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A B S T R A C T   

Slender and flexible infrastructures such as sign supports, cantilever traffic signal structures and high mast 
lighting towers are sensitive to wind force and were reported to have fatigue-related issues due to the large- 
amplitude vibrations throughout thier life. Simulating wind-induced structural response can be an important 
step to evaluate their fatigue life and reliability. However, wind simulations are usually quite complicated. A 
comprehensive wind force model was usually developed by conducting multiple wind tunnel tests. However, due 
to the high cost of wind tunnel tests and the limitation of a wind tunnel, aerodynamic and aeroelastic coefficients 
were usually extracted only at certain wind speeds and wind directions. Interpolation or extrapolation methods 
were commonly used when coefficients were not available, which makes the simulation result questionable. In 
this study, a methodology was proposed to simulate wind-induced structural response with lower costs. The 
proposed method uses monitoring data in the field to develop long short-term memory (LSTM) networks. In 
training LSTM networks, only the monitoring data in regular wind condition was used. However, the trained 
LSTM network can still predict the wind-induced response in high and extreme wind conditions observed during 
the monitoring of the structure. The proposed method can be useful when simulating wind-induced structural 
response in a wide range of wind speeds and can be widely used on other structures suspected of having fatigue 
damage due to wind-induced vibrations.   

1. Introduction 

Slender and flexible structures such as sign supports, cantilever 
traffic signal structures and high mast lighting towers are very sensitive 
to wind force. Long-term wind-induced vibrations of these structures 
eventually results in fatigue damage on locations with high stress con
centration such as base-plate-to-tube connections or mast-arm-to-pole 
connections. Fatigue failures of traffic signal support structures and 
high mast lighting towers have been reported across the United States 
over the past 20 years [1,9,12,16,35,48], which highlights the need to 
study their wind-induced behavior, fatigue assessment and reliability 
analysis. 

Simulating wind-induced structural response can be an important 
first step for evaluating fatigue damage and predicting fatigue life and 
reliability of these wind-excited structures. Physics-based models were 
usually developed to simulate wind-induced structural response. 
Generally, wind simulation requires modeling the structure and the 
wind force on the structure. Commonly, structures can be modeled by 
mathematical equations of motion [36,37] or detailed finite element 

models [13,14,42,44,56]. However, modeling wind force on a structure 
can be complicated. Wind force on a structure can vary due to many 
factors such as turbulence intensity, aerodynamic shape and surface 
roughness which are all difficult to be formulated. The different as
semblies on these structures such as luminaires and traffic lights make 
the modeling of the wind force even more difficult. A simplified wind 
force equation was used in modeling the wind force on high mast 
lighting towers to simulate structural response [36,37,14,42]. A more 
comprehensive wind force equation was used in modeling the wind 
force on high mast lighting towers [35] and traffic signal structures 
[2,21,30], which requires aeroelastic and aerodynamic parameters of 
the structures. These coefficients were extracted by previous wind tun
nel tests on multi-sided and circular cylinders and traffic light models 
[21,23,38,39,45]. It can be noticed that the traditional method in 
developing a comprehensive wind force model requires multiple wind 
tunnel tests on different components of a structure, which can be 
expensive. Also, due to the high cost and the wind speed limit in a wind 
tunnel, wind tunnel tests were usually only conducted at some specific 
wind speeds and wind directions. Interpolation or extrapolation 
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methods are usually used when coefficients are not available. Consid
ering the wind in the real world can be much more turbulent, the wind- 
induced response simulation from a physical-based model can some
times be questionable. 

Due to the downsides of the traditional method mentioned above, 
other group of studies came up with using machine learning techniques 
to develop surrogate models in simulating structural response. Earlier 
research started with using machine learning techniques in simulating 
seismic structural response. Artificial neuron networks (ANNs) were 
trained and validated to be able to generate response matching the 
response from physics-based model of multi-story buildings such as 
mathematical system equations or finite element models [7,33,53–55]. 
In [34], a recurrent neuron network (RNN) was trained by the acceler
ation data recorded from previous shake table tests and validated to be 
able to generate precise response. Eventually, in [50], a long short-term 
memory (LSTM) network was trained by the acceleration data recorded 
from a 6-story building in San Bernardino, California during seismic 
events. The trained LSTM network was validated to be able to control 
normalized prediction error within 3%. Therefore, it has been validated 
that machine learning models can become accurate surrogate models in 
predicting real-life seismic structural response. 

Comparing with seismic response, predicting wind-induced struc
tural response can be more challenging as discussed previously. Simi
larly, a group of studies used machine learning techniques to replicate 
the simulated wind-induced response from physics-based models. For 
example, Wang and Wu [46] trained a LSTM network to replicate the 
simulated data from a multiple-degree-of-freedom (MDOF) system 
equation. Bani-Hani [3] trained an ANN to generate response matching 
the response from a MDOF system of a tall building. Xue et al. [49] used 
a convolutional neuron network to replicate the simulated data from a 
finite element model of a transmission tower. In [27], the mathematical 
model of a bridge deck used a more comprehensive wind force equation, 
which included aeroelastic and aerodynamic parameters, and a LSTM 
network was trained by the simulated data and was successfully vali
dated. Hareendran and Alipour [17] showed that the LSTM could pre
dict the nonlinear response of wind-excited tall buildings and Micheli 
et al. [31] provided the applicability of a series of different techniques in 
the context of tall building design. At this point, these studies have 
presented that machine learning models are able to replace physics- 
based models to simulate wind-induced response with higher efficiency. 

In the next stage, a number of studies started to train machine 
learning models by the response data recorded from wind tunnel tests. 
For example, Dongmei et al. [11] trained and validated an ANN by the 
wind pressure data from a scaled model of a high-rise building in wind 
tunnel tests. Oh et al. [32] trained and validated a CNN by the strain data 
from a scaled model of a 5-story building in wind tunnel tests. Hu and 
Kwok [20] used multiple machine learning algorithm to predict wind 
pressure on circular cylinder models. Lin et al. [29] compared 5 different 
machine learning models in predicting the crosswind vibrations of 
rectangular cylinder models and also studied the influence of the side 
ratios to the crosswind response. These studies have shown machine 
learning models have the potentials in predicting wind-induced 
response of real structures. 

Finally, machine learning models were trained by the monitoring 
data from real structures to study specific wind-induced structural be
haviors such as vortex-induced or buffeting-induced vibrations and to 
predict wind-induced structural response. Vortex-induced vibrations 
were commonly observed on long-span bridges or slender vertical 
structures. Li et al. [24] and Lim et al. [28] have conducted long-term 
monitoring on long-span bridges and a tall building. They proposed 
cluster analysis and supervised machine learning techniques to identify 
vortex-induced vibrations from the long-term monitoring data. Li et al. 
[25] later used decision tree learning and support vector regression to 
predict the vertical displacement during vortex-induced vibrations. 
Wind-induced vibrations in along-wind direction happen almost all the 
time and are basically excited by drag and buffeting wind forces. Only a 

few studies focused on predicting buffeting-induced structural response 
using machine learning techniques. In [5], long-term monitoring data 
from a long-span bridge in Norway was used to train multilayer per
ceptron and support vector regression models to predict buffeting- 
induced response. The predictions from the two models were 
compared with the response generated by buffeting theory. The result 
showed the machine learning models could make more accurate wind- 
induced response. In [26], a LSTM network was trained by the moni
toring data from a bridge in China to predict the buffeting-induced 
displacement of the bridge deck. The predictions from the trained 
model and a finite element model were compared. The result also 
showed the trained model can better predict the wind-induced structural 
response. 

These studies successfully used machine learning techniques to move 
wind-induced response predictions from lab theory to practical engi
neering. However, a few research gaps could be identified. First, it seems 
training data and testing data were not well explained, therefore, it’s 
difficult to understand the performance and the limitation of the trained 
machine learning models. Second, the models were trained and tested in 
a specific range of wind speed (mostly less than 25 m/s). The perfor
mance of the trained models at wind speeds higher than the training 
data is still unknown. Also, the models were developed by only the 
monitoring data in the field. Therefore, it is possible that the models can 
only learn the wind-induced behavior at the wind speeds of the training 
data. The predictions beyond the training wind speeds might be 
questionable. 

This study took advantage of the available monitoring data for a 
wind-induced cantilever traffic signal structure (also categorized as a 
flexible structure) to train a special class of RNNs. The traffic signal 
structure is located in Ames, Iowa and was monitored for over a year. 
Sensors including an anemometer and accelerometers were installed to 
record wind data and wind-induced acceleration at the tip of the mast 
arm, respectively. To address the identified gaps, the proposed method 
used two long short-term memory (LSTM) networks to predict the wind- 
induced structural response. The first LSTM network was trained as the 
mathematical model of the structure to faster simulate more and longer 
wind-induced response, which possesses the general understanding of 
wind-induced behaviors of the structure. The second LSTM used the 
simulated wind-induced response and the monitoring wind data to 
predict the monitoring wind-induced data. Therefore, the trained model 
will be physics-informed. In this study, LSTM networks were trained by 
the monitoring data in regular wind condition. The trained LSTM net
works were then tested by unseen monitoring data in regular and high 
wind conditions. It is worth to mention that the monitoring data during 
the 2020 derecho in Iowa, which was categorized as an inland hurricane 
with sustained wind speeds of more than 130 mph, was also used in 
testing the trained LSTM networks. The trained LSTM was very well able 
to predict the amplitude of the wind-induced acceleration in regular, 
high, and extreme wind conditions. This study is valuable since only a 
few sensors were used in the field and only the monitoring data in 
regular wind condition was used in training LSTM networks. The trained 
LSTM network also predicted better wind-induced response than the 
mathematical model generated based on traditional methods. 

This paper is organized as follows: Section 2 describes the monitored 
traffic signal structure and the instrumentation plan. Section 3 explained 
the proposed method for predicting wind-induced response by using 
machine learning approaches and monitoring data in the field. Section 4 
presents the results of the predicted wind-induced response and the 
evaluation of the accuracy of the trained LSTM networks. Section 5 
concludes and discusses the findings of this study. 

2. Monitored traffic signal structure 

Previously, a cantilevered traffic-signal structure in Ames, Iowa, was 
selected for long-term monitoring to study the wind-induced behavior 
[2,43]. The structure was comprised of a 7.62 m vertical pole, a 20.42 m 
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curved mast arm, and three vertical traffic lights attached to the mast 
arm. The mast arm was welded to an arm base plate bolted to another 
plate on the vertical pole. Dimensional details are shown in Fig. 1 and 
the orientation of the selected structure is shown in Fig. 2. Note that the 
three vertical traffic lights face to the east. Other details on the structure 
can be found in [2,43]. 

During the long-term monitoring, sensors including an anemometer 
and two accelerometers were installed on the selected traffic signal 
structure. The anemometer was installed at the top of the vertical pole. It 
can record both wind direction and wind speed. Wind direction was 
measured in degrees (0◦ ~ 360◦) with 0◦ representing a north wind 
(wind from north blowing south), 90◦ an east wind, 180◦ a south wind, 
and 270◦ a west wind. Wind speed was measured in mph. Two accel
erometers were installed at the tip of the mast arm to record the accel
erations in in-plane (vertical) and out-of-plane (horizontal) directions 
respectively. See the instrumentation plan in Fig. 3. Details of each 
sensor and data acquisition device can be found in [43]. The monitoring 
data was used to train and test the ANN in this study. 

3. Methodology 

3.1. Long short-term memory network 

Before explaining the proposed methodology, a brief introduction of 
long short-term memory network and the reason of using it in this study 
were provided in the following. 

Recurrent neuron network (RNN) has been widely used on sequence 
data-related tasks, such as language modeling and speech recognition 
[15,40]. The hidden states in an RNN allows it to remember previous 
outputs and to be able to learn the relation of the data between each time 
step, see Fig. 4 (a). However, RNN can only pass the information across 
very limited time steps because of the problem of vanishing and ex
ploding gradients [4,22]. Hochreiter & Schmidhuber [19] proposed long 
short-term memory network to overcome this issue. 

The schematic of a standard LSTM network is shown in Fig. 4(b). In 
each LSTM cell, cell state (ci) can pass long term memory. At the same 
time, forget gate is able to remove out-of-date information from the cell 
state by using the logistic sigmoid function and multiplication operation. 
The logistic sigmoid function has a range between 0 and 1, which in
dicates forget gate is able to fully forget or memorize the previous cell 
state. Input gate and tanh gate are used to add new information to the 
cell state from the hidden state and the current input data. Output gate 

combines the cell state, the hidden state and the input data to decide the 
output information. Note that in Fig. 4(b), the output (yi) can be the 
same as the hidden state (hi), however, a fully connected layer is usually 
used to convert the hidden state to an output with a desired dimension. 
The details of the proposed methodology will be given in the following 
subsections. 

3.2. Proposed method for predicting wind-induced structural response 

At the beginning, a mathematical model for the monitored traffic 
signal structure was built to simulate its wind-induced response. The 
simulated response has a fair accuracy when comparing to the moni
toring response. However, it was noticed that the mathematical model 
sometimes showed too conservative results. It can be explained that 
some uncertainties of wind-induced structural behavior are difficult to 
formulate and caused the discrepancy between simulated response and 
monitoring data. 

The first idea was to train a LSTM network to map monitoring wind 
data to monitoring wind-induced response. However, at higher wind 
speeds the error between predictions and reference was high and the test 
results were not good enough. This is obviously expected since the 
monitoring data used was for lower wind speeds. Furthermore, the 
anemometer installed in the field could only record 2-dimentional wind 
data, which are wind speed and wind direction. It can be difficult to train 
a LSTM network to learn the wind-induced structural behavior by only 
2-dimensional wind speed and wind direction data. 

Therefore, the LSTM-WR was modified in such a way that it can use 
wind data and simulated wind-induced response from the mathematical 
model as inputs and output revised wind-induced response closer to the 
field monitoring data. Therefore, LSTM-WR is going to learn those un
certainties that the mathematical model is not able to cover and make up 
the discrepancy between the simulated response and the monitoring 
data. Training LSTM-WR needs a large database. Large database of wind 
and wind-induced structural response were recorded in the field. How
ever, generating large database of simulated results from the mathe
matical model could be an issue. Previously, different types of machine 
learning models have shown the success in replicating the simulated 
structural response from mathematical models with a much higher ef
ficiency. Therefore, the authors developed another LSTM network 
(called LSTM-Math i) to replace the mathematical model to faster 
generate large amounts of simulated structural response. 

Fig. 5 shows the proposed methodology to develop LSTM networks 

Fig. 1. Detailed dimensions of the monitored traffic signal structure, located in Ames, IA.  
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for predicting wind-induced structural response. It can be explained in 
the following steps: 

Step 1: The proposed method starts with building a mathematical 
model of the monitored traffic signal structure and optimizing the 
aerodynamic and aeroelastic parameters in the mathematical model. 
Step 2: The optimized mathematical model will be used to generate 
simulated wind-induced response which provides physical meanings 
and also helps the training of the LSTM network faster. However, 
generating large amounts of simulation data by using the mathe
matical model is time-consuming. Therefore, a LSTM network called 
LSTM-Math is trained to replace the mathematical model. 
Step 3: Another LSTM network called LSTM-WR will be trained by 
taking the monitoring wind data and the simulated response from 
LSTM-Math as inputs and the monitoring wind-induced response as 
reference. The trained LSTM-WR will eventually be used to predict 
the wind-induced structural response. 

Details of each step in the proposed frame will be given in the 
following subsections. 

3.3. Step 1: Mathematical model and optimization 

This subsection explained the details of Step 1. The mathematical 
model of the monitored traffic signal structure has been developed in 
[2]. It was written as a system matrix equation of motion, Eq. (1). 

M11×11q̈ + C11×11q̇ + K11×11q = Q11×1 (1)  

where M is the mass matrix, C is the damping matrix, K is the stiffness 
matrix, Q is the generalized force matrix and q is the generalized 
coordinates. 

In the mathematical model, a total of 11 mode shapes were used to 
describe the motion of the traffic signal structure which are corre
sponding to 11 generalized coordinates. The in-plane and out-of-plane 
vibrations of the mast arm used 4 mode shapes respectively, and the 
in-plane, out-of-plane and twisting motions of the vertical pole used 1 
mode shape respectively. 

Pluck tests were conducted in the field to extract the damping ratios 
of the first four modes and the damping ratios of the rest of the modes 
were assumed to be 0.5%. The damping matrix was derived by super
imposing the modal damping matrices. 

Wind force was only considered the wind force on the mast arm 
which includes the drag and buffeting force on the traffic lights (Fl

b) and 
the mast arm (Fa

b) and the self-excited force on the traffic lights (Fl
se) and 

the mast arm (Fa
se), see Eq. (2). The generalized force matrix was then 

derived by virtual work principle. Details of the model derivation can be 
found in [2]. 

Fa
b(x, t) =

1
2
ρairU

2CDarm Darm(x) (2)  

Fig. 2. The location of the monitored traffic signal structure and the definitions of in-plane and out-of-plane vibrations.  

Fig. 3. Instrumentation plan of sensors.  
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Fig. 4. Schematics of (a) a standard RNN and (b) a standard LSTM network.  

Fig. 5. Proposed methodology to develop a LSTM network to predict wind-induced structural response.  
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where ρair is the air density, CDarm and CDlight are the drag coefficients of 
the mast arm and traffic lights respectively, Darm is the diameter of the 
mast arm, Alight is the projected area of traffic lights, and H* and P* are 
the flutter derivatives. 

In this study, the mathematical model was further optimized by 
using the monitoring data. The idea is to find the optimal values of the 
aeroelastic and aerodynamic parameters in wind force equations to 
generate wind-induced response close to the monitoring data. The initial 
guess of these parameters was selected as some reasonable values based 
on the prior knowledge. For example, the drag coefficients of a flat plate 
and a circular cylinder were used as the initial guess of the drag co
efficients of the traffic light and the mast arm. SThe optimization was 
implemented in MATLAB using gradient-based built-in functions. The 
cost function was defined as the root mean square error between the 
simulated response and the monitoring response. Fig. 6 shows the 
simulated acceleration at the mast arm tip by the optimized mathe
matical model and the monitoring acceleration data at the mast arm tip. 
The optimized mathematical model is able to simulate the wind-induced 
acceleration with similar amplitudes to the monitoring acceleration data 
in both out-of-plane and in-plane directions. 

3.4. Step 2: LSTM network for the mathematical model 

The optimized mathematical model has shown a fair accuracy in 
simulating the wind-induced response. However, running dynamic 
simulation by solving the differential matrix equation of motion is time- 
consuming. Furthermore, knowledge of the structural dynamics of 
structure and initial values for aerodynamic coefficients is not always 
available. To address these issues, an LSTM network called LSTM-Math 
was trained as the surrogate model of the optimized mathematical 
model. 

The mathematical model takes only the wind speed perpendicular to 
the mast arm as the effective wind speed, therefore, monitoring wind 
speed (V) and wind direction (θ) data were converted to perpendicular 
wind speed data (U⊥). 

U⊥ = V × sin(θ) (3) 

The mathematical model then took the perpendicular wind speed 
data as the input to generate the simulated wind-induced response. 
Fig. 7 shows the schematic of LSTM-Math. LSTM-Math consists of mul
tiple LSTM layers and fully connected layers. The input data (xi) of 

LSTM-Math was defined as the perpendicular wind speed data of the 
current moment and the past few seconds. The output data (yi) was the 
wind-induced response, which should be as close as possible to the 
simulated wind-induced response of the mathematical model. 

3.5. Step 3: LSTM network for predicting wind-induced response 

After LSTM-Math is trained and validated, it can be used to faster 
simulate more and longer duration of wind-induced responses. The 
optimized mathematical model has shown a fair accuracy in simulating 
wind-induced responses. To further enhance the prediction accuracy, a 
LSTM network called LSTM-WR was trained to eventually generate ac
curate wind-induced response. 

The schematic of LSTM-WR is shown in Fig. 8. LSTM-WR consists of 
multiple LSTM layers, multiple fully connected layers and a drop-out 
layer. The input (xi) of LSTM-WR was defined as wind speed (V), wind 
direction (θ), perpendicular wind speed (U⊥), parallel wind speed (U‖) 
and the simulated response (ỹ) from LSTM-Math of the current moment 
and the past few seconds. 

U⊥ = V × sin(θ), U‖ = V × cos(θ) (4) 

This can be explained as follows. The anemometer installed in the 
field can only record two-dimensional wind speed and wind direction. 
Therefore, there are only two types of input data, wind speed and wind 
direction. Considering the complexity of wind-induced structural 
response, other types of input data were derived from the existing wind 
data to help LSTM-WR to learn more complex wind-induced structural 
behavior. In common wind force equations such as drag, buffeting and 
self-excited force, which were shown in Eq. (2), perpendicular wind 
speed is usually used with aeroelastic and aerodynamic parameters and 
is believed to have a strong relation with out-of-plane vibrations. 
Therefore, perpendicular wind speed was calculated to be one of the 
inputs. Also, from the previous study on traffic signal structures through 
long-term monitoring data [43], it was observed that large amplitude 
out-of-plane vibrations did not always happen in the direction perpen
dicular to the mast arm. There was a considerable amount of large out- 
of-plane vibrations observed when the wind direction is parallel to the 
mast arm. Therefore, parallel wind speed was also calculated to be one 
of the inputs. Eventhough wind speed and wind direction were used to 
derive the perpendicular and parallel wind speeds, they could have their 
own meanings to the wind-induced behavior. The simulated wind- 
induced response from LSTM-Math was one of the inputs to provide 
physical meanings to LSTM-WR. Considering the asymmetric shape of a 
cantilever traffic signal structure and traffic lights and sign plates 

Fig. 6. Comparison of the simulated and monitored accelerations.  
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attached on the mast arm, its wind-induced structural response can be 
quite complicated. Therefore, the inputs were defined as these five types 
of data from the current moment to the past few seconds to make the 
input features even more diverse. 

The output (yi) was defined as the error between the simulated wind- 
induced response from LSTM-Math and the monitoring wind-induced 
response. Finally, the predicted wind-induced response can be simply 
obtained by adding the output and the simulated response from LSTM- 
Math together. Such definition of the output is quite important 
because it forces LSTM-WR to generate response better than the simu
lated response from LSTM-Math. 

4. Results 

4.1. Monitoring data processing and selection 

Large-amplitude wind induced vibrations are often observed on 
cantilever traffic signal structures. Fatigue failures of such structures in 
the United States have created the needs on studying its wind-induced 
mechanism and evaluating its fatigue life and reliability. Wind tunnel 

tests and field monitoring have been conducted to reveal the wind- 
induced mechanisms [21,23,38,39,45,7,8,10,18,41,47,48,51]. These 
studies finally identified several types of large-amplitude vibrations of 
traffic signal structures, which includes vortex- and galloping-induced 
vibration in across-wind direction and buffeting-induced vibration in 
along-wind direction. 

In this study, the traffic signal structure was monitored in 2019 and 
2020 inclduing during the Iowa Derecho of 2020. Using the monitoring 
data, the study was first focused on its wind-induced behavior and 
evaluating the fatigue damage due to wind-induced vibrations [43]. It 
was observed that a cantilever traffic signal structure with vertical 
traffic lights on the mast arm might have lower chances to experience 
vortex-induced vibrations which are in in-plane direction. Large vibra
tions of this type of traffic signal structures were majorly in out-of-plane 
direction, which are basically excited by drag and buffeting wind forces, 
and were believed to create fatigue damage on at the mast arm base. 
Therefore, in this study, the proposed methodology focused on pre
dicting the wind-induce response in out-of-plane direction. 

The monitoring data was cut into 5-min data segments. Each 5-min 
data segment contains wind speed data, wind direction data and out- 

Fig. 7. Schematic of LSTM-Math.  

Fig. 8. Schematic of LSTM-WR.  
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of-plane acceleration at the mast arm tip. A general idea is using wind 
speed data and wind direction data to predict out-of-plane acceleration 
by machine learning techniques. Considering the limited input infor
mation and the complexity of wind-induced structural response, the 
monitoring data was simplified and filtered in this study. First, a low- 
pass filter with a cut-off frequency of 0.6 Hz was applied on out-of- 
plane acceleration data. Therefore, out-of-plane acceleration data 
shows only the response of the 1st mode. Second, it is generally believed 
that the vibration amplitude and the wind speed should roughly be a 
linear correlation. Therefore, 5-second standard deviation of out-of- 
plane acceleration and 5-second perpendicular wind speed were calcu
lated for each 5-min data segment and the R-squared value was calcu
lated to evaluate its linearity, see Fig. 9. In this study, 5-min data 
segments with R-squared value larger than 0.3 were selected. Finally, 
only the 5-min data segments in regular wind condition, which was 
defined as the maximum wind speed lower than 17.88 m/s (40 mph), 
were selected in training the LSTM networks. The purpose was to 
demonstrate the proposed methodology only requires monitoring data 
in regular wind condition. 

4.2. Performance of LSTM-Math 

Following the procedures in Section 3, LSTM-Math was first trained 
to perform as the optimized mathematical model. In this study, LSTM- 
Math used 7 LSTM layers and 3 fully connected layers. The number of 
hidden states of each LSTM layers were set to 100. The input was taken 
as a perpendicular wind speed history from the current moment to 3 s 
ago. The time step interval was 0.1 s, therefore, the number of input 
features was 30. The output was the out-of-plane acceleration at the tip 
of the mast arm. 

In the training of LSTM-Math, 400 of 1-min data were used. Each 1- 
min data consists of 1-min perpendicular wind speed data and 1-min 
out-of-plane acceleration data which is simulated by the optimized 
mathematical model. The minimum batch size was set to 5 and the 
training was completed by 200 epochs. In the test of LSTM-Math, 2000 
of unseen 2-min data were used. Similarly, each 2-min data consists of 2- 
min perpendicular wind speed data and 2-min out-of-plane acceleration 
data which is simulated by the mathematical model. 

To evaluate the accuracy of LSTM-Math, normalized root mean 
square error (NRMSE) was calculated for each 2-min test data, Equation 
(5). The root mean square error was normalized by the difference be
tween the maximum and the minimum monitoring accelerations in 2 
min. Fig. 10 shows the distribution of the NRMSE values. Since the 
distribution of the NRMSE values was unknown, Kernel distribution was 
used to approximate the probability density function (PDF) of the 
NRMSE values. As shown in Fig. 10, all the test results showed a NRMSE 
value lower than 0.1 and 50% of the test results have a NRMSE value 
lower than 0.03. Fig. 11 shows a test result with a NRMSE value of 0.04. 
Therefore, LSTM-Math is able to replace the mathematical model to 

simulate wind-induce response. 

NRMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i=1(yi − ŷi )

N

√ /

(max(ŷi ) − min(ŷi ) ) (5) 

where yi is the data generated by LSTM-Math and ŷi is the data 
generated by the mathematical model. 

To evaluate the efficiency of LSTM-Math, different lengths of simu
lation data were generated by the mathematical model and LSTM-Math, 
and their computational times were compared, see Fig. 12. The 
computational time for generating simulated wind-induced response 
decreased dramatically by using LSTM-Math. The speed of generating 
simulation data by LSTM-Math can be around 300 times faster than the 
mathematical model. 

4.3. Performance of LSTM-WR 

Following the procedures in Section 3, the next step is to train LSTM- 
WR and finally use it to predict the wind-induced response. 

In this study, LSTM-WR used 11 LSTM layers, 1 dropout layer and 4 
fully connected layers. The number of hidden states of each LSTM layers 
was set to 100. The input is taken as wind direction, wind speed, 
perpendicular wind speed, parallel wind speed and simulated out-of- 
plane acceleration by LSTM-Math from the current moment to 15 s 
ago. The time step interval was 1 s, therefore, the number of input 
features was 75. The output is the error between the simulated out-of- 
plane acceleration and the monitoring out-of-plane acceleration. Later, 
the prediction of the monitoring out-of-plane acceleration can be ob
tained by simply subtracting the predicted error from the simulated out- 
of-plane acceleration. 

In the training of LSTM-WR, 400 of 5-min data were used. Each 5- 
min data consists of 5-min wind data, 5-min simulated out-of-plane 
acceleration data and 5-min monitoring out-of-plane acceleration 
data. As mentioned in Section 4.1, the monitoring out-of-plane accel
eration data was low-pass filtered and the cut-off frequency was set to 
0.6 Hz. The minimum batch size was set to 5 and the training was 
completed by 200 epochs. 

In the test of LSTM-WR, 2000 of 5-min data in regular wind condition 
were first used. Similarly, each 5-min data consists of 5-min wind data, 
5-min simulated out-of-plane acceleration data and 5-min monitoring 
out-of-plane acceleration data. Fig. 13 shows the prediction of the out- 
of-plane acceleration from one of the 5-min test data. As shown in 
Fig. 13, LSTM-WR is able to correct the simulated out-of-plane accel
eration and make a prediction closer to the monitoring out-of-plane 
acceleration. 

To evaluate the accuracy of LSTM-WR in regular wind condition, the 
NRMSE value was calculated for each 5-min test data. Similar to Equa
tion (5), the root mean square error was normalized by the difference 
between the maximum and the minimum monitoring acceleration in 5 
min. Fig. 14 shows the distribution of the NRMSE values. It can be seen 
that almost all the 5-min prediction data have a NRMSE value lower 
than 0.2 and around 50% of the 5-min prediction data have a NRMSE 
value lower than 0.15. Fig. 13 shows a test result with a NRMSE value of 
0.14. It can be noticed that predictions were not always accurate, 
however, the predicted acceleration amplitude mostly matched the 
monitoring data. The NRMSE value was also calculated for each 5-min 
out-of-plane acceleration data generated by LSTM-Math. It can be 
observed that LSTM-WR has largely improved LSTM-Math in predicting 
the monitoring wind-induced response. 

Next, LSTM-WR was tested by 300 of 5-min data in high and extreme 
wind conditions (the maximum wind speed larger than 40 mph). The 
NRMSE value was again calculated for each test data. Fig. 15 shows the 
NRMSE distribution of LSTM-WR in high and extreme wind conditions. 
It can be noticed the accuracy of LSTM-WR in high and extreme wind 
conditions is about the same as in regular wind condition. Almost all the 
test results have a NRMSE value lower than 0.2 and about 50% of the test 

Fig. 9. 5-s perpendicular wind speed vs. 5-s standard deviation of out-of-plane 
acceleration. 

L.-W. Tsai and A. Alipour                                                                                                                                                                                                                    



Engineering Structures 275 (2023) 114968

9

results have a NRMSE value lower than 0.14. Fig. 16 shows a test result 
with a NRMSE of 0.14. It can be seen that LSTM-WR is able to well 
predict the acceleration amplitude in high wind condition. 

The instrumentation of the structure was fully operational when the 
August 10, 2020 derecho of Iowa occurred. The derecho caused notably 
high wind speeds of up to 126 mph recorded in Iowa, with post-damage 
assessments of up to 140 mph in some places. The instrumented struc
ture provided a large opportunity as the sensors were working properly 
at the time, and wind-induced response was recorded. These data were 

also used to test LSTM-WR to check the validity of the trained model in 
predicting out-of-plane acceleration in extreme wind condition. Fig. 17 
shows one result of LSTM-WR tested by a 5-min data during the derecho. 
It can be first seen that the simulation from LSTM-Math (the mathe
matical model) was too conservative in extreme wind condition. This 
indicated that the mathematical model built by the identified parame
ters from wind tunnel tests was not accurate in extreme wind condition. 
This is attributed to the fact that there are many uncertainties in high or 
extreme wind conditions which are difficult to be formulated. However, 

Fig. 10. (a) The PDF and (b) the CDF of NRMSE values.  

Fig. 11. LSTM-Math tested by a 2-min data.  

Fig. 12. Computational time of (a) the mathematical model and (b) LSTM-Math.  
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the LSTM-WR trained by the data in regular wind condition can very 
well predict the acceleration amplitude in extreme wind condition. 

As a final step, all the test data and prediction data were cut into 1- 
min data segments. The maximum wind speed and the maximum 
amplitude of out-of-plane acceleration were calculated for each 1-min 
data segment and plotted on Fig. 18. An exponential function, Eq. (6), 
was used to approximate the upper and lower bounds of the maximum 
amplitude of the monitoring data at different 1-min maximum wind 
speeds. It was calculated there were 94% of the data points by LSTM-WR 

fell between the upper and lower bounds. Also, at the maximum wind 
speed lower than 17.88 m/s (40 mph), which is the wind speed region of 
the training data, 95.4% of the data by LSTM-WR fell between the 
bounds. At the maximum wind speed higher than 17.88 m/s, 80% of the 
data points by LSTM-WR fell between the bounds. 

f (x) = aebx + c (6)  

Fig. 13. LSTM-WR tested by a 5-min data in regular wind condition.  

Fig. 14. NRMSE distribution of LSTM-WR in regular wind condition.  

Fig. 15. NRMSE distribution of LSTM-WR in high and extreme wind conditions.  
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5. Conclusions and discussions 

The present study aims to develop a methodology to use machine 

learning techniques trained using monitoring data to predict the wind- 
induced response of a real-life flexible structure. The findings in this 
paper will be discussed and concluded in this section. 

Fig. 16. LSTM-WR tested by a 5-min data in high wind condition.  

Fig. 17. LSTM-WR tested by a 5-min data in extreme wind condition.  
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A traffic signal structure in Ames, Iowa was monitored for more than 
a year. A mathematical model was derived and optimized. The proposed 
methodology then used two LSTM networks to accomplish predicting 
the wind-induced response of the traffic signal structure. The first LSTM 
network, LSTM-Math, was trained to replace the mathematical and to 
simulate wind-induced response more efficiently. The second LSTM 
network, LSTM-WR, was trained to correct the simulated response from 
LSTM-Math and to make better predictions of wind-induced response. 
Both LSTM networks played an important role on predicting wind- 
induced response. LSTM-Math provides general understanding of a 
structure and its wind-induced behavior, and LSTM-WR was trained to 
capture the informulable wind-induced behavior. Both LSTM networks 
were tested by unknown input data and their accuracies were evaluated. 

Second, LSTM-Math was validated to be able to generate simulated 
wind-induced response quite close to the simulated response from the 
mathematical model. When comparing the computation times of the 
mathematical model and LSTM-Math, LSTM-Math was found to be more 
than 300 times faster. Therefore, this procedure can be applied to wind 
simulations on other structures to have higher efficiency. Also, reli
ability or fragility analysis on structures usually require large amounts of 
simulation data. By using this procedure, a trained LSTM network can 
reduce much time on running simulations. 

Third, LSTM-WR was trained only by the monitoring data in regular 
wind condition and then tested by the unseen monitoring data in 
different wind conditions. The result showed LSTM-WR was able to 
correct the prediction from LSTM-Math and make closer prediction to 
the monitoring data. Although the prediction from LSTM-WR was not 
able to well match the monitoring data at every moment, it can well 
predict the acceleration amplitude even in high and extreme wind 
conditions. The monitoring data during the derecho of August, 2020 in 
Iowa was also used in testing LSTM-WR. It was found that LSTM-WR can 
predict acceleration amplitude and its predictions were more accurate 
compared to those of the LSTM-Math. It can be found in all different 
wind conditions that LSTM-Math, which is based on a physics-based 
models developed by traditional methods, generally provides conser
vative predictions, however, the error of the acceleration amplitude 
became quite large in high and extreme wind conditions. Therefore, the 
proposed method could bring a huge benefit in simulating wind-induced 
structural response when the targeting wind condition is beyond the 
limitation of the wind tunnel. 

Finally, the proposed method requires only a few sensors to be 
installed on a structure in the field and the monitoring data in regular 
wind condition. When comparing to the traditional methods in devel
oping an analytical model, the proposed method could be a cost- 

effective solution. It can be useful when simulating wind-induced 
structural response in a wide range of wind speeds and can be widely 
used on other structures suspected of having fatigue damage due to 
wind-induced vibrations. 
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