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—— Abstract
A central tenet of theoretical cryptography is the study of the minimal assumptions required to
implement a given cryptographic primitive. One such primitive is the one-time memory (OTM),
introduced by Goldwasser, Kalai, and Rothblum [CRYPTO 2008], which is a classical functionality
modeled after a non-interactive 1-out-of-2 oblivious transfer, and which is complete for one-time
classical and quantum programs. It is known that secure OTMs do not exist in the standard model in
both the classical and quantum settings. Here, we propose a scheme for using quantum information,
together with the assumption of stateless (i.e., reusable) hardware tokens, to build statistically
secure OTMs. Via the semidefinite programming-based quantum games framework of Gutoski
and Watrous [STOC 2007], we prove security for a malicious receiver, against a linear number of
adaptive queries to the token, in the quantum universal composability framework, but leave open
the question of security against a polynomial amount of queries. Compared to alternative schemes
derived from the literature on quantum money, our scheme is technologically simple since it is of the
“prepare-and-measure” type. We also show our scheme is “tight” according to two scenarios.
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1 Introduction

Theoretical cryptography centers around building cryptographic primitives secure against
adversarial attacks. In order to allow a broader set of such primitives to be implemented,
one often considers restricting the power of the adversary. For example, one can limit the
computing power of adversaries to be polynomial bounded [68, 7], restrict the storage of
adversaries to be bounded or noisy [49, 11, 22], or make trusted setups available to honest
players [39, 6, 14, 16, 36, 55, 42, 46, 47, 48, 41, 40|, to name a few. One well-known trusted
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setup is tamper-proof hardware [38, 30], which is assumed to provide a specific input-output
functionality, and which can only be accessed in a “black box” fashion. The hardware
can maintain a state (i.e., is stateful) and possibly carry out complex functionality, but
presumably may be difficult or expensive to implement or manufacture. This leads to an
interesting research direction: Building cryptography primitives using the simplest (and
hence easiest and cheapest to manufacture) hardware.

In this respect, two distinct simplified notions of hardware have captured considerable
interest. The first is the notion of a one-time memory (OTM) [30], which is arguably the
simplest possible notion of stateful hardware. An OTM, modeled after a non-interactive
1-out-of-2 oblivious transfer, behaves as follows: first, a player (called the sender) embeds
two values sg and s; into the OTM, and then gives the OTM to another player (called
the receiver). The receiver can now read his choice of precisely one of sy or sy; after
this “use” of the OTM, however, the unread bit is lost forever. Interestingly, OTMs are
complete for implementing one-time use programs (OTPs): given access to OTMs, one can
implement statistically secure OTPs for any efficiently computable program in the universal
composability (UC) framework [32]. (OTPs, in turn, have applications in software protection
and one-time proofs [30].) In the quantum UC model, OTMs enable quantum one-time
programs [9]. (This situation is analogous to the case of oblivious transfer being complete for
two-party secure function evaluation [39, 36].) Unfortunately, OTMs are inherently stateful,
and thus represent a very strong cryptographic assumption — any physical implementation of
such a device must somehow maintain internal knowledge between activations, i.e., it must
completely “self-destruct” after a single use.

This brings us to a second important simplified notion of hardware known as a stateless
token [17], which keeps no record of previous interactions. On the positive side, such hardware
is presumably easier to implement. On the negative side, an adversary can run an experiment
with stateless hardware as many times as desired, and each time the hardware is essentially
“reset”. (Despite this, stateless hardware has been useful in achieving computationally secure
multi-party computation [17, 32, 19], and statistically secure commitments [23].) It thus
seems impossible for stateless tokens to be helpful in implementing any sort of “self-destruct”
mechanism. Indeed, classically stateful tokens are trivially more powerful than stateless ones,
as observed in, e.g., [32]. This raises the question:

Can quantum information, together with a classical stateless token, be used to simulate
“self destruction” of a hardware token?

In particular, a natural question along these lines is whether quantum information can help
implement an OTM. Unfortunately, it is known that quantum information alone cannot
implement an OTM (or, more generally, any one-time program) [9]; see also Section 4 below.
We thus ask the question: What are the minimal cryptographic assumptions required in a
quantum world to implement an OTM?

1.1 Contributions and summary of techniques

We propose what is, to our knowledge, the first prepare-and-measure quantum protocol that
constructs OTMs from stateless hardware tokens. For this protocol, we are able to rigorously
prove information theoretic security against an adversary making a linear (in n, the security
parameter) number of adaptive queries to the token. While we conjecture that security holds
also for polynomially many queries, note that already in this setting of linearly many adaptive
queries, our protocol achieves something impossible classically (i.e., classically, obtaining
security against a linear number of queries is impossible). We also show stand-alone security
against a malicious sender.
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Historical Note. We proposed the concept that quantum information could provide a
“stateless to stateful” transformation in a preliminary version of this work [8]; however, that
work claimed security against a polynomial number of token queries, obtained via a reduction
from the interactive to the non-interactive setting. We thank an anonymous referee for
catching a subtle, but important bug which ruled out the proof approach of [8]. The current
paper employs a different proof approach, which models interaction with the token as a
“quantum game” via semidefinite programming. Since our original paper was posted, recent
work [20] has shown an alternate quantum “stateful to stateless” transformation via quantum
money constructions [3]. Specifically, in [20], security against a polynomial number of queries
is achieved, albeit with respect to a new definition of “OTMs relative to an oracle” (while the
security results of the present paper are with respect to the well-established simulation-based
definition of [32, 38]). Furthermore, [20] directly applies known quantum money constructions,
which require difficult-to-prepare highly entangled states. Our focus here, in contrast, is to
take a “first-principles” approach and build a technologically simple-to-implement scheme
which requires no entanglement, but rather the preparation of just one of four single qubit
states, [0), 1), |+),|—). Indeed, the two works are arguably complementary in that the former
focuses primarily on applications of “stateful” single-use tokens, while our focus is on the
most technologically simple way to implement such “stateful” tokens.

Construction. Our construction is inspired by Wiesner’s conjugate coding [65]: the quantum
portion of the protocols consists in n quantum states chosen uniformly at random from
{]0Y, |1}, |+),]—)} (note this encoding is independent of the classical bits of the OTM func-
tionality). We then couple this n-qubit quantum state, |1} (the quantum key) with a classical
stateless hardware token, which takes as inputs a choice bit b, together with an n-bit string y.
If b = 0, the hardware token verifies that the bits of y that correspond to rectilinear (|0)
or [1), i.e., Z basis) encoded qubits of |1)) are consistent with the measurement of [¢) in
the computational basis, in which case the bit sg is returned. If b = 1, the hardware token
verifies that the bits of y that correspond to diagonal (|+) or |—), i.e., X basis) encoded
qubits of |¢) are consistent with the measurement of |¢) in the diagonal basis, in which case
the bit s; is returned.! The honest use of the OTM is thus intuitive: for choice bit b = 0,
the user measures each qubit of the quantum key in the rectilinear basis to obtain an n-bit
string y, and inputs (b, y) into the hardware token. If b = 1, the same process is applied, but
with measurements in the diagonal basis.

Assumption. Crucially, we assume the hardware token accepts classical input only (al-
ternatively and equivalently, the token immediately measures its quantum input in the
standard basis), i.e., it cannot be queried in superposition. Although this may seem a strong
assumption, in Section 4 we show that any token which can be queried in superposition in a
reversible way, cannot be used to construct a secure OTM (with respect to our setting in
which the adversary is allowed to apply arbitrary quantum operations). Similar classical-input
hardware has previously been considered in, e.g., [60, 9].

Security and intuition. Stand-alone security against a malicious sender is relatively simple
to establish, since the protocol consists in a single message from the sender to the receiver,
and stand-alone security only requires simulation of the local view of the adversary.

1 'We note that a simple modification using a classical one-time pad could be used to make both the
quantum state and hardware token independent of sp and s;: the token would output one of two
uniformly random bits r¢ and 71, which could each be used to decrypt a single bit, so or s;.
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The intuition underlying security against a malicious receiver is clear: in order for a
receiver to extract a bit s, as encoded in the OTM, she must perform a complete measurement
of the qubits of |¢) in order to obtain a classical key for s; (since, otherwise, she would likely
fail the test as imposed by the hardware token). But such a measurement would invalidate the
receiver’s chance of extracting the bit s;_;! This is exactly the “self-destruct”-like property
we require in order to implement an OTM. This intuitive notion of security was present in
Wiesner’s proposal for quantum money [65], and is often given a physical explanation in
terms of the no-cloning theorem [67] or Heisenberg uncertainty relation [35].

Formally, we work in the statistical (i.e., information-theoretic) setting of the quantum
Universal Composability (UC) framework [59], which allows us to make strong security
statements that address the composability of our protocol within others. As a proof technique,
we describe a simulator, such that for any “quantum environment” wishing to interact with
the OTM, the environment statistically cannot tell whether it is interacting with the ideal
OTM functionality or the real OTM instance provided by our scheme. The security of this
simulator requires a statement of the following form: Given access to a (randomly chosen)
“quantum key” |1x) and corresponding stateless token Vj, it is highly unlikely for an adversary
to successfully extract keys for both the secret bits sgp and s; held by Vi. We are able to
show this statement for any adversary which makes a linear number of queries, by which we

(22m70‘228n) (fOI‘

mean an adversary making m queries succeeds with probability at most O
n the number of quantum key bits in |¢)). In other words, if the adversary makes at most
m = cn queries with ¢ < 0.114, then its probability of cheating successfully is exponentially
small in n. We conjecture, however, that a similar statement holds for any m € poly(n), i.e.,
that the protocol is secure against polynomially many queries.

To show security against linearly many queries, we exploit the semidefinite programming-
based quantum games framework of Gutoski and Watrous (GW) [33] to model interaction
with the token. Intuitively, GW is useful for our setting, since it is general enough to model
multiple rounds of adaptive queries to the token, even when the receiver holds quantum “side
information” in the form of |¢). We describe this technique in Sections 2.1 and 3.4, and
provide formal details in the full version. Summarizing, we show the following.

» Main Theorem (informal). There exists a protocol II, which together with a classical
stateless token and the ability to randomly prepare single qubits in one of four pure states,
tmplements the OTM functionality with statistical security in the UC framework against a
corrupted receiver making a linear number of adaptive queries.

As stated above, we conjecture that our protocol is actually secure against polynomially
many adaptive queries. However, we are unable to show this claim using our present proof
techniques, and hence leave this question open. Related to this, we make the following
comments: (1) As far as we are aware, the Main Theorem above is the only known formal
proof of any type of security for conjugate coding in the interactive setting with Q(1) queries.
Moreover, as stated earlier, classically security against (1) queries is trivially impossible. (2)
Our proof introduces the GW semidefinite programming framework from quantum interactive
proofs to the study of conjugate coding-based schemes. This framework allows handling
multiple challenges in a unified fashion: arbitrary quantum operations by the user, classical
queries to the token, and the highly non-trivial assumption of quantum side information for
the user (the “quantum key” state sent to the user.)

Towards security against polynomially many queries. Regarding the prospects of proving
security against polynomially many adaptive queries, we generally believe it requires a
significant new insight into how to design a “good” feasible solution to the primal semidefinite
program (SDP) obtained via GW. However, in addition to our proof for linear security, in the
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full version we give evidence potentially supporting our conjecture for polynomial security.
Namely, we first simplify the SDPs obtained from GW, and derive the corresponding dual
SDPs. These derivations apply for any instantiation of the GW framework, i.e. they are
not specific to our setting, and hence may prove useful elsewhere. We then give a feasible
solution Y to the dual SDP. While Y is simple to state, it is somewhat involved to analyze.
A heuristic analysis suggests Y’s dual objective function value has precisely the behavior
needed to show security, i.e. the value scales as m/+/2", for m queries and n key bits. If Y
were to be the optimal solution to the dual SDP, this would strongly suggest the optimal
cheating probability is essentially m/v/2". However, we explicitly show Y is not optimal,
and so m/+/2" is only a lower bound on the optimal cheating probability. Nevertheless, we
conjecture that while Y is not optimal, it is approximately optimal; this would imply the
desired polynomial security claim. Unfortunately, the only techniques we are aware of to show
approximate optimality require a better primal SDP solution, which appears challenging.

Further related work. Our work contributes to the growing list of functionalities achievable
with quantum information, yet unachievable classically. This includes: unconditionally
secure key expansion [4], physically uncloneable money [65, 51, 53], a reduction from obli-
vious transfer to bit commitment [5, 21] and to other primitives such as “cut-and choose”
functionality [27], and revocable time-release quantum encryption [61]. Importantly, these
protocols all make use of the technique of conjugate coding [65], which is also an important
technique used in protocols for OT in the bounded quantum storage and noisy quantum
storage models [22, 63] (see [10] for a survey).

Various proof techniques have been developed in the context of conjugate coding, including
entropic uncertainty relations [64]. In the context of QKD, another technique is the use of
de Finetti reductions [58] (which exploit the symmetry of the scheme in order to simplify
the analysis). Recently, semidefinite programming (SDP) approaches have been applied to
analyze security of conjugate coding [51] for quantum money, in the setting of one round of
interaction with a “stateful” bank. SDPs are also the technical tool we adopt for our proof
(Section 3.4), though here we require the more advanced quantum games SDP framework of
Gutoski and Watrous [33] to deal with multiple adaptive interactions with stateless tokens.
Reference [53] has also made use of Gavinsky’s [28] quantum retrieval games framework.

Somewhat similar to [53], Aaronson and Christiano [1] have studied quantum money
schemes in which one interacts with a verifier. They introduce an “inner product adversary
method” to lower bound the number of queries required to break their scheme.

We remark that [53] and [51] have studied schemes based on conjugate coding similar to
ours, but in the context of quantum money. In contrast to our setting, the schemes of [53]
and [51] (for example) involve dynamically chosen random challenges from a verifier to the
holder of a “quantum banknote”, whereas in our work here the “challenges” are fixed (i.e.,
measure all qubits in the Z or X basis to obtain secret bit so or s1, respectively), and the
verifier is replaced by a stateless token. Thus, [51], for example, may be viewed as using a
“stateful” verifier, whereas our focus here is on a “stateless” verifier (i.e., a token).

Also, prior work has achieved oblivious transfer using quantum information, together with
some assumption (e.g., bit commitment [5], bounded quantum storage [22]). These protocols
typically use an interaction phase similar to the “commit-and-open” protocol of [5]; because
we are working in the non-interactive setting, these techniques appear to be inapplicable.

Finally, Liu [43, 44, 45] has given stand-alone secure OTMs using quantum information
in the isolated-qubit model. Liu’s approach is nice in that it avoids the use of trusted setups.
In return, however, Liu must use the isolated-qubit model, which restricts the adversary to
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perform only single-qubit operations (no entangling gates are permitted); this restriction
is, in some sense, necessary if one wants to avoid trusted setups, as a secure OTM in the
plain quantum model cannot exist (see Section 4). In contrast, in the current work we
allow unbounded and unrestricted quantum adversaries, but as a result require a trusted
setup. In addition, we remark the security notion of OTMs of [43, 44, 45] is weaker than the
simulation-based notion studied in this paper, and it remains an interesting open question
whether the type of OTM in [43, 44, 45] is secure under composition (in the current work,
the UC framework gives us security under composition for free).

Significance. Our results show a strong separation between the classical and quantum
settings, since classically, stateless tokens cannot be used to securely implement OTMs. To
the best of our knowledge, our work is the first to combine conjugate coding with stateless
hardware tokens. Moreover, while our protocol shares similarities with prior work in the
setting of quantum money, building OTMs appears to be a new focus here 2.

Our protocol has a simple implementation, fitting into the single-qubit prepare-and-
measure paradigm, which is widely used as the “benchmark” for a “physically feasible”
quantum protocol (in this model, one needs only the ability to prepares single-qubit states
|0, [1), |4+),|—), and to perform single-qubit projective measurements. In particular, no
entangled states are required, and in principle no quantum memory is required, since qubits
can be measured one-by-one as they arrive). In addition, from a theoretical cryptographic
perspective, our protocol is attractive in that its implementation requires an assumption of a

stateless hardware token, which is easier and cheaper to mass produce than a stateful token.

In terms of security guarantees, we allow arbitrary operations on behalf of a malicious
quantum receiver in our protocol (i.e., all operations allowed by quantum mechanics), with
the adversary restricted in that the stateless token is assumed only usable as a black box.
The security we obtain is statistical, with the only computational assumption being on the
number of queries made to the token (recall we show security for a linear number of queries,
and conjecture security for polynomially many queries). Finally, our security analysis is in
the quantum UC framework against a corrupted receiver; this means our protocol can be
easily composed with many others; for example, combining our results with [9]’s protocol
immediately yields UC-secure quantum OTPs against a dishonest receiver.

Finally, our scheme is “tight” with respect to two impossibility results (Section 4), both of
which assume the adversary has black-box access to both the token and its inverse operation®.
First, the assumption that the token be queried only in the computational basis cannot be
relaxed: If the token can be queried in superposition, then an adversary can easily break an
OTM scheme. Second, our scheme has the property that corresponding to each secret bit s;
held by the token, there are exponentially many valid keys one can input to the token to
extract s;. We show that for any “measure-and-access” OTM (i.e., an OTM in which one
measures a given quantum key and uses the classical measurement result to access a token
to extract data, of which our protocol is an example), a polynomial number of keys implies
the ability to break the scheme with inverse polynomial probability (more generally, A keys
allows probability at least 1/A? of breaking the scheme).

2 We remark, however, that a reminiscent concept of single usage of quantum “tickets” in the context of
quantum money is very briefly mentioned in Appendix S.4.1 of [53].

3 This is common in the oracle model of quantum computation, where a function f : {0,1}" — {0,1} is
implemented via the (self-inverse) unitary mapping Us|z)|y) = |z)|y & f(z)).
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Open Questions. While our work shows the fundamental advantage that quantum inform-

ation yields in a stateful to stateless reduction, it does leave a number of open questions:

1. Security against polynomially many queries. Can our security proof be streng-
thened to show information theoretic security against a polynomial number of queries to
the token? We conjecture this to be the case, but finding a formal proof has been elusive.

2. Composable security against a malicious sender. While we show composable
security against a malicious receiver, our protocol can achieve standalone security against
a malicious sender. Could an adaptation of our protocol ensure composable security
against a malicious sender as well?*

3. Non-reversible token. Our impossibility result for quantum one-time memories with
quantum queries (Section 4) assumes the adversary has access to reversible tokens; can a
similar impossibility result be shown for non-reversible tokens? In Section 4, we briefly
discuss why it may be difficult to extend the techniques of our impossibility results
straightforwardly when the adversary does not have access to the inverse of the token.

4. Imperfect devices. While our prepare-and-measure scheme is technologically simple, it
is still unrealizable with current technology, due to the requirement of perfect quantum
measurements. We leave open the question of tolerance to a small amount of noise.

Organization. Section 2 covers preliminaries, including ideal functionalities for an OTM
and stateless token, background on quantum channels, semidefinite programming, and the
Gutoski-Watrous (GW) framework for quantum games. Section 3 gives our construction for
an OTM based on a stateless hardware token; the proof ideas for security are also provided.
Section 4 discusses “tightness” of our construction by showing two impossibility results for
“relaxations” of our scheme. In the Appendix, we discuss classical UC and quantum UC
(Appendix A); Appendix B establishes notation required in the definition of stand-alone
security against a malicious sender. Due to space constraints, our formal security proof
against a linear number of queries to the token (used to finish the security proof in Section 3)
is deferred to the full version, along with simplifications of the GW SDP, derivation of its
dual, and a dual feasible solution which we conjecture to be approximately optimal.

2 Preliminaries

Notation. Two binary distributions X and Y are indistinguishable, denoted X ~ Y, if
|Pr(X, =1) — Pr(Y,, = 1)|] < negl(n). We define single-qubit |0} = |0) and |1)4 = |1), so
that {|0)4,]1)+} form the rectilinear basis. We define |0), = %(|O>+|l>) and |1)x = %(|0>—
[1)), so that {|0)«,|1)x} form the diagonal basis. For strings @ = x1, z2,...x, € {0,1}" and
0 =01,0o,...,0, € {+,x}", define |z)s = Q;_, |7:)s,. For X a finite dimensional complex
Hilbert space, £(X), Herm(X), Pos(X), and D(X) denote the sets of linear, Hermitian,
positive semidefinite, and density operators acting on X', respectively. Notation A > B
means A — B is positive semidefinite.

Quantum universal composition (UC) framework. We study simulation-based security in
this paper. In particular, we prove security of our construction against a malicious receiver in
the quantum universal composition (UC) framework [59]. See Appendix A for a description
of classical UC [14] and quantum UC [59]. In the next two paragraphs, we introduce the
ideal functionalities of one-time memory and stateless hardware token.

4 We note that this would require a different protocol, since in our current construction, a cheating sender
could program the token to abort based on the user’s input.
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One-time memory (OTM). The one-time memory (OTM) functionality For involves two
parties, the sender and the receiver, and consists of two phases, “Create” and “Execute”.
Please see Functionality 1 below for details; for the sake of simplicity, we have omitted the
session/party identifiers as they should be implicitly clear from the context. We sometimes
refer to this functionality Fory as an OTM token.

Functionality 1 Ideal functionality Fory.

1. Create: Upon input (sg,s1) from the sender, with sg,s1 € {0,1}, send create to the
receiver and store (sg, s1).

2. Execute: Upon input b € {0,1} from the receiver, send s, to receiver. Delete any trace
of this instance.

Stateless hardware. The original work of Katz [38] introduces the ideal functionality Frap
to model stateful tokens in the UC-framework. In the ideal model, a party that wants to
create a token, sends the Turing machine to Fyrap. Furap Will then run the machine (keeping
the state), when the designated party will ask for it. The same functionality can be adapted to
model stateless tokens. It is sufficient that the functionality does not keep the state between
two executions. A simplified version of the Fyrap functionality as shown in [17] (that is very
similar to the Fyrap of [38]) is described below. Note that, again for the sake of simplicity,
we have omitted the session/party identifiers as they should be implicitly clear from the
context. Although the environment and adversary are unbounded, we specify that stateless

Functionality 2 Ideal functionality Fyrap.

The functionality is parameterized by a polynomial p(-), and implicit security parameter n.

1. Create: Upon input (create, M) from the sender, where M is a Turing machine, send
create to the receiver and store M.

2. Execute: Upon input (run,msg) from the receiver, execute M(msg) for at most p(n)
steps, and let out be the response. Let out := L if M does not halt in p(n) steps. Send
out to the receiver.

hardware can be queried only a polynomial number of times. This is necessary; otherwise the
hardware token model is vacuous (with unbounded queries, the entire input-output behavior
of stateless hardware can be extracted).

Quantum channels. A linear map ® : L(X) — L£()) is a quantum channel if ® is trace-
preserving and completely positive (TPCP). Such maps take density operators to density
operators. A useful representation of linear maps (or “superoperators”) ® : L(X) — L())
is the Choi-Jamiotkowski representation, J(®) € L(Y ® X). The latter is defined (with
respect to some choice of orthonormal basis {|i)} for X) as J(®) = >, . ©(|i)(j|) ® [7){j].
The following properties of J(®) hold [18, 37]: (1) ® is completely positive if and only if
J(®) = 0, and (2) ® is trace-preserving if and only if Try(J(®)) = Ix. In a nutshell, the
Gutoski-Watrous (GW) framework generalizes this definition to interacting strategies [33].

Semidefinite programs. We review semidefinite programs (SDPs) from the perspective of
quantum information, as done e.g., in the notes of Watrous [62] or [51]. Given any 3-tuple
(A, B, ®) for operators A € Herm(X) and B € Herm()), and Hermiticity-preseving linear
map @ : L(X) — L(Y), one can state a primal and dual semidefinite program:
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Figure 1 A general interaction between two quantum parties.

Primal problem (P) Dual problem (D)
sup Tr(AX) inf Tr(BY)
st. ®(X) =B, st. (V)= A
X € Pos(X), Y € Herm(Y),

where ®* denotes the adjoint of ®, which is the unique map satisfying Tr(AT®(B)) =
Tr((®*(A))TB) for all A € £(Y) and B € L(X). Not all SDPs have feasible solutions (i.e. a
solution satisfying all constraints); in this case, optimal values are —oo for P and oo for D.

2.1 The Gutoski-Watrous framework for quantum games

We now recall the Gutoski-Watrous (GW) framework for quantum games [33], which can be
used to model quantum interactions between spatially separated parties. The setup most
relevant to our protocol here is depicted in Figure 1. Here, we imagine one party, A, prepares
an initial state pg € D(X; ® Wy). Register X; is then sent to the second party (W is
kept as private memory), B, who applies some quantum channel ®; : L(X}) — L()1 ® Z1).
B keeps register Z, as private memory, and sends ); back to A, who applies channel
Uy LWy @ V1) = L(Xo @ W), and sends X to B. The protocol continues for m messages
back and forth, until the final operation ¥,, : LW, ® V) — C, in which A performs
a two-outcome measurement (specifically, a POVM A = {Ag, A1}, meaning Ag, A1 > 0,
Ao + Ay = I) in order to decide whether to reject (Ag) or accept (Ai). As done in [33],
without loss of generality (by the Stinespring dilation theorem) all channels are given by linear
isometries Ay, i.e. ®p(X) = AkXAL. Reference [33] refers to (®1,...,P,,) as a strategy and
(po,¥1,...,¥,,) as a co-strategy. In our setting, the former is “non-measuring”, meaning it
makes no final measurement after ®,, is applied, whereas the latter is “measuring”, since we
will apply a final measurement on space W,,, (not depicted in Figure 1).

Intuitively, since our protocol (Section 3.1) begins with the token sending the user a
quantum key |z)g, we will model the token as a measuring co-strategy, and the user as
a strategy. The advantage to doing so is that the GW framework allows one to (recurs-
ively) characterize any such strategy (resp., co-strategy) via a set of linear (in)equalities
and positive semi-definite constraints. (In this sense, the GW framework generalizes the
Choi-Jamiotkowski representation for channels to a “Choi-Jamiotkowski” representation
for strategies/co-strategies.) To state these constraints, we first write down the Choi-
Jamiotkowski (CJ) representation of a strategy (resp., measuring co-strategy) from [33].

CJ representation of (non-measuring) strategy. The CJ representation of a strategy
(Ai,...,A,) is given by matrix [33]

Trz, (vec(A) vec(A)T), (1)
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where A€ L(X1 @ - @Xn, V1 ® - ® Vi @ Zy,) is the product of the isometries A;,

A= Iy, 0Vn_ @ Am) (A1 ® Ixy0.-- 9, ) (2)

and the vec : £(S,7T) — T ® S mapping is the linear extension of the map |i){j| — |¢)|)
defined on all standard basis states i), |J).

CJ representation of (measuring) co-strategy. Let P := {Ag, A1} denote a POVM with
reject and accept measurement operators Ay and Aj, respectively. A measuring strategy
which ends with a measurement via POVM A replaces, for A, € A, Equation (1) with [33]

Qq = Trgm((Aa ® Iy1®,..®ym) VGC(A) vec(A)T) = TI'Zm (VeC(Ba) VeC(Ba)T)a (3)

for B, := (vVAq ® Iy, ...y, )A. To convert this to a co-strategy, one takes the transpose of
the operators defined above (with respect to the standard basis).

Optimization characterization over strategies and co-strategies. With CJ representations
for strategies and co-strategies in hand, one can formulate [33] the optimal probability with
which a strategy can force a corresponding co-strategy to output a desired result as follows.
Fix any @, from a measuring co-strategy {Qo, @1}, as in Equation (3). Then, Corollary 7
and Theorem 9 of [33] show that the maximum probability with which a (non-measuring)
strategy can force the co-strategy to output result a is given by

min: p (4)
subject to: Qg <X pRn, (5)
Ry =P, ® Iy, forl<k<m (6)

Tra, (Pr) = Ri—1 for1<k<m (M)

Ry =1 (8)

R € Pos(V1,. k@ X1, k) for1<k<m (9)

Py € Pos(V1,. k-1 ® X1, 1) for 1<k<m (10)

pe(0,1] (11)

Intuition. The minimum p denotes the optimal “success” probability, meaning the optimal
probability of forcing the co-strategy to output a (Theorem 9 of [33]). The variables above,
in addition to p, are {R;} and {P;}, where the optimization is happening over all m-round
co-strategies R,, satisfying Equation (5). How do we enforce that R,, encodes such an
m-round co-strategy? This is given by the (recursive) Equations (6)-(10). Specifically,
Corollary 7 of [33] states that R,, is a valid m-round co-strategy if and only if all of the
following hold: (1) R,, = 0, (2) R, = P, ® Iy,, for P, = 0 and ), the last incoming
message register to the co-strategy, (3) Tra,, (Pn,) is a valid m — 1 round co-strategy (this
is the recursive part of the definition). An intuitive sense as to why conditions (2) and (3)
should hold is as follows: For any m-round co-strategy R,,, let R,,_1 denote R,, restricted
to the first m — 1 rounds. Then, to operationally obtain R,,_; from R,,, the co-strategy
first ignores the last incoming message in register ),,. This is formalized via a partial trace
over Y, which (once pushed through the CJ formalism®) translates into the ®Iy, term

5 Recall that the CJ representation of the trace map is the identity matrix (up to scaling).
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in Equation (6). Since the co-strategy is now ignoring the last incoming message V,,, any
measurement it makes after m — 1 rounds is independent of the last outgoing message X,,.
Thus, we can trace out X, as well, obtaining a co-strategy R,,_1 on just the first m — 1
rounds; this is captured by Equation (7).

3 Feasibility of Quantum OTMs using Stateless Hardware

In this section, we present a quantum construction for one-time memories by using stateless
hardware (Section 3.1). We also state our main theorem (Theorem 1). In Section 3.3, we
describe the Simulator and prove Theorem 1 using the technical results of the full version.
The intuition and techniques behind the proofs in the full version are sketched in Section 3.4.

3.1 Construction

We now present the OTM protocol II in the Fyrap hybrid model, between a sender P and a
receiver P,. Here the security parameter is n.

Upon receiving input (sp, s1) from the environment where sg,s; € {0,1}, the sender:

The sender chooses uniformly random x €r {0,1}™ and 6 €r {+, x}", and pre-
pares |z)p. Based on (sg, s1,x,0), the sender prepares program M as in Program 1.

Program 1 Program for hardware token.

Hardcoded values: sg,s1 € {0,1}, z € {0,1}", and 6 € {+, x}"

Inputs: y € {0,1}" and b € {0, 1}, where y is a claimed measured value for the quantum
register, and b the evaluator’s choice bit

1. If b = 0, check that the § = + positions return the correct bits in y according to z. If

Accept, output sg. Otherwise output L.
2. If b = 1, check that the § = x positions return the correct bits in y according to z. If
Accept, output s;. Otherwise output L.

The sender sends |z)p to the receiver.

The sender sends (create, M) to functionality Fyrap, and the functionality sends create
to notify the receiver.

The receiver P, operates as follows:

Upon input b from the environment, and |z)y from the receiver, and create notification

from Firap,
If b = 0, measure |x)g in computational basis to get y. Input (run, (y,b)) into Furap.
If b =1, apply H?" to |z)p, then measure in computational basis to get y. Input
(run, (y,b)) into Fyrap.

Return the output of Fyrasp to the environment.
It is easy to see that the output of Fyrap is sp for both b =0 and b = 1.

Note again that the hardware token, as defined in Program 1, accepts only classical input
(i.e., it cannot be queried in superposition). As mentioned earlier, relaxing this assumption
yields impossibility of a secure OTM implementation (assuming the receiver also has access
to the token’s inverse operation), as shown in Section 4.
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3.2 Stand-Alone Security Against a Malicious Sender

We note that in protocol II of Section 3.1, once the sender prepares and sends the token, she is
no longer involved (and in particular, the sender does not receive any further communication
from the receiver). We call such a protocol a one-way protocol. Because of this simple
structure, and because the ideal functionality Fyurap also does not return any message to the
sender, we can easily establish stand-alone security against a malicious sender (Appendix B).

3.3 UC-Security against a corrupt receiver

Our main theorem, which establishes security against a corrupt receiver is now stated.

» Theorem 1. Construction 11 above quantum-UC-realizes Fomy in the Furap hybrid model
with statistical security against an actively-corrupted receiver making at most cn number of
adaptive queries to the token, for any fixed constant ¢ < 0.114.

To prove Theorem 1, we now construct and analyze an appropriate simulator.

3.3.1 The simulator

In order to prove Theorem 1, for an adversary A that corrupts the receiver, we build a
simulator S (having access to the OTM functionality Fom), such that for any unbounded
environment Z, the executions in the real model and that in simulation are statistically
indistinguishable. Our simulator S is given below:
The simulator emulates an internal copy of the adversary A who corrupts the receiver.
The simulator emulates the communication between A and the external environment Z
by forwarding the communication messages between A and Z.
The simulator S needs to emulate the whole view for the adversary A. First, S picks
dummy inputs §p = 0 and $; = 0, and randomly chooses x € {0,1}", and 6 € {+, x}",
and generates program M. Then the simulator plays the role of the sender to send |x)g
to the adversary A (who controls the corrupted receiver). The simulator also emulates
Furap to notify A by sending create to indicate the hardware is ready for queries.
For each query (run, (b,y)) to Furap from the adversary A, the simulator evaluates program
M (created based on 3, $1,x,6) as in the construction, and then acts as follows:
1. If this is a rejecting input, output L.
2. 1If this is the first accepting input, call the external Fgry with input b, and learn the
output s, from Fgry. Output sp.
3. If this is a subsequent accepting input, output s; (as above).

3.3.2 Analysis

We now show that the simulation and the real model execution are statistically indistinguish-
able. There are two cases in an execution of the simulation which we must consider:

Case 1: In all its queries to Furqp, the accepting inputs of A have the same choice bit b.
In this case, the simulation is perfectly indistinguishable.

Case 2: In its queries t0 Fyrap, A produces accepting inputs for both b=10 and b =1. In
this case, it is possible that the simulation fails (the environment can distinguish the real
model from the ideal model), since the simulator is only able to retrieve a single bit from
the external OTM functionality Fory (either corresponding to b= 0 or b =1).
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Thus, whereas in Case 1 the simulator behaves perfectly, in Case 2 it is in trouble. Fortunately,
in Theorem 2 we show that the probability that Case 2 occurs is exponentially small in n,
the number of qubits comprising |z)g, provided the number of queries to the token is at
most cn for any ¢ < 0.114. Specifically, we show that for an arbitrary m-query strategy (i.e.,
any quantum strategy allowed by quantum mechanics, whether efficiently implementable
or not, which queries the token at most m times), the probability of Case 2 occurring is at
most O(22m=0-228n) This concludes the proof.

3.4 Security analysis for the token: Intuition

Our simulation proof showing statistical security of our Quantum OTM construction of
Section 3.1 relies crucially on Theorem 2, stated below. For this, we now introduce notation
in line with the formal analysis of the full version.

With respect to the construction of Section 3.1, let us replace each two-tuple (z,0) €
{0,1}" x {+, x}" by a single string z € {0,1}*", which we denote the secret key. Bits 2i
and 2i + 1 of z specify the basis and value of conjugate coding qubit ¢ for i € {1,...,n}
(i-e., z2; = 0; and 29,41 = x;). Also, rename the “quantum key” (or conjugate coding key)
[v.) := |z)s € (C?)®". Thus, the protocol begins by having the sender pick a secret key
z € {0, 1}2" uniformly at random, and preparing a joint state

W= 3 Wl (12)

z€[0,1)2n

The first register, R, is sent to the receiver, while the second register, T, is kept by the token.

(Thus, the token knows the secret key z, and hence also which |¢,) the receiver possesses.)
The mixed state describing the receiver’s state of knowledge at this point is given by

1
PR = 92n Z 1) (2]

2€{0,1}?"

» Theorem 2. Given a single copy of pr, and the ability to make m (adaptive) queries to
the hardware token, the probability that an unbounded quantum adversary can force the token

to output both bits sg and s1 scales as O(2%m~0-228n),

Thus, the probability of an unbounded adversary (i.e., which applies arbitrary trace-preserving
completely positive (TPCP) maps, which are not necessarily efficiently implementable) to
successfully cheat using m = cn for ¢ < 0.114 queries is exponentially small in the quantum
key size, n. The proof of Theorem 2 is in the full version; here, we give intuition.

Proof intuition. The challenge in analyzing security of the protocol is the fact that the
receiver (a.k.a. the user) is not only given adaptive query access to the token, but also a copy
of the quantum “resource state” pg, which it may arbitrarily tamper with (in any manner
allowed by quantum mechanics) while making queries. Luckily, the GW framework [33]
(Section 2.1)) is general enough to model such “queries with quantum side information”. The
framework outputs an SDP, T (Equation (13)), the optimal value of which will encode the
optimal cheating probability for a cheating user of our protocol. Giving a feasible solution
for I' will hence suffice to upper bound this cheating probability, yielding Theorem 2.
Coherently modeling quantum queries to the token. To model the interaction between the

token and user, we first recall that all queries to the token must be classical by assumption.

To model this process coherently in the GW framework, we hence imagine (solely for the
purposes of the security analysis) that the token behaves as follows:
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1. It first sends state pg to the user.

2. When it receives as ith query a quantum state p; from the user, it sends response string
r; to the user, and “copies” p; via transversal CNOT gates to a private memory register
W;, along with r;. It does not access p; again throughout the protocol, and only accesses
r; again in Step 3. For clarity, the token runs a classical circuit, and conditions each
response r; solely on the current incoming message, p;.

3. After all communication, the token “measures” its responses (r1,...,7,,) in the Z-basis
to decide whether to accept (user successfully cheated) or reject (user failed to cheat).

The “copying” phase of Step 2 accomplishes two tasks: First, since the token will never read

the “copies” of p; again, the principle of deferred measurement [52] implies the transversal

CNOT gates effectively simulate measuring p; in the standard basis. In other words, without

loss of generality the user is reduced to feeding a classical string y to the token. Second, we

would like the entire security analysis to be done in a unified fashion in a single framework,
the GW framework. To this end, we want the token itself to “decide” at the end of the
protocol whether the user has successfully cheated (i.e. extracted both secret bits). Storing all
responses 7; in Step 2 allows us to simulate such a final measurement in Step 3. We reiterate
that, crucially, once the token “copies” p; and r; to W, it (1) never accesses (i.e. reads or
writes to) p; again and (2) only accesses r; again in the final standard basis measurement of

Step 3. Together, these ensure all responses r; are independent, as required..
Formalization in GW framework. To place the discussion thus far into the formal GW

framework, we return to Figure 1. The bottom “row” of Figure 1 will depict the token’s

actions, and the top row the user’s actions. As outlined above, the protocol begins by
imagining the token sends initial state pg = pr to the user via register A;. The user then
applies an arbitrary sequence of TPCP maps ®; to its private memory (modeled by register

Z; in round 1), each time sending a query ¥u; (which is, as discussed above a classical string

without loss of generality) to the token via register V;. Given any such query g; in round

1, the token applies its own TPCP map ¥; to determine how to respond to the query. In

our protocol, the ¥; correspond to coherently applying a classical circuit, i.e. a sequence

of unitary gates mapping the standard basis to itself. Specifically, their action is fully
determined by Program 1, and in principle all ¥; are identical since the token is stateless

(i.e., the action of the token in round 4 is unaffected by previous rounds {1,...,7 —1}). (We

use the term “in principle”, as recall from above that in the security analysis we model each

U, as classically copying (¥;,r;) to a distinct private register W;.) Finally, after receiving the

mth query y,, in register ),,, we imagine the token makes a measurement (not depicted in

Fig. 1) based on the query responses (r1, ..., 7y, ) it returned; if the user managed to extract

both s¢ and s; via queries, then the token “accepts”; otherwise it “rejects”. (Again, we are

using the fact that in our security analysis, the token keeps a history of all its responses r;,

solely for the sake of this final measurement.)

With this high-level setup, the output of the GW framework is a semidefinite program, I':

min: p (13)
subject to: Q1 = Ryy1 (14)
R =P, ® Iy, forl<k<m+1 (15)

Tra, (Pr) = Ri—1 for1<k<m+1 (16)

Ro=p (17)

Ri € Pos(V1,. k@ X1, k) forl<k<m+41 (18)

Py, € Pos(1,. k-1 @ X1, k) for1<k<m+1 (19)
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Above, Q1 encodes the actions of the token, i.e. the co-strategy in the bottom row of Figure 1.

The variable p denotes the “cheating probability” (i.e., the probability with which both s
and s; are extracted), subject to linear constraints (Equations (15)-(19)) which enforce that
operator R,,11 encodes a valid co-strategy (see Section 2.1). Theorem 9 of [33] now says
that the minimum p above encodes precisely the optimal cheating probability for a user
which is constrained only by the laws of quantum mechanics. Since I' is a minimization
problem, to upper bound the the cheating probability it hence suffices to give a feasible
solution (p, R1,. .., Rma1, P1,- .., Pni1) for T, which will be our approach.

Intuition for Q; and an upper bound on p. It remains to give intuition as to how
one derives Q; in I', and how an upper bound on the optimal p is obtained. Without
loss of generality, one may assume that each of the token’s TPCP maps V¥, are given
by isometries A; : Vi @ Wi—1 — X1 ® W;, meaning A;LAi = Iy,ew,_, (due to the
Stinespring dilation theorem). (We omit the first isometry which prepares state pg in
our discussion here for simplicity.) Let us denote their sequential application by a single
operator A := A, --- A;. Then, the Choi-Jamiotkowski representation of A is given by [33]
(Section 2.1) Trz,, (vec(A)vec(A)'), where we trace out the token’s private memory register
Zmn. However, since in our security analysis, we imagine the token also makes a final
measurement via some POVM A = {Ag, A1}, whereupon obtaining outcome A; the token
“accepts”, and upon outcome Ay the token rejects, we require a slightly more complicated
setup. Letting By := A1 A, we define Q as [33] Q1 = Trz,, (vec(B) vec(By)T).

The full derivation of Q1 is deferred to the full version; here, we state 1 with intuition:

1
Q1 = an Z |tmst,, ) (tmSt,,

seT

Q- ‘t18t1><t15t1 |X2 ®

X1

Z |gm><gm|ym ®-® ‘g1><gl|y1 ® |w2><¢Z|X1
(v.2)EYs

Intuitively, each string t;s;, € {0, 1}3 encodes the response r; of the token given the ith query

from the user; hence, the corresponding projectors in ()1 act on spaces Xy through X4 1.

Each string g; € {0, 1}"+1 denotes the ith query sent from the user to the token, where each

¥; = b; oy; in the notation of Program 1, i.e. b; € {0,1} is the choice bit for each query.

Each such message is passed via register ;. The states |1.) and strings z are defined as in
the beginning of Section 3.4; recall z € {0,1}*" and [1.) € (C2)®" denote the secret key and
corresponding quantum key, respectively. Finally, the relation Y; encodes the constraint that
for all ¢ € {1,...,m}, the tuple (¥;, 2) (i.e. the ith message to the token, ¥;, and secret key
z) is consistent with the response returned by the token, ¢;.

Upper bounding p. To now upper bound p, we give a feasible solution R, satisfying
the constraints of I'. Note that giving even a solution which attains p = 1 for all n and m
is non-trivial — such a solution is given in the full version. Here, we give a solution which
attains p € O(22m~0-2287) " a5 claimed in Theorem 2. Namely, we set

1
Rpi1 = mgﬁmstmﬂtmstm

I
2y,

® - ® [t1se, ) (t150 |y, @ Iviev, ®

Xim41

This satisfies constraint (15) of I' due to the identity term Iy,g...gyv,,. The renormalization
factor (|T'] 2™)~! above ensures that tracing out all X; registers yields Ry = 1 in constraint (17)
of I'. We are thus reduced to choosing the minimum p satisfying constraint (14).
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Now, observe we have chosen R,,11 to align with the block-diagonal structure of @J; on
registers Ao, ..., X;,. Since registers Y1 ® --- ® V,,, and &; of R,,11 are proportional to
the identity matrix, it thus suffices to characterize the largest eigenvalue of Q1, Amax(Q1).
This is done in the full version, which shows A\pnax(Q1) = 4% (1 + %)n Combining this
bound on Apax(Q1) with the parameters of R,,+1 above now yields the desired claim that
p € O(22m=0-2287)  For m < 0.114n queries, this implies that the probability that a user of
the token successfully cheats and thus that the simulation fails is exponentially small in the
key size, n. Simplifications of the GW SDP, the derivation of its dual SDP, and a conjectured
approximately optimal dual feasible solution are given in the full version.

4 Impossibility Results

We now discuss “tightness” of our protocol with respect to impossibility results. To begin, it is
easy to argue that OTMs cannot exist in the plain model (i.e., without additional assumptions)
in both the classical and quantum settings: in the classical setting, impossibility holds, since
software can always be copied. Quantumly, this follows by a rewinding argument [9]. Here,
we give two no-go results for the quantum setting which support the idea that our scheme is
“tight” in terms of the minimality of the assumptions it uses. Both results assume the token
is reversible, meaning the receiver can run both the token and its inverse operation. Note
that if the receiver is not given access to the token’s inverse operation, it is unlikely for our
no-go techniques to go through. This is because, in the most general case where the token is
an arbitrary unitary U, which the receiver may apply as a black box, simulating U~! = U*
appears difficult [26, 57]; see the full version for a discussion.

Result 1: Tokens which can be queried in superposition. In our construction, we require
that all queries to the token be classical strings, i.e., no querying in superposition is allowed.
It is easy to argue via a standard rewinding argument that relaxing this requirement yields
impossibility of a secure OTM, as long as access to the token’s adjoint (inverse) operation
is given, as we now show. Specifically, let M be a quantum OTM implemented using a
hardware token. Since the token access is assumed to be reversible, we may model it as
an oracle Oy realizing a function f : {0,1}" + {0,1}™ in the standard way, i.e., for all
y € {0,1}" and b € {0,1}™, Of|y)|b) = |y)|b @ f(y)). Now, suppose our OTM stores two
secret bits sg and s1, and provides the receiver with an initial state 1)) € A ® B ® C, where
A, B, and C are the algorithm’s workspace, query (i.e., input to Oy), and answer (i.e., Of’s
answers) registers, respectively. By definition, an honest receiver must be able to access
precisely one of sy or s; with certainty, given |¢)). Thus, for any i € {0,1}, there exists a
quantum query algorithm A; = U,,Oy - -- O;U20U; for unitaries U; € U(A ® B ® C) such
that A;|v) = [¥')ap|si)c. For any choice of 4, however, this implies a malicious receiver
can now classically copy s; to an external register, and then “rewind” by applying A;r to
[") aB|si)c to recover |¢). Applying A;s for i’ # i to |¢) now yields the second bit i' with
certainty as well. We conclude that a quantum OTM which allows superposition queries to a
reversible stateless token is insecure.

» Remark 3. Above, the OTM outputs s; with certainty. A similar argument holds if s; is
output with probability at least 1 — e for small € > 0 via the Gentle Measurement Lemma [66].

Result 2: Tokens with a bounded number of keys. We observed superposition queries to
the token prevent an OTM from being secure. One can also ask how simple a hardware
token with classical queries can be, while still allowing a secure OTM. Below, we consider
such a strengthening in which the token is forced to have a bounded number of keys.
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To formalize this, we define the notion of a “measure-and-access (MA)” OTM, i.e., an
OTM in which given an initial state |¢)), an honest receiver applies a prescribed measurement
to |¢), and feeds the resulting classical string (i.e., key) y into the token Oy to obtain s;.
Our construction is an example of a MA memory in which each bit s; has an exponential
number of valid keys y such that f(y) = s;. Can the construction can be strengthened such
that each s; has a bounded number (e.g., a polynomial number) of keys? We now show that
such a strengthening would preclude security, assuming the token is reversible.

» Lemma 4. Let M be an MA memory with oracle O¢, such that Oy cannot be queried in
superposition. If a secret bit s; has at most A keys y; such that f(y;) = s;, then given a
single copy of 1), one can extract both sq and sy from M with probability at least 1/A2.

Thus, if a secret bit b; has at most polynomially many keys, then any measure-and-access
OTM can be broken with at least inverse polynomial probability. The proof is in the full
version. In this sense,in the setting of measure-and-access memories, our construction is tight
— in order to bound the adversary’s success probability of obtaining both secret bits by an
inverse exponential, we require each secret bit to have exponentially many valid keys.
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A  Universal Composition (UC) Framework

We consider simulation-based security. The Universal Composability (UC) framework was
proposed by Canetti [14, 13], culminating a long sequence of simulation-based security
definitions (c.f. [29, 31, 50, 2, 12]); please see also [54, 56, 15, 42, 48] for alternative/extended
frameworks. Recently Unruh [59] extend the UC framework to the quantum setting. Next,
we provide a high-level description of the original classical UC model by Canetti [14, 13],
and then the quantum UC model by Unruh [59].

A.1 Classical UC Model ([14, 13])

Machines. The basic entities involved in the UC model are players P, ..., P, where k is
polynomial of security parameter n, an adversary A, and an environment Z. Each entity
is modeled as a interactive Turing machine (ITM), where Z could have an additional non-
uniform string as advice. Each P; has identity i assigned to it, while A and Z have special
identities id 4 := adv and idz := env.

Protocol Execution. A protocol specifies the programs for each P;, which we denote as
m = (m1,...,7). The execution of a protocol is coordinated by the environment Z. It starts
by preparing inputs to all players, who then run their respective programs on the inputs and
exchange messages of the form (idsenger, idreceiver, mSg). A can corrupt an arbitrary set of
players and control them later on. In particular, A can instruct a corrupted player sending
messages to another player and also read messages that are sent to the corrupted players.
During the course of execution, the environment Z also interacts with A in an arbitrary way.
In the end, Z receives outputs from all the other players and generates one bit output. We
use EXEC[Z, A, 7] denote the distribution of the environment Z’s (single-bit) output when
executing protocol w with A4 and the P;’s.

Ideal Functionality and Dummy Protocol. Ideal functionality F is a trusted party, modeled
by an ITM again, that perfectly implements the desired multi-party computational task. We
consider an “dummy protocol”, denoted P7, where each party has direct communication
with F, who accomplishes the desired task according to the messages received from the
players. The execution of P with environment Z and an adversary, usually called the
simulator S, is defined analogous as above, in particular, S monitors the communication
between corrupted parties and the ideal functionality /. Similarly, we denote Z’s output
distribution as EXEC[Z, S, P7].

» Definition 5 (Classical UC-secure Emulation). We say m (classically) UC-emulates 7' if
for any adversary A, there exists a simulator S such that for all environments Z,

EXEC[Z, A, 7] ~ EXEC[Z, S, 7| (20)

We here consider that A and Z are computationally unbounded, and we call it statistical
UC-security. We require the running time S is polynomial in that of A. We call this property
Polynomial Simulation.

Let F be a well-formed two party functionality. We say 7 (classically) UC-realizes
F if for all adversary A, there exists a simulator S such that for all environments Z,
EXEC[Z, A, 7] ~ EXEC[Z,S,P7]. We also write EXEC[Z, A, 7] ~ EXEC[Z,S, F] if the
context is clear.
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UC-secure protocols admit a general composition property, demonstrated in the following
universal composition theorem.

» Theorem 6 (UC Composition Theorem [13]). Let w, 7" and o be n-party protocols. Assume
that m UC-emulates 7'. Then o™ UC-emulates o™ .

A.2 Quantum UC Model ([59])

Now, we give a high-level description of quantum UC model by Unruh [59].

Quantum Machine. In the quantum UC model, all players are modeled as quantum
machines. A quantum machine is a sequence of quantum circuits {M"},cn, for each
security parameter n. M™ is a completely positive trace preserving operator on space
Hstate ) F{class @ Hwat  where HST2Ee represents the internal workspace of M™ and Hctass
and HI@"* represent the spaces for communication, where for convenience we divide the
messages into classical and quantum parts. We allow a non-uniform quantum advice® to the
machine of the environment Z, while all other machines are uniformly generated.

Protocol Execution. In contrast to the communication policy in classical UC model, we
consider a network N which contains the space Hy := H255 @ H® @, 152t Namely, each
machine maintains individual internal state space, but the communication space is shared
among all . We assume H°'2% contains the message (idsenger; 1dreceiver; Sg) wWhich specifies
the sender and receiver of the current message, and the receiver then processes the quantum
state on HI#*, Note that this communication model implicitly ensures authentication. In a
protocol execution, Z is activated first, and at each round, one player applies the operation
defined by its machine M™ on H®1?s% @ HWat @ Hs*ate In the end Z generates a one-bit
output. Denote EXEC[Z, A, TI] the output distribution of Z.

Ideal Functionality. All functionalities we consider in this work are classical, i.e., the inputs
and outputs are classical, and its program can be implemented by an efficient classical
Turing machine. Here in the quantum UC model, the ideal functionality F is still modeled
as a quantum machine for consistency, but it only applies classical operations. Namely, it
measures any input message in the computational basis to get a classical bit-string, and
implements the operations specified by the classical computational task.

We consider an “dummy protocol”, denoted P”, where each party has direct communic-
ation with F, who accomplishes the desired task according to the messages received from
the players. The execution of P with environment Z and an adversary, usually called the
simulator S, is defined analogous as above, in particular, S monitors the communication
between corrupted parties and the ideal functionality /. Similarly, we denote Z’s output
distribution as EXEC[Z,S, P*]. For simplicity, we also write it as EXEC[Z, S, F].

» Definition 7 (Quantum UC-secure Emulation). We say 11 quantum-UC-emulates TI' if for
any quantum adversary A, there exists a (quantum) simulator S such that for all quantum
environments Z,

EXEC[Z, A,TI] ~ EXEC[Z, S, IT] (21)

5 Unruh’s model only allows classical advice, but we tend to take the most general model. It is easy to
justify that almost all results remain unchanged, including the composition theorem. See [34, Section 5]
for more discussion.
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We consider here that A and Z are computationally unbounded, we call it (quantum) statistical
UC-security. We require the running time S is polynomial in that of A. We call this property
Polynomial Simulation.

Similarly, (quantum) computational UC-security can be defined. Let F be a well-
formed two party functionality. We say II quantum-UC-realizes F if for all quantum
adversary A, there exists a (quantum) simulator S such that for all quantum environments
Z, EXEC[Z, A, TI] ~ EXEC|Z, S, P7).

Quantum UC-secure protocols also admit general composition:

» Theorem 8 (Quantum UC Composition Theorem [59, Theorem 11]). Let II,II' and ¥ be
quantum-polynomial-time protocols. Assume that II quantum UC-emulates 1. Then X1
quantum UC-emulates P

» Remark 9. Out of the two protocol parties (the sender and the receiver), we consider
security only in the case of the receiver being a corrupted party. Note that we are only
interested in cases where the same party is corrupted with respect to all composed protocol.
Furthermore, we only consider static corruption.

B Stand-Alone Security in the case of a Malicious Sender

In order to define stand-alone security against a malicious sender (Definition 11), in our
context, we closely follow definitions given in prior work [24], which we now recall. (Note that,
instead of considering the approximate case for security, we are able to use the exact one.)

» Definition 10. An n-step quantum two-party protocol with oracle calls, denoted T1® =
(o, PB,0,n) consists of:

input space Ay and By for parties o/ and P respectively.

memory spaces Ay, ... A, and By, ... B, for &/ and B, respectively.

An n-tuple of quantum operations (2, . ..oy, for o, o : L(A;—1) — L(A;), (1 <i < n).
An n-tuple of quantum operations ($By, ... By) for B, B : L(Bi—1) — L(B;), (1 <i < n).
Memory spaces A, ..., Ay, and By, ..., B, can be written as A; = A;° @ A/ and B; =
BP @B/, (1 <i<n)and © = (O1,...,0,) is an n-tuple of quantum operations:
O;: LAY @ B) = L(AP @ BY), (1 <i<n).

A e

If1IC = (o7, &, O, n) is an n-turn two-party protocol, then the final state of the interaction
upon input pi, € D(Ag ® By ® R) where R is a system of dimension dim .4y dim By, is:

[/ ® B (pin) = (%L(Ag@B;l@R)®On)(e@7n®=%}n®%7€) e (“AL(A’1®B’1®R)®OI)(@71 ® B KR )(pin) -
(22)

As in [24], we specify that an oracle O can be a communication oracle or an ideal functionality
oracle.
An adversary < for an honest party 7 in I1° = (o, %,0,n) is an n-tuple of quantum
operations matching the input and outputs spaces of &. A simulator for 4 is a sequence of
n

quantum operations (S;)"_; where S; has the same input-output spaces as the maps of o at
step 7. In addition, & has access to the ideal functionality for the protocol II.

» Definition 11. An n-step quantum two-party protocol with oracle calls, TI® = (o, 8,0, n)
1s statistically stand-alone secure against a corrupt o/ if for every adversary </ there exists
a simulator S such that for every input py,,

Trg,or (4 ® B) = Trp,or(S ® B). (23)
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We note that Definition 11 is weaker than some other definitions for active security used
in the literature, e.g., [25], because we ask only that the local view of the adversary be
simulated.

Given the simple structure of our protocol and ideal functionality, the construction and
proof of the simulator is straightforward as shown below.

» Theorem 12. Protocol 11 is statistically stand-alone secure against a corrupt sender.

Proof. Since II consists in a single message from the sender to the receiver (together with a
call to the ideal functionality for the token), we have that &/ = (). Furthermore, since
the ideal functionality Firap does not return anything to the sender, there is no need for our
simulator S to call an ideal functionality.

We thus build S that runs 27 on the input in register Ag. When & calls the Fyrap ideal
functionality, the simulator does nothing. Since II is a one-way protocol, and since the ideal
functionality also does not allow communication from the receiver to the sender,

Trg,or (¥ @ B) = o (Trs,er (pin) = S(TrB,or (Pin)) - (24)

This concludes the proof. |

C Proof of Lemma 4

For clarity, implicitly in our proof below, we model the oracle O; as having three possible
outputs: 0, 1, or 2, where 2 is output whenever Oy is fed an invalid key y. This is required
for the notion of having “few” keys to make sense (i.e., there are 2" candidate keys, and only
two secret bits, each of which is supposed to have a bounded number of keys). Note that our
construction indeed fits into this framework.

Proof. Observe first that an honest receiver Alice wishing to extract s; acts as follows. She
applies a unitary U; € U(A ® B) to get state

|¢1) == Uil¥) aB|0)c- (25)

She then measures B in the computational basis and postselects on result y € {0,1}",
obtaining state

|¢2) == |oy)aly)Bl0)c- (26)

She now treats y as a “key” for s;, i.e., she applies O¢ to B ® C' to obtain her desired bit s;,
ie.,

|¢3) = [dy)aly)slsi)c- (27)

A malicious receiver Bob wishing to extract sg and s; now acts similarly to the rewinding
strategy for superposition queries. Suppose without loss of generality that sg has at most A
keys. Then, Bob first applies Uy to prepare |¢1) from Equation (25), which we can express
as

61) = Y ayly)aly)sl0)c. (28)

ye{0,1}"

for 3, |0¢y|2 = 1. Since measuring B next would allow us to retrieve sy in register C' with
certainty, we have that all y appearing in the expansion above satisfy f(y) = so. Moreover,
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since so has at most A keys, there exists a key 3’ such that |oy, |2 > 1/A. Bob now measures B
in the computational basis to obtain |¢3) from Equation (26), obtaining y’ with probability at
least 1/A. Feeding y' into Oy yields so. Having obtained y’, we have that p1]d2)|® > 1/A,

implying
2
(WIUSIey) )| = 1/A, (29)

i.e., Bob now applies Ug to recover a state with “large” overlap with initial state |¢).
To next recover s1, define |1)go0d) 1= Ui|¥) and |Yapprox) := U1 Ug |6y )y’). Bob applies
U; to obtain

|’(/}approx> = ﬁl‘wgood> + ﬁ2|ngood>7 (30)

where 2 18i7 = 1, (Ygood|toq) = 0, and |51]> > 1/A. Define

good

1_[good = Z |y> <y|

ye{0.1}" st fly)=s

Then, the probability that measuring B in the computational basis now yields a valid key
for s7 is

1
<’¢}approx‘Hgood|¢approx> Z ‘/81|2 Z Z7 (31)
where we have used the fact that Ilgo0d|%go0d) = |¥good) (since an honest receiver can extract

s1 with certainty). We conclude that Bob can extract both sg and s; with probability at
least 1/A2. <
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