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1. INTRODUCTION

Microlensing offers a powerful and distinctive ap-

proach to exoplanet detection by leveraging a planet’s

gravitational perturbation of light from distant sources.

Unlike other methods, microlensing excels at uncovering

exoplanets in intermediate orbits (1-5 AU) around stars

that are often out of reach for radial velocity and tran-

sit techniques. Its sensitivity to planets in a wider range

of orbits, including those in higher-inclination systems,

makes it an invaluable tool for expanding our under-

standing of planetary systems. This method serves as a

crucial complement to other techniques, filling gaps in

planetary discovery by revealing worlds that would oth-

erwise remain hidden from view. This unique capability

significantly enhances the breadth of exoplanet explo-

ration, enabling the detection of a broader diversity of

planetary systems. Fig. 1 provides an illustration of the

microlensing phenomenon, highlighting how the gravi-

tational field of a lens star and its exoplanet distort the

light from a background star, leading to a characteristic

Paczyński light curve (Paczynski 1986).
The field of microlensing has evolved significantly

since the 1990s, when surveys of the Galactic bulge

typically found a few dozen gravitational microlensing

events per year (Alcock et al. 1996; Udalski et al. 1994a).

First, as the focus shifted to exoplanets, a two-tiered
strategy (Gould & Loeb 1992) developed to combine

real-time event detection in wide-field, low-cadence (few
observations per day or week) surveys (Udalski et al.

1994b; Bond et al. 2001) with targeted follow-up (mul-

tiple observations per hour) to find and characterize ex-

oplanet signals (e.g., Bond et al. 2004; Udalski et al.
2005; Beaulieu et al. 2006). Then, as wide-format cam-

eras continued to grow in size, it became possible to

achieve a high enough cadence to routinely detect plan-

ets in survey data, without follow-up observations (e.g.,
Shvartzvald et al. 2016).

The Korea Microlensing Telescope Network (KMT-

Net; Kim et al. 2016) provides valuable high-sensitivity
capabilities to advance ground-based microlensing ob-

servations. KMTNet consists of three 1.6-meter tele-

scopes located at strategic sites across the globe—Cerro

Tololo Inter-American Observatory (CTIO) in Chile,

South African Astronomical Observatory (SAAO) in

South Africa, and Siding Spring Observatory (SSO) in
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Australia. This global distribution enables nearly con-

tinuous coverage of the Galactic bulge, allowing KMT-
Net to capture microlensing events as they occur in real
time. Each telescope is equipped with a large field-of-

view camera that covers 4 square degrees of the sky.

In total, the survey monitors approximately 500 million

stars nightly, ensuring comprehensive and efficient de-

tection of microlensing events.

KMTNet operates with a tiered cadence strategy that
optimizes its near-continuous coverage of the Galactic

bulge. Six key fields (see Fig. 3, which is a reproduction

of Kim et al. 2018a) are monitored at a high cadence

of 0.5 hours, with overlapping field pairs (01/41, 02/42,

03/43) receiving four observations per hour. A subset of

stars in the overlap between 02/42 and 03/43 benefits
from an even higher cadence of eight observations per
hour. Other fields are observed at slower rates of 1, 0.4,
or 0.2 observations per hour, depending on their intrinsic

event rates. There are also other, rare cases, of overlap

between neighboring fields.
While these cadences are often high enough to detect

and characterize planetary signals in events across the

Galactic Bulge (e.g., papers in the “Systematic KMT-

Net Planetary Anomaly Search” series, starting with

Zang et al. 2021a), there continues to be value in ad-

ditional follow-up observations of known microlensing

events. High-magnification events can still be targeted

for follow-up observations and that interest has been

extended into the “moderate” magnification (peak mag-
nification Apeak > 20) regime (e.g., Abe et al. 2013; Yee

et al. 2021; Zang et al. 2021b). Real-time alerts also al-

low for astrometric (Sahu et al. 2022; Lam et al. 2022;
Mróz et al. 2022) or interferometric (Dong et al. 2019;

Zang et al. 2020) observations to characterize the lenses

(which is important for black hole searches in addition

to planets) or spectroscopic observations to characterize

the source stars (e.g., Bensby et al. 2013).

Furthermore, the advent of low-cadence, all-sky sur-

veys (e.g., ASAS-SN Shappee et al. 2014; Kochanek

et al. 2017, Zwicky Transient Facility Bellm et al. 2019;

Graham et al. 2019; Masci et al. 2019, etc.) have created

new opportunities for detecting microlensing events and

potentially following them up with high-cadence obser-

vations to detect planets (e.g. Nucita et al. 2018). No-

table among these is Gaia, which has a real-time alert

system for identifying microlensing events that has led

to publication of several events with follow-up obser-

vations (e.g., Wyrzykowski et al. 2020; Rybicki et al.
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2022). In addition, the upcoming Rubin Legacy Survey
of Space and Time (LSST; LSST Science Collaboration

et al. 2009) is capable of detecting microlensing events

(Gould 2013; LSST Science Collaboration et al. 2017;

Street et al. 2023; Abrams et al. 2023), so there has
been interest in developing the capacity to identify mi-

crolensing events in real-time (Godines et al. 2019).
While real-time detection of microlensing events con-

tinues to be relevant, it remains a difficult problem and

many existing solutions require labor-intensive by-eye

reviews. Real-time alert detection differs significantly

from post-season event detection, because the charac-

teristic features that define a microlensing light curve

(e.g., the Paczyński shape or caustic crossings) may not
be apparent, yet. In fact, the goal is usually to alert
the events as early as they can be reliably identified to

maximize the potential for follow-up observations. Un-

der these circumstances, the light curves are roughly

described as “smoothly increasing in brightness above

the baseline level,” which is vague enough that it ap-

plies to a wide variety of astrophysical phenomena and

even certain types of correlated noise and may be fur-

ther complicated by gaps in the data due to observability

constraints such as weather.

The difficulty of this task also highlights the poten-
tial to apply modern machine learning (ML) techniques,

which have already been shown to be very efficient in
improving early detections (Gezer et al. 2022). For ex-

ample, Godines et al. (2019) developed a Random For-

est classifier for identifying ongoing microlensing events

in real-time from a simulated LSST data stream, and

tested the performance of the algorithm on data from

OGLE-II, PTF, and ZTF. ML algorithms have also

been applied to post-season event detection in real data
(Wyrzykowski et al. 2015; Chu et al. 2019; Mróz 2020)

and in simulated LSST data (e.g., Boone 2019). How-

ever, as we have discussed, there is significantly more in-

formation available in post-season event detection than

real-time detection, making these fundamentally differ-

ent applications.

In this work, we focus on the real-time “alert” iden-

tification process for the Korea Microlensing Telescope

Network (KMTNet) survey. This dataset differs signif-

icantly from prior survey datasets mined for events in

real-time in that it combines data from three different

sites and achieves a very high cadence of observations

(typically, Γ =4–0.2 obs hr−1), sometimes with overlap
between the sites. The existing KMTNet AlertFinder al-

gorithm (Kim et al. 2018b) has been in operation since

2018 and even operated in 2020 during the COVID-19

pandemic (albeit on a reduced datastream due to ob-

servatory closures). The first season included only the

Northern Bulge fields, but the scope was expanded to

the full KMTNet survey area in 2019.

The process of event identification starting from hun-

dreds of thousands of candidates from the AlertFinder

algorithm results through to the final selection of a few

dozen alerts is illustrated in Fig. 2 and described in

detail in Section 3. As can be seen in the left branch

of this figure, this process relies heavily on human re-

views of the candidates. The human review consists of

two stages: first, light curves of the candidates are re-

viewed, and then, difference image stamps are extracted

for promising candidates and examined to confirm that

a given candidate is not due to an image-level artifact.

Co-author KHH has primarily been responsible for de-
veloping the algorithms that handle the automated vet-
ting, developing the procedures and algorithms for the
human review, and carrying out those reviews.

In this paper, we present LensNet, a new ML architec-

ture designed to provide fast and reliable microlensing
classification tailored for the candidates identified by the

AlertFinder algorithm of KMTNet. Our algorithm pro-
cesses the light curves and auxiliary data of candidate
microlensing events identified by the AlertFinder algo-
rithm, which focuses on sequences with a characteristic

rise in brightness. It then provides a probability esti-
mate for each alert, indicating the likelihood that it is a
genuine microlensing event.

This work differs significantly from previous efforts

in microlensing event classification for several key rea-
sons. First, our model focuses on detecting real-time

alerts rather than post-season events, a relatively un-

explored area; only one other study has attempted this

(Godines et al. 2019). Second, while most existing meth-

ods rely on predefined statistical metrics or manually

engineered features extracted from light curves, our ap-

proach processes the entire light curve directly, captur-

ing the full temporal evolution of the data. In these

previous approaches (Wyrzykowski et al. 2015; Godines

et al. 2019; Mróz 2020; Wyrzykowski et al. 2016), where
static metrics such as event amplitude, timescale, and

baseline variability are used, simpler models have suf-

ficed to process the feature set (e.g., Random Forests).

However, because our method leverages the full time-

series data, along with contextual features, we utilize

a more advanced branched deep Recurrent Neural Net-
work (RNN) architecture, which is designed to process
multiple streams of data from different telescopes simul-

taneously.

The structure of this paper is as follows: We give an

overview of our goals in Section 2. Section 3, gives an
overview of alert-finding in the KMTNet datastream in-

cluding the algorithm (Section 3.2) and the manual vet-



5

Figure 2. Comparison of the current and future pipelines
for the KMTNet. The current pipeline, which processes
around 5,000 alerts per day, involves manual vetting of light
curves and difference images by co-author KHH. This pro-
cess reduces the number of alerts to around 20 per day. The
future pipeline, incorporating LensNet and additional work
from de Beurs (in prep), will process a higher volume of
alerts—around 20,000 per day—while reducing the number
of manually reviewed alerts.

ting process (Section 3.4) used for identifying microlens-
ing events. Then detail the dataset used for training the

model, starting with labeling of candidates in Section 4

and describing data augmentation techniques and treat-

ment of the light curves in Section 5. Section 6 explains

the LensNet architecture, a branched Recurrent Neu-

ral Network (RNN) that independently processes data
from different telescopes to classify microlensing events.
In Section 7, we describe the training process, including

hyperparameter tuning and distributed learning tech-

niques. Section 8 presents the results, analyzing the

model’s accuracy across binary and multi-class classifi-

cation tasks, while Section 9 evaluates the performance

and discusses the robustness of the model and poten-

tial avenues for future work, including the integration of
difference images to further enhance classification accu-
racy. Finally, Section 10 concludes with a summary of

our findings.

2. OVERVIEW OF LENSNET PROPERTIES AND

GOALS

LensNet is a branched architecture of three Recur-

rent Neural Networks that incorporate time-series in-
puts from all KMTNet telescopes. Each telescope’s in-
put is a sequence of vectors, where every vector rep-

resents an observation at a specific time, composed of

the following features: observation time, flux, sky back-

ground, star’s FWHM, flux uncertainty, air mass, and

PSF quality. LensNet processes these time-ordered vec-
tors chronologically, leveraging its recurrent nature to
capture temporal dependencies and patterns across the
full sequence.

The fundamental goal of this work is to replace or sig-

nificantly reduce the human effort involved in the pro-
cess of vetting AlertFinder candidates and minimize the

reliance on unique human expertise, while maintaining
a high detection rate of alerts amenable to followup ob-
servations. The right branch illustrated in Fig. 2 shows

how LensNet could fit into a future workflow. In par-

ticular, the goal of this paper is to try to reproduce

the human light curve review. If perfectly successful,

LensNet would identify the same ∼ 200 candidates as

KHH. Then, those candidates could be passed on to the

second stage of the review involving inspection of differ-

ence images. This could either be handled by a human

or by an additional ML component (de Beurs in prep).

Ideally, all of the human elements of the AlertFinder

workflow would be replaced by ML models that would
produce the same final set of alerts that KHH would

produce. In this model, as long as the m candidates
produced by the second ML review were the same as

those produced by the human review, the value of n is

irrelevant so long as it is tractable to produce difference

images for all of those candidates. Even imperfect per-

formance could still be acceptable for practical imple-

mentation. For example, we could also tolerate a larger
value of m, so long as it contained all the real microlens-

ing events, and still achieve a substantial improvement
in the number and quality of candidates requiring hu-

man review.

The latest optimized models, trained with an aug-
mented dataset of real observations, achieve accuracies

of 87.5% in unseen data. Ultimately, this new tool for
real-time microlensing detection could help in a variety
of science cases, ranging from exoplanet surveys to stud-

ies of galactic structures and black holes.
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3. ALERT FINDING IN KMTNET DATA

3.1. KMTNet Data

As discussed in the Introduction, KMTNet combines
data from three different observatories to search for

candidate microlensing events. Figure 3 illustrates the

tiered observing cadence strategy. KMTNet primarily

observes through an I-band filter, although some obser-

vations are taken occasionally with a V -band filter. The
nominal ratio of V to I band observations is 1:9, but

in practice, there are minor variations to take advan-

tage of a particular site’s unique characteristics. The

V -band observations are excluded from evaluation for

alerts, but they create time gaps in the I-band datasets.
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Figure 3. Map of the KMTNet BLG observing fields, show-
ing the distribution of the four CCDs per field, with each field
color-coded according to its observational cadence, ranging
from 0.5 hours (purple) to 5.0 hours (yellow). The fields are
plotted in galactic coordinates, longitude (ℓ) and latitude (b).
Credit: Matthew Penny.

The imaging data is initially reduced by a difference

imaging pipeline using the DIA algorithm by Woźniak

(2000). This produces a light curve consisting of He-

liocentric Julian Dates (HJD), flux measurements, un-
certainties in the flux measurements, and a number of

other diagnostic parameters (sky background, seeing,
PSF χ2).

3.2. AlertFinder Algorithm

Here, we briefly review the main components of the

KMTNet AlertFinder algorithm as it was described by

Kim et al. (2018b).
First, the diagnostic information is used to mask the

data and remove data points likely to be photometric

outliers. After that, the data are reduced to just epoch,

difference flux, and flux error and converted to binary
format. This reduction and change in format is a prac-
tical adaptation needed to reduce memory requirements

and processing time for the 500 million KMTNet light

curves. These binary files are passed to the AlertFinder

algorithm without the diagnostic information.

The AlertFinder algorithm then evaluates all unique
permutations and combinations of the datasets to check

whether at least Nhigh of the last (Nhigh + 10) flux mea-

surements are ≥ 3σ above the median flux. Finally, if

this is true, the light curve is fit with a function con-

sisting of a flat line plus a line with a constant slope (as

shown in Fig. 4), i.e.,

F (t) = a0 + a1(t − tbreak)Θ(t − tbreak) (1)

where Θ is a Heaviside step function and tbreak is the

time of the break point. If Equation (1) is a significantly

better fit to the data than a flat line (∆χ2 > ∆χ2
thresh),

then the light curve is flagged as a candidate microlens-

ing event. Typically, each day ∼ 3×105 candidate events
(out of ∼ 5 × 108 total stellar light curves) are flagged

as possible candidates.

3.3. Automated Vetting

Many of the AlertFinder candidates are spatially cor-

related, because when using the DIA photometric pack-

age, a varying star will often affect light curves of nearby

stars, e.g. creating “ghost” events that have the same

properties (Wyrzykowski et al. 2015). This effect is par-

ticularly bad for bright, variable stars, sometimes creat-
ing large clusters of false signals. Hence, any candidates
with many neighboring candidates are rejected. A maxi-

mum of 20,000 candidates per field or 800 candidates per

chip (1/4 of a field) are kept (sorted by star ID number,

which gives preference to candidates detected in CTIO

data (whose star IDs begin with “BLG”). This process

brings the total number of candidates to be reviewed

down to ∼ 3 × 104.

These remaining candidates are divided into two cat-

egories. About 3/4 were previously reviewed by KHH in

the past 6 days and not selected as microlensing events,

leaving ∼ 6 × 103 new light curves that require manual

vetting. The other 3/4 may be reviewed or not depend-

ing on the specific load and time available on a particular

day.

3.4. Manual Vetting

Because of the large fraction of false positives, the
default status of each light curve is set to “No,” mean-

ing ”do not alert.” Each light curve is then reviewed by
KHH, who flags potential real microlensing events. For
any events that are flagged at this stage (around 200),
light curves of the nearest neighbors are re-evaluated to
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Figure 6. Light curves of a candidate found by AlertFinder on 2021 May 10 UT 06:00 (i.e., tcut = 9344.75) from each category:
“Yes” (top), “No” (middle), “Maybe” (bottom). Left panels show the light curves as they would appear at tcut with the fitted
broken line (black solid line). Right panels show the full 2021 light curves with smaller markers for data with t > tcut. The
colors show data from different observatories: SAAO (dataset with the strongest AlertFinder signal; blue), CTIO (red), SSO
(green). The vertical dashed line shows tbreak, and the vertical solid line shows tcut.

2. It is a “ghost” event: it is near a real event, so the
light curve shows the “echo” of a real event due to

contamination,

3. It is a true false positive identified during differ-

ence image review, e.g., due to a bleed trail.

Because candidates in the first two categories share

many light curve characteristics with real microlensing,

we eliminated them from the “Maybe” sample. For cate-

gory (1), this is straight forward and just involves check-

ing for a star in the KMTNet event table with the same

ID. For category (2), we cross-checked the coordinates

of the candidate against all events in the KMTNet event

table and eliminated the candidate if it was within 20′′

of an object in the table.

Then, as with the “Yes” category, because a given
“Maybe” candidate might be appear on multiple dates,

we only kept unique stars and used the last review date

(max(tcut)). This leaves 1361 candidates in the “Maybe”

sample.

Note for this sample, we did not remove any can-

didates due to proximity to other candidates in the

“Maybe” sample. As a result, some candidates in the

“Maybe” sample are spatially correlated. This reflects a

real effect, e.g., bleed trails affect stars in the same col-

umn in a similar way. Hence, these correlations reflect

real features in the data that can be used to identify

objects in this category, even though we do not include

spatial position as a training feature.

4.3. “No”
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There are an abundance of candidates in the “No”
category. Thus, we chose a random sample of a similar

size of the “Yes” and “Maybe” samples.

We start by choosing “No” candidates that were

alerted on the same date as the initial “Yes” sample.
From the “No” candidates, we randomly select a number

of “No” candidates equal to the total number of “Yes”
candidates from that date. Candidates within 20′′ of a

“Yes” candidate from the same date are excluded from

this selection. From this random selection, we randomly

down-selected to 2098 “No” candidates (this particular

number was chosen to match the number of unique “Yes”

candidates prior to filtering for event quality) and elim-

inated any candidates within 20′′ of a real event. This
leaves 2065 candidates in our “No” sample.

While we do check for duplicated stars in this sample,

we do not check for proximity to other candidates in the

“No” sample.

5. LIGHT CURVE PREPARATION FOR ML

PIPELINE

After assembling the labeled dataset, several prepro-

cessing techniques are applied to clean, augment, and

standardize the data. The time series data, which form

the basis of the microlensing event classification task,

undergo multiple steps, including handling missing val-

ues, normalizing features, and ensuring proper align-

ment across different telescopes. In addition, we use a

data augmentation technique to artificially expand the

training set by cropping the time series on either side

of the microlensing event, enhancing the model’s gen-
eralization ability. This ultimately helps simulate vari-
ous observational conditions, allowing the model to per-
form robustly even with incomplete or noisy data. The

remaining preprocessing steps ensure that the data is

consistently prepared for model training.

5.1. KMTNet Data Properties: Implications for Use as

Neural Network Inputs

The observations from different sites are reduced and
analyzed separately for every field, due to offsets, vary-

ing systematics, and other site-specific discrepancies. As
a result, most stars have three associated data files,
while stars in overlapping fields may have six or more.

Furthermore, every site implements slight deviations

from the nominal observing strategy to leverage its

unique characteristics. Thus, the specific properties of

each time series data file—such as its length, spacing,

and quality—depend on several factors. For example,
weather conditions at a particular site may prevent ob-
servations or degrade their quality. Unlike many ML

problems that work with uniformly sampled high-quality

data, KMTNet data contains irregularities in both the
timing and quality of our observations. Consequently,
preparing the data for use in an ML algorithm requires

a more sophisticated approach to data processing in or-

der to accommodate these inconsistencies.
Therefore, we decided to separate the different tele-

scope data inputs when processing them through our

model. We designed LensNet as a branched pipeline

that analyzes each data file individually, accounting for

variations in observation conditions like systematics and

site-specific characteristics. This approach allows the

model to capture subtle distinctions between datasets

that a single unified process would overlook, ultimately

making a better use of the unique information each ob-
serving site provides, and thus leading to more accurate
and reliable predictions.

5.2. Data Cleaning

We perform a thorough cleaning and curation pro-

cess of our dataset. First, we impose a limit on the se-
quence length, where each candidate must have no more

than 1,500 observations. Sequences longer than this

length are cropped, because in the majority of cases, the

model is already able to capture the patterns of the star

within this length. Furthermore, the additional predic-
tive power from the remaining data is relatively limited
and comes at a high computational cost. Moreover, we

handle duplicate instances carefully: if a star appears in

two or more categories in different days, it is reassigned

to a single category (we perform this reassignment is

handled on a case-by-case basis).

In addition, we apply specific constraints to the data:

We remove observations where the flux error is negative,

where the PSF quality is outside the acceptable range

of 0 to 100, and where the FWHM is negative. We also

require that a candidate star has a minimum of 10 valid

observations from at least one of the telescopes after all

the cleaning steps.

Following this process, the curated dataset consists

of 1,190 instances in the “Maybe” category, 1,825 in-

stances in the “Yes” category, and 2,038 instances in

the “No” category. While these classes are not perfectly

balanced, we account for this imbalance by applying dif-

ferent weights to adjust the learning rates for each cate-

gory during model training, ensuring that the classifier
learns effectively across all classes.

5.3. Data augmentation

Data augmentation is a popular technique used to ar-
tificially expand the size and diversity of a dataset by
applying various transformations to the original data.
This process helps improve the model’s generalization
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Dataset Instances Real Fraction

Training (Aug) 24,276 0.80082

Validation (Aug) 3,014 0.09943

Testing (Aug) 3,024 0.09976

Total (Aug) 30,314 1.000

Training (Non-Aug) 4,046 0.80071

Validation (Non-Aug) 503 0.09954

Testing (Non-Aug) 504 0.09974

Total (Non-Aug) 5,053 1.000

Table 2. Comparison of instances and real fractions for
augmented and non-augmented datasets, including totals.

performance and to ensure that the model’s ability to

generalize was tested on truly unseen data.

Along these lines of ensuring fairness in the evaluation,

we also ensured that no data from the same star was

present in multiple sets simultaneously. By carefully

splitting the dataset this way, we guaranteed that each

star’s data was unique to a single set, preventing the

model from learning specific patterns related to the same

star across different sets. This approach ensures a more

rigorous evaluation of the model’s ability to generalize

to entirely new microlensing alerts.

5.4. Data Pre-processing Pipeline

The preprocessing pipeline for the time series data

consists of several crucial steps that ensure the input

data is standardized, free from outliers, and properly

aligned for the Recurrent Neural Network (RNN) archi-

tecture. This section details the steps of time relativiza-

tion, outlier removal, NaN handling, fitting, standard-

ization, and padding, each of which contributes to the

robustness and accuracy of the model.

• Time Relativization: To standardize the tem-

poral dimension of the data across different tele-

scopes, we implement a time relativization step.

Here, the time values in the dataset are adjusted
relative to the moment of the last observation
across all three telescopes, denoted as tlast. This

point is crucial as it represents the time at which
the alert was triggered. However, this relativiza-
tion is performed after data augmentation to avoid
any bias or leakage of future information into the

model. By shifting the time axis in this manner,
we ensure that the model’s input data is aligned
temporally, regardless of the specific observational

timelines of each telescope.

• Outlier Removal: After time relativization, we
apply an outlier removal algorithm to clean the

data. This step involves identifying and exclud-

ing data points that deviate significantly from the

overall trend, both upwards and downwards. The

removal is conducted across all features. This pro-

cess helps eliminate anomalies that could nega-
tively impact the model’s performance, ensuring
that the input data more accurately represents the
underlying astrophysical signals.

• NaN Handling and Filling: We remove any

missing data points (NaNs) that are present in
any of the features during preprocessing, rather
than attempting to fill gaps through interpolation.

Given that the Recurrent Neural Network (RNN)

architecture processes data sequentially, interpo-

lating missing values would not provide any addi-

tional information or benefit to the model. More-

over, because the RNN is not constrained by a

fixed input length, we are able to preserve the in-

tegrity of the remaining data without the need for

imputation. This flexibility is one of the key ad-

vantages of the chosen RNN architecture, allowing

us to work with variable-length sequences while

ensuring the model is not disrupted by incomplete
observations or gaps.

• Fitting the Ascending Data: The next step

in the preprocessing pipeline involves fitting a
line to the ascending data portion of the flux,

which is critical for capturing the microlensing
event’s rising phase (this step implicitly mimics
the AlertFinder algorithm behavior). The fitting

process takes into account the flux error, provid-

ing a weighted fit that more accurately reflects the

observational uncertainties. The fitted line is then

treated as an additional feature in the input vector

that is passed to the ML algorithm. Specifically,
during the historic (pre-event) data, this feature is
set to the average flux in that region. After tbreak,

the feature transitions to match the values of the
fitted line, creating a piecewise smooth function
that serves as a robust input for the model. A key
constraint imposed during fitting is that the line

must start at the point of tbreak and the average

historic flux, ensuring consistency and continuity

in the data representation.

• Standardization: To ensure that the data from

all telescopes is on a comparable scale, we ap-

ply standardization independently to each feature.

This involves normalizing the data by subtracting

the mean and dividing by the standard deviation,
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calculated from the training set. These normaliza-
tion parameters are then applied uniformly across

the training, validation, and test sets. For the

piecewise fitted line, standardization is performed

using the mean and standard deviation of the flux

data to prevent decoupling between the fitted line

and the actual flux values. Standardization is crit-
ical for the convergence and stability of the RNN
during training.

• Padding: Finally, we apply padding to the time
series data, a necessary step in preparing the data
for input into the RNN. In our pipeline, padding

involves appending zeros to the beginning of each

sequence so that all input sequences have the

same length, regardless of the actual duration of

observations. This ensures that the RNN pro-

cesses uniform-length sequences, which is essen-

tial for batch processing and model efficiency. The

padding is carefully managed to avoid introducing

artifacts into the data, with the padded sequences

still maintaining the integrity of the temporal re-

lationships within each telescope’s dataset.

These preprocessing steps are essential for transform-

ing the raw observational data into a format that is

suitable for input into the RNN architecture, ultimately

enhancing the model’s ability to accurately detect and

classify microlensing events.

6. LENSNET ARCHITECTURE

To accurately classify potential microlensing events

using time series data from the three different tele-

scopes (CTIO, SAAO, and SSO), we designed LensNet,

a branched Recurrent Neural Network (RNN) architec-

ture where each branch processes data from a single

telescope independently. A schematic pipeline of how

LensNet works is depicted in Fig. 8. This design choice

is motivated by the unique observational characteristics

and challenges presented by each telescope’s data. For

instance, in Fig. 8, the CTIO telescope has the most
comprehensive coverage, while SAAO starts its obser-

vations later (leading to a shorter time series), and the
SSO data contains a gap in the observations.

RNNs are particularly well-suited for this task because

they are designed to handle sequential data, making
them ideal for analyzing time series where temporal de-
pendencies are crucial. Furthermore, by treating each
telescope’s data separately, we ensure that the model

can adapt to the specific noise patterns, data gaps, and
observational cadences of each instrument. Each branch
of the RNN processes not only the flux data but also

other key features which allows the network to capture

the complex relationships between these variables over
time. These features include the observation time, the
flux error, air mass, FWHM, χ2, and the PSF quality.

After processing the data from each telescope through

its respective RNN, the final encoded states are com-
bined and passed through a series of dense layers to

produce the final classification output, which then deter-
mines if the alert is a microlensing event. This approach
allows the model to leverage the full temporal resolution
of each telescope’s observations while maintaining flexi-

bility in dealing with the varying lengths and quality of

data streams.
In addition to the branched RNN architecture, we ex-

plored several alternative methods to classify the mi-

crolensing events. These included extracting features

from the fitted piece-wise linear function and utilizing

a variety of classical ML algorithms, such as XGBoost,

bagging, decision trees, and perceptron models. The

features we considered included the average standard

deviation of the flux relative to the fit before and af-

ter the microlensing event (a proxy for fitting error pre-
and post- tbreak), the slope of the rising flux, parame-

ters from higher-order fittings, skewness, kurtosis, and

the number of points before and after tbreak. Despite

these efforts, we did not observe any significant correla-
tion between these features and the target labels, with
the models performing at around ∼ 50% binary accu-

racy, essentially equivalent to random guessing.

We also experimented with using an RNN architecture

that only processed CTIO data, given its higher confi-

dence in many of the training instances, as well as em-

ploying convolutional architectures to process the time

series data. Ultimately, however, the architecture we

present in this paper—the branched RNN that processes
data from each telescope independently—outperformed
all the other approaches studied, offering the most ac-
curate and robust results.

7. LENSNET TRAINING

We conducted an in-depth study on two distinct classi-
fication tasks. The first task was a binary classification
problem, where we combined the “Yes” and “Maybe”

labels into a single class, distinguishing them from the

“No” class. This approach was based on the understand-

ing that “Yes” and “Maybe” are often indistinguishable

in flux data alone and are typically sub-classified man-

ually only after reviewing the difference image. This

mimics the classification performed by co-author KHH.

The second, more challenging task was a multi-class clas-

sification problem, where the model aimed to differen-

tiate between “Yes,” “Maybe,” and “No” classes inde-

pendently. This task was particularly difficult because
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In contrast, the 3-class classification task (Fig. 10)
exhibits a more challenging learning process. While

there is a sharp initial improvement in the accuracy of

all categories within the first few hundred epochs, the

model takes significantly longer to stabilize compared

to the binary task. The weighted accuracy plateaus

around 80%, but category-specific accuracies for “No”,
“Maybe”, and “Yes” follow distinct learning trajectories.
By the 4000th epoch, the model has largely stabilized,

though slight improvements continue throughout the re-

maining epochs.

The added complexity of distinguishing between three
categories, as opposed to two, is evident in the longer

stabilization period. Nonetheless, the model’s perfor-
mance in both tasks demonstrates its ability to adapt
and achieve a high accuracy.

8. RESULTS

8.1. Performance Evaluation and Key Metrics

The results of the LensNet model demonstrate its

strong performance in classifying microlensing events
across both binary and multi-class classification tasks.
In the binary task, the model effectively distinguishes

between genuine potential microlensing events (grouping

both “Yes” and “Maybe” labels) and non-events (“No”),

achieving a peak accuracy of 87.5% on the test set. In

the multi-class task, which differentiates between “Yes”,

“Maybe”, and “No” labels, the model attains a lower but
still robust accuracy of 78%, reflecting the greater dif-
ficulty of separating the ambiguous “Maybe” class from

confirmed events and false positives. Throughout the

experiments, the model demonstrated its robustness to

partial data visibility, particularly excelling when pro-

vided with more comprehensive data (Fig. 11). Addi-

tionally, a threshold analysis of the binary task showed
that higher thresholds can be used to achieve near-
perfect classification purity for non-microlensing events,

minimizing false positives and improving operational ef-

ficiency (Fig. 12). These results underscore LensNet’s
potential for real-time deployment, offering a significant

reduction in manual vetting while maintaining high clas-
sification accuracy.

In addition to the accuracy metrics discussed, the con-

fusion matrices of Appendix A (Fig. 13) provide fur-

ther insights into the model’s classification performance.

These matrices confirm that the model performs particu-

larly well, especially on unseen data. We present results

for both the binary classification task (with threshold
values of 0.45 and 0.955) and the 3-class classification
task, highlighting the model’s flexibility in balancing

precision and recall.

8.2. Evaluation Under Partial Data Visibility

Fig. 11 summarizes the accuracy metrics across differ-
ent categories and sets as a function of the percentage of

the microlensing raw non-augmented data fed into the
network. This experiment allows us to evaluate the per-
formance of LensNet with varying amounts of available

information. Specifically, the horizontal axis in all the

plots represents the proportion of the microlensing alert

presented to the model, ranging from 0% (no microlens-

ing signature shown) to 100% (all the observations be-

tween tbreak and tcut are shown to the model, i.e., the
full alerted region as identified by the AlertFinder al-

gorithm). To obtain the modified datasets with the dif-

ferent percentages we performed various right-side crop-

ping operations to the region of the time-series within

tbreak and tcut. This experiment provided valuable in-
sights into how the model’s performance evolves as it

“sees” less of the microlensing alert.
It is important to note that in the operational mode,

the network should function at 100% alert visibility, as

this is the data set provided by the AlertFinder algo-

rithm. However, we conducted this test to explore the

model’s behavior under more constrained conditions,

pushing its limits to better understand its robustness
and reliability.

The left plots in the Fig. 11 show the per-category and

per-set accuracies. These plots represent the individual

categorical accuracy for both the binary and multi-class

classification tasks across the training, validation, and

test sets.

The right plots of the Fig. 11 present the mean accu-
racies for each set, calculated by averaging the curves of

each category displayed in the left panel. These provide

a consolidated view of the model’s performance across

the training, validation, and test sets for both the binary

and multi-class classification tasks.
The categorical accuracy is calculated as the number

of correctly classified instances in the category divided

by the total number of instances in that category. Due to

the class imbalance in the data, it was necessary to break

down the accuracies of each category independently to

ensure a more accurate assessment of the model’s per-

formance across all classes.

At 0% microlensing alert visibility, the model oper-

ates essentially at chance level. Thus, it should approxi-

mately have an accuracy of 50% for the binary classifica-

tion task and 33% for the three-class classification task.

In the Fig. 11 however we see that the aggregated accu-

racies on the right panel start at values of ∼ 55% − 60%
and ∼ 40% − 50%. In the cases we checked, this dis-

crepancy can be attributed to instances where the mi-
crolensing event begins slightly earlier than the desig-
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category’s accuracy is disproportionately compromised,
maximizing overall model performance.

In the curves shown in Figs. 9 and 10, the final epoch

accuracies are lower compared to those in Fig. 12 due

to the use of the augmented dataset during training,
which posed a more challenging task for the model. In

contrast, the accuracy curves in Fig. 12 are calculated
using the non-augmented data, resulting in higher per-

formance values.

On the other hand, for our application, we prioritize

maximizing the purity of actual microlensing events as

opposed to having a balanced classification performance

in both categories, which leads us to select a higher

threshold. This is mainly due to the high relative costs
of processing and storing false positives due to the high
number of instances required to analyzed every day.

At a threshold of 0.955 (dashed black vertical line

of the right), the model achieves ∼ 100% accuracy in

the “No” category while retaining approximately 30%

of true “Yes” instances. This high threshold is par-

ticularly important in minimizing false positives, align-

ing with our goal of maintaining high purity in the

“Yes”/“Maybe” predictions.

9. DISCUSSION

In this work, we developed a machine learning model

to classify microlensing events using data from the Ko-

rea Microlensing Telescope Network (KMTNet). Our

model, based on a branched Recurrent Neural Network

(RNN) architecture, was specifically designed to handle

time-series data from multiple telescopes and features.

The key focus of this study was to assess the model’s

ability to detect genuine microlensing events, including
distinguishing between the “Yes,” “Maybe,” and “No”
categories. Through the use of data augmentation and
careful preprocessing, the model was trained to handle

varying levels of data visibility, which provided impor-

tant insights into the robustness of the classification pro-

cess.

9.1. LensNet Performance

Our results showed that the model performs effectively

across both the binary and 3-class classification tasks. In

the binary task, the model achieved a rapid convergence

to a stable performance, with a notable peak accuracy of

around 85% when trained and tested on non-augmented

data. For the more complex 3-class task, the model dis-

played a longer learning curve, particularly when try-

ing to distinguish between the “Yes” and “Maybe” cat-

egories, which are often difficult to differentiate. Never-
theless, the model’s performance continued to improve
as more data was made available, and it reached an ac-

curacy of approximately 78% when fully trained. The

difference in the performance between the binary and
multi-class tasks highlights the added complexity of dis-
tinguishing between more than two categories, particu-

larly when “Maybe” events are involved.

A key finding from our experiments was that even
with partial visibility of the microlensing alert data,

the model could make accurate predictions, especially
in the binary task. However, for the 3-class classifica-
tion, greater visibility was crucial to improving the ac-
curacy for the “Yes” category, especially in distinguish-

ing between “Yes” and “Maybe” events. The results

also revealed that the model can be fine-tuned using

different thresholds, allowing us to prioritize either a

balanced classification performance or a higher purity
of microlensing event detection, depending on the ap-
plication’s requirements. This flexibility is particularly
important in practical deployment scenarios, where false

positives can be costly.

A particularly noteworthy achievement of our model is
its ability to often distinguish “Maybe” events from flux

data alone, without relying on difference images. This
is a significant advancement, especially considering that
human experts traditionally depend on difference images

to make such classifications. The difference image pro-

vides critical insights, such as the presence of diffraction

spikes, pixel bleeding, or other instrumental anomalies

that could artificially inflate flux values and mimic a mi-

crolensing event. By using these images, human vetters

can effectively rule out false positives and identify true

microlensing events with high confidence.

However, our model has demonstrated a good capabil-

ity to differentiate between genuine microlensing events

and false positives purely from time-series flux data.

This ability is particularly important because it suggests

that the model can identify subtle patterns and features

within the flux data that are indicative of real microlens-

ing events, even in the absence of additional diagnostic

tools like difference images.

9.2. Prospects for Deployment

The integration of LensNet into real-time microlens-

ing classification pipelines presents an opportunity for

improvement of the current system of KMTNet, by sig-

nificantly reducing the need for manual human vetting.

Traditionally, human experts review thousands of alerts

daily, a process fraught with inconsistencies and ineffi-

ciencies. By automating a substantial portion of this

workload, our model should rapidly and accurately clas-

sify microlensing events directly from time-series data,

allowing for faster decision-making and more efficient

use of human resources.
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Because we can select different thresholds we can
choose to prioritize either high-purity, balanced or high

recall classifications. For example, by setting a threshold

of 0.955 we can achieve a highly pure sample with near-

perfect accuracy for identifying non-events. This would

be a useful choice for automating the AlertFinder be-

cause it would identify the highest-confidence events but
not result in many false positives being alerted. Specif-
ically for this high threshold configuration, LensNet

achieves over 99.7% accuracy in the “No” category, en-

suring that human reviewers are not overwhelmed by

false positives. Although this higher threshold reduces

the capture rate of true microlensing events to about

30-40%, this trade-off is strategically advantageous. By
minimizing false positives, the review process becomes
significantly more efficient, allowing human experts to

focus only on the most promising and relevant alerts.

Nevertheless, the flexible threshold mechanism in the

model allows for real-time adjustments depending on the

operational needs.

On the other hand, if we wanted to be more permissive
with LensNet, allowing more positively classified events,

we could choose a lower threshold ( 0.45) which could

be used for more balanced accuracy. This would result

in higher false-positive rates. Therefore, we would need

another filter before alerting the community to events

identified in this preliminary stage. Indeed, LensNet re-
places only one step in the vetting process. Following
classification, candidates still undergo a secondary stage

of difference imaging, where false positives can be fur-

ther reduced through human review or automated meth-

ods (de Beurs in prep). Nonetheless, even if we choose
a more permissive approach with a lower threshold in

LensNet, this secondary algorithm should allow us to
remove the overhead of false positives.

We are now investigating the deployment of the model

into the KMTNet team’s real-time classification sys-
tems. By integrating LensNet directly into the internal
processing pipelines, it will deliver real-time classifica-
tions as alerts are generated. This automation will en-

able KMTNet to process large volumes of data more ef-

ficiently, allowing human reviewers to concentrate their

efforts on the most promising events, significantly im-

proving the overall workflow.

9.3. Future Work

Looking ahead, our future work will involve develop-
ing and training a secondary pipeline that integrates

difference images into the model’s predictions. While
our current approach focuses on time-series data due to
its lower computational demands, incorporating differ-

ence images could further enhance the accuracy of our

classifications, particularly in challenging cases. How-
ever, the process of generating and analyzing difference
images is computationally expensive and requires sub-

stantial memory allocation, making it feasible only for

cases with a high likelihood of being true microlensing

events. By combining the strengths of flux data analysis

with the diagnostic power of difference images, we aim
to create a more robust and precise detection pipeline,
capable of handling even the most complex scenarios in
microlensing event classification.

10. CONCLUSIONS

We have developed a model that represents a signifi-

cant advancement in the automated classification of mi-
crolensing events, the deployment of which will funda-

mentally change the way these events are detected in

the KMTNet. Historically, the reliance on human ex-

perts for manual vetting has constrained the scalability

of microlensing surveys. By automating a significant

portion of this process, the system can enable faster

and more efficient follow-ups, allowing astronomers to

quickly flag potential microlensing events and prioritize

observations, thereby increasing exoplanet discoveries

and the likelihood of capturing transient phenomena in

real time. This advancement also facilitates the scaling

of microlensing surveys beyond what is currently pos-

sible, allowing for the exploration of larger portions of

the sky and deeper investigations into planetary systems

around distant stars.
The model, LensNet, utilizes a branched RNN archi-

tecture that integrates both time-series flux data and

auxiliary features. It achieved high levels of accuracy,

particularly in the binary classification task, demon-

strating a strong ability to generalize across varying lev-

els of alert visibility. While the 3-class classification task

remains more challenging, LensNet has shown consis-
tent improvements as more data become available, of-
fering promise for enhancing multi-class detection per-

formance in real-time applications. Additionally, its

flexibility in adjusting output neuron threshold allows

LensNet to achieve higher purity in the classification of

real microlensing events, making it especially useful for

minimizing false positives in large-scale surveys. Future

work will focus on incorporating additional data sources,

such as difference images, to further refine the model’s

accuracy and reliability in complex scenarios.

While developed for KMTNet, our approach can be
adapted and applied to upcoming missions such as the

Nancy Grace Roman Space Telescope. In particular,

the Roman Galactic Bulge Time Domain Survey (Gaudi

2022) is expected to detect more than 30, 000 microlens-

ing events (Penny et al. 2019). Ultimately, LensNet has
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the potential to revolutionize microlensing event detec-
tion, paving the way for more efficient, large-scale ex-

ploration of the universe.
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ApJ, 871, 70, doi: 10.3847/1538-4357/aaeffb

Gaudi, B. S. 2022, in Bulletin of the American

Astronomical Society, Vol. 54, 102.146

Gezer, I., Wyrzykowski,  L., Zieliński, P., et al. 2022, arXiv
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Wyrzykowski,  L., Mróz, P., Rybicki, K. A., et al. 2020,

A&A, 633, A98, doi: 10.1051/0004-6361/201935097

Xu, Z., Dan, C., Khim, J., & Ravikumar, P. 2020, in

International conference on machine learning, PMLR,

10544–10554

Yee, J. C., Zang, W., Udalski, A., et al. 2021, arXiv

e-prints, arXiv:2101.04696.

https://arxiv.org/abs/2101.04696

Zang, W., Dong, S., Gould, A., et al. 2020, ApJ, 897, 180,

doi: 10.3847/1538-4357/ab9749

Zang, W., Hwang, K.-H., Udalski, A., et al. 2021a, AJ, 162,

163, doi: 10.3847/1538-3881/ac12d4

Zang, W., Han, C., Kondo, I., et al. 2021b, arXiv e-prints,

arXiv:2103.01896. https://arxiv.org/abs/2103.01896



23

APPENDIX

A. CONFUSION MATRICES

66.68% 64.10% 65.22%

Figure 13. Confusion matrices of LensNet calculated using the non-augmented data, showing the performance in the binary
classification task (with the two threshold values discussed of 0.45 and 0.955) and in the 3-class classification task. The accuracy
rates for both tasks are displayed on the matrices for each set (training, validation and testing). These results highlight the
model’s overall performance.


