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Slender and flexible infrastructures such as sign supports, cantilever traffic signal structures and high mast
lighting towers are sensitive to wind force and were reported to have fatigue-related issues due to the large-
amplitude vibrations throughout thier life. Simulating wind-induced structural response can be an important
step to evaluate their fatigue life and reliability. However, wind simulations are usually quite complicated. A
comprehensive wind force model was usually developed by conducting multiple wind tunnel tests. However, due
to the high cost of wind tunnel tests and the limitation of a wind tunnel, aerodynamic and aeroelastic coefficients
were usually extracted only at certain wind speeds and wind directions. Interpolation or extrapolation methods
were commonly used when coefficients were not available, which makes the simulation result questionable. In
this study, a methodology was proposed to simulate wind-induced structural response with lower costs. The
proposed method uses monitoring data in the field to develop long short-term memory (LSTM) networks. In
training LSTM networks, only the monitoring data in regular wind condition was used. However, the trained
LSTM network can still predict the wind-induced response in high and extreme wind conditions observed during
the monitoring of the structure. The proposed method can be useful when simulating wind-induced structural
response in a wide range of wind speeds and can be widely used on other structures suspected of having fatigue

damage due to wind-induced vibrations.

1. Introduction

Slender and flexible structures such as sign supports, cantilever
traffic signal structures and high mast lighting towers are very sensitive
to wind force. Long-term wind-induced vibrations of these structures
eventually results in fatigue damage on locations with high stress con-
centration such as base-plate-to-tube connections or mast-arm-to-pole
connections. Fatigue failures of traffic signal support structures and
high mast lighting towers have been reported across the United States
over the past 20 years [1,9,12,16,35,48], which highlights the need to
study their wind-induced behavior, fatigue assessment and reliability
analysis.

Simulating wind-induced structural response can be an important
first step for evaluating fatigue damage and predicting fatigue life and
reliability of these wind-excited structures. Physics-based models were
usually developed to simulate wind-induced structural response.
Generally, wind simulation requires modeling the structure and the
wind force on the structure. Commonly, structures can be modeled by
mathematical equations of motion [36,37] or detailed finite element
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models [13,14,42,44,56]. However, modeling wind force on a structure
can be complicated. Wind force on a structure can vary due to many
factors such as turbulence intensity, aerodynamic shape and surface
roughness which are all difficult to be formulated. The different as-
semblies on these structures such as luminaires and traffic lights make
the modeling of the wind force even more difficult. A simplified wind
force equation was used in modeling the wind force on high mast
lighting towers to simulate structural response [36,37,14,42]. A more
comprehensive wind force equation was used in modeling the wind
force on high mast lighting towers [35] and traffic signal structures
[2,21,30], which requires aeroelastic and aerodynamic parameters of
the structures. These coefficients were extracted by previous wind tun-
nel tests on multi-sided and circular cylinders and traffic light models
[21,23,38,39,45]. It can be noticed that the traditional method in
developing a comprehensive wind force model requires multiple wind
tunnel tests on different components of a structure, which can be
expensive. Also, due to the high cost and the wind speed limit in a wind
tunnel, wind tunnel tests were usually only conducted at some specific
wind speeds and wind directions. Interpolation or extrapolation
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methods are usually used when coefficients are not available. Consid-
ering the wind in the real world can be much more turbulent, the wind-
induced response simulation from a physical-based model can some-
times be questionable.

Due to the downsides of the traditional method mentioned above,
other group of studies came up with using machine learning techniques
to develop surrogate models in simulating structural response. Earlier
research started with using machine learning techniques in simulating
seismic structural response. Artificial neuron networks (ANNs) were
trained and validated to be able to generate response matching the
response from physics-based model of multi-story buildings such as
mathematical system equations or finite element models [7,33,53-55].
In [34], a recurrent neuron network (RNN) was trained by the acceler-
ation data recorded from previous shake table tests and validated to be
able to generate precise response. Eventually, in [50], a long short-term
memory (LSTM) network was trained by the acceleration data recorded
from a 6-story building in San Bernardino, California during seismic
events. The trained LSTM network was validated to be able to control
normalized prediction error within 3%. Therefore, it has been validated
that machine learning models can become accurate surrogate models in
predicting real-life seismic structural response.

Comparing with seismic response, predicting wind-induced struc-
tural response can be more challenging as discussed previously. Simi-
larly, a group of studies used machine learning techniques to replicate
the simulated wind-induced response from physics-based models. For
example, Wang and Wu [46] trained a LSTM network to replicate the
simulated data from a multiple-degree-of-freedom (MDOF) system
equation. Bani-Hani [3] trained an ANN to generate response matching
the response from a MDOF system of a tall building. Xue et al. [49] used
a convolutional neuron network to replicate the simulated data from a
finite element model of a transmission tower. In [27], the mathematical
model of a bridge deck used a more comprehensive wind force equation,
which included aeroelastic and aerodynamic parameters, and a LSTM
network was trained by the simulated data and was successfully vali-
dated. Hareendran and Alipour [17] showed that the LSTM could pre-
dict the nonlinear response of wind-excited tall buildings and Micheli
et al. [31] provided the applicability of a series of different techniques in
the context of tall building design. At this point, these studies have
presented that machine learning models are able to replace physics-
based models to simulate wind-induced response with higher efficiency.

In the next stage, a number of studies started to train machine
learning models by the response data recorded from wind tunnel tests.
For example, Dongmei et al. [11] trained and validated an ANN by the
wind pressure data from a scaled model of a high-rise building in wind
tunnel tests. Oh et al. [32] trained and validated a CNN by the strain data
from a scaled model of a 5-story building in wind tunnel tests. Hu and
Kwok [20] used multiple machine learning algorithm to predict wind
pressure on circular cylinder models. Lin et al. [29] compared 5 different
machine learning models in predicting the crosswind vibrations of
rectangular cylinder models and also studied the influence of the side
ratios to the crosswind response. These studies have shown machine
learning models have the potentials in predicting wind-induced
response of real structures.

Finally, machine learning models were trained by the monitoring
data from real structures to study specific wind-induced structural be-
haviors such as vortex-induced or buffeting-induced vibrations and to
predict wind-induced structural response. Vortex-induced vibrations
were commonly observed on long-span bridges or slender vertical
structures. Li et al. [24] and Lim et al. [28] have conducted long-term
monitoring on long-span bridges and a tall building. They proposed
cluster analysis and supervised machine learning techniques to identify
vortex-induced vibrations from the long-term monitoring data. Li et al.
[25] later used decision tree learning and support vector regression to
predict the vertical displacement during vortex-induced vibrations.
Wind-induced vibrations in along-wind direction happen almost all the
time and are basically excited by drag and buffeting wind forces. Only a

Engineering Structures 275 (2023) 114968

few studies focused on predicting buffeting-induced structural response
using machine learning techniques. In [5], long-term monitoring data
from a long-span bridge in Norway was used to train multilayer per-
ceptron and support vector regression models to predict buffeting-
induced response. The predictions from the two models were
compared with the response generated by buffeting theory. The result
showed the machine learning models could make more accurate wind-
induced response. In [26], a LSTM network was trained by the moni-
toring data from a bridge in China to predict the buffeting-induced
displacement of the bridge deck. The predictions from the trained
model and a finite element model were compared. The result also
showed the trained model can better predict the wind-induced structural
response.

These studies successfully used machine learning techniques to move
wind-induced response predictions from lab theory to practical engi-
neering. However, a few research gaps could be identified. First, it seems
training data and testing data were not well explained, therefore, it’s
difficult to understand the performance and the limitation of the trained
machine learning models. Second, the models were trained and tested in
a specific range of wind speed (mostly less than 25 m/s). The perfor-
mance of the trained models at wind speeds higher than the training
data is still unknown. Also, the models were developed by only the
monitoring data in the field. Therefore, it is possible that the models can
only learn the wind-induced behavior at the wind speeds of the training
data. The predictions beyond the training wind speeds might be
questionable.

This study took advantage of the available monitoring data for a
wind-induced cantilever traffic signal structure (also categorized as a
flexible structure) to train a special class of RNNs. The traffic signal
structure is located in Ames, Iowa and was monitored for over a year.
Sensors including an anemometer and accelerometers were installed to
record wind data and wind-induced acceleration at the tip of the mast
arm, respectively. To address the identified gaps, the proposed method
used two long short-term memory (LSTM) networks to predict the wind-
induced structural response. The first LSTM network was trained as the
mathematical model of the structure to faster simulate more and longer
wind-induced response, which possesses the general understanding of
wind-induced behaviors of the structure. The second LSTM used the
simulated wind-induced response and the monitoring wind data to
predict the monitoring wind-induced data. Therefore, the trained model
will be physics-informed. In this study, LSTM networks were trained by
the monitoring data in regular wind condition. The trained LSTM net-
works were then tested by unseen monitoring data in regular and high
wind conditions. It is worth to mention that the monitoring data during
the 2020 derecho in Iowa, which was categorized as an inland hurricane
with sustained wind speeds of more than 130 mph, was also used in
testing the trained LSTM networks. The trained LSTM was very well able
to predict the amplitude of the wind-induced acceleration in regular,
high, and extreme wind conditions. This study is valuable since only a
few sensors were used in the field and only the monitoring data in
regular wind condition was used in training LSTM networks. The trained
LSTM network also predicted better wind-induced response than the
mathematical model generated based on traditional methods.

This paper is organized as follows: Section 2 describes the monitored
traffic signal structure and the instrumentation plan. Section 3 explained
the proposed method for predicting wind-induced response by using
machine learning approaches and monitoring data in the field. Section 4
presents the results of the predicted wind-induced response and the
evaluation of the accuracy of the trained LSTM networks. Section 5
concludes and discusses the findings of this study.

2. Monitored traffic signal structure
Previously, a cantilevered traffic-signal structure in Ames, Iowa, was

selected for long-term monitoring to study the wind-induced behavior
[2,43]. The structure was comprised of a 7.62 m vertical pole, a 20.42 m
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curved mast arm, and three vertical traffic lights attached to the mast
arm. The mast arm was welded to an arm base plate bolted to another
plate on the vertical pole. Dimensional details are shown in Fig. 1 and
the orientation of the selected structure is shown in Fig. 2. Note that the
three vertical traffic lights face to the east. Other details on the structure
can be found in [2,43].

During the long-term monitoring, sensors including an anemometer
and two accelerometers were installed on the selected traffic signal
structure. The anemometer was installed at the top of the vertical pole. It
can record both wind direction and wind speed. Wind direction was
measured in degrees (0° ~ 360°) with 0° representing a north wind
(wind from north blowing south), 90° an east wind, 180° a south wind,
and 270° a west wind. Wind speed was measured in mph. Two accel-
erometers were installed at the tip of the mast arm to record the accel-
erations in in-plane (vertical) and out-of-plane (horizontal) directions
respectively. See the instrumentation plan in Fig. 3. Details of each
sensor and data acquisition device can be found in [43]. The monitoring
data was used to train and test the ANN in this study.

3. Methodology
3.1. Long short-term memory network

Before explaining the proposed methodology, a brief introduction of
long short-term memory network and the reason of using it in this study
were provided in the following.

Recurrent neuron network (RNN) has been widely used on sequence
data-related tasks, such as language modeling and speech recognition
[15,40]. The hidden states in an RNN allows it to remember previous
outputs and to be able to learn the relation of the data between each time
step, see Fig. 4 (a). However, RNN can only pass the information across
very limited time steps because of the problem of vanishing and ex-
ploding gradients [4,22]. Hochreiter & Schmidhuber [19] proposed long
short-term memory network to overcome this issue.

The schematic of a standard LSTM network is shown in Fig. 4(b). In
each LSTM cell, cell state (c;) can pass long term memory. At the same
time, forget gate is able to remove out-of-date information from the cell
state by using the logistic sigmoid function and multiplication operation.
The logistic sigmoid function has a range between 0 and 1, which in-
dicates forget gate is able to fully forget or memorize the previous cell
state. Input gate and tanh gate are used to add new information to the
cell state from the hidden state and the current input data. Output gate
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combines the cell state, the hidden state and the input data to decide the
output information. Note that in Fig. 4(b), the output (y;) can be the
same as the hidden state (h;), however, a fully connected layer is usually
used to convert the hidden state to an output with a desired dimension.
The details of the proposed methodology will be given in the following
subsections.

3.2. Proposed method for predicting wind-induced structural response

At the beginning, a mathematical model for the monitored traffic
signal structure was built to simulate its wind-induced response. The
simulated response has a fair accuracy when comparing to the moni-
toring response. However, it was noticed that the mathematical model
sometimes showed too conservative results. It can be explained that
some uncertainties of wind-induced structural behavior are difficult to
formulate and caused the discrepancy between simulated response and
monitoring data.

The first idea was to train a LSTM network to map monitoring wind
data to monitoring wind-induced response. However, at higher wind
speeds the error between predictions and reference was high and the test
results were not good enough. This is obviously expected since the
monitoring data used was for lower wind speeds. Furthermore, the
anemometer installed in the field could only record 2-dimentional wind
data, which are wind speed and wind direction. It can be difficult to train
a LSTM network to learn the wind-induced structural behavior by only
2-dimensional wind speed and wind direction data.

Therefore, the LSTM-WR was modified in such a way that it can use
wind data and simulated wind-induced response from the mathematical
model as inputs and output revised wind-induced response closer to the
field monitoring data. Therefore, LSTM-WR is going to learn those un-
certainties that the mathematical model is not able to cover and make up
the discrepancy between the simulated response and the monitoring
data. Training LSTM-WR needs a large database. Large database of wind
and wind-induced structural response were recorded in the field. How-
ever, generating large database of simulated results from the mathe-
matical model could be an issue. Previously, different types of machine
learning models have shown the success in replicating the simulated
structural response from mathematical models with a much higher ef-
ficiency. Therefore, the authors developed another LSTM network
(called LSTM-Math i) to replace the mathematical model to faster
generate large amounts of simulated structural response.

Fig. 5 shows the proposed methodology to develop LSTM networks
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Fig. 1. Detailed dimensions of the monitored traffic signal structure, located in Ames, IA.
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for predicting wind-induced structural response. It can be explained in
the following steps:

Step 1: The proposed method starts with building a mathematical
model of the monitored traffic signal structure and optimizing the
aerodynamic and aeroelastic parameters in the mathematical model.
Step 2: The optimized mathematical model will be used to generate
simulated wind-induced response which provides physical meanings
and also helps the training of the LSTM network faster. However,
generating large amounts of simulation data by using the mathe-
matical model is time-consuming. Therefore, a LSTM network called
LSTM-Math is trained to replace the mathematical model.

Step 3: Another LSTM network called LSTM-WR will be trained by
taking the monitoring wind data and the simulated response from
LSTM-Math as inputs and the monitoring wind-induced response as
reference. The trained LSTM-WR will eventually be used to predict
the wind-induced structural response.

Details of each step in the proposed frame will be given in the
following subsections.

3.3. Step 1: Mathematical model and optimization

This subsection explained the details of Step 1. The mathematical
model of the monitored traffic signal structure has been developed in
[2]. It was written as a system matrix equation of motion, Eq. (1).

Mg+ Cisang + Kixng = Qi 1

where M is the mass matrix, C is the damping matrix, K is the stiffness
matrix, Q is the generalized force matrix and q is the generalized
coordinates.

In the mathematical model, a total of 11 mode shapes were used to
describe the motion of the traffic signal structure which are corre-
sponding to 11 generalized coordinates. The in-plane and out-of-plane
vibrations of the mast arm used 4 mode shapes respectively, and the
in-plane, out-of-plane and twisting motions of the vertical pole used 1
mode shape respectively.

Pluck tests were conducted in the field to extract the damping ratios
of the first four modes and the damping ratios of the rest of the modes
were assumed to be 0.5%. The damping matrix was derived by super-
imposing the modal damping matrices.

Wind force was only considered the wind force on the mast arm
which includes the drag and buffeting force on the traffic lights (Fll,) and
the mast arm (F?) and the self-excited force on the traffic lights (F.,) and
the mast arm (F3,), see Eq. (2). The generalized force matrix was then
derived by virtual work principle. Details of the model derivation can be
found in [2].

1

Fy(x,1) = ipair U Cb,p Darm (%) (2)
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where p,; is the air density, Cp,, and Cp,,, are the drag coefficients of
the mast arm and traffic lights respectively, Dg, is the diameter of the
mast arm, Ay, is the projected area of traffic lights, and H" and P" are
the flutter derivatives.

In this study, the mathematical model was further optimized by
using the monitoring data. The idea is to find the optimal values of the
aeroelastic and aerodynamic parameters in wind force equations to
generate wind-induced response close to the monitoring data. The initial
guess of these parameters was selected as some reasonable values based
on the prior knowledge. For example, the drag coefficients of a flat plate
and a circular cylinder were used as the initial guess of the drag co-
efficients of the traffic light and the mast arm. SThe optimization was
implemented in MATLAB using gradient-based built-in functions. The
cost function was defined as the root mean square error between the
simulated response and the monitoring response. Fig. 6 shows the
simulated acceleration at the mast arm tip by the optimized mathe-
matical model and the monitoring acceleration data at the mast arm tip.
The optimized mathematical model is able to simulate the wind-induced
acceleration with similar amplitudes to the monitoring acceleration data
in both out-of-plane and in-plane directions.

3.4. Step 2: LSTM network for the mathematical model

The optimized mathematical model has shown a fair accuracy in
simulating the wind-induced response. However, running dynamic
simulation by solving the differential matrix equation of motion is time-
consuming. Furthermore, knowledge of the structural dynamics of
structure and initial values for aerodynamic coefficients is not always
available. To address these issues, an LSTM network called LSTM-Math
was trained as the surrogate model of the optimized mathematical
model.

The mathematical model takes only the wind speed perpendicular to
the mast arm as the effective wind speed, therefore, monitoring wind
speed (V) and wind direction (0) data were converted to perpendicular
wind speed data (U,).

U, =V xsin(0) 3)

The mathematical model then took the perpendicular wind speed
data as the input to generate the simulated wind-induced response.
Fig. 7 shows the schematic of LSTM-Math. LSTM-Math consists of mul-
tiple LSTM layers and fully connected layers. The input data (x;) of
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LSTM-Math was defined as the perpendicular wind speed data of the
current moment and the past few seconds. The output data (y;) was the
wind-induced response, which should be as close as possible to the
simulated wind-induced response of the mathematical model.

3.5. Step 3: LSTM network for predicting wind-induced response

After LSTM-Math is trained and validated, it can be used to faster
simulate more and longer duration of wind-induced responses. The
optimized mathematical model has shown a fair accuracy in simulating
wind-induced responses. To further enhance the prediction accuracy, a
LSTM network called LSTM-WR was trained to eventually generate ac-
curate wind-induced response.

The schematic of LSTM-WR is shown in Fig. 8. LSTM-WR consists of
multiple LSTM layers, multiple fully connected layers and a drop-out
layer. The input (x;) of LSTM-WR was defined as wind speed (V), wind
direction (6), perpendicular wind speed (U_), parallel wind speed (U))
and the simulated response (¥) from LSTM-Math of the current moment
and the past few seconds.

C)

This can be explained as follows. The anemometer installed in the
field can only record two-dimensional wind speed and wind direction.
Therefore, there are only two types of input data, wind speed and wind
direction. Considering the complexity of wind-induced structural
response, other types of input data were derived from the existing wind
data to help LSTM-WR to learn more complex wind-induced structural
behavior. In common wind force equations such as drag, buffeting and
self-excited force, which were shown in Eq. (2), perpendicular wind
speed is usually used with aeroelastic and aerodynamic parameters and
is believed to have a strong relation with out-of-plane vibrations.
Therefore, perpendicular wind speed was calculated to be one of the
inputs. Also, from the previous study on traffic signal structures through
long-term monitoring data [43], it was observed that large amplitude
out-of-plane vibrations did not always happen in the direction perpen-
dicular to the mast arm. There was a considerable amount of large out-
of-plane vibrations observed when the wind direction is parallel to the
mast arm. Therefore, parallel wind speed was also calculated to be one
of the inputs. Eventhough wind speed and wind direction were used to
derive the perpendicular and parallel wind speeds, they could have their
own meanings to the wind-induced behavior. The simulated wind-
induced response from LSTM-Math was one of the inputs to provide
physical meanings to LSTM-WR. Considering the asymmetric shape of a
cantilever traffic signal structure and traffic lights and sign plates

U, =V xsin(0), Uy =V x cos(f)
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attached on the mast arm, its wind-induced structural response can be
quite complicated. Therefore, the inputs were defined as these five types
of data from the current moment to the past few seconds to make the
input features even more diverse.

The output (y;) was defined as the error between the simulated wind-
induced response from LSTM-Math and the monitoring wind-induced
response. Finally, the predicted wind-induced response can be simply
obtained by adding the output and the simulated response from LSTM-
Math together. Such definition of the output is quite important
because it forces LSTM-WR to generate response better than the simu-
lated response from LSTM-Math.

4. Results
4.1. Monitoring data processing and selection

Large-amplitude wind induced vibrations are often observed on
cantilever traffic signal structures. Fatigue failures of such structures in

the United States have created the needs on studying its wind-induced
mechanism and evaluating its fatigue life and reliability. Wind tunnel

tests and field monitoring have been conducted to reveal the wind-
induced mechanisms [21,23,38,39,45,7,8,10,18,41,47,48,51]. These
studies finally identified several types of large-amplitude vibrations of
traffic signal structures, which includes vortex- and galloping-induced
vibration in across-wind direction and buffeting-induced vibration in
along-wind direction.

In this study, the traffic signal structure was monitored in 2019 and
2020 inclduing during the Iowa Derecho of 2020. Using the monitoring
data, the study was first focused on its wind-induced behavior and
evaluating the fatigue damage due to wind-induced vibrations [43]. It
was observed that a cantilever traffic signal structure with vertical
traffic lights on the mast arm might have lower chances to experience
vortex-induced vibrations which are in in-plane direction. Large vibra-
tions of this type of traffic signal structures were majorly in out-of-plane
direction, which are basically excited by drag and buffeting wind forces,
and were believed to create fatigue damage on at the mast arm base.
Therefore, in this study, the proposed methodology focused on pre-
dicting the wind-induce response in out-of-plane direction.

The monitoring data was cut into 5-min data segments. Each 5-min
data segment contains wind speed data, wind direction data and out-
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of-plane acceleration at the mast arm tip. A general idea is using wind
speed data and wind direction data to predict out-of-plane acceleration
by machine learning techniques. Considering the limited input infor-
mation and the complexity of wind-induced structural response, the
monitoring data was simplified and filtered in this study. First, a low-
pass filter with a cut-off frequency of 0.6 Hz was applied on out-of-
plane acceleration data. Therefore, out-of-plane acceleration data
shows only the response of the 1st mode. Second, it is generally believed
that the vibration amplitude and the wind speed should roughly be a
linear correlation. Therefore, 5-second standard deviation of out-of-
plane acceleration and 5-second perpendicular wind speed were calcu-
lated for each 5-min data segment and the R-squared value was calcu-
lated to evaluate its linearity, see Fig. 9. In this study, 5-min data
segments with R-squared value larger than 0.3 were selected. Finally,
only the 5-min data segments in regular wind condition, which was
defined as the maximum wind speed lower than 17.88 m/s (40 mph),
were selected in training the LSTM networks. The purpose was to
demonstrate the proposed methodology only requires monitoring data
in regular wind condition.

4.2. Performance of LSTM-Math

Following the procedures in Section 3, LSTM-Math was first trained
to perform as the optimized mathematical model. In this study, LSTM-
Math used 7 LSTM layers and 3 fully connected layers. The number of
hidden states of each LSTM layers were set to 100. The input was taken
as a perpendicular wind speed history from the current moment to 3 s
ago. The time step interval was 0.1 s, therefore, the number of input
features was 30. The output was the out-of-plane acceleration at the tip
of the mast arm.

In the training of LSTM-Math, 400 of 1-min data were used. Each 1-
min data consists of 1-min perpendicular wind speed data and 1-min
out-of-plane acceleration data which is simulated by the optimized
mathematical model. The minimum batch size was set to 5 and the
training was completed by 200 epochs. In the test of LSTM-Math, 2000
of unseen 2-min data were used. Similarly, each 2-min data consists of 2-
min perpendicular wind speed data and 2-min out-of-plane acceleration
data which is simulated by the mathematical model.

To evaluate the accuracy of LSTM-Math, normalized root mean
square error (NRMSE) was calculated for each 2-min test data, Equation
(5). The root mean square error was normalized by the difference be-
tween the maximum and the minimum monitoring accelerations in 2
min. Fig. 10 shows the distribution of the NRMSE values. Since the
distribution of the NRMSE values was unknown, Kernel distribution was
used to approximate the probability density function (PDF) of the
NRMSE values. As shown in Fig. 10, all the test results showed a NRMSE
value lower than 0.1 and 50% of the test results have a NRMSE value
lower than 0.03. Fig. 11 shows a test result with a NRMSE value of 0.04.
Therefore, LSTM-Math is able to replace the mathematical model to
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Fig. 9. 5-s perpendicular wind speed vs. 5-s standard deviation of out-of-plane
acceleration.
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simulate wind-induce response.
N —~
NRMSE — || 2= =3 (1{; %) / (max(;) — min(5;)) ®)

where y; is the data generated by LSTM-Math and y; is the data
generated by the mathematical model.

To evaluate the efficiency of LSTM-Math, different lengths of simu-
lation data were generated by the mathematical model and LSTM-Math,
and their computational times were compared, see Fig. 12. The
computational time for generating simulated wind-induced response
decreased dramatically by using LSTM-Math. The speed of generating
simulation data by LSTM-Math can be around 300 times faster than the
mathematical model.

4.3. Performance of LSTM-WR

Following the procedures in Section 3, the next step is to train LSTM-
WR and finally use it to predict the wind-induced response.

In this study, LSTM-WR used 11 LSTM layers, 1 dropout layer and 4
fully connected layers. The number of hidden states of each LSTM layers
was set to 100. The input is taken as wind direction, wind speed,
perpendicular wind speed, parallel wind speed and simulated out-of-
plane acceleration by LSTM-Math from the current moment to 15 s
ago. The time step interval was 1 s, therefore, the number of input
features was 75. The output is the error between the simulated out-of-
plane acceleration and the monitoring out-of-plane acceleration. Later,
the prediction of the monitoring out-of-plane acceleration can be ob-
tained by simply subtracting the predicted error from the simulated out-
of-plane acceleration.

In the training of LSTM-WR, 400 of 5-min data were used. Each 5-
min data consists of 5-min wind data, 5-min simulated out-of-plane
acceleration data and 5-min monitoring out-of-plane acceleration
data. As mentioned in Section 4.1, the monitoring out-of-plane accel-
eration data was low-pass filtered and the cut-off frequency was set to
0.6 Hz. The minimum batch size was set to 5 and the training was
completed by 200 epochs.

In the test of LSTM-WR, 2000 of 5-min data in regular wind condition
were first used. Similarly, each 5-min data consists of 5-min wind data,
5-min simulated out-of-plane acceleration data and 5-min monitoring
out-of-plane acceleration data. Fig. 13 shows the prediction of the out-
of-plane acceleration from one of the 5-min test data. As shown in
Fig. 13, LSTM-WR is able to correct the simulated out-of-plane accel-
eration and make a prediction closer to the monitoring out-of-plane
acceleration.

To evaluate the accuracy of LSTM-WR in regular wind condition, the
NRMSE value was calculated for each 5-min test data. Similar to Equa-
tion (5), the root mean square error was normalized by the difference
between the maximum and the minimum monitoring acceleration in 5
min. Fig. 14 shows the distribution of the NRMSE values. It can be seen
that almost all the 5-min prediction data have a NRMSE value lower
than 0.2 and around 50% of the 5-min prediction data have a NRMSE
value lower than 0.15. Fig. 13 shows a test result with a NRMSE value of
0.14. It can be noticed that predictions were not always accurate,
however, the predicted acceleration amplitude mostly matched the
monitoring data. The NRMSE value was also calculated for each 5-min
out-of-plane acceleration data generated by LSTM-Math. It can be
observed that LSTM-WR has largely improved LSTM-Math in predicting
the monitoring wind-induced response.

Next, LSTM-WR was tested by 300 of 5-min data in high and extreme
wind conditions (the maximum wind speed larger than 40 mph). The
NRMSE value was again calculated for each test data. Fig. 15 shows the
NRMSE distribution of LSTM-WR in high and extreme wind conditions.
It can be noticed the accuracy of LSTM-WR in high and extreme wind
conditions is about the same as in regular wind condition. Almost all the
test results have a NRMSE value lower than 0.2 and about 50% of the test
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results have a NRMSE value lower than 0.14. Fig. 16 shows a test result
with a NRMSE of 0.14. It can be seen that LSTM-WR is able to well
predict the acceleration amplitude in high wind condition.

The instrumentation of the structure was fully operational when the
August 10, 2020 derecho of Iowa occurred. The derecho caused notably
high wind speeds of up to 126 mph recorded in Iowa, with post-damage
assessments of up to 140 mph in some places. The instrumented struc-
ture provided a large opportunity as the sensors were working properly
at the time, and wind-induced response was recorded. These data were

also used to test LSTM-WR to check the validity of the trained model in
predicting out-of-plane acceleration in extreme wind condition. Fig. 17
shows one result of LSTM-WR tested by a 5-min data during the derecho.
It can be first seen that the simulation from LSTM-Math (the mathe-
matical model) was too conservative in extreme wind condition. This
indicated that the mathematical model built by the identified parame-
ters from wind tunnel tests was not accurate in extreme wind condition.
This is attributed to the fact that there are many uncertainties in high or
extreme wind conditions which are difficult to be formulated. However,
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the LSTM-WR trained by the data in regular wind condition can very
well predict the acceleration amplitude in extreme wind condition.

As a final step, all the test data and prediction data were cut into 1-
min data segments. The maximum wind speed and the maximum
amplitude of out-of-plane acceleration were calculated for each 1-min
data segment and plotted on Fig. 18. An exponential function, Eq. (6),
was used to approximate the upper and lower bounds of the maximum
amplitude of the monitoring data at different 1-min maximum wind
speeds. It was calculated there were 94% of the data points by LSTM-WR

10

fell between the upper and lower bounds. Also, at the maximum wind
speed lower than 17.88 m/s (40 mph), which is the wind speed region of
the training data, 95.4% of the data by LSTM-WR fell between the
bounds. At the maximum wind speed higher than 17.88 m/s, 80% of the
data points by LSTM-WR fell between the bounds.
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5. Conclusions and discussions learning techniques trained using monitoring data to predict the wind-
induced response of a real-life flexible structure. The findings in this
The present study aims to develop a methodology to use machine paper will be discussed and concluded in this section.
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A traffic signal structure in Ames, lowa was monitored for more than
a year. A mathematical model was derived and optimized. The proposed
methodology then used two LSTM networks to accomplish predicting
the wind-induced response of the traffic signal structure. The first LSTM
network, LSTM-Math, was trained to replace the mathematical and to
simulate wind-induced response more efficiently. The second LSTM
network, LSTM-WR, was trained to correct the simulated response from
LSTM-Math and to make better predictions of wind-induced response.
Both LSTM networks played an important role on predicting wind-
induced response. LSTM-Math provides general understanding of a
structure and its wind-induced behavior, and LSTM-WR was trained to
capture the informulable wind-induced behavior. Both LSTM networks
were tested by unknown input data and their accuracies were evaluated.

Second, LSTM-Math was validated to be able to generate simulated
wind-induced response quite close to the simulated response from the
mathematical model. When comparing the computation times of the
mathematical model and LSTM-Math, LSTM-Math was found to be more
than 300 times faster. Therefore, this procedure can be applied to wind
simulations on other structures to have higher efficiency. Also, reli-
ability or fragility analysis on structures usually require large amounts of
simulation data. By using this procedure, a trained LSTM network can
reduce much time on running simulations.

Third, LSTM-WR was trained only by the monitoring data in regular
wind condition and then tested by the unseen monitoring data in
different wind conditions. The result showed LSTM-WR was able to
correct the prediction from LSTM-Math and make closer prediction to
the monitoring data. Although the prediction from LSTM-WR was not
able to well match the monitoring data at every moment, it can well
predict the acceleration amplitude even in high and extreme wind
conditions. The monitoring data during the derecho of August, 2020 in
Iowa was also used in testing LSTM-WR. It was found that LSTM-WR can
predict acceleration amplitude and its predictions were more accurate
compared to those of the LSTM-Math. It can be found in all different
wind conditions that LSTM-Math, which is based on a physics-based
models developed by traditional methods, generally provides conser-
vative predictions, however, the error of the acceleration amplitude
became quite large in high and extreme wind conditions. Therefore, the
proposed method could bring a huge benefit in simulating wind-induced
structural response when the targeting wind condition is beyond the
limitation of the wind tunnel.

Finally, the proposed method requires only a few sensors to be
installed on a structure in the field and the monitoring data in regular
wind condition. When comparing to the traditional methods in devel-
oping an analytical model, the proposed method could be a cost-
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effective solution. It can be useful when simulating wind-induced
structural response in a wide range of wind speeds and can be widely
used on other structures suspected of having fatigue damage due to
wind-induced vibrations.
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