies

∆χ2
window > ∆χ2

thre ≡ 250 + 0.1max(Nwindow − 20, 0);

(6)

χ10+ > 32, (7)

and has at least max(0.1Nwindow, 3) consecutive points 3.5

σ above the baseline, the current search selects it as a candi-

date signal. Because one signal can be selected by multiple

windows, we merge them to reduce the windows for the vi-

sual inspection. Two signals (1, 2) are judged to be the same

signal provided that

|t0,1 − t0,2| < 1.5× (teff,1 + teff,2), (8)

and we keep the window with the higher

∆χ2
window/

√

max(Nwindow, 20) value. The algorithm-

based search finds candidate signals in 11876 light curves,

which comprises 11876/483068 = 2.5% of all stars used in

the search.



9

3.2. Visual Inspection and Classification

The candidate signals from the algorithm-based search in-

clude microlensing events, artifact pollutions, and other as-

trophysical origins (e.g., variable stars and asteroids). We

first exclude candidate signals for which the separation to the

OGLE-III and OGLE-IV variable stars is < 1′′, leaving 4194

candidate signals, i.e., 0.8% of all stars. Then, we visually

check them with a 7-panel display. See Figure 4 for an ex-

ample. The display shows the light curves, the residuals from

the baseline, together with the seeing and background infor-

mation. The display has two columns, with the left column

showing the entire light curve in 2018 and the right column

showing the zoom-in of the candidate signal. The informa-

tion from the whole season data can check whether there are

multiple signatures on one star.

Our visual inspection classified these light curves into 53

microlensing-like light curves, 2587 variable star candidates,

1532 light curves caused by artifacts, and 21 unclear light

curves with long-term variations. Because these unclear

long-term light curves are not reported by either KMTNet,

OGLE, or MOA, they are likely to be long-period variable

stars. Moreover, because we mainly focus on the FFP search

in this paper, we do not explore these events. Among the

variable star candidates, we expect that some were caused

by artifacts, so we call them candidates in this paper, and a

report on newly discovered variable stars needing to check

images. For the 53 microlensing-like light curves, we match

them with the known KMTNet, OGLE, and MOA events. Of

these, 31 were previously detected by KMTNet, OGLE, or

MOA. Then, we checked KMTNet images for the remain-

ing 22 candidates and found that seven were due to the tran-

sit of asteroids, and eight were caused by artifacts, such as

bad columns and spikes. Finally, we extracted the KMTNet

multi-year data and found two with repeating signals, so they

are cataclysmic variable stars or flares. Figure 5 shows one

example, for which the signal in the 2018 season is similar

to an FFP event but it shows a repeating signal in the 2017

season.

As a result, we found five new microlensing events. We

will discuss the five new and 31 previously discovered events

in the next section.

4. NEW AND MISSED EVENTS

Table 2 lists the basic information of the 36 microlens-

ing events, including the event names and the event coor-

dinates in the equatorial system. For consistency with pre-

vious KMTNet events, we assign the five new microlensing

events and six recovered events previously found by OGLE

or MOA with serial numbers after the previous events, from

KMT-2018-BLG-2782 to KMT-2018-BLG-2792.

4.1. New Microlensing Events

We assign the five new microlensing events as KMT-2018-

BLG-2782, KMT-2018-BLG-2783, KMT-2018-BLG-2784,

KMT-2018-BLG-2785, and KMT-2018-BLG-2786. Their

light curves are shown in Figure 6. Of these, KMT-2018-

BLG-2785 exhibits a short-lived “U shape” signature with a

possible low-amplitude bump before, which is a typical sig-

nature of caustic crossings, with two caustic crossings around

HJD′ = 8193.5 and 8197.9, respectively. Thus, this event is

a binary-lens single-source (2L1S, Mao & Paczynski 1991)

event. From the difference images, we find an offset of 0.25′′

between the event position and the I = 15.7 catalog star, in-

dicating a fainter lensed source with heavy blending (Witt &

Mao 1995).

KMT-2018-BLG-2786 has two sharp peaks and is thus a

2L1S event or single-lens binary-source (1L2S, Gaudi 1998)

event. The difference images show an offset of 1.2′′ between

the event position and the I = 15.9 catalog star.

We do not attempt to do the 2L1S or 1L2S model for the

two events because it is beyond the scope of this paper. The

light curves will be provided along with the publication.

The other three events show a typical PSPL feature, and

we conduct the PSPL modeling for three events. The PSPL

model has three parameters, t0, u0, and tE. t0 is the epoch

of lens-source closest approach, u0 is the closest lens-source

projected separation in units of θE, and tE represents the Ein-

stein radius crossing time,

tE =
θE
µrel

, (9)

where µrel is the lens-source relative proper motion. For each

data set p, we introduce two linear parameters, (fS,p, fB,p),

for the source flux and any blend flux, respectively. The ob-

served flux, fp(t), is modeled as

fp(t) = fS,pA(t) + fB,p. (10)

we search for the minimum χ2 by Markov chain Monte Carlo

(MCMC) χ2 minimization using the emcee ensemble sam-

pler (Foreman-Mackey et al. 2013).

Due to the ∆I < 0.1 signature, the PSPL fitting shows that

two events, KMT-2018-BLG-2782 and KMT-2018-BLG-

2784 have severe degeneracy between u0, tE, and fS and

there are no useful constraints on the three parameters. We

check the difference images and find no photometric offsets

for the two events. Thus, we do the PSPL modeling by fixing

fB,KMTC02 = 0. The results are shown in Table 3. KMT-

2018-BLG-2782 is a short event with tE = 2.62 ± 0.11

days, and KMT-2018-BLG-2784 is likely a stellar event with

tE = 14.31± 0.23 days.

For KMT-2018-BLG-2783, the PSPL fitting with the free

blend flux yield tE = 4.7 ± 2.1 days and a faint source of

I = 21.5±0.6. From the difference images, we find an offset

of 1.03′′ between the event position and the I = 16.8 cata-
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Figure 8. Distribution of the θE detection limit, θE,min for the bulge stars in our search catalog. In the right panel, the white dashed line

indicates the median θE,min as a function of brightness in bins of 0.08 magnitude width.

(2018),

log(2θ∗) = 0.535+0.490(V −I)0−0.068(V −I)20−0.2I0,
(12)

we obtain the angular stellar radius θ∗,j .

For an FFP event with a giant source, the light curve is

dominated by finite-source effects and the maximum mag-

nification can be estimated by (Witt & Mao 1994; Gould &

Gaucherel 1997)

Amax =

√

1 +
4

ρ2
, (13)

where ρ is the source angular radius normalized to the angu-

lar Einstein radius, i.e.,

ρ = θ∗/θE. (14)

For the star j, the maximum magnification Amax,j is re-

lated to the θE detection limit, θE,min,j , by

Amax,j =

√

4θ2E,min,j

θ2
∗,j

+ 1. (15)

We adopt the same criteria in Section 3.1, so Amax,j is also

related to σj by

Amax,j = 1+nthreσj ; nthre = max(3.5,
√

∆χ2
thre/Neff),

(16)

where Neff is the number of data points during the source

crossing, and ∆χ2
thre is defined in Equation (6). For the ob-

serving cadence of the data set p of the star j, Γj,p, the star’s

combined cadence is

Γj =

∑

p Nj,p Γj,p
∑

p Nj,p

, (17)

then Neff can be derived by

Neff =
2θ∗,j
µrelΓj

, (18)

where µrel = 6 mas/yr is the typical lens-source relative

proper motion.

Figure 8 displays the distribution of θE,min for the bulge

stars in our search catalog. Gould et al. (2022) estimated

θE,min of 3 µas for the old KMTNet FFDI pipeline with

the search process of Kim et al. (2021). For our new FFPI

pipeline with a model-independent search, all bulge stars

used in the search have θE,min < 3 µas, with the distri-

bution peaking at ∼ 1 µas. Our search requires at least

max(0.1Nwindow, 3) consecutive points 3.5 σ above the

baseline. For the event OGLE-2016-BLG-1928 (Mróz et al.

2020b), the peak is about 7σ above the baseline. If we adopt

a threshold of 7σ, the θE,min distribution peaks at ∼ 1.4 µas,

still lower than the θE,min estimated by Gould et al. (2022).

Figure 8 also shows the distribution of θE,min vs. apparent

magnitudes. For 15.5 < I < 17.5, the θE,min distribution

does not significantly depend on the I-band brightness. These

stars are giants in/near the red clump and thus have a similar

distribution of stellar color. The noise is dominated by the

sky and stellar background and thus the minimum detectable

magnification is calculated by

∆Aj = 3.5σj ∝
1

fj
. (19)

For stars with the same surface brightness, the stellar flux

fj ∝ θ2
∗,j , and thus

∆Aj = Amax,j − 1 ∼ 2
θ2E,min,j

θ2
∗,j

∝
2θ2E,min,j

fj
. (20)

Combining Equations (19) and (20), different stellar fluxes

have the same θE,min.

For I < 15.5, the Poisson noise of the stellar flux domi-

nates the noise and thus

∆Aj = 3.5σj ∝
1

√

fj
. (21)

Combining Equations (20) and (21) yields

θE,min,j ∝ f
1

4

j . (22)
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However, because overall the surface brightness declines

with brighter stars (i.e., redder stars), Equation (20) is not

applicable. From Figure 8, the empirical θE,min vs. I curve

derived by the median θE,min as a function of source magni-

tude follows

θE,min,j ∝ f0.4
j . (23)

Our estimate of θE,min,j above has two assumptions. First,

stars are fully observable, i.e., no loss due to weather, the

Moon, and the diurnal and annual cycles because we are es-

timating the θE detection limit. Second, during the source

crossing, the magnification is a constant, i.e., Amax,j, which

overestimates the detection ability of our data. However, for

our typical star of I = 16 and θ∗ = 6 µas, the source crossing

time is 17.5 hours, which is 3.5 times the longest duration of

the window that is required to satisfy ∆χ2
window > ∆χ2

thre,

i.e., 250/3.52/4 hr−1 ∼ 5 hr. Thus, the assumption of a

constant magnification has little impact on the estimate of

θE,min,j .

5.2. Prospect of an FFP Search on a Larger Scope and New

AlertFinder System

In this paper, we have implemented the new KMTNet

FFDI pipeline on the N-chip images of the BLG02 and

BLG42 fields taken in 2018 and searched for microlensing

events using the light curves of I . 17 stars. Our ultimate

goal is searching for FFPs using all KMTNet images includ-

ing fainter stars. Thus, we present the cost of the new FFDI

pipeline and the event search and estimate the duration for an

FFP search on the larger scope.

For the processes of the frame registration and difference

image analysis of this work, the cost is 50K CPU hour. For

the process of the light curve extraction for 483 068 stars,

the cost is 3.5K CPU hour. This work searched events using

the light curves of I . 17 stars. Currently, we do not know

the fainter limit of the stars that should be adopted, which is

a balance between the detection efficiency of faint stars and

the computation time. We assume a limit of I = 19.5 and

adopt a typical extinction of AI = 1.5 for the KMTNet prime

fields. Using the Holtzman et al. (1998) HST observations, a

limit of I = 19.5 has 10 times more field stars than a limit of

I = 17.

The N-chip of the BLG02 and BLG42 fields has the most

KMTNet microlensing events (Kim et al. 2018a) and thus the

highest stellar density for a given brightness. For the prime

fields, the total number of I ≤ 19.5 stars is about 8 times the

N-chip of the BLG02 and BLG42 fields. The other 84 deg2

sub-prime fields have cadences of Γ ≤ 1 hr−1, and it is diffi-

cult to detect FFPs with θE ∼ 1 µas, but these fields are still

sensitive enough to super-Earth mass FFPs (Ryu et al. 2021).

For sub-prime fields, the image number is roughly equal to

that of the prime fields, and the number of I ≤ 19.5 stars is

about twice because of the low stellar density and high ex-

tinction towards the northern bugle fields. We plan a search

using the images taken during 2016–2019 and 2021–20245,

with eight seasons in total. Then, the total computational cost

is 8× (2× 12× 50K+3× 80× 3.5K) = 16.3M CPU hour.

The team can access about 10K CPUs, so the pipeline com-

putational time is about 1632 hours, i.e., 2.3 months.

The manual review of the search in this paper takes an op-

erator 2 hours. The fainter stars should have fewer candidate

signals because of lower SNRs. The candidate variable stars

are excluded from the search after completion of the search

of the first year of data. Therefore, we assume the rate for

candidate signals for fainter stars is 1/4 of the rate for the gi-

ant stars that we have explicitly evaluated in this paper. Then,

the manual review requires 8 × 3 × 80 × 2/4 = 960 hours,

i.e., about 6 months if two operators can review the candidate

signals for about 20 hours per week. Because the processes

of photometry and manual review can be carried out simul-

taneously, our large-scale search can be completed within 6

months. With an additional 1-2 years for the FFP event anal-

ysis and sensitivity calculation, we expect to yield a mass

function of FFPs before the first Roman (Spergel et al. 2015;

Penny et al. 2019) and Earth 2.0 microlensing seasons (Gould

et al. 2021; Ge et al. 2022).

In addition, our new pipeline can be used for a new KMT-

Net AlertFinder system. The new AlertFinder system can

have significantly reduced false positives, as proved by Fig-

ure 3, and identify high-magnification events earlier for the

KMTNet follow-up program (Zang et al. 2021b). In June and

July, the Galactic bulge is accessible for about 10 hours at

each KMTNet site. Each KMTNet I-band and V -band expo-

sure takes 60s and 75s, with an overhead of 60s. Therefore,

the highest data rate is about 900 images/day, and the cost

of the frame registration and difference image analysis is 3K

CPU hour/day. For the light curve extraction, even assuming

a complete star catalog for I ≤ 21, according to the Holtz-

man et al. (1998) HST observations, there are about 4× 108

stars in all fields and thus the cost is 182K CPU hour/day,

then the images can be reduced in time using 10K CPUs.

To conclude, we can use the new pipeline to search for

FFPs in the full KMTNet data and build a new KMTNet

AlertFinder system. These will be reported in the following

papers.

6. CONCLUSION

We have developed a new photometric pipeline for full-

frame KMTNet images to enable a systematic search for

FFP microlensing events. This improved pipeline, based

on a modified version of pySIS (Y24) and enhanced im-

age registration, offers higher photometric precision and is

5 the 2020 season will be excluded due to the long shutdown in KMTC and

KMTS.
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Table 2. The Basic Information of the 36 Microlensing Events identified by This Work

KMTNet Name OGLE Name MOA Name R.A. (J2000) Dec. (J2000)

New Events

KMT-2018-BLG-2782 N/A N/A 17:57:37.47 -29:26:09.38

KMT-2018-BLG-2783 N/A N/A 17:55:26.43 -29:48:30.12

KMT-2018-BLG-2784 N/A N/A 17:56:25.14 -29:30:52.52

KMT-2018-BLG-2785 N/A N/A 17:57:08.39 -29:38:45.36

KMT-2018-BLG-2786 N/A N/A 17:55:51.91 -29:19:22.88

Recovered Events Found by OGLE or MOA but Missed by Previous KMTNet’s Searches

KMT-2018-BLG-2787 OGLE-2018-BLG-1780 N/A 17:57:07.72 -29:36:37.5

KMT-2018-BLG-2788 OGLE-2018-BLG-1270 N/A 17:55:55.28 -29:38:53.9

KMT-2018-BLG-2789 OGLE-2018-BLG-0078 N/A 17:55:22.08 -29:59:04.7

KMT-2018-BLG-2790 OGLE-2018-BLG-1774 N/A 17:55:06.27 -29:58:52.8

KMT-2018-BLG-2791 OGLE-2018-BLG-1542 N/A 17:54:51.80 -30:00:08.5

KMT-2018-BLG-2792 N/A MOA-2018-BLG-241 17:56:01.78 -29:39:54.48

Recovered Events found by Previous KMTNet Searches

KMT-2018-BLG-0911 OGLE-2018-BLG-0392 MOA-2018-BLG-086 17:59:00.15 -29:48:12.10

KMT-2018-BLG-2156 OGLE-2018-BLG-0075 MOA-2018-BLG-032 17:58:47.66 -30:01:16.90

KMT-2018-BLG-2109 OGLE-2018-BLG-1368 MOA-2018-BLG-298 17:58:40.84 -29:04:59.09

KMT-2018-BLG-0915 OGLE-2018-BLG-0638 MOA-2018-BLG-114 17:58:19.73 -29:46:50.81

KMT-2018-BLG-0919 OGLE-2018-BLG-1369 N/A 17:58:18.23 -29:08:45.82

KMT-2018-BLG-0916 OGLE-2018-BLG-1036 MOA-2018-BLG-101 17:58:15.48 -29:31:26.51

KMT-2018-BLG-2781 N/A N/A 17:57:52.12 -29:06:15.19

KMT-2018-BLG-0921 N/A N/A 17:57:41.24 -29:53:22.49

KMT-2018-BLG-0931 OGLE-2018-BLG-0737 N/A 17:57:15.60 -29:07:18.98

KMT-2018-BLG-0929 OGLE-2018-BLG-1079 MOA-2018-BLG-136 17:57:12.42 -29:26:30.80

KMT-2018-BLG-0928 OGLE-2018-BLG-1553 N/A 17:56:59.34 -29:50:31.20

KMT-2018-BLG-2172 OGLE-2018-BLG-0652 MOA-2018-BLG-128 17:56:42.76 -29:17:05.60

KMT-2018-BLG-0934 OGLE-2018-BLG-0725 N/A 17:56:40.14 -29:24:26.50

KMT-2018-BLG-2178 N/A N/A 17:56:11.81 -29:25:24.38

KMT-2018-BLG-0940 N/A N/A 17:56:08.97 -29:20:54.31

KMT-2018-BLG-2182 OGLE-2018-BLG-1671 N/A 17:55:42.73 -29:26:14.89

KMT-2018-BLG-2183 N/A MOA-2018-BLG-001 17:55:41.46 -29:13:12.40

KMT-2018-BLG-0947 OGLE-2018-BLG-1532 MOA-2018-BLG-346 17:55:30.50 -29:56:34.91

KMT-2018-BLG-0956 OGLE-2018-BLG-0304 MOA-2018-BLG-088 17:54:55.82 -29:10:05.70

KMT-2018-BLG-0954 OGLE-2018-BLG-1455 MOA-2018-BLG-314 17:54:52.82 -29:36:01.30

KMT-2018-BLG-2192 N/A MOA-2018-BLG-100 17:54:48.83 -29:23:31.09

KMT-2018-BLG-0783 OGLE-2018-BLG-0798 N/A 17:56:57.11 -30:07:10.09

KMT-2018-BLG-0788 N/A N/A 17:56:38.02 -30:06:02.41

KMT-2018-BLG-2757 OGLE-2018-BLG-0063 MOA-2018-BLG-044 17:54:31.09 -29:17:13.09
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Table 3. PSPL Parameters for the Three New PSPL Microlensing Events

Parameter KMT-2018-BLG-2782 KMT-2018-BLG-2783 KMT-2018-BLG-2784

χ2/dof 11366/11366 9795/9795 11217/11217

t0 (HJD′) 8321.20± 0.15 8218.841± 0.031 8343.38± 0.25

u0 2.428± 0.049 0.136± 0.072 2.062± 0.014

tE (days) 2.62± 0.11 4.7± 2.1 14.31± 0.23

IS,KMTC02 16.6826± 0.0001 21.5± 0.6 17.0928± 0.0003

NOTE—For KMT-2018-BLG-2782 and KMT-2018-BLG-2784, the PSPL fitting fix fB,KMTC02 = 0. The magnitudes are the KMTC02

instrumental magnitudes.

Table 4. The Basic Information of Missed Events

KMTNet Name OGLE Name MOA Name R.A. (J2000) Dec. (J2000)

KMT-2018-BLG-0918 N/A N/A 17:58:22.45 -29:31:09.01

KMT-2018-BLG-0939 N/A N/A 17:55:51.33 -29:45:05.69

KMT-2018-BLG-2181 N/A N/A 17:55:42.59 -29:44:08.02

KMT-2018-BLG-2191 OGLE-2018-BLG-0877 N/A 17:54:32.25 -29:40:05.41

N/A OGLE-2018-BLG-1284 N/A 17:57:56.83 -29:40:37.6

N/A OGLE-2018-BLG-0938 N/A 17:57:38.73 -30:01:21.8

N/A OGLE-2018-BLG-1318 N/A 17:57:28.92 -29:38:03.4

N/A OGLE-2018-BLG-0019 N/A 17:57:00.26 -29:26:16.6

N/A OGLE-2018-BLG-0623 N/A 17:56:32.67 -29:41:18.8

N/A OGLE-2018-BLG-1158 N/A 17:55:27.65 -29:07:26.1

N/A N/A MOA-2018-BLG-240 17:57:50.58 -29:07:59.76
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well-suited for crowded fields in the Galactic bulge. Ap-

plying the pipeline to a one-year subset of two KMTNet

fields, we extracted light curves for over 480,000 bright stars

and identified 36 microlensing events, including five new

ones. Our analysis demonstrates that the pipeline can re-

cover short-timescale, low-amplitude signals typical of low-

mass FFPs, with detection sensitivity down to θE ∼ 1 µas,

sufficient to probe low-mass FFPs. A full-archive search us-

ing this pipeline can be completed in under six months and

would yield the mass function of FFPs, well ahead of upcom-

ing space-based microlensing missions. The pipeline may

also enhance real-time microlensing detection through an im-

proved AlertFinder system, increasing the scientific return of

KMTNet and future surveys.
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Ryu, Y.-H., Mróz, P., Gould, A., et al. 2021, AJ, 161, 126,

doi: 10.3847/1538-3881/abd55f

Sako, T., Sekiguchi, T., Sasaki, M., et al. 2008, Experimental

Astronomy, 22, 51, doi: 10.1007/s10686-007-9082-5

Schlafly, E. F., Green, G. M., Lang, D., et al. 2018, ApJS, 234, 39,

doi: 10.3847/1538-4365/aaa3e2

Smithsonian Astrophysical Observatory. 2000, SAOImage DS9: A

utility for displaying astronomical images in the X11 window

environment, Astrophysics Source Code Library, record

ascl:0003.002
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1. https://arxiv.org/abs/1504.05966

Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020, Nature

Methods, 17, 261, doi: 10.1038/s41592-019-0686-2

Wang, Y., Perna, R., & Zhu, Z. 2024, Nature Astronomy, 8, 756,

doi: 10.1038/s41550-024-02239-2

Weidenschilling, S. J., & Marzari, F. 1996, Nature, 384, 619,

doi: 10.1038/384619a0

Whitworth, A. P., Priestley, F. D., Wünsch, R., & Palouš, J. 2024,
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