
Journal of Computer Security 0 (0) 1 1
IOS Press

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Scriptable and Composable SNARKs in the
Trusted Hardware Model1

Zhelei Zhou a, Bingsheng Zhang a,⇤, Yuan Chena, Jiaqi Lia, Yajin Zhou a, Yibiao Lua, Kui Ren a,
Phuc Thai b and Hong-Sheng Zhou b

a School of Computer Science and Technology, Zhejiang University, Zhejiang, China
E-mails: zl_zhou@zju.edu.cn, bingsheng@zju.edu.cn, yajin_zhou@zju.edu.cn, kuiren@zju.edu.cn
b Department of Computer Science, Virginia Commonwealth University, VA, USA
E-mails: thaipd@vcu.edu, hszhou@vcu.edu

Abstract. Non-interactive zero-knowledge proof or argument (NIZK) systems are widely used in many security sensitive
applications to enhance computation integrity, privacy and scalability. In such systems, a prover wants to convince one or
more veri�ers that the result of a public function is correctly computed without revealing the (potential) private input, such
as the witness. In this work, we introduce a new notion, called scriptable SNARK, where the prover and veri�er(s) can specify
the function (or language instance) to be proven via a script. We formalize this notion in UC framework and provide a generic
trusted hardware based solution. We then instantiate our solution in both SGX and Trustzone with Lua script engine. The
system can be easily used by typical programmers without any cryptographic background. The benchmark result shows that
our solution is better than all the known SNARK proof systems w.r.t. prover’s running time (1000 times faster), veri�er’s
running time, and the proof size. In addition, we also give a lightweight scriptable SNARK protocol for hardware with limited
state, e.g.,⇥(�) bits. Finally, we show how the proposed scriptable SNARK can be readily deployed to solve many well-known
problems in the blockchain context, e.g. veri�er’s dilemma, fast joining for new players, etc.

1. Introduction

Collaboration is one of the main driving forces for the sustainable advancement of our civilization,
growing from small-size tributes, to cities, and then to large-scale states. Being a part of the modern
society, we are interacting with hundreds of known/unknown entities either physically or remotely.
Themainmotivation of this work is to introduce new concepts and frameworks to enablemore e�ective
collaborations. One potential candidate tool is a well-known cryptographic primitive—zero knowledge
(ZK) proof/argument system. In a ZK system, two players, the prover and the veri�er, are involved; on
one hand, the prover who holds a valid witness of an NP statement, is able to convince the veri�er that
the statement is true without revealing the corresponding witness; on the other hand, if the prover
does not know any valid witness of the statement, then he cannot convince the veri�er. ZK systems
can be used to enable trustworthy collaborations: all players in a protocol are required to prove the
correctness of their behaviors in the protocol execution. However, to enable e�ective collaborations,
desired properties are expected, and we will elaborate them below.

1A preliminary version [60] of this paper was presented at the 26th European Symposium on Research in Computer Security
(ESORICS) 2021.

*Corresponding author. E-mail: bingsheng@zju.edu.cn.

0926-227X/$35.00 © 0 – IOS Press and the authors. All rights reserved

mailto:zl_zhou@zju.edu.cn
mailto:bingsheng@zju.edu.cn
mailto:yajin_zhou@zju.edu.cn
mailto:kuiren@zju.edu.cn
mailto:thaipd@vcu.edu
mailto:hszhou@vcu.edu
mailto:bingsheng@zju.edu.cn

2 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

1.1. Our Design Goals

In a large-scale collaboration network, it is infeasible for a party to prove the correctness of its
computation to all other parties one by one. The �rst property we need from ZK systems, is (1) non-
interactiveness in the sense that the prover only needs to prove the correctness of the computation once,
and the prover then can send the same proof to all other parties i.e., the veri�ers. From now on, we use
NIZK to denote non-interactive ZK systems. The second desirable property we need is (2) succinctness,
given the fact that the bottleneck for large-scale collaboration is the capacity of the underlying peer-to-
peer network communication. Furthermore, as already mentioned, we note that in a typical application
scenario a single prover will prove the same statement to many veri�ers. In this unbalanced setting, a
desirable NIZK proof system should have the property of (3) lightning fast veri�cation time.
Up to now, those properties have already been achieved by a number of existing NIZK proof systems,

such as zk-SNARK [7, 24, 40], zk-STARK [4], etc. However, these NIZK systems have not been widely
used in practice yet. A signi�cant barrier is the that the computation of prover is very heavy. The state-
of-the-art NIZK systems needs hours to prove large statement even on a powerful PC (32 cores and
512 GB RAM [4]), let alone portable devices such as smartphones, tablets, and IoT devices. We aim to
develop a NIZK system with the property of (4) lightweight prover.
To enable wide adoption of NIZK in the real world, the design must be (5) deployment friendly.

The underlying cryptographic machinery should be transparent to the developers, and the protocol
can be operated without cryptographic background. Unfortunately, all existing NIZK proof systems
for universal language require re-compilation of both prover and veri�er’s executable binary �les for
every new language instance.

1.2. Our Approach

We propose a new primitive, called scriptable SNARK, with the goal of achieving all desirable proper-
ties above. This new primitive allows the developers to specify the language instance or computation
to be veri�ed via a script without any re-compilation. Similar to NIZK proof systems for universal lan-
guage, a scriptable SNARK system can support multiple language instances, depending on the script
language design and the script engine execution environment. Di�erent from existing SNARK systems
for universal language, our scriptable SNARK is very easy to use; for a new language instance, the
players can easily de�ne the scripts and no further compilation is required.
We study our scriptable SNARK in the UC framework [14, 15]: we de�ne an ideal functionality

for scriptable SNARK, and then give two e�cient realizations in the trusted hardware model. To the
best of our knowledge, there is no UC-secure SNARK protocol proposed in the literature. The main
reason is that the extractable soundness property of SNARKs in the CRS/ROmodel require unfalsi�able
assumptions [25], such as the knowledge assumption, which is not UC-friendly. Kosba et al. [38] has
made an attempt on constructing composable NIZK systems, but their protocol is not succinct. To
bypass this impossibility result, our protocols utilize a stronger setup assumption, trusted hardware
model.

De�ning scriptable SNARK. We introduce a new notion called scriptable SNARK. Unlike the con-
ventional SNARK, the scriptable SNARK allows the users to specify the relation to be proven via a
script. More precisely, the prover only can prove a certain relation in the conventional SNARK, while
the prover is allowed to prove any script execution as long as the script is supported.

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 3

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Formally, we assume both the prover and the veri�ers have agreed on the function/script, denoted
as C, the public input, denoted as Inputpub, and the (public) output, denoted as Output; in addition, the
prover keeps a private input, denoted as Inputpriv, such that C(Inputpub, Inputpriv) = Output. The prover is
able to prove the veri�ers that he knows a private input Inputpriv that would make the script execution
C(Inputpub, Inputpriv) to generate output Output. We note that not all scripts can be supported; each
scriptable SNARK system is parameterized by a predicate Q, and Q(C, Inputpub, Inputpriv,Output) = 1
for any valid script C. The predicate Q is de�ned by the script language design and the script engine
execution environment.
An NP language L is de�ned by its polynomial-time decidable relation R; namely, L := {x :
9w s.t. (x,w) 2 R}. In practice, for each relation R, we assume there exists a corresponding script
CR such that CR(x,w) = 1 i� (x,w) 2 R; otherwise, CR(x,w) = 0. To use the scriptable SNARK
system for an NP language, the prover and the veri�ers set Inputpub := x, Inputpriv := w, Output := 1,
and the script as CR. The notion is formally modeled in the UC framework.

Constructing scriptable SNARKs.We then present a generic scriptable SNARK construction in the
trusted hardware model. Trusted hardware can enable an isolated and trusted computation environ-
ment where security sensitive data can be stored and processed with con�dentiality and integrity guar-
antees. Most existing trusted hardware based applications, e.g., [23] emphasize on the con�dentiality
aspect, while the security of our construction mainly relies on the computational integrity guaran-
teed by trusted hardware. The main idea is as follows. Recall that in a NIZK proof, the prover and the
veri�er have common input (CR, Inputpub := x). The potentially malicious prover wants to convince
the veri�ers that he knows a witness Inputpriv := w such that CR(Inputpub, Inputpriv) = 1. Since the
trusted hardware can guarantee computation integrity even when the host is malicious, we can let
OQ

HW to execute the relationship decision algorithm b CR(x,w) and sign the output b. To bind the
decision algorithm and statement, we let OQ

HW sign (CR, x, b) without revealing the witness w. There-
fore, by checking the signature, the veri�er is convinced that the prover must know a witness w such
that CR(x,w) = 1 if (CR, x, 1) is signed by OQ

HW. Similarly, for general computation, the private input
Inputpriv is not signed; therefore, zero-knowledge property is preserved even if the signature leaks the
signed message.

Compared with [60]. The construction proposed in the preliminary version [60] requires the trusted
hardware to have large enough state that at least linearly depends in the size of the statement |x| and/or
the size of the witness |w|; moreover, typically, we want to hardware to be programmable. In practice,
such powerful trusted hardware is not widely accessible; is it possible to design a scriptable SNARK
scheme that can work with trusted hardware with limited state and functionality, such as smart card,
USB tokens, etc? In this work, we propose another scheme that can work with trusted hardware with
(⇥(�))-size state.

A new construction for lightweight trusted hardware. Note that, in our previous approach, the prover
needs to send the entire circuit C directly to the trusted hardware at once. A natural approach to
minimizing the requirement of the hardware state is to disassemble the circuit C into gates, and we feed
the hardware k gates at a time, where k is a small constant, say k = 1. Furthermore, we let the potentially
malicious prover sends the hash of statement hx hash(Inputpub), ho hash(OutPub) instead of
the statement Inputpub,Output to the hardware OLight

HW . Therefore, the input size can be independent to
the statement. Meanwhile we re-de�ne the relation R0 : C(Inputpub, Inputpriv) = Output ^ hx =
hash(Inputpub) ^ ho = hash(Output). Without loss of generality, for a relation R0, we assume there

4 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

exists an e�ciently computable algorithm CR0 such that CR0((hx, ho), (Inputpub, Inputpriv,Output)) = 1
i� C(Inputpub, Inputpriv) = Output ^ hx = hash(Inputpub) ^ ho = hash(Output) and otherwise
CR0((hx, ho), (Inputpub, Inputpriv,Output)) = 0. We assume that CR0 is made of identity gates (for input
only) and NAND gates. For such CR0 , it is easy to �nd a deterministic polynomial-time (DPT) algorithm
Convert which takes C, Inputpub,Output as input and outputs L := {Li}n

i=1, where L is the description
of CR0 , n is the number of the gates and we assume that k|n. Then we use hash chains to guarantee the
integrity of L. We set hL := 0 at �rst, and update hL by hL hash(hL, {Lk(i�1)+ j}k

j=1, i) for i 2 [n

k
]. To

prevent the malicious prover from changing the assignment of wires, we let OLight
HW produce a MAC tag

after executing the gate operation, and return the result along with the MAC tag. When the malicious
prover sends the input wire value, he/she has to also attach its corresponding MAC tag. When OLight

HW
computes the last gate operation and checks the validity, it signs (hL, hx, ho, n) which reveals nothing
about Inputpriv; therefore, it preserves the zero-knowledge property.
Although there are a number of works in the literature studying how to speed up secure comput-

ing via trusted hardware, such as Intel SGX, we emphasize that this problem has not been solved by
previous works. The closest related work is sealed-glass proof introduced by Tramer et al. [54], where
the authors try to explore some use cases even if the isolated execution environment has unbounded
leakage, i.e., arbitrary side-channels. We note that, their primitive is interactive, thus not scalable; in
their protocol, for each veri�cation, the trusted hardware must be interacted with. Our primitive is
non-interactive, and in our construction, the veri�er can verify the proof without interacting with
the trusted hardware. There are also many theoretical di�erences between interactive ZK and non-
interactive ZK, such as the minimum assumptions needed to realize the primitive; therefore, this work
is not covered by [54]. Most importantly, ours is the �rst work to investigate scriptable SNARK, which
is developer-friendly.

1.3. Implementation

We implement our scriptable SNARK proof system on twomost popular trusted hardware platforms:
Intel SGX and Arm TrustZone. The main component is the Q-compliant hardware functionality OQ

HW.
In terms of Intel SGX, theOQ

HW functionality is instantiated by three entities: the (trusted) Intel server,
the prover, and the SGX hardware device. In terms of Arm TrustZone, currently only manufacture has
the privilege to access TrustZone root keys; nevertheless, our system uses Hikey 960 TrustZone de-
velopment board. TheOQ

HW functionality is instantiated by two entities: the (trusted) authority server,
and the TrustZone development board.
With regard to scriptability, in practice, it is a challenge for a third party to verify the consistency

between an executable binary and its software speci�cation. That is, the binary contains no bug, no
trapdoor, and it is not subverted. Even it is possible, it dramatically increases the veri�er’s complexity.
On the other hand, it is implausible to assume a trusted third party that is available to generate a certi-
�ed binary for each language instance. To address this issue, we decide to adopt a scripting language,
called Lua. Lua is a lightweight script language. We implemented modi�ed Lua script engine for both
Intel SGX enclave computation environment and the TrustZone environment. At a high level, we let
the Intel server and/or the setup authority server to prepare and sign a Lua engine enclave/binary.
The signed Lua engine is published as a common reference string (CRS). In addition, the hardware is
initialized with a signing key, and it corresponding public key is also published as a part of the CRS.
The modi�ed Lua engine takes input as a script C, a public input Inputpub, a private input Inputpriv,
and a tag tag that can be used to store auxiliary information, such as session id. The Lua engine runs

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 5

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 1
Asymptotic e�ciency comparison of di�erent SNARK proof/argument systems. |C| is the circuit size; |w| is the witness size;
|c| is the problem instance size; s is the number of copies of the subcircuits; d is the width of the subcircuits. DL stands for
discrete logarithm assumption, CRHF stands for collision-resistant hash functions, SIS stands for shortest integer solution
assumption, KE stands for knowledge-of-exponent assumption, HW stands for trusted hardware model, and AGM stands for
algebraic group model.

Scheme Setup size Proof size Prover’s time Veri�er’s time Setup Asm. Comp. Asm.
Ligero [1] 1

p
|C| |C| log |C| s log s + d log d RO CRHF

Bootle et al. [10] 1
p

|C| |C| |C| RO CRHF
Baum et al. [2]

p
|C|

p
|C| log |C| |C| log |C| |C| CRS SIS

zk-STARKs [4] 1 log2 |C| |C| polylog(|C|) polylog(|C|) RO CRHF
Aurora [6] 1 log2 |C| |C| log |C| |C| RO CRHF

Bulletproof [13] |C| log |C| |C| |C| log |C| CRS + RO DL
zk-SNARKs [7, 24, 40] |C| 1 |C| log |C| |c| CRS KE

This work 1 1 |C| 1 HW Signature

Output C(Inputpub, Inputpriv) and signs hC, Inputpub,Outputi. Therefore, any veri�er who has the pub-
lic key can verify the signature. The predicate Q is restricted by the Lua engine constrain. For instance,
there is a �xed heap size, e.g., 32MB when the Lua engine enclave is built. It limits the maximum
script size. Moreover, as security requirement, one may want to introduce a maximum running time
to prevent the script from running forever. Such a running time cap would also re�ected by Q.
Recall that scriptable SNARK proofs are typically deployed in a one-to-many scenario, where the

prover only needs to invoke the trusted hardware once and many veri�ers can check the validity of
the proof; however, currently, the remote attestation of Intel’s SGX requires the veri�er to interact with
the Intel Attestation Service (IAS) server. If each veri�er needs to query the Intel IAS server to check
the proof, the overall performance is limited by the throughput of Intel’s IAS. Moreover, the validity of
a NIZK proof should be consistent over time, i.e., if a NIZK proof is veri�able at this moment, the same
proof should remain veri�able in the future. Unfortunately, this would not be the case if we invoke
the Intel IAS in the veri�cation process; certifying an old quote (say, generated 1 year ago) is never
the design goal of Intel’s remote attestation. This is because the quote needs to contain a non-revoked
proof for each item on the signature revocation list, and the proof is no longer veri�able once the
revocation list is updated at the Intel side. That means a quote is only valid until the next revocation
list update. To resolve this issue, in our design, after generating the quote, the prover immediately
queries the Intel IAS server for the attestation veri�cation report on behave of a veri�er. Since the
attestation veri�cation report is signed by Intel, given Intel’s public key, anyone can verify the validity
of the attached signature. This tweak also makes the veri�cation process non-interactive.
We also implement our scriptable SNARK proof system based on trusted hardware with limited state.

We simulate the hardware functionality OLight
HW on Intel SGX. Most of the instantiations are similar to

the one described above, except that: (i) it only computes NAND gates; (ii) it uses MACs. (cf. Sec.6.2)

Performance. The performance of our scriptable SNARK system is theoretically and experimentally
evaluated and compared with the other NIZK proof systems. Table 1 illustrates the asymptotic e�-
ciency comparison measured by the circuit size. |C| is the circuit size; |w| is the witness size; |c| is the
problem instance size; s is the number of copies of the subcircuits; d is the width of the subcircuits.
As we can see, our construction can achieve constant CRS size, constant veri�er’s complexity, and

6 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

constant proof size. The prover’s complexity is also minimum, which is |C|. Note that in theory, the
veri�er’s complexity cannot be sublinear to the statement size |x|, but as a convention, it is ignored in
the table.
In terms of the actual experimental performance. The prover’s running time for evaluating a Boolean

circuit consisting of 239 NAND gates only takes less than 10 mins, which is 900 times faster than
the state of the art, zk-STARK, for circuits larger than 235 gates. Note that this performance result is
tested through Lua script, and native code for circuit evaluation is 10 times faster in our experiment.
The veri�er’s running time is merely a signature veri�cation, which takes approximately 1.5 ms –
better than all the other existing succinct NIZK systems. The proof size is 297 Bytes with current Intel
SGX signature, where 256 Bytes are the signature. Hence, we envision it is possible to further reduce
the proof size by replacing the signature scheme. The TrustZone based system uses ECDSA on the
secp256k1 curve, so the proof size is only 32 Bytes.

1.4. Applications

Finally, we discuss applications of our scriptable SNARK. We note that, many applications have
been previously investigated. However, it is very challenging to deploy them in practice due to the
performance barrier.

Sound and scalable blockchain.As discussed at the very beginning of the Introduction, lots of heated
discussions are taking place in blockchain community, with the goal of improving the performance in
a sound manner. This consists of two parts. First, we should address the existing issues, since many
blockchain scalability proposals have been implemented even the community is aware of the security
concerns. In Sec. 7, we mention a few examples, and showcase how to address these issues via our
SNARK. Again, we note that, these issues were not addressed simply due to the missing of fast and
SNARK.
Second, we will enable new design paradigm for the interesting “one-to-many” unbalanced compu-

tation scenarios. Using our SNARK, typically, a single node as prover, can generate in very short time a
proof that will convince all other nodes to accept the validity of the current state of the ledger, without
requiring those nodes to naively re-execute the computation, nor to store the entire blockchain’s state,
which would be required for such a naive veri�cation.

Privacy preserving smart contracts. The zero-knowledge properties of ZK proofs has already been
intensively used in blockchain projects, with the goal of ensuring the anonymity and protecting �nan-
cial privacy. Notably, Succinct Non-interactive ARguments of Knowledge (zk-SNARK) has been used
in Zcash and Ethereum; Bulletproofs has been used in Monaro. Recently, Ethereum has the plan to
explore the feasibility zk-STARK in its future version of their platform. We note that, it is still not clear
if zk-STARK can be widely adopted in blockchain platforms given the fact that, the current proof size
is 1000⇥ longer than zk-SNARKs. Fortunately, our SNARK is super succinct, and super fast. In Sec. 7,
we demonstrate concrete examples.

2. Preliminaries

2.1. Trusted Execution Environment

Trusted execution environment (TEE) refers to a range of technologies that can establish an isolated
and trusted environment where security sensitive data can be stored and processed with con�dential-

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 7

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

ity and integrity guarantees. TEE needs to be instantiated on top of a trusted computing base (TCB),
which consists of hardware, �rmware and/or software. Minimizing the size (attack surface) of TCB
with reasonable assumptions is the common goal of this line of research. In practice, TEE can be re-
alized on top of several promising trusted hardware technologies, such as ARM TrustZone and Intel
SGX. Although recently a few side-channel attacks, e.g. [12, 43], have been explored against those TEE
candidates, new designs and �xes are proposed on a monthly basis. Hence, we envision that TEE will
be a cheap and acceptable assumption in the near future. In this work, our benchmarks are mainly
based on the Intel SGX platform for its readily deployed remote attestation infrastructure; however,
our technique can also be implemented on any other TEE solutions.

Intel SGX. Intel Software Guard Extensions (SGX) is a widely used trusted hardware solution to en-
able TEE. It provides a hardware enforced isolated execution environment against malicious OS kernels
and supervisor software. The SGX processor sets aside an exclusive physical memory space, called pro-
cessor reserved memory (PRM) to ensure the con�dentiality and integrity of enclave’s memory. Each
SGX hardware holds two root keys: root provisioning key and root seal key. The actual attestation keys
are deviated from those root keys via PRF. Intel’s (anonymous) attestation is based on an anonymous
group signature scheme called Intel Enhanced Privacy ID (EPID) [11]. In this work, we are particularly
interested in SGX’s ability to enable attested computation, i.e. any third party can audit an outcome is
computed by a pre-agreed program in a genuine SGX. More speci�cally, the application enclave �rst
uses EREPORT to generate a report for local attestation (identifying two enclaves are running on the
same platform). The report is then sent to a special enclave called Quoting Enclave (QE) to produce a
quote by signing the report with the group signature. In theory, given the group public key (and the
up-to-date revocation list), any veri�er can check the validity of the signed quote non-interactively;
however, currently, one must contact the Intel Attestation Service (IAS) for veri�cation. IAS will �rst
verify the group signature and then create the corresponding attestation veri�cation report with its
own signature.
In practice, the security guarantee of SGX is evolving alone with the discovered side-channel attacks:

cache-timing attacks [19], page-fault attacks [59], branch shadowing [41], synchronization bugs [58],
foreshadow [12], and SgxPectre [17], etc. Subsequently, some privacy concerns are raised when SGX is
involved in the data process. Hereby, we would like to emphasize that unlike most SGX applications,
the security of our construction mainly relies on the computational integrity guaranteed by SGX rather
than data con�dentiality. Namely, the adversary is allowed to learn the enclave’s internal state during
computation. As far as the root keys are not leaked, the soundness of our construction still holds. This
relaxed assumption is modelled as transparent enclave in the literature [54].

TrustZone.As one of themostwidely deployed security architectures to support TEE, ARMTrustZone
separates a processor into two security states, namely the secure world and the normal world. And the
resource (e.g., memory, peripherals) belonging to the secure world cannot be accessed by the normal
world directly. The processor runs in either the normal world or the secure world at any given time.
Switch between the two worlds is triggered by SMC instruction. In this way, ARM TrustZone enables
an isolated execution in the secure world. ARM TrustZone can also support attested computation by
equipping each TrustZone-enabled device with a device-speci�c, asymmetric key pair that is signed
by the device’s vendor. This has been implemented in real-world products (like Samsung Knox). Then
by putting the pre-agreed program into the secure world, the system software of the secure world can
leverage the private key of the key pair to sign the outcome from the pre-agreed program together with
the identity information of the pre-agreed program. Theoretically, anyone can verify the signature of

8 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

the signed data (outcome and identity information of the pre-agreed program) as long as he or she
has the corresponding public key. But in practice, device vendors (like Samsung) tend to maintain an
attestation server for signature veri�cation purpose. After the signature passes the veri�cation, the
attestation server can generate the corresponding attestation report to indicate that the signed data is
indeed produced by a trusted device source, just like what IAS does.

2.2. NIZK Proof/Argument Systems

Let R be a polynomial time decidable binary relation. We call x the statement and w the witness,
if (x,w) 2 R. L := {x | 9w : (x,w) 2 R} is the NP language de�ned by R. In a zero-knowledge
(ZK) proof/argument system, the prover wants to convince one or more veri�er(s) x 2 L, where L
is an arbitrary NP language. The ZK system is called non-interactive (NIZK) [8] if the prover can
generate the proof without interacting with a veri�er, and any veri�er(s) can check the validity of
the proof. However, it is not possible to realize a NIZK proof/argument system unless the language
is in BPP in the plain model (a.k.a. standard model) [27]. To circumvent this impossibility result, all
NIZK proof/argument systems must rely on some trusted setup assumptions, such as the common
reference string model, random oracle model, and generic group model, etc. A NIZK system is called
succinct if the proof size is asymptotically less than |w| + |x| (cf. Sec. 3). Note that, a succinct NIZK
proof of knowledge is also called a SNARK. Unfortunately, it is also shown in [25] that succinct NIZK
proof/argument systems cannot be based on any falsi�able assumptions, i.e. an assumption that can
be written as a game. That means one must embrace “strong assumptions” to enjoy the bene�t of
succinctness. In addition, many NIZK proof/argument systems have a so-called unbalanced property,
where the veri�er’s complexity is minimized (sometimes maybe at the cost of increasing the prover’s
complexity). This property is desirable when the number of veri�ers is large, such as the blockchain
scenarios.

2.3. Universal Composibility

Our model is based on the Universal Composibility (UC) framework [14, 15], which lays down a
solid foundation for designing and analyzing protocols secure against attacks in an arbitrary network
execution environment (therefore it is also known as network aware security model). Roughly speaking,
in the UC framework, protocols are carried out over multiple interconnected machines; to capture
attacks, a network adversary A is introduced, which is allowed to corrupt some machines (i.e., have
the full control of all physical parts of some machines); in addition, A is allowed to partially control
the communication tapes of all uncorrupted machines, that is, it sees all the messages sent from and
to the uncorrupted machines and controls the sequence in which they are delivered. Then, a protocol
⇧ is a UC-secure implementation of a functionality F , if it satis�es that for every network adversary
A attacking an execution of ⇧, there is another adversary S—known as the simulator—attacking the
ideal process that uses F (by corrupting the same set of machines), such that, the executions of⇧with
A and that of F with S makes no di�erence to any network execution environment Z .
The ideal world execution. In the ideal world, the set of parties P := {P1, · · · , Pn} only communicate
with an ideal functionality F and the simulator S during the execution. In this ideal world, the cor-
rupted parties are controlled by the simulator S . The output of the environment Z in this execution is
denoted by ExecF ,S ,Z .

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 9

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

The real world execution. In the real world, the set of partiesP := {P1, · · · , Pn} communicate with each
other and the adversaryA to run the protocol⇧. In this real world, the corrupted parties are controlled
by the adversary A. The output of the environment Z in this execution is denoted by Exec⇧,A,Z .

De�nition 1. We say protocol ⇧ UC-secure realizes functionality F if for all PPT adversaries A there
exists a PPT simulator S such that for all PPT environment Z it holds:

Exec⇧,A,Z ⇡ ExecF ,S ,Z

In order to conceptually modularize the design of the protocols, the notion of “hybrid models” is
often introduced in the UC framework. A protocol ⇧ is said to be realized “in the O-hybrid model” if
⇧ invokes the ideal functionality O as a subroutine.

De�nition 2. We say protocol ⇧ UC-secure realizes functionality F in theO-hybrid world if for all PPT
adversaries A there exists a PPT simulator S such that for all PPT environment Z it holds:

ExecO⇧,A,Z ⇡ ExecF ,S ,Z

The UC model provides strong security guarantees (via polynomial-time security reduction). It also
has two appealing features: The property that stand-alone security directly implies security under
general concurrent composition (thus protocols only need to be analyzed in a stand-alone fashion),
and its support for modular analysis of protocols.

2.4. Cryptographic Tools

We need the following cryptographic tools to build our protocols.

Digital signature. A digital signature DS is a mathematical scheme for verifying the authenticity of
digital messages or documents. Formally, the digital signature schemeDS has the following algorithms:

• (PK,SK) DS.KeyGen(1�). It is the key generation algorithm that takes input as the security
parameter � and outputs a public key PK and a signature key SK.

• � DS.Sign(SK,m). It is the signature algorithm that takes input as the signature key SK and a
message m. It outputs a signature �.

• b DS.Verify(PK,m,�). It is the veri�cation algorithm that takes input as the public key PK, a
message m and a signature �. It outputs a bit b indicating accpetance (b = 1) or rejection (b = 0).

The security notion required for digital signature is existential unforgeability under chosen message
attacks, and we capture it by the following de�nition.

De�nition 3. We say the digital signature DS is EUF-CMA secure if for any PPT adversary A, the prob-
ability of winning the following game Pr[SuccDS

A
] is ngeligible

• A interacts with a challenger, denoted as Ch;
• Ch runs (PK,SK) DS.KeyGen(1�), and hands the public key PK to A;
• For i 2 [n]: A sends the message mi to Ch, Ch runs �i DS.Sign(SK,mi) and sends �i back. Here n

is set by A.

10 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• A forges a new message/signature pair (m0,�0) and sends it to Ch. Then Ch checks m
0 /2 {mi}n

i=1 and
DS.Verify(PK,m0,�0) = 1. If both checks pass, A wins.

Here we de�ne the advantage of an adversary A as AdvDS
A
(1�) = Pr[SuccDS

A
].

Message authentication code. A message authentication code (MAC) is another cryptographic
scheme that used to authenticate the origin and nature of a message. It is similar with digital signature,
but uses symmetric encryption. A MAC scheme has the following algorithms:

• K MAC.KeyGen(1�). It is the key generation algorithm that takes input as the security param-
eter � and outputs the secret key K.

• t MAC.Sign(K,m). It is the signing algorithm that takes input as the secret key K and a message
m. It outputs a MAC tag t.

• b MAC.Verify(K,m, t). It is the veri�cation algorithm that takes input as the secret key K, a
message m and a MAC tag t. It outputs a bit b indicating accpetance (b = 1) or rejection (b = 0).

The security notion required for MAC is the same as digital signature, and we also capture it by the
following de�nition.

De�nition 4. We say the digital signature MAC is EUF-CMA secure if for any PPT adversary A, the
probability of winning the following game Pr[SuccMAC

A
] is ngeligible

• A interacts with a challenger, denoted as Ch;
• Ch runs K MAC.KeyGen(1�);
• For i 2 [n]: A sends the message mi to Ch, Ch runs ti MAC.Sign(K,mi) and sends ti back. Here n

is set by A.
• A forges a new message/tag pair (m0, t0) and sends it to Ch. Then Ch checks m

0 /2 {mi}n

i=1 and
MAC.Verify(K,m0, t0) = 1. If both checks pass, A wins.

Here we de�ne the advantage of an adversary A as AdvMAC
A

(1�) = Pr[SuccMAC
A

].

Collision-resistant hash function. A hash function hash is collision resistant if it is hard to �nd
two preimages that hash to the same image, that is, two preimages a, b such that hash(a) = hash(b).
Formally, we capture the collision resistant property by the following de�nition.

De�nition 5. We say the hash function hash is collision resistant if for any PPT adversary A, the prob-
ability of winning the following game Pr[Succhash

A
] is ngeligible

• A interacts with a challenger, denoted as Ch;
• A �nds a preimage pair (a, b) and sends it to Ch. Then Ch checks a 6= b and hash(a) = hash(b). If
both checks pass, A wins.

Here we de�ne the advantage of an adversary A as Advhash
A

(1�) = Pr[Succhash
A

].

3. Security De�nition

In this section, we formally de�ne the scriptable SNARK. Our de�nition is through an ideal function-
ality FQ

�SNARK. In addition, we present a setup functionality OQ
HW. We note that the two functionalities

will be realized in section 4 and and instantiated in section 6, respectively.

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 11

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

The functionality interacts with a set of parties P := {P1, . . . , Pn} and an adversary S . It is parameterized with a
predicate Q.

Proof:

• Upon receiving (P����, sid, ssid, hC, Inputpub, Inputpriv,Outputi) from a party Pi 2 P :

∗ Assert Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output;
∗ Send (P����, sid, ssid, hPi, C, Inputpub,Outputi) to S ;
∗ Upon receiving (P����, sid, ssid, ⇡) from S , record tuple hC, Inputpub,Output, ⇡i and return (P����, sid, ssid, hC, Inputpub,

Output, ⇡i) to Pi.

Veri�cation:

• Upon receiving (V�����, sid, ssid, hC, Inputpub,Output, ⇡i) from a party P j 2 P :

∗ If tuple hC, Inputpub,Output, ⇡i is not recorded, send (V�����, sid, ssid, hP j, C, Inputpub,Output, ⇡i) to S ;
∗ Upon receiving (V�����, sid, ssid, Inputpriv) from S :

∗ Assert Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output;
∗ Record the tuple hC, Inputpub,Output, ⇡i;

∗ If a tuple hC, Inputpub,Output, ⇡i has been recorded, return (V�����, sid, ssid, 1); else, return (V�����, sid, ssid, 0).

Functionality FQ
�SNARK

Fig. 1. The scriptable functionality F
Q
�SNARK.

Scriptable SNARK ideal functionality.The scriptable SNARK ideal functionalityFQ
�SNARK is depicted

in Fig. 1. The functionality is parameterized by a predicate Q. The functionality FQ
�SNARK allows the

prover to obtain a proof ⇡ if Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output,
where Q is a predicate. Once a proof ⇡ is generated, it will always is veri�ed. Notice that the proof
⇡ is generated without the knowledge of the private input Inputpriv; therefore, the proof generated
by FQ

�SNARK has the conventional zero-knowledge. Since FQ
�SNARK must obtain a private input Inputpriv

such that C(Inputpub, Inputpriv) = Output before recording a proof ⇡. Hence, FQ
�SNARK also capture the

(knowledge) soundness property. In addition, the scriptable property is re�ected by the predicate Q,
which restricts the class of functions thatFQ

�SNARK supports. For instance, Q could be the total execution
steps is less than a certain bound.
The functionality FQ

�SNARK interacts with a set of players P := {P1, . . . , Pn} as well as ideal adver-
sary S . To generate a proof ⇡, the prover needs to submit the command (P����, sid, ssid, hC, Inputpub,

Inputpriv,Outputi) to FQ
�SNARK. After checking the validity, FQ

�SNARK will inform the adversary S using
command (P����, sid, ssid, Pi, C, Inputpub,Output). If the adversary S allows, he/she will then send
the proof ⇡ to FQ

�SNARK. FQ
�SNARK records the message hC, Inputpub,Output, ⇡i and returns it to the re-

questor. To verify a proof ⇡, the functionality FQ
�SNARK �rst checks if the tuple hC, Inputpub,Output, ⇡i

is recorded. If not, which means the proof is not generated by the functionality itself, then FQ
�SNARK

asks the adversary S for the private input. Once a private input Inputpriv is submitted, FQ
�SNARK checks

Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output. If it is the case, FQ
�SNARK records

the tuple (C, Inputpub,Output, ⇡), and the proof is accepted.
Remark on succinctness. We say a NIZK proof system is succinct if the size of the proof |⇡| =
poly(�)(|x|+ |w|)o(1).

12 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

The functionality interacts with a set of parties P := {P1, . . . , Pn} and adversary S . It is parameterized with a predicate
Q and a digital signature scheme DS := (KeyGen,Sign,Verify).

• Upon receiving (I���, sid) for the �rst time from any party Pi 2 P :

∗ Generate (PK,SK) DS.KeyGen(1�);
∗ Record (sid,PK,SK);

• Upon receiving (G��PK, sid) from a party Pi 2 P :

∗ If (sid,PK, ·) is recorded, return (G��PK, sid,PK) to the requestor Pi.

• Upon receiving (C������, sid, ssid, hC, Inputpub, Inputprivi) from a party Pi 2 P for some ssid, if (sid, ·,SK) is recorded,
send (C������, sid, ssid, hPi, C, Inputpubi) to the adversary S ; Once receiving (P������, sid, ssid) from S , do:

∗ Execute y C(Inputpub, Inputpriv);
∗ Assert Q(C, Inputpub, Inputpriv, y) = 1;
∗ Sign � DS.Sign(SK, hssid, C, Inputpub, yi);
∗ Return (C������, sid, ssid, hy,�i) to the requestor Pi.

Functionality OQ
HW

Fig. 2. The Q-compliant trusted hardware functionality O
Q
HW

Q-compliant trusted hardware model. Our scheme is built in the Q-compliant trusted hardware
model (Q-HW model), where Q is a predicate that speci�es the class of functions that the hardware
is allowed to compute. In the Q-HW model, all parties have access to an ideal functionality OQ

HW,
which on input queries, executes a given Q-compliant function and returns the execution results. The
predicate Q depends on the setup, which may vary from protocol to protocol. In this work, we ab-
stract our requirement as the functionality OQ

HW (cf. Fig. 2, below). As will be shown in Sec. 6 later,
it can be instantiated from programmable trusted execution environment (TEE) solutions, e.g., Intel
SGX or TrustZone. The OQ

HW functionality is parameterized with a predicate Q and a digital signature
scheme, denoted DS := (KeyGen,Sign,Verify). OQ

HW can be initialized once by sending the (I���, sid)
command to it. It then generates (PK,SK) DS.KeyGen(1�) and record (sid,PK,SK). After ini-
tialization, anyone can query the public key PK using the G��PK command. Anyone can then send
(C������, sid, ssid, C, Inputpub, Inputpriv) request to the functionalityOQ

HW, where C is the polynomial-
time algorithm, Inputpub is the public input, and Inputpriv is the private input. The functionality �rst
computes C(Inputpub, Inputpriv) = y and then assertsQ(C, Inputpub, Inputpriv, y) = 1; it then returns (y,�),
where the signature � DS.Sign(SK, hssid, C, Inputpub, yi). Note that the private input is not signed.

4. Our Scriptable SNARK Construction

In this section, we present our scriptable SNARK construction in the OHW-hybrid world. Before
presenting our intuition and construction, we �rst set up the context for scriptable SNARK.

Common information. Unlike most existing SNARK proof systems, the script C (or language L to
be proven) is not hardcoded in the prover and veri�er executable �les. Our scriptable SNARK proof
system allows the users to con�gure the language instance. This implicitly assumes that the prover
and the veri�er(s) have some common information in addition to the statement x before the protocol
execution. For instance, they all know the description of the NP language L, which is usually repre-
sented by its polynomial decidable binary relation R. Without loss of generality, for a relation R, we
assume there exists an e�ciently computable algorithm CR such that CR(x,w) = 1 if (x,w) 2 R and

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 13

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Prove:

• Upon receiving (P����, sid, ssid, hC, Inputpub, Inputpriv,Outputi) from the environment Z , Pi 2 P does:

∗ If the functionality O
Q
HW is not initialized yet, send (I���, sid) to O

Q
HW;

∗ Assert Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output;
∗ Send query (C������, sid, ssid, C, Inputpub, Inputpriv) to O

Q
HW and obtain (C������, sid, ssid, hOutput,�i) from O

Q
HW;

∗ Output (P����R�����, sid, ssid,�) to the environment Z .

Verify:

• Upon receiving (V�����, sid, ssid, hC, Inputpub,Output, ⇡i) from the environment Z , P j 2 P does:

∗ Query (G��PK, sid) to O
Q
HW, obtaining (G��PK, sid,PK);

∗ Parse ⇡ as �;
∗ Compute b DS.Verify(PK, hssid, C, Inputpub,Outputi,�);
∗ Output (V�����R�����, sid, ssid, b) to the environment Z .

Scriptable SNARK protocol ⇧Q
�SNARK

Fig. 3. The scriptable SNARK protocol ⇧Q
�SNARK in the OQ

HW-hybrid model.

otherwise CR(x,w) = 0. CR is the common public input to both the prover and the veri�er. Depend-
ing on the concrete implementation, di�erent SNARK proof systems use di�erent CR representation;
most popular SNARK proof systems use arithmetic circuit representation, while some, e.g. [5], allows
more developer-friendly representations, e.g., in C programming language. Although, in principle, one
can convert any RAM model program into a circuit representation, this transform imposes O(log n)
overhead.

Intuition. Trusted hardware o�ers two important features: (i) data con�dentiality and (ii) computa-
tion integrity. Most existing trusted hardware (TEE) based applications, e.g., [23] mainly explore the
data con�dentiality aspect; whereas, in this project, we emphasize the computation integrity aspect.
Recall that in a NIZK proof, the prover and the veri�er have common input (CR, Inputpub := x). The
potentially malicious prover wants to convince the veri�ers that he/she knows a witness Inputpriv := w

such that CR(Inputpub, Inputpriv) = 1. Since the trusted hardware can guarantee computation integrity
even when the host is malicious, we can let OQ

HW to execute the the relationship decision algorithm
b CR(x,w) and sign the output b. To bind the decision algorithm and statement, we let OQ

HW signs
(CR, x, b) without revealing the witness w. Therefore, by checking the signature, the veri�er is con-
vinced that the prover must know a witness w such that CR(x,w) = 1 if (CR, x, 1) is signed by OQ

HW.
Similarly, for general computation, the private input Inputpriv is not signed; therefore, zero-knowledge
property is preserved even if the signature leaks the signed message.
What is the di�erence between the above SNARK construction and trusted computation in theOQ

HW
functionality setting? Recall that SNARK proofs are typically deployed in a one-to-many scenario, so
the prover only needs to invoke the OQ

HW once and many veri�ers can check the validity of the proof;
on the contrary, the other existing TEE based trusted computation applications mostly focus on one-
to-one setting. Our crs is just the public key of OQ

HW.

Construction. Our scriptable SNARK construction utilizes the Q-compliant hardware functionality
OQ

HW as de�ned in Fig. 2.
We aim to achieve constant veri�cation time; light-weight device can perform the veri�cation. In

addition, the veri�er is only required to query theOQ
HW functionality once to obtain the public key PK;

14 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

when PK has already been fetched, the veri�cation can be executed o�ine. As depicted in Fig. 3, our
scriptable SNARK proof protocol⇧Q

�SNARK uses a digital signature scheme DS := (KeyGen,Sign,Verify)
as its building block. At the beginning of the protocol, the hardware functionality needs to be ini-
tialized. In Fig. 3, this step is performed by the prover (marked in grey) if it is not done yet. The
prover then asserts Q(C, Inputpub, Inputpriv,Output) = 1 and C(Inputpub, Inputpriv) = Output; it sends
(C������, sid, ssid, C, Inputpub, Inputpriv) to OQ

HW and obtains (C������, sid, ssid, hOutput,�i) from
OQ

HW. � is the proof.
To verify a proof ⇡, the veri�er needs to know the public key PK. This step can be performed

by a trusted setup, and PK is published as the common reference string. Otherwise, the veri�er can
query OQ

HW to fetch it (marked in grey). In the veri�cation phase, the veri�er V accepts the proof if
DS.Verify(PK, hssid, C, Inputpub,Outputi,�) = 1.

Security.We show the security of our succinct scriptable SNARK construction via Thm. 1, below.

Theorem 1. Assume signature scheme DS := (KeyGen,Sign,Verify) is EUF-CMA secure with adver-
sarial advantage AdvDS

A
(1�). The scriptable NIZK protocol ⇧Q

�SNARK described in Fig. 3, UC-realizes the
FQ

�SNARK functionality depicted in Fig. 1 in theOQ
HW-hybrid world against static malicious corruption with

adversarial advantage AdvDS
A
(1�).

Proof. To prove the theorem, we construct a simulator S such that no non-uniform PPT environment
Z can distinguish between (i) the real execution ExecO

Q
HW

⇧Q
�SNARK,A,Z

where the parties P := {P1, . . . , Pn}
run protocol⇧Q

�SNARK in theOQ
HW-hybrid world and the corrupted parties are controlled by a dummy ad-

versaryAwho simply forwards messages from/toZ , and (ii) the ideal execution Exec
F

Q
�SNARK,S ,Z

where
the parties interact with functionality FQ

�SNARK and corrupted parties are controlled by the simulator S .
We consider following cases.

C��� 1: The prover Pi is corrupted.

Simulator. The simulator S internally runs A, forwarding messages to/from the environment Z .
The simulator S simulates honest veri�er Pj and the functionality OQ

HW. In addition, the simulator S
simulates the following interactions with A.
�When the simulatedOQ

HW receives the incomingmessage (C������, sid, ssid, hC, Inputpub, Inputprivi)
from Pi, S computes C(Inputpub, Inputpriv) = Output and checks if Q(C, Inputpub, Inputpriv,Output) = 1. If
it is the case, S acts as Pi to send (P����, sid, ssid, hC, Inputpub, Inputpriv,Outputi) to FQ

�SNARK. Upon
receiving (P����, sid, ssid, hPi, C, Inputpub,Outputi) from FQ

�SNARK, S replies (P����, sid, ssid,�) to
FQ

�SNARK, where � DS.Sign(SK, hssid, C, Inputpub,Outputi) is the signature generated by the sim-
ulated OQ

HW functionality.
� Upon receiving (V�����, sid, ssid, hPj, C, Inputpub,Output, ⇡i) from functionality FQ

�SNARK, the sim-
ulator S checks the internal state (the view) of the simulated OQ

HW, if the command (C������,
sid, ssid, hC, Inputpub, Inputprivi) has been queried to OQ

HW before, it checks if the generated signature
� DS.Sign(SK, hssid, C, Inputpub,Outputi) is the same as ⇡. If not, aborts. Otherwise, S returns
Inputpriv to FQ

�SNARK.
Indistinguishability. The indistinguishability is proven through a series of hybrid worlds H1,H2.
Hybrid H1: It is the real protocol execution ExecO

Q
HW

⇧Q
�SNARK,A,Z

.

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 15

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Hybrid H2: H2 is the same as H1 except that in H2, if the proof ⇡ is not the same as the simulated
signature �, S aborts.

Lemma 1. If DS is a EUF-CMA secure digital signature scheme with adversarial advantage AdvDS
A
(1�),

then H4 and H3 are indistinguishable with advantage ✏ = AdvDS
A
(1�).

Proof. The simulator S aborts when the prover can generate an accepting proof without querying
the functionality OQ

HW. If there exists an adversary A who can generate an accepting proof without
querying OQ

HW, then we can construct an adversary B who can break the EUF-CMA security game
of the underlying digital signature scheme DS. Indeed, since OQ

HW is always trusted, the only way an
adversary A can produce an accepting proof is to forge a signature. During the reduction, B simu-
lates theOQ

HW as follows. Up on receiving query (C������, sid, ssid, C, Inputpub, Inputpriv), B computes
C(Inputpub, Inputpriv) = Output and checks if Q(C, Inputpub, Inputpriv,Output) = 1. It then queries the
EUF-CMA game challenger to sign hssid, C, Inputpub,Outputi. After receiving the signature � from the
challenger, B forwards it toA. WhenA outputs (V�����, sid, ssid, hC⇤, Input⇤pub,Output⇤, ⇡⇤i) such that
the veri�cation passes. B outputs (m⇤ := hssid, C⇤, Input⇤pub,Output⇤i,�⇤ := ⇡⇤) as the forged message
signature pair. Clearly, B wins whenever A wins.
Therefore, the overall advantage is AdvDS

A
(1�). 2

The adversary’s view ofH2 is identical to the ideal execution Exec
F

Q
�SNARK,S ,Z

. Therefore, the overall
distinguishing advantage is AdvDS

A
(1�) .

C��� 2: The veri�er Pj is corrupted.

Simulator. Similar to Case 1, the simulator S internally runs A, forwarding messages to/from the
environment Z . The simulator S simulates honest prover Pi and the functionality OQ

HW. In addition,
the simulator S simulates the following interactions with A.
�When the simulated OQ

HW receives (C������, sid, ssid, hC, Inputpub, Inputprivi) from Pi, the simula-
torS acts asOQ

HW to generate the corresponding signature� DS.Sign(SK, hssid, C, Inputpub,Outputi)
and return (C������, sid, ssid, hOutput,�i) to Pi.
Indistinguishability. The indistinguishability is straightforward. The proof ⇡ generated by the sim-

ulator S has identical distribution to the proof in the real protocol execution ExecO
Q
HW

⇧Q
�SNARK,A,Z

. This is
because both proofs are the signatures generated as DS.Sign(SK, hssid, C, Inputpub,Outputi), and the
private input is not needed to generate a signature. Moreover, the honest prover �rst checks the valid-
ity of the predicate Q(C, Inputpub, Inputpriv,Output) = 1 and the correctness of the computation output
C(Inputpub, Inputpriv) = Output before querying OQ

HW; therefore, the Q-compliance is guaranteed, de-
spite the fact that OQ

HW does not know Inputpriv.

C��� 3: Both the prover Pi and the veri�er Pj are corrupted.

Simulator. Trivial case. There is nothing needs to extract, as the trustees do not have input. The simu-
lator S just run trustee according to protocol ⇧Q

�SNARK.
Indistinguishability. The view of Z in the ideal execution Exec

F
Q
�SNARK,S ,Z

has identical distribution to

the view of Z in the real execution ExecO
Q
HW

⇧Q
�SNARK,A,Z

.
This concludes the proof. 2

16 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

5. A lightweight SNARK Scheme for Trusted Hardware with Limited State

The hardware functionality OQ
HW as described in Fig. 2 requires the trusted hardware to have large

enough state that linearly depends in the size of the statement |x| and/or the size of the witness |w|;
moreover, typically, we want to hardware to be programable. Unfortunately, there are very few prod-
ucts that can ful�ll this requirement, which limits the realization choices of our scheme. In this section,
we propose another scheme that can work with trusted hardware with (⇥(�))-size state.

Intuition. Our previous approach is to send the entire circuit C directly to the trusted hardware. A
natural approach to minimizing the hardware state requirement is to disassemble the circuit C into
gates, and we feed the hardware k gates at a time, where k is a small constant. However, this would
lead to new problems: (i) the trusted hardware with limited state is still not able to load the entire
statement x at once; (ii) how to prevent a malicious prover from changing the structure of C and/or
wire assignments.
Our solution is to utilize a collision-resistant hash function hash and the message authentication

code (MAC) scheme MAC := (KeyGen,Sign,Verify). To address the �rst problem, we send the hash
of the statement hx hash(Inputpub), ho hash(Output) instead of the statement Inputpub,Output
itself. In this way, we reduce the size of the input. Meanwhile we re-de�ne the relation R0 :
C(Inputpub, Inputpriv) = Output ^ hx = hash(x);^ ho = hash(Output). Without loss of gener-
ality, for a relation R0, we assume there exists an e�ciently computable algorithm CR0 such that
CR0((hx, ho), (Inputpub, Inputpriv,Output)) = 1 if C(Inputpub, Inputpriv) = Output ^ hx = hash(x);^ ho =
hash(Output) and otherwise CR0((hx, ho), (Inputpub, Inputpriv,Output)) = 0. We assume that CR0 is made
of identity gates (for input only) and NAND gates. For such CR0 , we assume it is easy to �nd a DPT
algorithm Convert which takes C, Inputpub,Output as input and outputs L := {Li}n

i=1, where L is the
description of CR0 , n is the number of the gates and we assume that k|n. To be speci�c, the �rst n1

items of L are used to describe the identity gates, that is {ID ↵i, �i}, where ↵i is the input wire of i-th
indentity gate while �i is the output wire and we assume that k|n1. The rest n � n1 items are used
to describe the NAND gates, that is {NAND ↵i, �i, �i}, where ↵i, �i are the input wires of i-th NAND
gate while �i is the output wire. To address the second problem, we use hash chains to guarantee the
integrity of L. We set hL := 0 at �rst, and update hL by hL hash(hL, {Lk(i�1)+ j}k

j=1, i) for i 2 [n

k
].

And the prover should send hhx, ho, hL, ni at the very beginning.
To prevent the malicious prover from changing the assignment of wires, take NAND gates as

an example, the prover has to send the description of the NAND gate (↵i, �i, �i), the assign-
ment of input wires x↵i

, x�i
along with their MACs t↵i

, t�i
. The trusted hardware needs to check

MAC.Verify(K, h↵i, x↵i
i, t↵i

) = 1 and MAC.Verify(K, h�i, x�i
i, t�i

) = 1 �rst, where K MAC.KeyGen(1�).
After executing NAND operation x�i

 NAND(x↵i
, x�i

), the trusted hardware computes t�i

MAC.Sign(K, h�i, x�i
i), and return (x�i

, t�i
).

The lightweight trusted hardware model. Now we provide our new functionalityOLight
HW in Fig. 4. It

is parameterized with a digital signature scheme DS := (KeyGen,Sign,Verify), a MAC scheme MAC :=
(KeyGen,Sign,Verify), and a hash function hash. It maintains a temporary variable temp and a counter
ctr which are both initialized as 0.
OLight

HW can be initialized once by sending the (I���, sid) command to it. It then generates (PK,SK)
DS.KeyGen(1�), K MAC.KeyGen(1�) and record (sid,PK,SK,K). After initialization, anyone can
query the public key PK using the G��PK command. Anyone, we suppose it is Pi, can then send

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 17

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

(C������, sid, hhx, ho, hL, ni) request to the functionality OLight
HW , where hx hash(Inputpub), ho

hash(Output), hL is the �nal output of the hash chain hL hash(hL, Li, i) for i 2 [n], and n is the
number of gates. OLight

HW records the tuple hsid, ssid, Pi, hx, ho, hL, ni for later use. Then Pi can send
(I�, sid, ssid, {h↵ku+ j, �ku+ ji, x↵ku+ j

}k

j=1) and (N���, sid, ssid, {h↵ku+ j, �ku+ j, �ku+ ji, hx↵ku+ j
, t↵ku+ j

, x�ku+ j
,

t�ku+ j
i}k

j=1) toO
Light
HW . For I� command,OLight

HW simply sets x�ku+ j
 x↵ku+ j

, signs t�ku+ j
 MAC.Sign(K, hssid,

�ku+ j, x�ku+ j
i), and returns {hx�ku+ j

, t�ku+ j
i}k

j=1. For N��� command, OLight
HW checks MAC.Verify(K, hssid,

↵ku+ j, x↵ku+ j
i, t↵ku+ j

) = 1 and MAC.Verify(K, hssid, �ku+ j, x�ku+ j
i, t�ku+ j

) = 1. Then it computes x�ku+ j

NAND(x↵ku+ j
, x�ku+ j

), signs x�ku+ j
 NAND(x↵ku+ j

, x�ku+ j
), and returns {hx�ku+ j

, t�ku+ j
i}k

j=1. For both
commands, OLight

HW updates hL hash(hL, {Lk(i�1)+ j}k

j=1, i) and increases ctr ctr + 1. If temp = hL,
ctr = n

k
and x�n

= 1 hold, it means OLight
HW has already veri�ed the whole cirucit. OLight

HW then returns �,
where � DS.Sign(SK, hssid, hx, ho, hL, ni). Note that the private input is not signed.
The lightweight scriptable SNARKs construction. Our lightweight scriptable SNARKs construc-
tion utilizes the lightweight hardware functionality OLight

HW as de�ned in Fig. 4.
As depicted in Fig. 5, our lightweight scriptable SNARK protocol ⇧Q,Light

�SNARK uses a digital signature
scheme DS := (KeyGen,Sign,Verify) and hash function hash as its main building block. At the be-
ginning of the protocol, the hardware functionality needs to be initialized, and this step is performed
by the prover (marked in grey) if it is not done yet. The prover asserts C(Inputpub, Inputpriv) = Output
and Q(C, Inputpub, Inputpriv,Output) = 1. Note that, the predicate Q here restricts the the class of the
relation R0 : C(Inputpub, Inputpriv) = Output ^ hx = hash(x);^ ho = hash(Output), that is, R0
should be able to be converted to a circuit of polynomial gates. Then the prover computes hx
hash(Inputpub), ho hash(Output) and generates L Convert(C, Inputpub), where L := {Lj}n

j=1. After
that, the prover sets hL := 0, and updates hL hash(hL, {Lk(i�1)+ j}k

j=1, i) for i 2 [n

k
]. The prover sends

(C������, sid, ssid, hhx, ho, hL, ni) toOLight
HW , and then sends (I�, sid, ssid, {h↵ku+ j, �ku+ ji, x↵ku+ j

}k

j=1) for
identity gates and (N���, sid, ssid, {h↵ku+ j, �ku+ j, �ku+ ji, hx↵ku+ j

, t↵ku+ j
, x�ku+ j

, t�ku+ j
i}k

j=1) for NAND
gates. Finally, the prover obtains (F�����, sid, ssid,�) from OLight

HW , where � is the proof.
To verify a proof ⇡, the veri�er needs to know the public key PK. This step can be performed by a

trusted setup, and PK is published as the common reference string. Otherwise, the veri�er can query
OLight

HW to fetch it (marked in grey). In the veri�cation phase, the veri�er should computes hx, ho and hL

as the prover does, and then accepts the proof if DS.Verify(PK, hssid, hx, ho, hL, ni,�) = 1.

Security.We show the security of our lightweight scriptable SNARK construction via Thm. 2, below.

Theorem 2. Assume the signature scheme DS := (KeyGen,Sign,Verify) and the MAC scheme MAC :=
(KeyGen,Sign,Verify) are EUF-CMA secure with adversarial advantage AdvDS

A
(1�) and AdvMAC

A
(1�) re-

spectively, and the hash function hash is collision resistant with adversarial advantage Advhash
A

(1�). The
scriptable SNARK protocol ⇧Q,Light

�SNARK described in Fig. 5, UC-realizes the FQ
�SNARK functionality depicted in

Fig. 1 in the OLight
HW -hybrid world against static malicious corruption with adversarial advantage

AdvMAC
A

(1�) + Advhash
A (1�) + AdvDS

A
(1�) .

Proof. To prove the theorem, we construct a simulator S such that no non-uniform PPT environment
Z can distinguish between (i) the real execution ExecO

Light
HW

⇧Q,Light
�SNARK,A,Z

where the parties P := {P1, . . . , Pn}

18 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

The functionality interacts with a set of parties P := {P1, . . . , Pn} and adversary S . It is parameterized with a digital
signature scheme DS := (KeyGen,Sign,Verify), a message authentication code scheme MAC := (KeyGen,Sign,Verify), and a
hash function hash. It maintains a temporary variable temp and a counter ctr which are both initialized as 0.

• Upon receiving (I���, sid) for the �rst time from any party Pi 2 P :

∗ Generate (PK,SK) DS.KeyGen(1�);
∗ Generate K MAC.KeyGen(1�);
∗ Record (sid,PK,SK,K);

• Upon receiving (G��PK, sid) from a party Pi 2 P :

∗ If (sid,PK, ·) is recorded, return (G��PK, sid,PK) to the requestor Pi.

• Upon receiving (C������, sid, ssid, hhx, ho, hL, ni) from a party Pi 2 P , if (sid, ·,SK,K) is recorded, send
(C������, sid, ssid, hhx, ho, hL, ni) to the adversary S ; Once receiving (P������, sid, ssid) from S , record the tuple
hsid, ssid, Pi, hx, ho, hL, ni, and set temp = ctr = 0.

• Upon receiving (I�, sid, ssid, {h↵ku+ j, �ku+ ji, x↵ku+ j
}

k

j=1) from a party Pi 2 P , if hsid, ssid, Pi, hx, ho, hL, ni is recorded,
do

∗ For j 2 [k]: set x�ku+ j
 x↵ku+ j

, and sign t�ku+ j
 MAC.Sign(K, hssid, �ku+ j, x�ku+ j

i);
∗ Increase ctr ctr + 1;
∗ Update temp hash(temp, {(↵ku+ j, �ku+ j)}k

j=1, ctr);
∗ Return (I�, sid, ssid, {hx�ku+ j

, t�ku+ j
i}

k

j=1) to Pi.

• Upon receiving (N���, sid, ssid, {h↵ku+ j, �ku+ j, �ku+ ji, hx↵ku+ j
, t↵ku+ j

, x�ku+ j
, t�ku+ j

i}
k

j=1) from a party Pi 2 P , if
hsid, ssid, Pi, hx, ho, hL, ni is recorded, do

∗ For j 2 [k]:

∗ Assert MAC.Verify(K, hssid,↵ku+ j, x↵ku+ j
i, t↵ku+ j

) = 1 and MAC.Verify(K, hssid, �ku+ j, x�ku+ j
i, t�ku+ j

) = 1;
∗ Compute x�ku+ j

 NAND(x↵ku+ j
, x�ku+ j

);
∗ Sign t�ku+ j

 MAC.Sign(K, hssid, �ku+ j, x�ku+ j
i);

∗ Increase ctr ctr + 1;
∗ Update temp hash(temp, {(↵ku+ j, �ku+ j, �ku+ j)}k

j=1, ctr);
∗ If ctr = n

k
, do

∗ Assert x�n
= 1 and temp = hL;

∗ Sign � DS.Sign(SK, hssid, hx, hL, ni);
∗ Return (F�����, sid, ssid,�) to Pi;

∗ Else, return (N���, sid, ssid, {hx�ku+ j
, t�ku+ j

i}
k

j=1) to Pi.

Functionality OLight
HW

Fig. 4. The lightweight trusted hardware functionality O
Light
HW .

run protocol ⇧Q,Light
�SNARK in the OLight

HW -hybrid world and the corrupted parties are controlled by a dummy
adversary A who simply forwards messages from/to Z , and (ii) the ideal execution Exec

F
Q
�SNARK,S ,Z

where the parties interact with functionality FQ
�SNARK and corrupted parties are controlled by the sim-

ulator S . We consider following cases.

C��� 1: The prover Pi is corrupted.

Simulator. The simulator S internally runs A, forwarding messages to/from the environment Z .
The simulator S simulates honest veri�er Pj and the functionality OLight

HW . In addition, the simulator S
simulates the following interactions with A.
� The simulated OLight

HW receives the incoming message (C������, sid, ssid, hhx, ho, hL, ni) from Pi

at the beginning. Then the simulated OLight
HW will receive n

k
messages which are either in form of

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 19

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Prove:

• Upon receiving (P����, sid, ssid, hC, Inputpub, Inputpriv,Outputi) from the environment Z , Pi 2 P does:

∗ If the functionality O
Light
HW is not initialized yet, send (I���, sid) to O

Light
HW ;

∗ Assert C(Inputpub, Inputpriv) = Output and Q(C, Inputpub, Inputpriv,Output) = 1;
∗ Compute hx hash(Inputpub), ho hash(Output);
∗ Generate L Convert(C, Inputpub,Output), where L := {L j}

n

j=1;
∗ Set hL := 0, and update hL hash(hL, {Lk(u�1)+ j}

k

j=1, u) for u 2 [n

k
];

∗ Send (C������, sid, ssid, hhx, ho, hL, ni) to O
Light
HW ;

∗ For u = 0, · · · , n1
k
� 1, send (I�, sid, ssid, {h↵ku+ j, �ku+ ji, x↵ku+ j

}
k

j=1) to O
Light
HW and receive

(I�, sid, {hx�ku+ j
, t�ku+ j

i}
k

j=1);
∗ For u = n1

k
, · · · , n

k
� 1, send (N���, sid, ssid, {h↵ku+ j, �ku+ j, �ku+ ji, hx↵ku+ j

, t↵ku+ j
, x�ku+ j

, t�ku+ j
i}

k

j=1) to O
Light
HW and

receive (N���, sid, ssid, {hx�ku+ j
, t�ku+ j

i}
k

j=1);
∗ Obtain (F�����, sid, ssid,�) from O

Light
HW ;

∗ Output (P����R�����, sid, ssid,�) to the environment Z .

Verify:

• Upon receiving (V�����, sid, ssid, hC, Inputpub,Output, ⇡i) from the environment Z , P j 2 P does:

∗ Query (G��PK, sid) to O
Light
HW , obtaining (G��PK, sid,PK);

∗ Compute hx hash(Inputpub), ho hash(Output);
∗ Generate L Convert(C, Inputpub,Output), where L := {Li}

n

i=1;
∗ Set hL := 0, and update hL hash(hL, {Lk(u�1)+ j}

k

j=1, u) for u 2 [n

k
];

∗ Parse ⇡ as �;
∗ Compute b DS.Verify(PK, hssid, hx, ho, hL, ni,�);
∗ Output (V�����R�����, sid, ssid, b) to the environment Z .

A Lightweight Scriptable SNARK Protocol ⇧Q,Light
�SNARK

Fig. 5. A Lightweight Scriptable SNARK Protocol ⇧Q,Light
�SNARK in the OLight

HW -hybrid model.

(I�, sid, ssid, {h↵ku+ j, �ku+ ji, x↵ku+ j
}k

j=1) or (N���, sid, ssid, {h↵ku+ j, �ku+ j, �ku+ ji, hx↵ku+ j
, t↵ku+ j

, x�ku+ j
,

t�ku+ j
i}k

j=1). S performs the operation according to the protocol of OLight
HW , and �nally gets x�n

and
temp. During the simulation of OLight

HW , S records the view of the simulated OLight
HW . If the prover sends

(ssid,↵, x↵, t↵) which is inconsistent with (ssid,↵, x⇤↵, t
⇤
↵) yet MAC.Verify(K, hssid,↵, x⇤↵i, t⇤↵) = 1, S

aborts. In addition, S can extract C, Inputpub, Inputpriv and Output from the internal state of the sim-
ulated OLight

HW . S checks if x�n
= 1, temp = hL and hx = hash(Inputpub), ho = hash(Output). If it is

the case, S acts as Pi to send (P����, sid, ssid, hC, Inputpub, Inputpriv,Outputi) to functionality FQ
�SNARK.

Upon receiving (P����, sid, ssid, hPi, C, Inputpub,Outputi) from FQ
�SNARK, S replies (P����, sid, ssid,�)

to FQ
�SNARK, where � DS.Sign(SK, hssid, hx, ho, hL, ni) is the signature generated by the simulated

OLight
HW functionality. Then S records the tuple hssid, hx, ho, hL, C, Inputpub, Inputpriv,Output,�i.
� Upon receiving (V�����, sid, ssid, hPj, C⇤, Input⇤pub,Output⇤, ⇡i) from functionality FLight

�SNARK, the
simulator S checks if a tuple hssid, hx, ho, hL, C, Inputpub, Inputpriv,Output,�i is recorded. S computes
h
⇤
L
, h⇤

x
, h⇤

o
using C⇤, Input⇤pub,Output⇤. If (C 6= C⇤ ^ hL = h

⇤
L
) _ (Inputpub 6= Input⇤pub ^ hx =

h
⇤
x
) _ (Output 6= Output⇤ ^ ho = h

⇤
o
), S aborts. If (h⇤

L
6= hL _ h

⇤
x
6= hx _ h

⇤
o
6=

ho) ^ DS.Verify(PK, hssid, h⇤
x
, h⇤

o
, h⇤

L
, ni, ⇡) = 1, S aborts. S then returns Inputpriv to FQ

�SNARK.

Indistinguishability. The indistinguishability is proven through a series of hybrid worldsH1, . . . ,H4.

20 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Hybrid H1: It is the real protocol execution ExecO
Light
HW

⇧Q,Light
�SNARK,A,Z

.

Hybrid H2: H2 is the same as H1 except that in H2, during the simulation of OLight
HW , S records the

view of the simulated OLight
HW . If the malicious prover sends (ssid,↵, x↵, t↵) which is inconsistent with

(ssid,↵, x⇤↵, t
⇤
↵) yet MAC.Verify(K, hssid,↵, x⇤↵i, t⇤↵) = 1, S aborts.

Lemma 2. If MAC is a EUF-CMA secure MAC scheme with adversarial advantage AdvMAC
A

(1�), thenH2

and H1 are indistinguishable with advantage ✏1 = AdvMAC
A

(1�).

Proof. The simulator S aborts when the prover has forged a MAC tag. If there exists an adversary A
who queries the functionalityOLight

HW and is able to forge a MAC tag, then we can construct an adversary
B who can break the EUF-CMA security game of the underlying digital signature scheme MAC. During
the reduction, B simulates the OLight

HW as follows. Whenever B receives I� commands for some ssid
and the input wire value x↵, B sets x� x↵ and sends hssid, �, x�i to EUF-CMA game challenger
to sign hssid, �, x�i. After receiving t� from the challenger, B forwards it to A. B does the similar
things when receives N��� commands. Whenever A outputs hssid⇤, �⇤, x�⇤ , t�⇤i. B simply forwards
(m⇤ := hssid⇤, �⇤, x�⇤i, t⇤ := t�⇤) to the challenger and wins the game. Clearly, B wins whenever A
wins.
Therefore, the overall advantage is AdvMAC

A
(1�). 2

Hybrid H3: H3 is the same as H2 except that in H3, S receives (V�����, sid, ssid, hPj, C⇤, Input⇤pub,

Output⇤, ⇡i) from functionalityFLight
�SNARK, S founds a recorded tuple hssid, C, Inputpub, Inputpriv,Output,�i

and computes h
⇤
L
, h⇤

x
, h⇤

o
using C⇤, Input⇤pub,Output⇤. If (C 6= C⇤ ^ hL = h

⇤
L
) _ (Inputpub 6= Input⇤pub ^

hx = h
⇤
x
) _ (Output 6= Output⇤ ^ ho = h

⇤
o
), S aborts.

Lemma 3. If hash is a collision resistant hash function with adversarial advantage Advhash
A

(1�), thenH3

and H2 are indistinguishable with advantage ✏2 = Advhash
A

(1�).

Proof. The simulator S aborts when the prover has found a collision for the hash value. If there
exists an adversary A who queries the functionality OLight

HW and �nds a collision of hx, ho or hL,
then we can construct an adversary B who can break the collision resistant game of uderlying
hash function hash. During the reduction, B simulates the OLight

HW as follows. Up on receiving query
(C������, sid, ssid, hhx, ho, hL, ni), B performs the operation according to the protocol of OLight

HW , and
�nally gets x�n

and temp and the whole collection of {Li}n

i=1. First of all, consider the case for hL. B
forwards hL to A. A outputs L

⇤ := {L
⇤
i
}n

⇤
i=1. B creates two set {hi}n

i=1 and {h
⇤
i
}n

⇤
i=1, and computes

hi hash(hi�1, {Lk(i�1)+ j}k

j=1, i) and h
⇤
i
 hash(h⇤

i�1, {L
⇤

k(i�1)+ j
}k

j=1, i), where h0 = h
⇤
0 = 0. When-

ever B �nds i, j such that hi = h
⇤
j
, B submits (hhi�1, {Lk(i�1)+ j}k

j=1, ii, hh⇤j�1, {L
⇤

k(i�1)+ j
}k

j=1, ji) to the
collision resistant game challenger and wins the game. As for hx and ho, similiar approach will be taken.
Clearly, B wins whenever A wins.
Therefore, the overall advantage is Advhash

A
(1�). 2

Hybrid H4: H4 is the same as H3 except that in H4, If (h⇤L 6= hL _ h
⇤
x
6= hx _ h

⇤
o
6= ho) ^

DS.Verify(PK, hssid, h⇤
x
, h⇤

o
, h⇤

L
, ni, ⇡) = 1, S aborts.

Lemma 4. If DS is a EUF-CMA secure digital signature scheme with adversarial advantage AdvDS
A
(1�),

then H4 and H3 are indistinguishable with advantage ✏3 = AdvDS
A
(1�).

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 21

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Proof. The simulator S aborts when the prover can generate an accepting proof without query-
ing the functionality OLight

HW . If there exists an adversary A who can generate an accepting proof
without querying OLight

HW , then we can construct an adversary B who can break the EUF-CMA
security game of the underlying digital signature scheme DS with the same advantage. Indeed,
since OLight

HW is always trusted, the only way an adversary A can produce an accepting proof is to
forge a signature. During the reduction, B simulates the OLight

HW as follows. Up on receiving query
(C������, sid, ssid, hhx, ho, hL, ni), B performs the operation according to the protocol of OLight

HW , and
�nally gets x�n

and temp. B checks if x�n
= 1 and temp = hL. It then queries the EUF-CMA game

challenger to sign hssid, hx, ho, hL, ni. After receiving the signature � from the challenger, B forwards
it to A. When A outputs (V�����, sid, ssid, hC⇤, Input⇤pub, ⇡

⇤i) such that the veri�cation passes. B com-
putes h

⇤
x
 hash(Input⇤pub), h

⇤
o
 hash(Output⇤) and generates L

⇤ Convert(C⇤, Input⇤pub,Output⇤),
where L

⇤ := {L
⇤
i
}n

⇤
i=1. B then sets h

⇤
L
:= 0, and updates h

⇤
L
 hash(h⇤

L
, {L
⇤

k(i�1)+ j
}k

j=1, i) for i 2 [n
⇤

k
].

B outputs (m⇤ := hssid, h⇤
x
, h⇤

o
, h⇤

L
, n⇤i,�⇤ := ⇡⇤) as the forged message signature pair. Clearly, B wins

whenever A wins.
Therefore, the overall advantage is AdvDS

A
(1�). 2

The adversary’s view ofH4 is identical to the ideal execution Exec
F

Q
�SNARK,S ,Z

. Therefore, the overall
distinguishing advantage is

AdvMAC
A

(1�) + Advhash
A (1�) + AdvDS

A
(1�) .

C��� 2: The veri�er Pj is corrupted.

Simulator. Similar to Case 1, the simulator S internally runs A, forwarding messages to/from the
environment Z . The simulator S simulates honest prover Pi and the functionality OLight

HW . In addition,
the simulator S simulates the following interactions with A.
� The simulated OLight

HW receives the incoming message (C������, sid, ssid, hhx, ho, hL, ni) from Pi

at the beginning. Then the simulated OLight
HW will receive n messages which are either in form of

(I�, sid, ssid, {h↵ku+ j, �ku+ ji, x↵ku+ j
}k

j=1) or (N���, sid, ssid, {h↵ku+ j, �ku+ j, �ku+ ji, hx↵ku+ j
, t↵ku+ j

, x�ku+ j
,

t�ku+ j
i}k

j=1). S performs the operation according to the protocol of OLight
HW , and �nally gets x�n

and temp. At last, the simulator S acts as OLight
HW to generate the corresponding signature �

DS.Sign(SK, hssid, hx, ho, hL, ni) and return � to Pi.
Indistinguishability. The indistinguishability is straightforward. The proof ⇡ generated by the sim-

ulator S has identical distribution to the proof in the real protocol execution ExecO
Light
HW

⇧Q,Light
�SNARK,A,Z

. This is
because both proofs are the signatures generated as DS.Sign(SK, hssid, hx, ho, hL, ni), and the private
input is not needed to generate a signature.

C��� 3: Both the prover Pi and the veri�er Pj are corrupted.

Simulator. Trivial case. There is nothing needs to extract, as the trustees do not have input. The simu-
lator S just run trustee according to protocol ⇧Light

�SNARK.
Indistinguishability. The view of Z in the ideal execution Exec

F
Q
�SNARK,S ,Z

has identical distribution to

the view of Z in the real execution ExecO
Light
HW

⇧Q,Light
�SNARK,A,Z

.
This concludes the proof. 2

22 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

VerifySign(C, Inputpub, tag) :

• (OCALL) Load Inputpriv;
• Execute script y C(Inputpub, Inputpriv);
• Set ReportData = (tag, hash(C, Inputpub, y));
• (EREPORT) Create report r for QE to sign;
• Return (y, r);

Enclave SE

Fig. 6. The script engine enclave SE .

6. Implementation

6.1. OQ
HW Implementation

In this section, we realize the Q-compliant trusted hardware functionality OQ
HW via Intel SGX and

Arm TrustZone.

Challenges. In both platforms, there are a number of challenges need to be resolved. In terms of SGX,
as mentioned in Sec. 2.1, the remote attestation of Intel SGX currently requires the veri�er to contact
the Intel IAS server. On the other hand, in a typical SNARK proof system usage case, the prover aims
to prove the truth of the statement to a great number of veri�ers. If each veri�er needs to query the
Intel IAS server to check the proof, the overall performance is limited by Intel’s throughput. Moreover,
the validity of a SNARK proof should be consistent over time, i.e., if a SNARK proof is veri�able at
this moment, the same proof should remain veri�able in the future. Unfortunately, this would not be
the case if we invoke the Intel IAS in the veri�cation process; certifying an old quote (say, generated
1 year ago) is never the design goal of Intel’s remote attestation. This is because the quote needs to
contain an non-revoked proof for each item on the signature revocation list, and the proof is no longer
veri�able once the revocation list is updated at the Intel side. That means a quote is only valid until the
next revocation list update. To resolve this issue, in our design, after generating the quote, the prover
immediately queries the Intel IAS server for the attestation veri�cation report on behave of a veri�er.
Since the attestation veri�cation report is signed by Intel, given Intel’s public key, anyone can verify
the validity of the attached signature. This tweak also makes the veri�cation process non-interactive.
Secondly, the existing SGX-based proof system, e.g., [54], requires the prover and the veri�ers agree

on the executable binary (enclave) for the language to be proven. It would make it impossible to build
a universal NIZK system in practice. Note that SGX only signs the measure of the enclave, which
cannot be directly compared with the corresponding algorithm. Imaging a veri�er who is checking a
SNARK proof generated some time ago, how would the veri�er know the executable binary (enclave)
is faithfully compiled? Therefore, SNARK systems, like [54], would need a trusted party to generate an
executable binary (enclave) for a given problem instance, and the binary is served as the concrete CRS
for the given instance.
In terms of TrustZone, unlike the ecosystem of SGX that is controlled by Intel, the fragmentation

of the ARM TrustZone ecosystem may make it hard to have a unique setup standard. To resolve this
issue, we need to introduce a trusted setup authority to serve as an attestation server.

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 23

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Init

• Upon receiving (I���, sid), the Intel server IS interacts with HW��� invoking the EPID provisioning key procedure (Cf.
[35]); At the end of the protocol:

∗ The Intel server IS stores GPK;
∗ HW��� stores GSK;

The Intel server IS also does:

∗ Generate (fPK,fSK) DS.KeyGen(1�);
∗ Create the script engine enclave SE as depicted in Fig. 6;
∗ Sign �̃ DS.Sign(fSK,SE);

GetPK

• Upon receiving (G��PK, sid), the Intel server IS sets PK⇤ := (fPK,SE , �̃) and return (G��PK, sid,PK⇤);

Prove

• Upon receiving (C������, sid, ssid, hC, Inputpub, Inputprivi):

∗ The prover Pi creates an enclave instance of SE to HW���;
∗ The prover Pi invokes VerifySign(C, Inputpub, tag := (sid, ssid));
(Supply Inputpriv during the execution);

∗ HW��� runs y C(Inputpub, Inputpriv) and aborts if y = ? (i.e. Q(C, Inputpub, Inputpriv, y) = 0);
Otherwise, it outputs a quote q(C, Inputpub, y, tag);

∗ The prover Pi sends the quote q(C, Inputpub, y, tag) to the Intel server IS to verify.
∗ The Intel server IS checks the validity of the quote; it then signs and returns � DS.Sign(SK, hC, Inputpub, y, tagi);
∗ The prover Pi outputs (y,�);

Protocol ⇧Q
���

Fig. 7. Protocol ⇧Q
��� realizing OQ

HW via Intel SGX.

SGX-based system overview. In our system, the protocol ⇧Q
��� involves three entities: the (trusted)

Intel server, denoted as IS, the prover P, and the SGX hardware, denoted as HW���. In practice, it
is still a challenge for a third party to verify the consistency between an executable binary and its
software speci�cation. That is, the binary contains no bug, no trapdoor, and it is not subverted. Even
it is possible, it dramatically increases the veri�er’s complexity. On the other hand, it is implausible to
assume a trusted third party that is available to generate a certi�ed binary for each problem instance.
To address this issue, we decide to adopt a scripting language, called Lua. Lua is a lightweight script
language, which is ideal for the SGX enclave computation environment. We let a trusted party, i.e., the
(trusted) Intel server IS, to produce a Lua script engine enclave SE . IS then signs SE so that no one
can tamper with its functionality. As depicted in Fig. 6, SE has one main function called VerifySign2. It
takes three arguments: (i) a script C, (ii) a public input Inputpub (iii) a tag, tag, that can be used to specify
the proof context, such as ssid, etc. The VerifySign function �rst loads the private input Inputpriv from
the prover; it then executes the script y C(Inputpub, Inputpriv) using the script interpreter. Abort if
y = ?, which means the execution error happened; that is considered as Q(C, Inputpub, Inputpriv, y) = 0.
Otherwise, it sets h := hash(C, Inputpub, y) and ReportData := (tag, h); it then invokes EREPORT to
create a report r for QE to sign. Finally, it returns (y, r).
Remark. Technically, the private input Inputpriv can be input to the VerifySign function together with
the script C and the public input Inputpub as another argument. We choose to load Inputpriv separately

2The enclave also has a GetQEInfo function to receive the target information of QE. It is omitted for simplicity.

24 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Verify(C,InPub,tag):
 (OCALL) Load InPriv;
 Execute script y:= C(InPub,InPriv);
 Compute h := Hash(C,InPub,y);
 Set ReportData := (tag,h);
 (EREPORT) Create report r;
 Return (y, r);

PK* PK

Init Intel
2. GetPK

1.
Provis

ionin
g

Prover
Prove

3. Create and run Enclave

 VerifySign(R,x,tag)

5. Generate quote4. Return report

6. Verify quote and get sig

7. Generate proof Proof

SGX

QE

SE

SE

Sig

PE

GetPK

Fig. 8. SGX based trusted hardware instantiation

during the enclave execution for the sake of uniformity: (i) for some applications, we could choose to
hard code C and Inputpub for e�ciency; and (ii) in case that the prover needs to use an SGX enabled
server from a third party, it is possible to load Inputpriv in to the enclave via secure channels to ensure
privacy.
The hardware functionalityOQ

HW is instantiated by the protocol⇧Q
��� shown in Fig. 7. The I��� func-

tionality is realized by the Intel server IS and the hardware HW���. Upon receiving (I���, sid), IS in-
vokes the EPID provisioning key procedure [35] with HW���. The root seal key of HW��� was generated
during the processor manufacturing, and Intel claims that they are oblivious to it; the root provisioning
key is set up by a special purpose o�ine key generation facility. The actual procedure is complicated;
HW��� is registered to the Intel server IS via a blind joining protocol. We refer interested reader to [35]
for details. Hereby, we simplify the description – at the end, HW��� stores a group signature secret key
GSK, and the Intel server IS stores the corresponding group signature public key GPK that allows it to
verify the signatures generated by HW���. Note that the group signature is only used to authenticate
HW��� to the Intel, rather than to the public. Therefore, it is possible to replace the group signature
scheme with some symmetric key cryptographic primitive, e.g., MAC. In addition, IS also generates
(fPK,fSK) DS.KeyGen(1�). It then creates the script engine enclave SE as depicted in Fig. 6 and
signs it �̃ DS.Sign(fSK,SE). The public key is de�ned as PK⇤ := (fPK,SE , �̃). Anyone can query
(G��PK, sid) to the Intel server IS to fetch the public key PK⇤. The C������ command is realized by
all three parties. Upon receiving (C������, sid, ssid, hC, Inputpub, Inputprivi), the prover Pi creates an
enclave instance of SE to HW���; it then invokes VerifySign(C, Inputpub, tag) (supplying Inputpriv during
the execution). HW��� executes the script y C(Inputpub, Inputpriv); Abort, if y = ?, which is con-
sidered as Q(C, Inputpub, Inputpriv, y) = 0. Otherwise, it outputs a report r(C, Inputpub, y, tag) for local
attestation. The prover Pi sends the report r(C, Inputpub, y, tag) to the QE of HW��� to produce a quote
q(C(Inputpub, Inputpriv)); the prover Pi sends the quote q(C, Inputpub, y, tag) to the Intel server IS to ver-
ify. The above steps are simpli�ed in Fig. 7. The Intel server IS checks the validity of the quote, i.e.,
checking the group signature and that the SGX platform generating the quote is not revoked; it then
signs and returns� DS.Sign(SK, hC, Inputpub, y, tagi); The prover Pi outputs (y,�); Fig. 8 summaries
the basic �ow for the I���, G��PK, and C������ protocols.

TrustZone-based system overview. ARM TrustZone is another popular trusted hardware platform
that can also be leveraged (as long as a device-unique, asymmetric key pair signed by the device’s

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 25

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

vendor exists). ARM TrustZone provides isolated execution by separating the CPU into two di�erent
worlds, i.e., normal world and secure world. The code running inside the normal world cannot directly
access the resource inside the secure world. Also only the application inside the secure world can access
the protected resource.
Speci�cally, the device-unique key pair can be used to sign the attention blob that indicates

the attestation data originates from the secure world. The attestation data in this case contains
hC, Inputpub, y, tagi. The signed data will be passed to the attestation server of device vendor (like Intel
IAS). If the signature veri�cation passes on the device vendor’s attestation server, the prover generates
proof.
The Lua script engine design and system architecture is similar to the SGX-based solution. However,

it is more e�cient, as the attestation data can be veri�ed without interacting with the the attestation
server if the veri�er already fetched the public key PK from it.

Evaluations. Our SGX-based prototype is implemented in C++ using the Intel(R) SGX SDK v2.5 for
Linux. Our implementation is built on top of [50], and we added OpenSSL lib functions for common
cryptographic primitives, such as SHA256, ECDSA, etc. Since system call is not allowed in enclave, we
also simulated a simple �le system to support the Lua interpreter. The size of the compiled enclave
binary is approximately 3.2 MB.
Up on execution, the prover �rst creates an instance of the Lua script engine enclave in the SGX and

transfers the target information of QE into the Lua script engine enclave, which will be used later to
generate the report for QE. The prover then produces his proof by calling speci�c function interface of
the enclave,VerifySign, taking the script C and the public input Inputpub as the arguments of the function.
In our prototype, the script C and statement Inputpub are pre-loaded into the simulated �lesystem. After
loading Inputpriv from the prover and putting it into the simulated �lesystem, the enclave invokes the
Lua interpreter to process the script y C(Inputpub, Inputpriv), where the script can access the statement
and witness through Lua �le operations. Note that Lua heap size need to be prede�ned while compiling
the Lua script engine enclave, such as 32 MB, which restrict the class of script it can support.
After the script execution, the enclave hashes h := hash(C, Inputpub, Inputpriv) and then put (tag, h) in

to the REPORTDATA �eld of the report structure, and generate the report r(tag, h) for QE to sign. The
prover will then fetch the report r(tag, h) and send it together with signature revocation list (which
can be obtained from the Intel IAS and SPID (which is assigned by the Intel IAS when user registers
to the Intel IAS) to the QE. The QE will verify the report using its report key and compute an non-
revoked proof for the signature revocation list, generating a quote consisting of the ReportBody �eld
of the report, the non-revoke proof and some other necessary information. The prover then will send
the quote to the Intel IAS server for attestation veri�cation report.
Reducing proof size. Naively, the prover can send the entire signed attestation veri�cation report as the
NIZK proof. The proof size is 731 Bytes (IAS report size) + 256 Bytes (the signature size).
To reduce proof size, we observe that Intel’s signature is signed on top of the hash of the attestation

veri�cation report, so the prover does not need to give the entire report as a part of the proof as far as
the veri�er can reproduce the hash of the report. However, the veri�er is interested in some �eld of in
the isvEnclaveQuoteBody, such as REPORTDATA. Notice that SHA256 uses Merkle-Damgård structure,
i.e., the �nal hash digest is calculated by iteratively calling a compression function over trunks of the
signing document. Therefore, the prover can give the partial hash digest of the �rst part of the signing
report, including ID, timestamp, version, isvEnclaveQuoteStatus. The isvEnclaveQuoteBody structure
is shown in Table 2. The veri�er is only interested in the �ve �elds marked in grey background, and

26 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 2
QuoteBody Structure

uint16_t version;
uint16_t sign_type;
sgx_epid_id_t epid_group_id;
sgx_isv_svn_t qe_svn;
sgx_isv_svn_t pce_svn;
uint32_t xeid;
sgx_basename_t basename;
sgx_cpu_svn_t cpu_svn;
sgx_mise_select_t misc_select;
uint8_t reserved1[28];
sgx_attributes_t attributes;
sgx_measurement_t mr_enclave;
uint8_t reserved2[32];
sgx_measurement_t mr_signer;
uint8_t reserved3[96];
sgx_prod_id_t isv_prod_id;
sgx_isv_svn_t isv_svn;
uint8_t reserved4[60];
sgx_report_data_t report_data;

they can be reconstructed from the public input of the veri�er. Moreover, currently, all the reserved
�elds must be 0. Moreover, the veri�er also wants to check isvEnclaveQuoteStatus = OK; nevertheless,
we observe that the attestation veri�cation report whose isvEnclaveQuoteStatus = OK has a �xed
length n. Otherwise, the length of the attestation veri�cation report is di�erent from n. Based on that
observation, we can regard the length n as another public input of the veri�er. Then when the veri�er
receives a proof, he/she can checkwhether the isvEnclaveQuoteStatus �eld of the associated attestation
veri�cation report is OK by putting the length n into the end of the report as the total hashed length.
then if the isvEnclaveQuoteStatus �eld is not OK, the report hash is not aligned probably, resulting a
wrong hash digest.
We let the prover give the partial hash digest until misc_select �eld. Denote the partial hash digest

of the report as ph. The prover needs to provide the attributes �eld, denoted as attr, which is 16 Bytes3.
The proof is (ph, attr,�). The veri�er can use reconstruct the hash of the report and then check the
validity of the signature. The proof size is now reduced to 41 Bytes + 256 Bytes (the signature size),
which is 297 Bytes.
Our TrustZone-based prototype is developed on the Hikey 960 development board, which is powered

by Huawei Kirin 960 SoC with 4 ARM Cortex-A73 cores and 4 1.8GHz ARM Cortex-A53 cores. There
are 4GBDDR4memory and 32GBUFS �ash on our board. In our experiment, we choose OPTEE(v3.6) as
the OS in the secure world, which is open source and well maintained. For the normal world OS, we use
a Linux distribution, which is developed by Linaro SecurityWorking Group based on Linux kernel v5.1
and able to corporate with OPTEE. Then, we implement a Trusted App(TA) for the secure world, which

3In fact, there are 56 bits reserved area, whose default value is 0 in the attributes �eld. Hence, the size can be further reduced
by 56 bits.

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 27

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

215 219 223 227 231 235 239

100 ms

1 sec

1 min

10 min
1 hr

10 hr

BCCGP
Ligero
SCI

libSNARK
ZK-STARK
SGX-B
SGX-A
TZ-B
TZ-A

(a) Prover Time

215 219 223 227 231 235 239

10 ms

100 ms

1 sec

1 min

1 hr

9.5 hr BCCGP
Ligero
SCI

libSNARK
ZK-STARK
libSNARK*
SGX-B/TZ-B
SGX-A/TZ-A

(b) Veri�er Time

215 219 223 227 231 235 239

100B
1KB
5KB

100KB
1MB
5MB

1GB
5GB

100GB BCCGP
Ligero
SCI

libSNARK
ZK-STARK
libSNARK*
SGX-B
SGX-A
TZ-B
TZ-A

(c) Proof Size

Fig. 9. Performance comparison of di�erent SNARK proof systems in terms of prover’s running time, veri�er’s running time,
and proof size. The complexity is measured by the number of multiplication gates. our work and BCCGP are 128bit security;
libSNARK and SCI are 80-bit security; Ligero and zk-STARK are 60-bit security. Our system is tested on a SGX-equipped
processor (i7-8700 @ 3.2GHz and 16GB RAM, single thread) and Hikey 960 TrustZone development board. All the other
systems were tested on a server with 32 AMD cores @ 3.2GHz and 512GB RAM, and the data was reported by [4]. For
libSNARK, the hollow marks (libSNARK*) in veri�er time and proof size measure only count the post processing phase; while
solid marks also count CRS generation time. For our SGX based scheme, the prover’s running time includes network time
for Intel IAS veri�cation; SGX-A (TZ-A) stands for arithmetic circuit over ring Z264 , and SGX-B (TZ-B) stands for Boolean
circuit (NAND gates) w.r.t. SGX and TrustZone platforms.

will bemanaged byOPTEE. The Client Application(CA) in the normal world can invoke the TA through
speci�c interface. Lua Intrepreter(v5.3.2) is adopted and modi�ed. The default secure memory size
supported by OPTEE is 16 MB, which restricts the script size. A signing key is stored in the TrustZone
for the experiment. The enclave structure and system design is similar to the SGX-based solution,
except we adopt ECDSA signature over the secp256k1 curve. Therefore, the signature/proof size is
only 32 Bytes.
Fig. 9 shows the performance comparison of di�erent SNARK proof systems w.r.t. prover’s run-

ning time, veri�er’s running time, and proof size. Although our SNARK proof system support RAM
model computer program, we implemented circuit evaluation as Lua script to facilitate comparison.
We emphasize that the reported time is tested using Lua scripts. If the circuit is written in native C, the
performance is approximate 10 times better on both SGX and TrustZone platforms. The complexity
is measured by the number of multiplication gates. We provide ‘SGX-A’ and ‘TZ-A’ as the benchmark
for arithmetic circuit over ring Z264 for SGX and TrustZone, respectively; ‘SGX-B’ and ‘TZ-B’ as the
benchmark for Boolean circuit, using SIMD to implement NAND gates. The measure of the enclave
is assumed to be pre-computed and announce by Intel, so it is not counted into the veri�er’s running
time; moreover, the problem instance consists of the Lua script and its hash; otherwise, the veri�er can
also compute the hash at a small cost. As shown in [22], SHA256 can be performed at 2.1-3.5GB/s on
most platforms.

6.2. OLight
HW Implementation

In this section, we simulate the lightweight trusted hardware functionality OLight
HW via Intel SGX. Be-

cause most of the instantiations are similiar to Sec. 6.1, except that: (i) it only computes NAND gates;
(ii) it also uses MACs, we focus on the di�erences here.

28 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Init(hx, ho, hL, n, tag) :

• Set temp = ctr = 0, and record hhx, ho, hL, n, tagi;

VerifyID({h↵ku+ j, �ku+ ji}
k

j=1, tag) :

• (OCALL) Load {x↵ku+ j
}

k

j=1;
• For j 2 [k]:

∗ Execute x�ku+ j
 x↵ku+ j

, and sign the MAC tag t�ku+ j
 MAC.Sign(K, htag, �ku+ j, x�ku+ j

i);

• Increase ctr ctr + 1;
• Update temp hash(temp, {(↵ku+ j, �ku+ j)}k

j=1, ctr);
• Return {x�ku+ j

, t�ku+ j
}

k

j=1;

VerifyNAND({h↵ku+ j, �ku+ j, �ku+ ji}
k

j=1, tag) :

• (OCALL) Load {x↵ku+ j
, t↵ku+ j

, x�ku+ j
, t�ku+ j

}
k

j=1;
• For j 2 [k]:

∗ Assert MAC.Verify(K, htag,↵ku+ j, x↵ku+ j
i, t↵ku+ j

) = 1 and MAC.Verify(K, htag, �ku+ j, x�ku+ j
i, t�ku+ j

) = 1;
∗ Execute x�ku+ j

 NAND(x↵ku+ j
, x�ku+ j

) , and sign the MAC tag t�ku+ j
 MAC.Sign(K, tag, h�ku+ j, x�ku+ j

i);

• Increase ctr ctr + 1;
• Update temp hash(temp, {(↵ku+ j, �ku+ j)}k

j=1, ctr);
• If ctr = n

k

∗ Assert x�n
= 1 and temp = hL;

∗ Set ReportData = (tag, hx, ho, hL, n);
∗ (EREPORT) Create report r for QE to sign;
∗ Return r;

• Else, return {x�ku+ j
, t�ku+ j

}
k

j=1;

Enclave ELight

Fig. 10. The enclave ELight.

Enclave. Unlike the script engine enclave depicted in Fig. 6, the enclave ELight we create for OLight
HW

has three main functions: Init,VerifyID,VerifyNAND, and it is presented in Fig. 10. The Init function
takes (i) the description of the circuit C and Inputpub,Output, that is, hx, ho, hL, n; (ii) a tag, tag, that
can be used to specify the proof context, such as ssid, etc. The Init function maintains a variable
temp and a counter ctr which are both initialized as 0, and records the tuple hhx, ho, hL, n, tagi. The
VerifyID function takes (i) the description of the k identity gates, that is {h↵ku+ j, �ku+ ji}k

j=1 and (ii) a
tag tag. The VerifySign function �rst loads {x↵ku+ j

}k

j=1 from the prover; it then executes x�ku+ j
 x↵ku+ j

and signs t�ku+ j
 MAC.Sign(K, htag, �ku+ j, x�ku+ j

i). Then it updates ctr ctr + 1 and temp
hash(temp, {(↵ku+ j, �ku+ j)}k

j=1, ctr), and returns {x�ku+ j
, t�ku+ j

}k

j=1. The VerifyNAND function does the
similar things as VerifyID, except that (i) it checks MAC.Verify(K, htag,↵ku+ j, x↵ku+ j

i, t↵ku+ j
) = 1 and

MAC.Verify(K, htag, �ku+ j, x�ku+ j
i, t�ku+ j

) = 1; (ii) when ctr = n

k
, x�n

= 1 and temp = hL, it sets
ReportData = (tag, hx, ho, hL, n) and invokes EREPORT to create a report r for QE to sign.

The Lightweight SNARK System Overview. Here, the protocol ⇧Light
��� involves three entities: the

(trusted) Intel server, denoted as IS, the prover P, and the SGX hardware, denoted as HW���. We let a

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 29

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Init

• Upon receiving (I���, sid), the Intel server IS interacts with HW��� invoking the EPID provisioning key procedure (Cf.
[35]); At the end of the protocol:

∗ The Intel server IS stores GPK;
∗ HW��� stores GSK;

The Intel server IS also does:

∗ Generate (fPK,fSK) DS.KeyGen(1�);
∗ Create the enclave E

Light as depicted in Fig. 10;
∗ Sign �̃ DS.Sign(fSK, E);

GetPK

• Upon receiving (G��PK, sid), the Intel server IS sets PK⇤ := (fPK, ELight, �̃) and return (G��PK, sid,PK⇤);

Prove

• Upon receiving (C������, sid, ssid, hhx, ho, hL, ni):

∗ The prover Pi creates an enclave instance of E to HW���;
∗ The prover Pi invokes Init(hx, ho, hL, n, tag := (sid, ssid));
∗ HW��� sets temp = ctr = 0 and records hhx, ho, hL, n, tagi;

• Upon receiving (I�, sid, ssid, {h↵ku+ j, �ku+ ji, x↵ku+ j
}

k

j=1):

∗ The prover Pi creates an enclave instance of E to HW���;
∗ The prover Pi invokes VerifyID({h↵ku+ j, �ku+ ji}

k

j=1, tag);
(Supply {x↵ku+ j

}
k

j=1 during the execution);
∗ HW��� executes the protocol depicted in Fig. 10 and outputs {x�ku+ j

, t�ku+ j
}

k

j=1;

• Upon receiving (N���, sid, ssid, {h↵ku+ j, �ku+ j, �ku+ ji, hx↵ku+ j
, t↵ku+ j

, x�ku+ j
, t�ku+ j

i}
k

j=1):

∗ The prover Pi creates an enclave instance of SE to HW���;
∗ The prover Pi invokes VerifyNAND({h↵ku+ j, �ku+ j, �ku+ ji}

k

j=1, tag);
(Supply {x↵ku+ j

, t↵ku+ j
, x�ku+ j

, t�ku+ j
}

k

j=1 during the execution);
∗ HW��� executes the protocol depicted in Fig. 10 and outputs {x�ku+ j

, t�ku+ j
}

k

j=1; or a quote q(tag, hx, ho, hL, n);
∗ If HW��� outputs a quote q(tag, hx, ho, hL, n):

∗ The prover Pi sends the quote q(tag, hx, ho, hL, n) to the Intel server IS to verify.
∗ The Intel server IS checks the validity of the quote; it then signs and returns � DS.Sign(SK, htag, hx, ho, hL, ni);
∗ The prover Pi outputs �;

Protocol ⇧Light
���

Fig. 11. Protocol ⇧Light
��� realizing OLight

HW via Intel SGX.

trusted party, i.e., the (trusted) Intel server IS, to produce a enclave ELight. IS then signs ELight so that no
one can tamper with its functionality.
The hardware functionality OLight

HW is instantiated by the protocol ⇧Light
��� shown in Fig. 11. The I���

functionality and the G��PK functionality are similiar with protocol ⇧Q
��� in Sec. 6.1, thus we will not

go into details here. Upon receiving (C������, sid, ssid, hhx, ho, hL, ni), the prover Pi creates an enclave
instance of ELight to HW���; it then invokes Init(hx, ho, hL, n, tag := (sid, ssid)). The HW��� sets temp =
ctr = 0 and records hhx, ho, hL, n, tagi. Upon receiving (I�, sid, ssid, {h↵ku+ j, �ku+ ji, x↵ku+ j

}k

j=1), the
prover Pi creates an enclave instance of E to HW���; it then invokes VerifyID({h↵ku+ j, �ku+ ji}k

j=1, tag)
(supply {x↵ku+ j

}k

j=1 during the execution). And the HW��� executes the protocol depicted in Fig. 10
and outputs {x�ku+ j

, t�ku+ j
}k

j=1. The N��� command is similar with the I� command, except when the

30 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

HW��� outputs a report r(tag, hx, ho, hL, n) for local attestation, the Intel server IS is involved. The
prover Pi sends the report r(tag, hx, ho, hL, n) to the QE of HW��� to produce a quote q(tag, hx, ho, hL, n);
the prover Pi sends the quote q(tag, hx, ho, hL, n) to the Intel server IS to verify. The above steps are
simpli�ed in Fig. 11. The Intel server IS checks the validity of the quote, i.e., checking the group
signature and that the SGX platform generating the quote is not revoked; it then signs and returns
� DS.Sign(SK, htag, hx, ho, hL, ni). The prover Pi outputs � �nally.

Evaluations. Our SGX-based prototype is implemented in C++ using the Intel(R) SGX SDK v2.11
for Linux. we added OpenSSL lib functions for common cryptographic primitives, such as SHA256,
ECDSA, etc.We instantiateMACwith HMAC using SHA256 andDSwith ECDSA.We expect to achieve
two objectives through experiments: (i) try to determine the optimal value of k; (ii) demonstrate the
e�ectiveness of our proposal.

20 21 22 23 24 25 26

100 ms

1 sec

1 min

10 min
1 hr

10 hr

the number of k

n = 223

n = 225

n = 227

n = 229

n = 231

(a) Prover Time

20 21 22 23 24 25 26

1ms

10 ms

100 ms

1 sec

1min

the number of k

n = 223

n = 225

n = 227

n = 229

n = 231

(b) Veri�er Time

Fig. 12. Performance comparison of di�erent k choices in terms of prover’s running time and veri�er’s running time. The
complexity is measured by the number of multiplication gates. Our system is tested on a SGX-equipped processor (i7-8700 @
3.2GHz and 16GB RAM, single thread).

Fig. 12 shows the performance of our proposal w.r.t. prover’s running time and veri�er’s running
time. The complexity is measured by the number of multiplication gates. From the Fig. 12a, we conclude
that increasing the value of k at the beginning can signi�cantly improve the prover time, because the
initial performance bottleneck lies in the overhead of calling the enclave, and increasing the value of k

can reduce the number of calls. As k increases, the curve in Fig. 12a �attens out, which means that the
performance bottleneck at this time lies in the computational overhead (e.g. MAC operations) inside
the enclave. We also conclude that the performance of our proposal is competitive. When set n = 225,
the prover time is less than 25s, and it is much faster than libSNARK, Ligero etc. Note that, no matter
which k and n we choose, the proof size is always a small constant (i.e. 297 bytes), thus the veri�er time
is generally around 1 ms.

7. Blockchain Applications

Resolving veri�er’s dilemma. The term veri�er’s dilemma in the blockchain context was �rst pro-
posed in [44]. In this section, we �rst brie�y explain what the problem is and then present a solution
using our succinct NIZK proof system.

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 31

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 3
Proving validity of a Bitcoin block (3700 Txs)

Prover time(SGX) 3 s

create enclave 91 ms
VerifySign 2.2 s

get QE quote 32 ms
get IAS report 675 ms

Prover time(TrustZone) 4.348 s
open session 93 ms
VerifySign 4.241 s
close session 14 ms

Veri�er time(SGX) 1.4 ms

Veri�er’s dilemma: In a blockchain system, when a new block is produced, it will be propagated to all
the other nodes through the P2P network. In principle, each node needs to independently verify the
validity of the block, i.e. in terms of Bitcoin, all the transaction inputs are never spent (e.g., in the UTXO)
and the signatures attached to all the transactions are valid. However, in practice, a miner may decide
to skip the veri�cation process, for instance, to gain advantages in the proof of work over the other
miners – honest miners need to �rst verify the block, accept it, and then start the proof of work for the
next block; whereas, dishonest miners assume that the block is valid, skip the expensive veri�cation,
and immediately start to mine the next block.
To resolve the problem, we can let the miner to attach a proof showing the validity of the block.

It only takes 1 ms to check the proof; therefore, the disadvantage of honest miners are merely 1 ms,
which is negligible compared with the network delay. In our prototype, the statement consists of the
root of the Merkle tree commitment (64 levels) of the latest UTXO, denoted as r and the hash of the
block, denoted as h. The prover wants to convince the veri�ers the followings are true:

• The content of the block that can hash to h;
• For each transaction input, there exist a path of length 64 can be hashed (SHA256) to r;
• The ECDSA signature of each transaction is valid w.r.t. the corresponding public key.

Performance. Table 3 shows the prover’s running time to prove the validity of a Bitcoin block with
3700 transactions. For SGX platform, It takes 91 ms to create the enclave, and the VerifySign function
running time is 2.2 s. It then takes 32 ms for the QE to sign a quote; it takes approximately 675 ms4 to
contact the IAS and receives the veri�cation report from it. The total time for the prover to generate a
proof is about 3 s. Then the veri�ers take 1.4 ms to verify the proof. For TrustZone platform, It takes
93 ms to open session with TA in the OPTEE, and invoking VerifySign function takes 4.241 s. It then
takes 14 ms to close the session. The total time for the prover to generate a proof is about 4.348 s. Note,
in our experiment for TrustZone platform, we omit the interaction time with the remote attestation
server because of the lack of the attestation server.

Fast NIPoPoW. Proof-of-Work (PoW) is one of the most popular consensus mechanism to realize an
open permissionless blockchain, e.g., Bitcoin and Ethereum. To determine “longest” chain, the nodes
need to verify the entire linearly-growing chain of PoWs. Therefore, verify the amount of computation
involved in a chain could be an expensive task for a long chain (e.g., the blockchain of Bitcoin consists

4The connection time with IAS varies, depending on the region and country. The experiment is tested on a Linode cloud
server at Fremont, California, US.

32 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

Table 4
Proving chain di�culty for 575000 Bitcoin blocks

Prover time 3.84 s

create enclave 220 ms
VerifySign 2.89 s

get QE quote 32 ms
get IAS report 694 ms

Veri�er time 1.5 ms

of 575000 blocks,) if the nodes only store the genesis block. In practice, checkpoints are used to mitigate
this issue.
Non-Interactive Proofs of Proof-of-Work (NIPoPoWs) is a primitive introduced by [37]. It is a short

proof that contains the following information,

• the total di�culty of all blocks in a chain,
• if a given block is on that chain.

The veri�ers can check the validity of the proof without downloading all the block headers.
NIPoPoWs enables lightweight wallets with simpli�ed payment veri�cation (SPV). The SPV clients

can request multiple NIPoPoWs from the full nodes (i.e., the nodes store the whole blockchain). As long
as one of those full nodes is honest, the SPV clients can know if a given block is on the longest chain.
NIPoPoWs also can be used to build a cross-chain solution. Because the miners that run a blockchain

do not monitor other blockchain networks, this can be done with short proofs. If a blockchain supports
smart contracts, e.g., Ethereum, a contract can be written to validate a NIPoPoW to check that some-
thing happened on another blockchain and react to it. For instance, a payment made on a blockchain
system, that supports NIPoPows, could cause a payment to be released by an Ethereum smart contract.
In the protocol in [37], the miners run an O (|C| log(|C|)) (where |C| is the length of the blockchain)

algorithm to generate a proof of sizeO (m log(|C|))wherem is a security parameter. After receiving the
proof from the miners, the SPV clients can verify the proof with the probability of 1� negl(m) (where
negl(m) is negligible function of m). The parameter m is a trade-o� parameter between security and
performance. Increasingmmakes the protocol more secure (reduce the probability of false veri�cation),
but it also harms the performance (increase the size of the proof and the veri�cation time).
In our SNARK proof system, the miner generate a proof by parsing the blockchain to SGX. The

algorithm to generate the proof take O(|C|) complexity. The size of the proof is O(1). The time for the
SPV clients to verify the proof is also O(1). Our NIZK proof system is more e�cient in terms of proof
generation/ veri�cation time and proof size. Furthermore, our veri�cation algorithm always returns
the correct value as long as the digital signature scheme is secured. As shown in Table 4, the prover
needs about 3.84 seconds to create such a proof (of size 300 bytes) for a chain of 575000 blocks. The
veri�ers take 1.5 ms to verify the proof.

Privacy preserving smart contract. The smart contract systems over decentralized cryptocurrencies
allowmaking safe transactions between distrustful parties without trusted third parties. However, most
of the existing systems lack transaction privacy. All the information of the smart contracts are exposed
on the blockchain.
Privacy preserving smart contract is introduced in [36, 39]. Cryptographic primitives, e.g., zero-

knowledge proofs, have been used to preserve the privacy of smart contracts. A privacy preserving
smart contract consist of two parts

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 33

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

• A private portion which takes in clients’ input data (e.g., in two-party coin tossing) as well as
currency units (e.g., in an auction). The private portion is executed to determine the payout dis-
tribution amongst the clients.

• A public portion (e.g., the smart contract’s program) that does not touch private data or money.

After the smart contracts are executed, everyone can verify the execution of the smart contract without
knowing any the private portion.
Privacy preserving smart contract can be used for several real-life application, such as insurance,

auctions, digital identity and records management. For example, in a unique bid auction smart contract,
the clients bid some money to win a prize. The winner is the client with the lowest unique bid. In this
case, privacy preserving smart contract is needed so that all the bidding information cannot be revealed.
Nevertheless, the smart contracts in [36, 39] is not e�ective enough. It takes a few minutes to

run the cryptographic computation. Later, there are several papers provide di�erent methods to im-
prove the performance of privacy preserving smart contract. In [18, 61] a trusted execution environ-
ment/hardware is combined with a blockchain to address the performance issues. Here, the time to
verify an execution of a smart contract can be hundreds of milliseconds.
Our SNARK proof system can also be combined with a blockchain to improve the performance of

privacy preserving smart contract. When clients wants to execute a smart contract, they parse the
public and private portion to the SGX to generate an execution proof. Then, the miners can verify the
proof without knowing the the private portion. We expect the miners can verify the proof within 1.5
ms.

8. Related Work

Universal SNARK. Now we brie�y describe several di�erent practical approaches for universal
SNARK (i.e., can be applied to general computations and languages in NP). We note that our descrip-
tion here are based on a large body of existing results, and unfortunately we cannot cover the entire
body research in this line. We mainly compare the performance related properties, including prover
scalability, veri�er scalability, setup/initialization scalability, and communication scalability. Addition-
ally, we also compare the underlying setup assumptions and computational assumptions. We note that,
in the existing approaches, each setup only support one language instance. Meanwhile, our scriptable
SNARK can support multiple language instances in a single setup.
There are multiple approaches to scalable SNARK. The �rst approach is based on homomorphic

public-key cryptography, by Ishai et al. [33] and Groth [29]. Then Gennaro et. al [24] introduced an
extremely e�cient instantiation, based on Quadratic Span Programs, which later been implemented in
Pinocchio [49]; see also [5, 7, 20, 40]. Note that, this technique has been used in Zcash.
We note that, the homomorphic public-key cryptography based approach can be combined with

other techniques to improve the performance. For example, Valiant, [56] suggested to reduce prover
space consumption via knowledge extraction assumptions; This combined method can inherit most of
the properties from the underlying proof system. We note that our scriptable SNARK system is more
e�cient.
The second approach is based on the hardness of the DLP, originally proposed by Groth [30] and then

implemented in [9, 13]. Note that, the communication complexity in the DLP approach is logarithmic.
However, the veri�er complexity in this approach is not scalable.

34 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

The third approach is based on e�cient Interactive Proofs (IP) [28, 51]. The line of realizations can
be found in [62] and [57]. Note that, the veri�er in this approach is not scalable.
The fourth approach is via the so-called “MPC in the head”, originally suggested by Ishai et al. [34]

and then implemented in ZKBoo [26], and in Ligero [1]. “MPC in the head” based systems have a
non-scalable veri�er; in addition, communication complexity is non-scalable.
Not all the existing works can be classi�ed like paragraphs above. Bootle et al. propose a scheme that

based on ideal linear commitment (ILC) model where a prover can commit to vectors by sending them
to a channel, and a veri�er can query the channel on linear combinations of the committed vectors [10].
Baum et al. introduce the �rst lattice based protocol with sublinear communication costs [2]. A recent
proposal called STARK [4], attempts to simultaneously minimize proof size and veri�er computation.
However, their proof sizes are not small. In [31, 45], an updatable and universal reference string is
used. The main goals of this approach is to address risks surrounding setups and many other security
challenges in practice. It does not improve the e�ciency.
Another method to achieve universal setup is using universal circuit [42, 55]. In [5, 7], a TinyRAM

architecture is used to describe universal computations as simple programs. A universal circuit is built
based on a speci�c universal language (i.e., a set of tuples, where each tuple consists of a TinyRAM
program, an input string, and a time-bound to run the program). Unfortunately, this approach incur a
large overhead on the prover computation.

NIZK in the UC framework. Groth et al. proposed the �rst UC-secure NIZK argument for any NP
language in the presence of an adaptive adversary [32]. In [32], the simulator is allowed to generate
the encryption key/decryption key pair, and encrypts message that relates to the witness. Thus the
simulator has the chance of extracting the witness. Since then, a lot of research work has been done
to construct the UC-secure NIZK protocol, such as [16]. Kosba et al. has even made an attempt on
building a framework for UC-secure NIZK proofs [38]. However, to the best of our knowledge, all of
these protocols do not achieve succinctness.

Trusted hardware. Many previous works have proposed using trusted hardware to build crypto-
graphic algorithms and systems, including protection of cryptographic keys [46], functional encryp-
tion [23], digital rights management [53], map-reduce jobs [21, 47], machine learning [48], data analy-
sis [52], and protecting unmodi�ed Windows applications [3]. Of course, people have used trusted
hardware to build NIZK proof system. More precisely, Tramer et al. introduced sealed-glass proof
in [54], where the authors try to explore some use cases even if the isolated execution environment has
unbounded leakage, i.e., arbitrary side-channels. We note that there are two main di�erence between
their work and ours: interactiveness and scriptability. In particular, their primitive is interactive, thus
not scalable; in their protocol, for each veri�cation, the trusted hardware must be interacted with. Our
primitive is non-interactive, and in our construction, the veri�er can verify the proof without interact-
ing with the trusted hardware. Most importantly, ours is the �rst work to investigate scriptable SNARK,
which is developer-friendly.

9. Conclusion

In this work, we introduce a new notion called scriptable SNARK proof system. We formally model
this notion in the UC framework. We then propose a generic scriptable SNARK solution based on
trusted hardware. We also instantiated our scheme in both Intel SGX and Arm TrustZone. To the best

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 35

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

of our knowledge, the proposed scriptable SNARK is better than all the existing succinct SNARK proof
systems w.r.t. the prover running time (1000 times faster for Lua script, 10000 times faster for Native
C), the veri�er’s running time (10 times faster), and the proof size (10 times smaller). In addition, we
also propose a scriptable SNARK solution based on lightweight trusted hardware. Most importantly,
our SNARK proof system can be readily deployed and used by any developers without the need of
cryptographic background.

References

[1] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero: Lightweight sublinear
arguments without a trusted setup. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors,
ACM CCS 2017, pages 2087–2104. ACM Press, October / November 2017.

[2] Carsten Baum, Jonathan Bootle, Andrea Cerulli, Rafaël Del Pino, Jens Groth, and Vadim Lyubashevsky. Sub-linear
lattice-based zero-knowledge arguments for arithmetic circuits. In Annual International Cryptology Conference, pages
669–699. Springer, 2018.

[3] Andrew Baumann, Marcus Peinado, and Galen Hunt. Shielding applications from an untrusted cloud with haven. ACM
Transactions on Computer Systems (TOCS), 33(3):8, 2015.

[4] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable, transparent, and post-quantum secure com-
putational integrity. Cryptology ePrint Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/046.

[5] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin, Eran Tromer, and Madars Virza. SNARKs for C: Verifying program
executions succinctly and in zero knowledge. In Ran Canetti and Juan A. Garay, editors, CRYPTO 2013, Part II, volume
8043 of LNCS, pages 90–108. Springer, Heidelberg, August 2013.

[6] Eli Ben-Sasson, Alessandro Chiesa, Michael Riabzev, Nicholas Spooner, Madars Virza, and Nicholas P Ward. Aurora:
Transparent succinct arguments for r1cs. In Annual international conference on the theory and applications of crypto-
graphic techniques, pages 103–128. Springer, 2019.

[7] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct non-interactive zero knowledge for a von
neumann architecture. In Kevin Fu and Jaeyeon Jung, editors,USENIX Security 2014, pages 781–796. USENIXAssociation,
August 2014.

[8] Manuel Blum, Paul Feldman, and Silvio Micali. Non-interactive zero-knowledge and its applications (extended abstract).
In 20th ACM STOC, pages 103–112. ACM Press, May 1988.

[9] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit. E�cient zero-knowledge arguments
for arithmetic circuits in the discrete log setting. In Marc Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016,
Part II, volume 9666 of LNCS, pages 327–357. Springer, Heidelberg, May 2016.

[10] Jonathan Bootle, Andrea Cerulli, Essam Ghada�, Jens Groth, Mohammad Hajiabadi, and Sune K Jakobsen. Linear-time
zero-knowledge proofs for arithmetic circuit satis�ability. In International Conference on the Theory and Application of
Cryptology and Information Security, pages 336–365. Springer, 2017.

[11] E. Brickell and J. Li. Enhanced privacy id from bilinear pairing for hardware authentication and attestation. In 2010 IEEE
Second International Conference on Social Computing, pages 768–775, Aug 2010.

[12] Jo Van Bulck, Marina Minkin, O�r Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein, Thomas F.
Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Extracting the keys to the intel sgx kingdom with transient
out-of-order execution. In USENIX Security Symposium, 2018.

[13] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and Greg Maxwell. Bulletproofs: Short
proofs for con�dential transactions and more. In 2018 IEEE Symposium on Security and Privacy, pages 315–334. IEEE
Computer Society Press, May 2018.

[14] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. Cryptology ePrint Archive,
Report 2000/067, 2000. http://eprint.iacr.org/2000/067.

[15] Ran Canetti. Universally composable security: A new paradigm for cryptographic protocols. In 42nd FOCS, pages
136–145. IEEE Computer Society Press, October 2001.

[16] Ran Canetti, Pratik Sarkar, and Xiao Wang. Triply adaptive uc nizk. IACR Cryptol. ePrint Arch., 2020:1212, 2020.
[17] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H. Lai. Sgxpectre attacks: Stealing

intel secrets from sgx enclaves via speculative execution. 2018.
[18] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah Johnson, Ari Juels, Andrew Miller, and

Dawn Song. Ekiden: A platform for con�dentiality-preserving, trustworthy, and performant smart contracts.
[19] Victor Costan and Srinivas Devadas. Intel sgx explained. Cryptology ePrint Archive, Report 2016/086, 2016. https:

//eprint.iacr.org/2016/086.

https://eprint.iacr.org/2018/046
http://eprint.iacr.org/2000/067
https://eprint.iacr.org/2016/086
https://eprint.iacr.org/2016/086

36 Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[20] George Danezis, Cédric Fournet, Jens Groth, andMarkulf Kohlweiss. Square span programswith applications to succinct
NIZK arguments. In Palash Sarkar and Tetsu Iwata, editors,ASIACRYPT 2014, Part I, volume 8873 of LNCS, pages 532–550.
Springer, Heidelberg, December 2014.

[21] Tien Tuan Anh Dinh, Prateek Saxena, Ee-Chien Chang, Beng Chin Ooi, and Chunwang Zhang. M2R: Enabling stronger
privacy in MapReduce computation. In Jaeyeon Jung and Thorsten Holz, editors, USENIX Security 2015, pages 447–462.
USENIX Association, August 2015.

[22] ECRYPT. ebacs: Ecrypt benchmarking of cryptographic systems. https://bench.cr.yp.to/results-hash.html, 2018. Last
accessed: 2019-05-11.

[23] Ben Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov. IRON: Functional encryption using intel
SGX. In Bhavani M. Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017, pages 765–782.
ACM Press, October / November 2017.

[24] Rosario Gennaro, Craig Gentry, Bryan Parno, and Mariana Raykova. Quadratic span programs and succinct NIZKs
without PCPs. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages
626–645. Springer, Heidelberg, May 2013.

[25] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from all falsi�able assumptions. In
Lance Fortnow and Salil P. Vadhan, editors, 43rd ACM STOC, pages 99–108. ACM Press, June 2011.

[26] Irene Giacomelli, Jesper Madsen, and Claudio Orlandi. ZKBoo: Faster zero-knowledge for boolean circuits. Cryptology
ePrint Archive, Report 2016/163, 2016. http://eprint.iacr.org/2016/163.

[27] Oded Goldreich and Yair Oren. De�nitions and properties of zero-knowledge proof systems. Journal of Cryptology,
7(1):1–32, December 1994.

[28] Sha� Goldwasser, Yael Tauman Kalai, and Guy N. Rothblum. Delegating computation: interactive proofs for muggles.
In Richard E. Ladner and Cynthia Dwork, editors, 40th ACM STOC, pages 113–122. ACM Press, May 2008.

[29] Jens Groth. Fully anonymous group signatures without random oracles. In Kaoru Kurosawa, editor, ASIACRYPT 2007,
volume 4833 of LNCS, pages 164–180. Springer, Heidelberg, December 2007.

[30] Jens Groth. E�cient zero-knowledge arguments from two-tiered homomorphic commitments. In Dong Hoon Lee and
Xiaoyun Wang, editors, ASIACRYPT 2011, volume 7073 of LNCS, pages 431–448. Springer, Heidelberg, December 2011.

[31] Jens Groth, Markulf Kohlweiss, Mary Maller, Sarah Meiklejohn, and Ian Miers. Updatable and universal common ref-
erence strings with applications to zk-SNARKs. In Hovav Shacham and Alexandra Boldyreva, editors, CRYPTO 2018,
Part III, volume 10993 of LNCS, pages 698–728. Springer, Heidelberg, August 2018.

[32] Jens Groth, Rafail Ostrovsky, and Amit Sahai. Perfect non-interactive zero knowledge for np. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 339–358. Springer, 2006.

[33] Y. Ishai, E. Kushilevitz, and R. Ostrovsky. E�cient arguments without short pcps. In Twenty-Second Annual IEEE
Conference on Computational Complexity (CCC’07), pages 278–291, June 2007.

[34] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty computation.
In David S. Johnson and Uriel Feige, editors, 39th ACM STOC, pages 21–30. ACM Press, June 2007.

[35] Simon P Johnson, Vincent R Scarlata, Carlos V Rozas, Ernie Brickell, and Frank McKeen. Intel sgx: Epid provisioning
and attestation services. Intel, 2016.

[36] Ari Juels, Ahmed E. Kosba, and Elaine Shi. The ring of Gyges: Investigating the future of criminal smart contracts. In
Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016,
pages 283–295. ACM Press, October 2016.

[37] Aggelos Kiayias, Andrew Miller, and Dionysis Zindros. Non-interactive proofs of proof-of-work. Cryptology ePrint
Archive, Report 2017/963, 2017. http://eprint.iacr.org/2017/963.

[38] AhmedKosba, Zhichao Zhao, AndrewMiller, Yi Qian, Hubert Chan, Charalampos Papamanthou, Rafael Pass, abhi shelat,
and Elaine Shi. C;c;: A framework for building composable zero-knowledge proofs. Cryptology ePrint Archive, Report
2015/1093, 2015. https://ia.cr/2015/1093.

[39] Ahmed E. Kosba, AndrewMiller, Elaine Shi, ZikaiWen, and Charalampos Papamanthou. Hawk: The blockchainmodel of
cryptography and privacy-preserving smart contracts. In 2016 IEEE Symposium on Security and Privacy, pages 839–858.
IEEE Computer Society Press, May 2016.

[40] SCIPR Lab. libsnark: a c++ library for zksnark proofs, 2019.
[41] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, andMarcus Peinado. Inferring �ne-grained control

�ow inside sgx enclaves with branch shadowing. In USENIX Security. USENIX Association, 2017.
[42] Helger Lipmaa, Payman Mohassel, and Saeed Sadeghian. Valiant’s universal circuit: Improvements, implementation,

and applications. Cryptology ePrint Archive, Report 2016/017, 2016. https://eprint.iacr.org/2016/017.
[43] Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and StefanMangard. ARMageddon: Cache attacks on

mobile devices. In Thorsten Holz and Stefan Savage, editors, USENIX Security 2016, pages 549–564. USENIX Association,
August 2016.

[44] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying incentives in the consensus computer. In
Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015, pages 706–719. ACM Press, October 2015.

https://bench.cr.yp.to/results-hash.html
http://eprint.iacr.org/2016/163
http://eprint.iacr.org/2017/963
https://ia.cr/2015/1093
https://eprint.iacr.org/2016/017

Z. Zhou et al. / Scriptable and Composable SNARKs in the Trusted Hardware Model 37

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

[45] Mary Maller, Sean Bowe, Markulf Kohlweiss, and Sarah Meiklejohn. Sonic: Zero-knowledge snarks from linear-size
universal and updateable structured reference strings. IACR Cryptology ePrint Archive, 2019:99, 2019.

[46] Jonathan M McCune, Bryan J Parno, Adrian Perrig, Michael K Reiter, and Hiroshi Isozaki. Flicker: An execution infras-
tructure for tcb minimization. In ACM SIGOPS Operating Systems Review, volume 42, pages 315–328. ACM, 2008.

[47] Olga Ohrimenko, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Markulf Kohlweiss, and Divya Sharma. Observing
and preventing leakage in MapReduce. In Indrajit Ray, Ninghui Li, and Christopher Kruegel, editors, ACM CCS 2015,
pages 1570–1581. ACM Press, October 2015.

[48] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian Nowozin, Kapil Vaswani, and Manuel Costa.
Oblivious multi-party machine learning on trusted processors. In Thorsten Holz and Stefan Savage, editors, USENIX
Security 2016, pages 619–636. USENIX Association, August 2016.

[49] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio: Nearly practical veri�able computation. In
2013 IEEE Symposium on Security and Privacy, pages 238–252. IEEE Computer Society Press, May 2013.

[50] Rafael Pires, Daniel Gavril, Pascal Felber, Emanuel Onica, and Marcelo Pasin. A lightweight mapreduce framework for
secure processing with sgx. In Proceedings of the 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing, CCGrid ’17, pages 1100–1107, Piscataway, NJ, USA, 2017. IEEE Press.

[51] Omer Reingold, Guy N. Rothblum, and Ron D. Rothblum. Constant-round interactive proofs for delegating computation.
In Daniel Wichs and Yishay Mansour, editors, 48th ACM STOC, pages 49–62. ACM Press, June 2016.

[52] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus Peinado, GloriaMainar-Ruiz, andMark Russi-
novich. VC3: Trustworthy data analytics in the cloud using SGX. In 2015 IEEE Symposium on Security and Privacy, pages
38–54. IEEE Computer Society Press, May 2015.

[53] G Edward Suh, Dwaine Clarke, Blaise Gassend, Marten Van Dijk, and Srinivas Devadas. Aegis: architecture for tamper-
evident and tamper-resistant processing. In ACM International Conference on Supercomputing 25th Anniversary Volume,
pages 357–368. ACM, 2014.

[54] F. Tramer, F. Zhang, H. Lin, J. Hubaux, A. Juels, and E. Shi. Sealed-glass proofs: Using transparent enclaves to prove and
sell knowledge. In Euro S&P 2017, pages 19–34, 2017.

[55] Leslie G. Valiant. Universal circuits (preliminary report). In Proceedings of the Eighth Annual ACM Symposium on Theory
of Computing, STOC ’76, pages 196–203, New York, NY, USA, 1976. ACM.

[56] Paul Valiant. Incrementally veri�able computation or proofs of knowledge imply time/space e�ciency. In Ran Canetti,
editor, TCC 2008, volume 4948 of LNCS, pages 1–18. Springer, Heidelberg, March 2008.

[57] Riad S. Wahby, Ioanna Tzialla, abhi shelat, Justin Thaler, and Michael Wal�sh. Doubly-e�cient zkSNARKs without
trusted setup. In 2018 IEEE Symposium on Security and Privacy, pages 926–943. IEEE Computer Society Press, May 2018.

[58] Nico Weichbrodt, Anil Kurmus, Peter R. Pietzuch, and Rüdiger Kapitza. Asyncshock: Exploiting synchronisation bugs
in intel SGX enclaves. In ESORICS 2016, pages 440–457, 2016.

[59] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic side channels for un-
trusted operating systems. In Proceedings of the 2015 IEEE Symposium on Security and Privacy, SP ’15, pages 640–656.
IEEE Computer Society, 2015.

[60] Bingsheng Zhang, Yuan Chen, Jiaqi Li, Yajin Zhou, Phuc Thai, Hong-Sheng Zhou, and Kui Ren. Succinct scriptable nizk
via trusted hardware. In European Symposium on Research in Computer Security, pages 430–451. Springer, 2021.

[61] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town crier: An authenticated data feed for smart
contracts. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors,
ACM CCS 2016, pages 270–282. ACM Press, October 2016.

[62] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and Charalampos Papamanthou. vSQL: Verify-
ing arbitrary SQL queries over dynamic outsourced databases. In 2017 IEEE Symposium on Security and Privacy, pages
863–880. IEEE Computer Society Press, May 2017.

	Introduction
	Our Design Goals
	Our Approach
	Implementation
	Applications

	Preliminaries
	Trusted Execution Environment
	NIZK Proof/Argument Systems
	Universal Composibility
	Cryptographic Tools

	Security Definition
	Our Scriptable SNARK Construction
	A lightweight SNARK Scheme for Trusted Hardware with Limited State
	Implementation
	OHWQ Implementation
	OHWLight Implementation

	Blockchain Applications
	Related Work
	Conclusion
	References

