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Matrix algebra and eigentheory are important to students’ learning of physics in upper division physics
courses. In this study, we investigated how students apply matrix algebra and eigentheory in various physics
contexts, excluding quantum mechanics. The data collected consist of student written responses taken from
a math methods course. We used the Physical-Mathematical Model (Uhden et al., 2011) to categorize each
question by the three skills the model presents: mathematization, interpretation, and technical operation. The
results from our data show that students have difficulty with mathematizing and interpreting the mathematical
and physical system of a matrix equation, but are fluent in technical operations. We will present examples of
student responses illustrating student reasoning, and discuss implications for classroom instruction.
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I. INTRODUCTION

Mathematics plays a key role in describing the properties
of a physical system. Physics students encounter increasingly
diverse and difficult mathematics as they move into upper-
division courses, and the successful comprehension of these
concepts is critical to their understanding of physics. This pa-
per will focus on student understanding of matrix algebra and
eigentheory from linear algebra; it explores student written
responses to identify the extent and nature of student diffi-
culty with these two topics.

A. Previous Research

Several studies across multiple fields have found that linear
algebra is a difficult subject for students. Within the Physics
Education Research (PER) community, there has been limited
research on student understanding of linear algebra applica-
tion in physics. Most of these studies focus on the context
of quantum mechanics [1]. Sabella and Redish summarized
various research papers that generally stated "students usu-
ally master the algorithmic skills involved in linear algebra,
but lack a conceptual understanding of the subject and how
to apply linear algebra concepts to physical systems" [2].

While there is little research within the PER community,
the Research in Undergraduate Mathematics Education com-
munity, RUME, provides a majority of the available research
on student understanding of linear algebra. Work by Wawro
et al. has investigated meta-representational competence in
quantum mechanics problems that involve linear algebra con-
cepts; this work is an interdisciplinary collaboration to in-
vestigate the use of linear algebra in quantum mechanics [3].
A study by Larson and Zandeih described a framework de-
scribing three different interpretations of matrix equations:
linear combination, system of equations, and transformation
[4]. This framework complemented Larson’s previous study
of student conceptualization and interpretation of matrix mul-
tiplication [5]. The Linear Algebra Curriculum Study Group,
formed by Carlson ef al. is a group that focus on improv-
ing their courses to increase student comprehension [6]. Ad-
ditionally, the application of linear algebra has increasingly
demonstrated the importance in the understanding and usage
of symbols, resulting in several investigations of semiotics in
eigentheory [7,8].

There are theoretical works that do exist in the PER com-
munity that describe the use of mathematical tools in physics.
Redish and Kuo presented a model that describes the struc-
ture of how mathematics is used in physics and other sci-
ences [9]. This model follows a four-step process that transi-
tions between understanding the physical system to its math-
ematical system. A framework known as ACER introduces
a method for organizing and extracting students’ conceptual
knowledge and use of mathematical tools [10]. For this pa-
per we have chosen to analyze student responses using the
Physical-Mathematical Model created by Uhden ef al. [11],
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described further below. This model provides a distinction
between structural skills of mathematization and interpreta-
tion and the technical skill of mathematical operation, and
highlights the relationship between the math and physics in-
volved. Our intent was to search for areas in which students
struggle the most when applying matrix algebra and eigen-
theory in various contexts of physics.

B. Motivation for Study

As stated previously, only a few studies exist that exam-
ine linear algebra in the contexts of physics, most of which
are in the context of quantum mechanics. We chose con-
texts of physics other than quantum mechanics in order to
complement and contrast with existing work. Thus, further
investigation of this research topic can prove to be valuable
to researchers, instructors, and students. In addition, several
studies have investigated some student understanding of ma-
trix algebra and eigentheory in non-physics contexts as men-
tioned previously. Investigation of student understanding of
these topics in physics context can also shed light on the in-
terface of math and physics.

II. RESEARCH METHODS

This research was conducted at California State University
Fullerton (CSUF), a Hispanic-serving institution with nearly
40,000 students. The data collected were written responses
from students in an upper-division math methods physics
course. Generally, the enrollment for this course ranges to
about 7 to 18 students per semester. This sophomore-junior
level course teaches students various mathematical concepts
to prepare students for future upper division physics courses.
The students enrolled have taken at least three semesters of
calculus and at least two lower division physics courses. Over
several semesters, approximately two-thirds of the students
reported prior completion of a linear algebra course.

A. Task Design

There are three main tasks that will be the primary focus for
this paper. These tasks were given on seven exams from four
different semesters taught by the same instructor. Prior to tak-
ing these exams, the students completed tutorials, homework
assignments, and a quiz related to matrix algebra and eigen-
theory. In addition, two important equations that the students
learned before taking the exams were (1) the eigenequation
and (2) the characteristic equation.

Ax = \x (D
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Task 1: Task I involved a system of two masses connected
by springs (see Fig. 1). The question was divided into two
parts. For part A, students were asked to translate the system
of equations into a matrix equation. They were expected to
take the second order derivatives of 1 = Aje™? and o =
Ase™?, take the real components, and substitute back into the
system of equations. The construction of the matrix equation
revealed that it was an eigenequation and students could thus
solve for the eigenvalues in order to determine the frequencies
as requested in part B.

Task 1

Consider two balls of mass m attached to a set of 3 springs horizontally. Describe the position of the left
bass as x; and the position of the right ball as x, are measured so that positive values are to the right.

ky Ky k,
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n m
The equations of motion for the balls are mx¥; = —3kx, + kx,
mx, = kx; — 3kx,
Assume normal mode motion with the same frequency so that x; = A;e'“* and x, = A,e'®t.

A. Rewrite the equations of motion as a single matrix multiplication and show or explain that

that is an eigenvalue relationship.

B. Solve the resulting eigenvalue problem to determine the frequencies of the two normal
modes.

FIG. 1. Task 1 given in four mid-term exams.

A potential issue with Task 1 is the dependence of part B
on part A. If students do not construct the matrix equation
properly in part A, they will have a difficult time performing
the appropriate operations to find the eigenvalues if there is
no matrix equation to begin with. This dependency of parts
made it difficult to analyze the responses effectively. Thus,
the two parts were divided into two separate questions, Tasks
2 and 3, which were given on the final exams for three of the
semesters.

Task 2: Task 2 is parallel to part B of Task 1, where it
asked for the frequencies of the normal mode springs system
(see Fig 2). This time the question gave a matrix equation,
similar to the one that the students were expected to construct
in Task 1 part A.

Task 2
In a normal mode problem with two springs, the following eigenvalue equation arises:

(e 50 G)=me ()

Determine the frequencies of the two modes.

FIG. 2. Task 2 given on final exams for three of the semesters.

Task 3: Task 3 is parallel to Task 1A, asking for a ma-
trix equation, but also asking students to describe how the
constructed matrix equation fits the profile of an eigenequa-
tion (see Fig 3). In addition, the system was changed from a
springs system to a coupled LC circuit.

B. Classification

Before examining the written responses, we used the
Physical-Mathematical Model by Uhden et al. to catego-
rize each task as one or more of the following skills: math-
ematization, interpretation, or technical operation (see Fig
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Task 3
A complicated circuit coupled LC branches has the resulting second-order equations for
I, and I, the currents through the two inductors:

P S
tfitzz s S LC 1 LC(Z 1)
1 1
= Ticht g

Assume normal modes of the current such that I; = I, ge® and I, = I, ,e'“".

Werite a matrix equation for the system of equations. Describe how it fits the profile
of an eigenvalue equation, but DO NOT SOLVE.

FIG. 3. Task 3 given on final exams for three of the semesters
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FIG. 4. Representation of the Physical-Mathematical Model cre-
ated by Uhden et al. It presents the three skills: mathematization,
interpretation, and technical operation. Mathematization and inter-
pretation are classified as the structural skills, technical operation as
the technical skill.

4). Mathematization and interpretation are characterized as
the structural skills, technical operation as the technical skill.
Each skill is distinguished based on the degree of mathema-
tization, i.e., the level of mathematical abstraction. The de-
gree of mathematization can increase or decrease depending
on the content of the task. For example, in Tasks 1A and 3,
students translate a system of equations into a matrix equa-
tion. The task presents coupled linear differential equations,
so the starting point is already fairly abstract, near the middle
of the Physical-Mathematical Model. We claim that the pro-
cess of translating to the matrix equation increases the degree
of mathematization. Figure 5 presents our categorization of
each task into its respective skill(s) and degree of mathemati-
zation.

We identified that Tasks 1B and 2 incorporated both of the
interpretation and technical operation skills. The interpreta-
tion skill is the ability to read equations and properly identify
the physical meaning and importance of symbols involved in
a physical system. Technical operation is described as pure
mathematical calculations—the ability to operate and properly
use algorithmic rules to perform any required calculations.
Note, this skill does not involve any of the structural skills
like the other two when performing the calculations; hence,
the model indicates a separate mathematical space as seen in
Figure 4. For both tasks, the students had to apply fechnical
operation to solve for the eigenvalues, then plug it into A and
isolate the frequency. Interpretation was when the students



TABLE I. Description of each skill’s general characteristics along with an example of a student written response

Skills Characteristics Example
e Translation into -rwt A, T ~HKX, + X,
mathematical terms - MW g kX - SLx
(e.g., an equation) ’ 4N =By l
e Mathematical sense ~ % LY X 1
Mathematization making — provide an o ("\\ * 'x,( 3 "\ ¥ 7‘(‘5“\ = '\_:: " ¢ )\ %o
analogy and reasoning
between mathematical
and physical systems
“Reading” Equations
Evaluating the
Interpretation meaning of the
expression, symbols,
and values
e Calculating for
Technical unknown values P ——
echnica e  Use of operations RTINS 2
Operation (multipliréation, ot ) 3 s-)\ = (43)( 32) =3 21 -FAAT-3 R NI4T0
division, subtraction,
and addition) and
equations
Mathematization  Technical Operation Interpretation Tasks 1B and 2 were analyzed differently because they
- - Symbolic both involved the calculation for the eigenvalues and the in-
MatrixgEquation Solve eigenvalue Interprgtation terpretation of the frequencies. We focused on three areas
problem when analyzing the students’ responses to these two tasks:
- 1. Execution of the necessary mathematical operations.
T1B T2 2. Calculation of the correct eigenvalues.
3. Symbolically interpreting the frequency correctly.
System of Equations w is the It is arguable that factor 2 is fused into factor 1 as both
frequency constitute the execution of mathematical operations. How-
ow ever, we saw responses in which students performed the nec-
essary operations but calculated the incorrect eigenvalues due
D.O.M

FIG. 5. Categorization of each task into their respective skills and
indication of their Degree of Mathematization (D.0.M)

had to identify what A was equal to, and define the symbol
that represented the frequency. Table I provides a more in-
depth description of what each skill represents along with a
student example.

C. Analysis Procedures

For Task 1A, we coded all 53 responses and looked for an-
swers that followed the structure of a general matrix equation:
Ax = b. Then, we re-evaluated the responses looking for the
"correctness" of the equation. This corresponds to following
the structure of the eigenequation along with having the ap-
propriate values for each element presented in the equation.
We used the same investigation method for Task 3.
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to simple algebraic errors. These students were coded as cor-
rect for the first criterion and incorrect for the second. The
third factor is observed for the investigation of the students’
interpretation skill. We identified whether students explicitly
acknowledged the frequency symbolically and related it to
the eigenvalue. The numerical values of the frequencies were
not taken in consideration since they do not reflect literacy in
interpreting symbols.

III. RESULTS AND DISCUSSION

A summary of our analysis of the student responses is
shown in Table II. The table presents our assessment of the
three skills in the student responses; the questions are cate-
gorized by their respective skills along with the criteria we
used to analyze the responses. Despite extensive instruction
on these topics, the tasks proved to be difficult for students,
even Tasks 2 and 3 which were posed on the final exam after
students had previously seen Task 1 on a midterm exam. The
results from the table presents three general claims.



TABLE II. Results for the analysis of the written responses. N represents the number of students who appropriately applied the skill.

Skill Analysis Results
) T1 A (NroraL= 53) T3 (Ntorar=38)
General Matrix Structure
Mathematization 52% (N=28) 34% (N=13)
Correct Eigenequation 49% (N=26) 29% (N=11)
T1 B (NtotaL=53) T2 (NtoraL= 38)
Interpretation Symbolic Interpretation of Frequency 52% (N=28) 92% (N=35)
. T1 B (NtoraL= 53) T2 (N1oTAL= 38)
Correct Eigenvalues — —
Technical 49% (N=26) 63% (N=24)
Operation Execution of Operations
o (A-AD 73% (N=39) 78% (N=30)
o det(A-AD)=0

1. Mathematization was difficult for students, particularly
in an unfamiliar context. The percentages for mathematiza-
tion were the lowest out of the three. In particular, the suc-
cess rates from Task 1A to Task 3 dropped 20%, despite Task
3 appearing on the course final. This gives some indication
of the challenge of mathematization in physical systems that
students are not familiar with. Although the questions are
mathematically isomorphic (both were normal modes and had
similar procedures in building the matrix equation), the stu-
dents struggled more in building the matrix equation for the
coupled LC circuit. Prior to these exams, the students have
practiced with similar questions as to Task 1, which dealt with
coupled springs, but not Task 3, the coupled LC circuit. Con-
sequently, only examining the students’ application of math-
ematization for Task 1 may overestimate the students’ abil-
ity. The previous exposures to the springs system could have
potentially made Task 1 more approachable. The complex-
ity of mathematization becomes more evident by the written
responses for Task 3 as very few students correctly mathema-
tized to build the correct matrix equation.

2. Interpreting the result of the calculation should not be
taken for granted. As noted, a majority of the students were
able to set up the problem correctly with using the charac-
teristic equation and appropriately apply its properties. How-
ever, having determined an eigenvalue, only half of the stu-
dents correctly related this eigenvalue to the frequency, with
most incorrectly interpreting frequency as either m or k. In
several cases, students identified A as the frequency with no
relation to w. It is worth noting that students had much greater
success (92%) determining the frequency in Task 2 on the
final exam than in Task 1B (52%) which was given on a
midterm exam. This may reflect prior exposure to a similar
task but is still promising.

3. Technical operation was not the most challenging part
of the problems, though some students struggled with sym-
bols in matrix operations. There is a perception that execut-
ing the mathematics is a major hurdle for students in upper-
division physics. Our data suggests that is not the case in
these tasks. In both Tasks 1B and 2, over 70% of the students
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correctly executed the matrix operations. Most of these stu-
dents also calculated the correct eigenvalues. The most com-
mon obstacle in the responses with the incorrect eigenvalues
was performing computations with symbols. As an example,
one student in this category used the characteristic equation
correctly. After taking the determinant, the student struggled
with proceeding onto the next steps, writing "I’m not too sure
where to go from here. Too many variables than I'm used to
in an eigenvalue matrix problem." The addition of symbols
hindered some students further from executing the technical
operation skill and obtaining the correct eigenvalues and fre-
quencies.

IV. CONCLUSION

This is our preliminary effort to study student applica-
tion of matrix algebra and eigentheory in physics. Coding
the questions based on the skills presented in the Physical-
Mathematical Model led to recognizing what skills needed
more attention. Though a majority of the students were profi-
cient with technical computations, our data suggest that math-
ematizing and interpreting were challenging. This may sug-
gest that instructors should focus more on these strucutral
skills as well as the transition to matrix operations with sym-
bols instead of numbers. Our next steps in this project are to
design and perform interviews to gain a deeper understanding
and authentic view of student reasoning with matrix algebra
and eigentheory in various physics contexts.
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