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Downlink Channel Sounding For Multiuser Massive
MIMO With Limited Feedback
Petteri Pulkkinen , Member, IEEE, David J. Love , Fellow, IEEE,

and Visa Koivunen , Fellow, IEEE

Abstract—Massive multiple-input multiple-output (MIMO)
technology is pivotal for next-generation wireless networks,
offering higher data rates and seamless connectivity. Despite its
promise, channel estimation in feedback-based massive MIMO
presents unique challenges that must be addressed to realize
massive MIMO for frequency-division duplexing (FDD) and other
communications systems without channel reciprocity. This paper
proposes a novel base station (BS) centric closed-loop channel
sounding method for multiuser massive MIMO systems, aiming
to reduce the pilot overhead and improve the data rates. It
also reduces the computational load on the UEs and facilitates
accurate channel estimation at the BS. The proposed approach
utilizes beamspace processing in the pilot optimization and the
feedback scheme. Furthermore, we show that the proposed
method can be employed with hybrid analog-digital architecture
in BSs. An efficient algorithm for designing the pilots to maximize
the approximate mutual information (MI) between the channel
coefficients and received feedback signals is developed, along
with an efficient hybrid zero-forcing (HZF) precoding algorithm.
The simulation results show that this approach significantly
improves channel estimation accuracy and sum rate performance
in multiuser massive MIMO systems.

Index Terms—Beam alignment, millimeter wave, frequency
division duplexing, convex optimization, mutual information.

I. INTRODUCTION

MASSIVE MIMO technology is pivotal for 5G and
emerging 6G wireless networks to enable higher data

rates and seamless connectivity [1]. The multiplexing gains and
spatial diversity enable higher spectral efficiencies for wireless
users. Furthermore, the array gains facilitate larger network cell
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sizes and enable tackling high propagation losses in millimeter
and terahertz frequencies [2]. Higher frequencies above sub-6
GHz band allow for using larger antenna array apertures with
smaller physical size and employing broader bandwidths. This
facilitates new innovative use cases and alleviating the spectrum
congestion.

Despite the promise of massive MIMO technology, it
presents unique challenges that must be addressed to realize
its full potential. Previously, massive MIMO has been mainly
studied in sub-6 Ghz wireless communication systems obey-
ing fully digital and relatively small antenna arrays and time-
division duplexing (TDD) scheme [1], [3]. However, research
and industry interest is directed towards large antenna arrays.
To reduce costs and power consumption, algorithms for low-
bit analog-to-digital converters (ADCs) [4] and hybrid analog-
digital architectures [5], [6] are developed to tackle hardware-
related problems when using large antenna arrays [7].

This paper considers multiuser channel sounding and pre-
coding in limited feedback multiuser massive MIMO systems
[8], [9], [10]. Awareness of channel states and interference
levels plays a significant role in reaching the achievable com-
munications capacity [10]. In particular, the transmitter requires
accurate knowledge of the communication channel to achieve
optimal beamforming gains and to effectively mitigate interfer-
ence between multiple spatial streams. Obtaining channel state
information at the trasmitter (CSIT) in mobile massive MIMO
systems poses a significant challenge. It is particularly difficult
in frequency-division duplexing (FDD) scheme with limited
feedback and under high frequencies with short coherence times
and hardware constraints. Therefore, this paper focuses on
downlink channel estimation in FDD multiuser massive MIMO
systems and proposes a channel sounding method tailored for
such systems with hybrid digital-analog hardware.

Acquiring CSIT for downlink transmissions in FDD massive
MIMO systems can be broadly categorized into user equip-
ment (UE)-centric [11], [12], [13], [14], [15], [16], [17], [18],
[19], [20] and BS-centric [21], [22] schemes. In UE-centric
scheme, UEs estimate the channels from downlink pilots and
then provide channel state information (CSI) feedback to the
BS. Conversely, BS-centric schemes rely on UEs to feed back
the received pilot signals to the BS, which then performs the
downlink channel estimation. To the authors’ best knowledge,
the UE-centric scheme has been widely adopted in the litera-
ture with digital feedback, while BS-centric scheme have been
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considered only in conjunction with analog feedback [23]. Most
communications systems with limited digital feedback use spa-
tial domain codebooks to alleviate CSI quantization. For exam-
ple, the third generation partnership project (3GPP) standards
(e.g., release 17) are based on the discrete Fourier transform
(DFT) codebooks [24] where the sparsity in spatial [25] or
delay domain [26] is utilized. However, there are also many
other codebook designs, such as large dimension beamforming
vector quantization based on trellis-coding [27], [28], [29], and
codebooks tailored for millimeter wave communications [30],
[31], [32], [33].

Downlink channel sounding frameworks within the UE-
centric scheme are generally divided into open-loop [11], [12],
[13], [14] and closed-loop [15], [16], [17], [18], [19] methods.
The open-loop indicates that there is no feedback from UEs
to BS regarding the preferred pilot sequences. In contrast, in
closed-loop methods [15], [16], [17], [18], [19], UEs exploit
channel awareness and associated uncertainties to design down-
link pilots that minimize predicted channel estimation errors
and subsequently transmit the pilot preferences to the BS via
a feedback link. Open-loop and closed-loop sounding methods
may integrate information from multiple received subsequent
pilots using sequential estimation, for example, Kalman filter-
ing (KF) [34], [35], [36], [37], [38]. In contrast, open-loop
methods, where each UE estimates the channel using only the
most recent pilot signal, are referred to as single-shot methods
[11], [12], [13], [39]. Closed-loop methods require additional
feedback from UEs to BSs for determining the pilots to be
used. Methods that aim to minimize this feedback overhead
have been proposed, for example, in [18], [19], where UEs
control the downlink pilot lengths via 1-bit feedback, reducing
the feedback overhead but significantly limiting the degrees of
freedom in the pilot adaptation.

Related to channel sounding methods, the process of iter-
atively probing transmit and receive beams to find the best
beamformer from the codebook is called beam alignment (BA)
[40], [41], [42], especially in the context of millimeter wave sys-
tems. These approaches are conventionally developed for ana-
log transmit-receive beamforming, and the methods are based
on exhaustive [41] or hierarchical [32], [43], [44], [45] search.
BA approaches for hybrid architectures are typically based on
compressive sensing (CS) where BS transmit pseudo-random
pilots, and UEs estimate the strongest beam pairs and reports
them back to the BS [46]. Another BA approach is to leverage
auxiliary data, like GPS [47], [48] or sensor inputs [49], to
inform the BA process. Also, sub-6 GHz frequency bands can
be utilized for initial BA, as shown in [50], [51], [52] since
lower frequencies facilitate more favorable propagation charac-
teristics than millimeter waves. A large body of BA literature
considers closed-loop beam alignment [47], [53], [54], [55],
[56], [57], [58], [59], [60], [61]. Many of them are based on
the multi-armed bandit (MAB) algorithms [47], [55], [56], [57],
[58], [59] and partially observable Markov decision processes
(POMDPs) [60], [61]. These algorithms are motivated by the
optimal tradeoff between exploration (gaining more knowledge
about unknown beam pairs) and exploitation (picking the best
beam pair).

This paper proposes a BS-centric channel sounding algo-
rithm that sequentially optimizes pilot signals, leveraging the
proposed pilot and feedback scheme to estimate downlink chan-
nels at BS centrally. In contrast to closed-loop UE-centric ap-
proaches [15], [16], [17], [18], [19], [20], the proposed BS-
centric method enables centralized pilot designs, as well as
facilitates the pilot adaptation without requiring additional feed-
back from the UEs. Compared to existing BS-centric methods
in [21], [22], which rely on analog feedback, the proposed
approach can be used with limited digital feedback. Further-
more, unlike [21], [22], the proposed method considers hybrid
digital-analog architectures and is formulated within a Bayesian
framework. Therefore, the method can leverage the memory of
past channel observations and optimize pilots sequentially. The
proposed algorithm accommodates limited digital feedback via
optimizing pilot structures based on beamspace codebooks and
approximate mutual information (MI) criterion [62]. Due to the
use of beam codebooks for probing the channel, it is also related
to the BA methods. The method is tailored for hybrid digital-
analog architectures and can be implemented with various an-
tenna configurations. For example, the proposed method can be
implemented with a discrete lens array (DLA) [63], effectively
reducing hardware costs.

Summarizing the contributions in this paper compared to the
existing literature:

1) A novel BS-centric channel sounding algorithm is pro-
posed for FDD multiuser massive MIMO systems, and is
compatible with hybrid transceiver architectures.

2) The BS-centric approach enables the use of centralized
channel awareness for designing pilot signals sequen-
tially, as well as avoids additional feedback from the
UEs required by closed-loop UE-centric channel sound-
ing methods. An optimization method is proposed for
designing pilots that minimizes the approximate MI cri-
terion.

3) In contrast to prior BS-centric approaches that rely on
analog feedback, the proposed beamspace domain pilot
structure facilitates limited digital feedback. Additionally,
a Bayesian formulation is employed to exploit channel
memory, enabling sequential pilot optimization.

4) A zero-forcing precoder design for downlink data trans-
missions using the acquired CSIT is proposed for hybrid
systems, referred to as hybrid zero-forcing (HZF).

The performance of the proposed algorithm is evaluated in
diverse simulation settings to verify the analytical results and
compare against both UE-centric methods that use DFT code-
books for CSI quantization [24], and simplified variants of the
proposed BS-centric channel sounding algorithm with reduced
pilot design complexity.

II. NOTATION

We use N to denote set of natural numbers {1, 2, . . . }, ex-
cluding 0. The shorthand notation [N ] = {1, . . . , N} denotes
the set of natural numbers from 1 to N . The probability distri-
bution NC(μ,Σ) is a scalar or multivariate complex Gaussian
with meanμ and covarianceΣ. Specifically, forx∼NC(μ,Σ),
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x− μ obeys a zero-mean circular complex Gaussian distri-
bution. Matrix IN is an identity matrix of size N . Operator
C (X ,K) returns a set that comprises all subsets of the set X
with K distinct elements.

III. PROBLEM DESCRIPTION

This paper considers downlink (DL) communications and
channel estimation with limited feedback in multiuser massive
MIMO systems. We do not assume channel reciprocity such that
the proposed method applies to FDD and other communications
systems that do not rely on reciprocity. We assume a limited
feedback channel, where the number of feedback bits per one
time block is finite. Furthermore, we consider a BS-centric
system model where the channel estimation, pilot design, and
precoder design are implemented at the BS side. This distin-
guishes the proposed method from better-known UE-centric
methods [11], [12], [13], [14], [15], [16], [17], [18], [19], [20]
that estimate the channel at the UE side, and feed the quantized
CSI back to the BS to be used in designing the precoder for
downlink data transmissions. Moreover, closed-loop UE-centric
methods [15], [16], [17], [18], [19], that inform BS about the
preferred pilot signals, are difficult to extend to the multiuser
case, as the optimal design requires centralized optimization.

The system model comprises a BS with M antennas and N
single antenna UEs.1 Each downlink channel obeys a widely
used temporally correlated block fading model that evolves
according to a first-order Gauss-Markov process [64], [65]. Co-
herence blocks of the channel are referred to with indices k ∈ N.
The DL channel to the user n ∈ [N ] is denoted as h(n)

k ∈ C
M×1.

The Gauss-Markov process is a linear transition model that
relates two subsequent channel states as

h
(n)
k+1 = ηn h

(n)
k +

√
1− η2n q

(n)
k (1)

where ηn ∈ [0, 1) is the temporal-correlation coefficient and
q
(n)
k ∼NC(0,Φn) is the state process noise. The matrix Φn ∈

C
M×M is the covariance matrix of the process noise qk, but

also exhibits the covariance matrix of the channel in the station-
ary regime, i.e., Φn = limk→∞ cov(h

(n)
k |h(n)

0 ), where cov(·|·)
denotes the conditional covariance. Therefore, it is also referred
to as the channel covariance matrix.

Consider a BS with a hybrid analog-digital multiantenna ar-
chitecture and Mrf ≤M radio frequency (RF) chains. Transmit
symbols in each coherence block can be divided into pilot and
data symbols, as illustrated in Fig. 1. The symbols in each
coherence block are indexed as � ∈ [L], where L is the block
length in symbols. The indices � ∈ LP ⊂ [L] correspond to pilot
symbols, while indices � ∈ [L]\LP correspond to the data in-
dices. The number of pilot symbols is LP = |LP|. The transmit
signal xk[�] ∈ C

M×1 for all � ∈ [L] can be written as

xk[�] =
√
ρtx ·

{
AP

kd
P
k [�], if � ∈ LP

AD
k D

D
k ck[�], else

(2)

where ρtx is the total RF chain power, AP
k ∈ C

M×Mrf is the
analog part of the pilot and dP

k [�] ∈ C
Mrf×1 is the digital part of

1The proposed approach can be extended to multiantenna UEs in future
research.

Fig. 1. BS communicating to three UEs. Some time indices within the frame
are allocated for the optimized pilot sent simultaneously to all UEs.

the pilot. Furthermore, for the DL data symbols ck[�] ∈ C
N×1,

AD
k ∈ C

M×Mrf is the analog precoder and DD
k ∈ C

Mrf×N is the
digital precoder. Define matrix DP

k ∈ C
Mrf×LP which columns

comprise the set of vectors {dP
k [�]}�∈LP

. Due to the average
power constraint of the RF chains tr

{
(DP

k )
HDP

k

}
≤ LP and

tr
{
(DD

k )
HDD

k

}
≤ 1. The matrices AD

k and AP
k corresponding

to the analog beamforming control the phases of the phase-
shifter network.

The received signal at the UE can be written as

r
(n)
k [�] = xT

k [�]h
(n)
k + vk[�] (3)

where v
(n)
k [�]∼NC(0, σ

2
n) is zero-mean and circular complex

Gaussian noise with variance σ2
n. Thus, the vector of received

pilot symbols ({r(n)k [�]}�∈LP
) can be written as

r
(n)
P,k =

√
ρtx(A

P
kD

P
k )

Th
(n)
k + v

(n)
P,k (4)

where the noise v
(n)
P,k ∼NC(0, σ

2
nILP) obeys zero-mean circu-

lar complex Gaussian distribution with covariance σ2
nILP. We

define matrix XP
k ∈ C

LP×M as

XP
k =

√
ρtx(A

P
kD

P
k )

T (5)

which rows comprise the pilots {xk[�]}�∈LP
. The matrix XP

k

is later referred to as the pilot matrix.

IV. CHANNEL ESTIMATION WITH LIMITED FEEDBACK

AND MEMORY

In a traditional UE-centric channel estimation scheme, UEs
need to know the pilot matrix XP

k in (4) to estimate the channel.
If UEs know the pilot matrix, they can estimate the channels and
feedback the quantized channels or precoders from a codebook.
This means that in an open-loop setting, there is a set of pilot
matrices XP

k shared among the UEs [14]. Then, the pilot ma-
trices are scheduled in a round-robin manner, allowing UEs to
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determine which pilot was received. In UE-centric closed-loop
setting, UEs themselves design the pilot matrices and provide
additional feedback about the index of the desired pilot matrix
to the BS [15]. This UE-centric closed-loop scheme has three
major drawbacks: (i) additional feedback bits are required, (ii)
pilots among users may cause mutual interference, and (iii)
pilots are not centrally and jointly optimized for multiuser chan-
nel estimation. This section introduces a BS-centric feedback
scheme that facilitates accurate channel estimation at the BS,
enabling centralized and sequential design of the pilot matrices.
The BS-centric approach also reduces the computation required
at the UE side.

A. BS Centric Feedback Model

A naïve BS-centric approach would design the pilot matrix
XP

k in (5) to optimize some performance metric, and each UE
would feedback the received pilot signal r(n)

P,k
back to the BS as

in [21]. However, providing feedback on the whole observation
vector introduces too much overhead, especially if LP is large.
Introducing structure to the pilot matrix can reduce this feed-
back overhead while still allowing for closed-loop optimization.

The proposed method is based on estimating the channels us-
ing beamspace transformation. Define the beamspace transfor-
mation of the communications channel as h̄(n)

k = Γh
(n)
k where

rows of the codebook matrix Γ ∈ C
Mcb×M correspond to dif-

ferent beams. The rank of matrix Γ needs to be M to facilitate
estimating h

(k)
k when using the transformation. Furthermore,

the codebook matrix Γ should be designed in such a way that it
can resolve distinct and approximately independent propagation
paths. Thus, the beamspace domain channel h̄(n)

k is typically a
sparse vector, especially in higher frequencies. For a uniform
linear array (ULA), the codebook matrix can be, for example,
the DFT matrix with Mcb =M . If a DFT matrix is considered,
the proposed method can also be implemented with reduced
complexity hardware, such as using a DLA [63].

Consider any codebook matrix Γ that can be implemented
with only phase-shift elements. Therefore, we can set (AP

k )
T =

SP
kΓ where SP

k ∈ {0, 1}Mrf×Mcb is the beam selection ma-
trix. In addition, the digital part of the pilot matrix can be
set (DP

k )
T =UΛP

k where ΛP
k ∈ R

LP×Mrf
+ is a rectangular di-

agonal matrix and U ∈ C
LP×LP is any unitary matrix. A to-

tal power constraint tr
{
(ΛP

k )
HΛP

k

}
≤ LP is imposed. Define

variable Mnz ≤min(Mrf , LP) that is the maximum number of
beams allowed to be probed simultaneously, later shown to con-
trol the amount of feedback. The diagonal elements [ΛP

k ]m,m ≥
0 for all m ∈ [Mnz], and other elements are strictly zero.

With the pilot model above, the pilot matrix in (5) can be
rewritten as

XP
k =

√
ρtx UΛP

kS
P
kΓ. (6)

By plugging (6) to (4) we obtain

r
(n)
P,k =

√
ρtx UΛP

k h̃
(n)
k + v

(n)
P,k (7)

where the vector h̃(n)
k = SP

k h̄
(n)
k ∈ C

Mrf×1 comprises Mrf el-
ements of the beamspace channel h̄(n)

k = Γh
(n)
k . Assume that

BS can share the matrix U with the UEs.2 Thus, the UEs can
pre-multiply the received pilot signal in (4) by (

√
ρtx)

−1UH.
Furthermore, after the pre-multiplication, we know that at most
Mnz first elements of the resulting signal of interest ΛP

k h̃
(n)
k can

be non-zero, and the rest of the elements are strictly zero due
to the structure of ΛP

k imposed previously. The elements that
are not strictly zero and contain information about the channel
can be captured by Ω ∈ {0, 1}Mnz×L which is a rectangular
diagonal binary matrix where the first Mnz diagonal elements
are 1 and other components are 0. First, multiplying r

(n)
P,k by

(
√
ρtx)

−1UH and then by Ω, we get the following feedback
model

y
(n)
k =ΩΛP

kS
P
kΓh

(n)
k + ε

(n)
k (8)

where ε
(n)
k ∼NC(0, σ

2
nρ

−1
tx IMnz

). Finally, we quantize each
complex valued element in y

(n)
k using Qbc bits such that the

total number of feedback bits in the BS-centric scheme is Bbc =
QbcMnz.

B. Channel Estimation With Memory

As the channels are time-dependent, we can integrate infor-
mation among the coherence blocks using KF [[66], Ch. 13].
We assume that Qbc is large enough, so the quantization noise
is not explicitly considered in the feedback model (8).3 Linear
KF is employed to filter and predict the states since the state
transition model in (1) and the feedback model in (8) form
a linear state-space model. The filtered channel state obeys
conditional distribution h

(n)
k |y(n)

1 , . . . ,y
(n)
k ∼NC(μ

(n)
k|k,Σ

(n)
k|k)

where μ(n)
k|k and Σ

(n)
k|k are the mean and covariance of the filtered

estimate, respectively. Similarly, the prior distribution can be
written as h

(n)
k |y(n)

1 , . . . ,y
(n)
k−1 ∼NC(μ

(n)
k|k−1,Σ

(n)
k|k−1).

Using the above definitions for the state-space model, it is
possible to write the linear KF prediction and update steps in the
element or beamspace domain, as shown in Appendix A. The
process covariance matrices Φn and the temporal correlation
coefficients ηn are assumed to be known for all n ∈ [N ]. The
KF should be initialized by μ

(n)
0|0 = 0 and Σ

(n)
0|0 =Φn, corre-

sponding to the stationary distribution of the channel in (1).
However, methods extending to cases where these parameters
are estimated can be considered in future work, for example,
using sparse Bayesian learning (SBL) as in [56]. Although these
extensions would affect the channel estimation part of this work,
the pilot and precoder designs proposed in this paper require no
changes.

V. DOWNLINK PILOT OPTIMIZATION PROBLEM

Suppose that the BS has acquired the prior distribu-
tion about the beamspace domain channel vectors h̄

(n)
k ∼

NC(μ̄
(n)
k|k−1, Σ̄

(n)
k|k−1), where μ̄(n)

k|k−1 = Γμ
(n)
k|k−1 and Σ̄

(n)
k|k−1 =

2It may occur only once (e.g., the index of the matrix from a codebook)
as it does not vary between coherence blocks.

3In our simulations, we evaluate the impact of this assumption by comparing
the performance of quantized feedback signals against non-quantized feedback
signals.
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ΓΣ
(n)
k|k−1Γ

H are the beamspace domain mean and covariance,
respectively. Since the codebook is designed to resolve distinct
and approximately independent paths, the beamspace channel
covariance matrix Φ̄n = ΓΦnΓ

H is nearly diagonal. Conse-
quently, also Σ̄

(n)
k|k−1 for all k ∈ N can be regarded as approx-

imately diagonal, as detailed in Appendix A. This structure
allows us to approximate the MI criterion for the channel esti-
mation problem, proved in Appendix B, by

I
(
y
(n)
k ;h

(n)
k

)
≈

Mnz∑

i=1

log

(
1 +

ρtxLP

σ2
n

δ
(n)
k,αk,i

pk,i

)
(9)

where αk,i ∈ [Mcb] ∀ i ∈ [Mrf ] refers to the beam index in the
codebook assigned to the specific RF chain i (i.e., [SP

k ]i,αk,i
=

1), δ
(n)
k,i is the ith diagonal element of Σ̄

(n)
k|k−1, and pk,i =

L−1
P [ΛP

k ]
2
i,i is the power allocated to ith RF chain. The power

allocations pk,i ∀ i ∈ [Mrf ] must sum up to 1, and comprise
with the constraint pk,i ≥ 0 ∀ i ∈ [Mnz], while pk,i = 0 ∀ i=
Mnz + 1, . . . ,Mrf , because only the first Mnz RF chains are
selected by matrix SP

k .
Define vector pk = [pk,1, . . . , pk,Mnz

]T and set
Ak = {αk,1, . . . , αk,Mnz

} ∈ C ([Mcb],Mnz) where
C ([Mcb],Mnz) is a collection of sets that comprises all
subsets of the beam index set [Mcb] with Mnz distinct
elements. Therefore, the pilot design problem can be written
as

max
Ak,pk

N∑

n=1

Mnz∑

i=1

log

(
1 +

ρtxLP

σ2
n

δ
(n)
k,αk,i

pk,i

)
(10a)

s.t.Ak ∈ C ([Mcb],Mnz) (10b)

1Tpk = 1 and pk ≥ 0. (10c)

where (10a) is the approximate MI between the communica-
tions channels and feedback signals, (10b) is the constraint
for the selected beams, and (10c) ensures that the total power
constraint is satisfied. Solving the optimization problem in
(10) aims to find the Mnz best beams and their power alloca-
tions, such that they maximize the sum of approximate MIs
given the predicted UE channel statistics. In particular, this
approach allows for designing downlink pilots sequentially to
estimate multiple channels most effectively in terms of the
approximate MI.

Given the index set Ak, the problem in (10) can be solved
efficiently using the well-known water-filling algorithm [67].
When there is just a single user (N = 1), solving for the op-
timal Ak, i.e., the selected beams, is trivial because the loga-
rithm appearing in equation (10a) is a monotonically increasing
function. Therefore, the optimal beam set Ak is obtained by
selecting Mnz beams with the largest values of δ

(1)
k,α, where

α ∈ [Mcb]. When there are multiple users (N > 1), the opti-
mization must account for user-specific uncertainties δ

(n)
k,α and

noise levels σ2
n. Therefore, the optimal beam selection prob-

lem cannot be decoupled from the power allocation problem.
Motivated by the optimal solution in the single user case,
we propose an efficient suboptimal approach, where a score∑N

n=1 δ
(n)
k,α/σ

2
n is defined for each beam index α ∈ [Mcb]. The

set Ak is then formed by selecting the Mnz beams with the
highest scores. However, different score expressions can also
be used, such as the maximum normalized uncertainty among
users maxn∈[N ] δ

(n)
k,α/σ

2
n.

VI. DOWNLINK PRECODING

Denote the precoding matrix for data transmission � ∈
[L]\LP as Wk =AD

k D
D
k = [w

(1)
k , . . . ,w

(N)
k ] where w

(n)
k ∈

C
M×1 is the beamforming vector of user n ∈ [N ]. Due to

the feedback delay, Wk is designed during coherence block
k − 1 using the prior with parameters μ(n)

k|k−1 and Σ
(n)
k|k−1. The

beamforming gain of UE n ∈ [N ] is |(h(n)
k )Tw

(n)
k |2 and the

unintentional interference caused to UE n from the symbols
dedicated to UE n′ ∈ [N ] \ {n} is |(h(n)

k )Tw
(n′)
k |2. Thus, the

expected beamforming gain (n= n′) or unintentional interfer-
ence (n 
= n′) can be written as

E

[
|(h(n)

k )Tw
(n′)
k |2

∣∣
∣μ(n)

k|k−1,Σ
(n)
k|k−1

]

= (w
(n′)
k )H

(
Ψ

(n)
k|k−1

)∗
w

(n′)
k (11)

where

Ψ
(n)
k|k−1 = μ

(n)
k|k−1(μ

(n)
k|k−1)

H +Σ
(n)
k|k−1 (12)

is the second moment of the prior distribution of the nth
UE channel. Therefore, the maximum expected beamforming
gain, or interference power, is obtained by transmitting towards
the maximum conjugate eigenvector of the matrix Ψ(k|k−1)

n
4.

We can approximate any standard precoding scheme (e.g.,
maximum-ratio transmission (MRT), zero-forcing (ZF), min-
imum mean square error (MMSE)) by setting

ĥ
(n)
k = emax

(
Ψ

(n)
k|k−1

)
(13)

where ĥ
(n)
k is the channel estimate used for the precoding, and

emax(·) takes the eigenvector corresponding to the maximum
eigenvalue of the input matrix. This results in the exact precod-
ing schemes in the special case when Σ

(n)
k|k−1 = 0.

We particularly consider ZF precoding within the context of
a hybrid digital-analog architecture, which we refer to as HZF.
Typically, HZF algorithms [68], [69], [70], [71] are based on a
formula

DD
k = H̃H

k (H̃kH̃
H
k )

−1ΛD
k (14)

where H̃k = ĤkA
D
k with the channel estimate matrix Ĥk =

[ĥ
(1)
k , . . . , ĥ

(N)
k ]T, and ΛD

k is a diagonal matrix implementing
column normalization to satisfy the total power constraint. The
matrix ΛD

k may be obtained by the water-filling algorithm or by
normalizing each column to have equal power, for example.5

The proposed algorithm uses (13) to obtain the channel es-
timates. Furthermore, our low-complexity precoding method
differs from the algorithms in [68], [69], [70], [71] in how the
analog precoder matrixAD

k is designed. We use the same analog

4The conjugate appears in (11) as the signal model uses transpose instead
of conjugate transpose.

5In simulations, we normalize each column to have equal power.
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precoder structureAD
k = (SD

k Γ)
T as used for the pilots.6 There-

fore, the analog precoders can be optimized by determining the
selected beams, i.e., optimizing the matrix SD

k . We propose to
select the beams by first computing the precoder for a fully
digital array and selecting the beams associated with the most
power.

VII. NUMERICAL EXAMPLES

In the numerical examples, various downlink channel sound-
ing strategies are evaluated under a limited digital feedback.
In particular, we compare the performance gains achieved for
downlink data transmission in terms of the sum of achievable
rates, based on the Shannon–Hartley theorem (capacity expres-
sion), hereafter referred to as the sum rate. The sum rate at each
block k is defined as

ζk =

(
1− LP

L

)
Δf

N∑

n=1

log2

(
1 + γ

(n)
k

)
(15)

where (1− LP/L) accounts for the pilot overhead, Δf is the
bandwidth, and

γ
(n)
k =

|(h(n)
k )Tw

(n)
k |2

∑
n′ �=n |(h

(n)
k )Tw

(n′)
k |2 + σ2

n

ρtx

(16)

is the signal-to-interference-plus-noise ratio (SINR) of user n in
a linear scale. The pilot length affects the sum rate in (15) both
explicitly via the pilot overhead and implicitly via the channel
estimation capability. To ensure fair comparison among channel
sounding algorithms, the pilot length is fixed to LP = 16 unless
otherwise noted. Also, the sensitivity to the choice of LP is
studied, as shown in Fig. 4. The linear KF and the HZF precoder
are used in conjunction with all channel sounding algorithms
considered to enable apples-to-apples comparison. The simu-
lation model and parameters are described in Section VII-C and
summarized in Table I.

A. Baseline Algorithms for Channel Sounding

The baseline algorithms are motivated by methods applied in
current wireless communications systems and available in the
open literature. However, there is a lack of existing methods for
optimizing downlink pilots for multiuser scenarios and systems
employing hybrid digital-analog architectures. The considered
baseline channel sounding algorithms are briefly explained be-
low.
• Perfect CSI: The channel sounding method is not con-

sidered; instead, the precoder uses perfect CSI. In other
words, it is assumed that the downlink channels h

(n)
k are

known for all k ∈ N and n ∈ [N ]. This method presents
the upper bound for the sum rate performance.

• Only CDI: The channel sounding method is not consid-
ered; instead, the precoder uses only the channel distribu-
tion information (CDI). In other words, it assumed that the
downlink channel covariance matrices Φn are known for

6The beam codebook Γ can be different for the data transmission. For
simplicity, we do not define different variable for it.

all n ∈ [N ]. The HZF precoding is implemented by using
Ψ

(n)
k|k−1 =Φn in (13).

• Random: UE-centric method, where pseudo-random pi-
lots are transmitted in a round-robin manner, and the pilots
are assumed to be known by the UE. The analog pilot
matrices AP

k are generated by sampling random phase
shifts from a uniform distribution. The digital pilot vec-
tors dP

k [�]∀ � ∈ LP (i.e., columns of the matrix DP
k ) are

sampled from NC

(
0, 1

Mrf
IMrf

)
.

• Non-Optimized Proposed: Reduced complexity variation
of the proposed method. In particular, the vector pk allo-
cating powers to the beams in (10) is sampled from a uni-
form distribution defined in interval [0, 1] and normalized
to sum up to 1, and SP

k is sampled such that each beam
has an equal probability of being selected.

• Exhaustive: The pilot is comprised of probing one beam
at a time, corresponding to something similar to the ex-
haustive search method in BA literature [41]. This can be
presented using the pilot and feedback model developed
in this paper when the maximum number of active beams
Mnz is restricted to one.

• WMSE [72]: A method proposed in [72] that optimize
the weighted sum of channel estimation mean square er-
rors (MSEs) across all UEs using CDI. In this approach,
the pilot is designed at the BS side while the channel is
estimated at the UE side, hence it is based on the UE-
centric feedback scheme. The channel covariance matrix
Φn for all n ∈ [N ] is assumed to be known by the BS,
enabling centralized optimization of the pilots. The opti-
mized pilot is then communicated back to the UEs because
UE requires it for estimating the channel. In practice,
there is overhead associated with obtaining the matrices
Φn and distributing the optimized pilots, but this is not
accounted for in the overhead computations. Additionally,
the design does not account for the constraints of a hybrid
analog-digital architecture. This gives the method a slight
performance advantage over the proposed approach and
other considered alternatives.

B. Feedback Quantization

In this subsection, we describe the feedback quantization
methods used for the UE-centric baselines and the proposed
BS-centric scheme.

The UE-centric baselines use a similar channel quantization
methodology defined for type-II codebook feedback in 3GPP
standard (release 17) [24]. In particular, the quantization is done
for the beamspace channel h̄(n)

k . This quantization is done in
two stages:

1) The method finds the element of h̄
(n)
k with the largest

amplitude and normalizes the beamspace channel with
the corresponding element.

2) The method quantizes the phase and amplitude of
Mfb elements of the normalized beamspace channel,
with Mfb representing the number of beamspace
coefficients selected for feedback. The amplitude
is quantized with QA

uc bits with 3dB intervals into
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decibel bins {0,−3, . . . ,−3(2Q
A
uc − 1)}. The phase

is quantized with QP
uc bits uniformly into bins

{0, 2π/2QP
uc , . . . , 2π(2Q

P
uc − 1)/2Q

P
uc}.

For the UE-centric scheme, we use QA
uc = 3 and QP

uc = 4 bits
that coincide with the 3GPP standard [24]. There are diminish-
ing returns in increasing QA

uc and QP
uc. In addition, the UE needs

to inform which beams are returned. Therefore, as derived in
Appendix C, the number of feedback bits is

Buc = log2

(
M !

Mfb!(M −Mfb)!

)
+QucMfb (17)

where Quc =QA
uc +QP

uc = 7 is the number of bits per feed-
back element. Thus, the feedback codebook performance most
significantly depends on Mfb. For example, Mfb in {1, 4, 7}
correspond to a number of feedback bits Buc ∈ {14, 40, 86},
respectively.

The proposed BS-centric approach quantizes the feedback
elements in (8) using a similar approach as with the UE-centric
approach. However, there is no normalization stage since the
proposed approach requires scale information. Therefore, the
amplitude is quantized with uniform interval AI = 1.5 in dB
scale between the maximum value Amax =−100 dB and mini-
mum value Amin =Amax −AI(2

QA
bc − 1) =−194.5dB where

QA
bc = 6 is the number of bits. The BS-centric method also uses

QP
bc = 4 bits for phase quantization. Further increasing QA

bc and
QP

bc leads to diminishing returns. For example, Mnz in 1,4,8
correspond to Bbc ∈ {10, 40, 80} feedback bits.

C. Simulation Environment

The BS has a critically sampled ULA with the steering vector
a(θ) with the element m ∈ [M ] defined as

[a(θ)]m =
1√
M

e−j(m−1)π sin(θ) (18)

where θ is the direction of the steering vector. The codebook
matrix Γ ∈ C

M×M is a unitary DFT matrix. We use a first-
order Markov model for the channel in (1) where ηn = ηn′ for
all n ∈ [N ] and n′ ∈ [N ]. The channel covariance matrix Φn

is computed using the Saleh-Valenzuela channel model [73].
Therefore, Φn is modeled as follows

Φn =

Np∑

i=1

ξ
(n)
i a(θ

(n)
i )aH(θ

(n)
i ) (19)

where Np is the number of propagation paths, and ξ
(n)
i is the

average path gain with angle of departure (AoD) θ
(n)
i . The

path gains ξ
(n)
i are computed using the log-distance path loss

model [74]

10 log10(ξ
(n)
i ) =−10 log10

((
4π

fc
vc

)2

dβue

)

+X
(n)
i (20)

where fc is the carrier frequency, due is the distance (the same
distance is used for all users), vc is the speed of light, β is
the path-loss exponent, and X

(n)
i ∼N (0, σ2

X) is the shadowing
loss in dB scale with a standard deviation of σX . In addition,
the path AoDs are generated by first sampling the UE directions

TABLE I
SIMULATION PARAMETERS

Description Symbol Value

Path loss exponent β 1.98
Shadowing standard deviation σX 3.1
AoD spread σaod 0.26 rad
Total power ρtx {0.1, 1, 10} W
Bandwidth Δf 1 MHz
Carrier frequency fc 28 GHz
Noise power σ2

n∀n -113.98 dBm
# of UEs N 3
# of RF chains Mrf 16
# of antenna elements M 128
# of paths Np 6
Pilot length LP 16
Monte Carlo iterations - 100
Reference distance due 8 km
Temporal correlation ηn∀n {0.9983, 0.9589, 0.8515}
Block length τ 100 μs

θ̄n ∀ n ∈ [N ] from the uniform distribution U(−π/2, π/2), and
then sampling θ

(n)
i − θ̄n ∼ U(−σaod/2, σaod/2). The simula-

tion parameters are shown in Table I. All results are averaged
over 100 Monte Carlo runs, each simulation consisting of 100
time blocks.

We compare the performance at three different power levels
ρtx ∈ {0.1, 1.0, 10.0} and using correlation coefficients ηn ∈
{0.9983, 0.9589, 0.8515}. The varied power levels result in dif-
ferent signal-to-noise ratios (SNRs). In particular, the maximum
average SNR given by

γ̄
(n)
k =max

w
(n)
k

(w
(n)
k )HΦ∗

nw
(n)
k

σ2
n/ρtx

s.t. ‖w(n)
k ‖22 ≤ 1 (21)

is used to characterize the scenarios. With the different
power levels, SNRs are in [−1.9, 2.7] dB, [8.1, 12.7] dB, and
[18.1, 22.7] dB, respectively. We refer to these three SNR
regimes by their average SNRs among the users: 0 dB (low
SNR regime), 10 dB (medium SNR regime), and 20 dB (high
SNR regime). Specific maximum speeds or Doppler spread can
be related to the temporal-correlation coefficient in (1) using
Jake’s model ηn = J0(2πfdτ) where τ is the block length in
seconds, fd is the maximum Doppler shift, and J0(·) is the
0-th order Bessel function of the first kind. With the simula-
tion parameters shown in Table I, the correlation coefficients
ηn ∈ {0.9983, 0.9589, 0.8515} correspond to maximum speeds
of 5 km/h, 25 km/h, and 50 km/h, respectively.7

D. Performance Under Limited Feedback Rates

This section investigates the performance of the proposed
method in comparison to the baselines when the feedback rate
is limited. Fig. 2 shows the achievable sum rate over time
blocks for the methods considered under varying SNR and
temporal correlation conditions. The proposed, random, and
WMSE methods each use 40-bit CSI feedback, while the ex-
haustive search baseline only requires 10-bit feedback, as only

7These maximum speeds depend on the carrier frequency and the block
length. With smaller frequencies and longer block lengths, higher speeds are
possible with similar α values, or vice versa.
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Fig. 2. Achievable sum rate performance over time under different SNR and temporal correlation settings. The proposed method outperforms the baselines,
particularly in scenarios with low SNR and high correlation. Performance gains diminish in lower correlation regimes, where all methods achieve lower sum
rates.

one beam is sounded at a time. It can be seen that the proposed
method outperforms the baselines, especially at low SNR and
high correlation regimes. In particular, the results indicate that
the proposed method acquires the CSI more quickly than the
baselines during the initial time blocks and can track the channel
more accurately, as evidenced by the sum rate stabilizing at
higher sum rate values.

Regarding the different SNR and temporal correlation con-
ditions, as expected, all methods perform better under higher
SNR. Furthermore, under larger temporal correlations, higher
sum rates are achievable, approaching those of a perfect CSI
precoder. Conversely, under smaller temporal correlations, the
performance is only marginally better than with CDI only
precoding. In the high correlation scenario with ηn = 0.9983
and SNR = 20 dB, the proposed method is the only one that
nearly matches the performance of the perfect CSI precoder.
Although the random and WMSE baselines also converge

quickly, their performance is constrained by the limited CSI
feedback. The proposed method mitigates this limitation by
estimating the channel at the BS side, which is enabled by the
proposed pilot and feedback structure. This approach seems
to be more robust to the feedback rate constraints. However,
the effectiveness of the proposed scheme heavily depends on
the design of the pilots. The performance degrades noticeably
when powers are allocated to the beams randomly or when
beams are scanned exhaustively, as demonstrated by the non-
optimized variant of the proposed method and the exhaus-
tive search baseline, respectively. When the temporal coef-
ficient is lower ηn ∈ {0.9589, 0.8515}, the performance im-
provement compared to the WMSE baseline is not as sig-
nificant as with ηn = 0.9983, especially under the high SNR
regime. In fact, when ηn = 0.8515 and SNR= 20 dB, the
WMSE method slightly outperforms the proposed method.
Under these conditions, even the random baseline performs
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Fig. 3. Average achievable sum rate as a function of the number of feedback bits. The proposed method achieves significantly higher sum rates under low
feedback conditions and matches WMSE performance under unlimited feedback.

well, achieving a similar level of performance to the proposed
method.

To better understand the implications of limited feedback,
we examine the tradeoff between feedback rates and achiev-
able sum rates, averaged over time blocks. The feedback rate
of the proposed BS-centric scheme is varied by adjusting the
parameter Mnz = 1, . . . , 8, while for the UE-centric scheme
Mfb = 1, . . . , 7. Fig. 3 illustrates the average sum rate as a func-
tion of the number of feedback bits for the proposed, random,
and WMSE methods. It can be seen that the proposed method
delivers significantly better performance, especially with low
feedback rates, compared to the other methods tested. Further-
more, the proposed method incurs only a slight performance
loss when decreasing the feedback rate under high temporal
correlation coefficients. The performance of the random and
WMSE baselines is significantly dependent on the feedback

rates, with performance being very weak at low rates. Espe-
cially, under the low temporal correlation and high SNR regime,
the performance degrades noticeably as the feedback rate de-
creases. This is because lower temporal correlations indicate
that less memory of the previous channel instances can be
exploited. Therefore, channels can be estimated and tracked
more accurately with higher feedback rates that allow more
beams to be probed simultaneously.

With an unlimited feedback rate shown in Fig. 3, the perfor-
mance of the proposed method is similar to the WMSE method.
Furthermore, both methods are distinctively better than the ran-
dom baseline, except in the high SNR regime, where the random
baseline also works well. The similarity in the performance
between the proposed and WMSE may be explained due to the
well-established connection between MI and MSE objectives
[75]. Although the proposed method uses the approximate MI
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Fig. 4. Average achievable sum rate as a function of pilot length under unlimited feedback. A tradeoff between pilot diversity and pilot overhead is optimally
achieved with 4 to 8 pilots, depending on the SNR and temporal correlation coefficient. Especially under high temporal correlation, the proposed method
outperforms the WMSE baseline at shorter pilot lengths.

optimization criterion instead of the exact MI, the results remain
competitive. It is also worth noting that, unlike the proposed
method, the WMSE is not directly applicable to hybrid digital-
analog hardware. Moreover, the practical implementation of
WMSE requires extra signaling and coordination for sharing
the channel covariance matrices and the downlink pilots.

E. Sensitivity to Pilot Lengths

In this section, we evaluate the sensitivity of the proposed
and baseline approaches to the pilot length parameter. For
simplicity, we consider unlimited feedback for each method.
Fig. 4 shows the average achievable sum rates as a function
of the pilot length under different SNR and temporal corre-
lation conditions. It shows that there is a tradeoff between
increasing the pilot length to gain more diverse probing sig-
nals and the overhead introduced by the pilot. In other words,

larger pilot lengths improve the channel estimation capability,
but decrease the scaling factor 1− LP/L in (15). The fig-
ure indicates that the optimal pilot length lies between 4 and
8 symbols, depending on the SNR and temporal correlation
conditions. There is no significant difference in the optimal
pilot length among the considered methods. The optimal pilot
being close to the number of channel paths LP = 6 is expected,
because LP is also the rank of the channel covariance ma-
trices. However, the proposed method is more robust to the
variations in the pilot length compared to the WMSE baseline.
This is especially visible under the high temporal correlation
coefficient ηn = 0.9983 scenario, where the memory of the
KF can be exploited. In particular, the proposed method main-
tains strong performance even with shorter pilot sequences,
whereas the WMSE baseline suffers significant degradation in
such cases.
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VIII. CONCLUSION

We proposed a novel BS-centric channel sounding method
for multiuser massive MIMO systems. This method is specif-
ically developed for feedback-based communications systems
that work when channel reciprocity cannot be exploited, for
example, when using FDD. This approach differs from tradi-
tional UE-centric methods, particularly developed to address
multiuser settings with spatial multiplexing. The UE-centric
approach has several drawbacks, including additional feedback
bits, the potential for mutual interference between users, and
the pilots not being centrally optimized for multiuser channel
estimation. Our BS-centric method addresses these issues using
a beamspace-based pilot model, reducing the computational
load on the UEs and facilitating accurate channel estimation
at the BS.

The proposed method is specifically designed for hybrid
RF architectures and applicable commonly used multiantenna
configurations where beamspace processing may be employed.
DLAs are particularly interesting in this context because they
lend themselves to low-complexity processing. We developed
an efficient pilot optimization algorithm to maximize the ap-
proximate MI between the received feedback signal and chan-
nel coefficients. We also proposed an efficient ZF precoding
algorithm designed for hybrid RF chains.

Comparative analysis showed that our proposed method out-
performs the considered baseline algorithms. The improvement
is significant in scenarios with low feedback rates and at the
lower SNR regime. However, there are areas for further ex-
ploration and improvement in future research. For example,
extension from single antenna to multi-antenna UEs and wide-
band communications systems. Also, it is worth investigating
the case of a priori unknown channel covariance matrices and
very dynamic settings where the channel correlation coefficient
is small. In particular, utilizing integrated sensing and commu-
nications (ISAC) [76], [77], [78] to obtain prior information on
the channel is a promising avenue for future research.

APPENDIX

A. Kalman Filtering Equations

Using the state-space model definitions in Section IV-B,
we can write linear KF prediction and update steps in the
beamspace domain, where h̄

(n)
k = Γh

(n)
k and Φ̄n = ΓΦnΓ

H.
According to [[66], Ch. 13], the equations required for the
prediction step can be written as

μ̄
(n)
k|k−1 = ηn μ̄

(n)
k−1|k−1, (22a)

Σ̄
(n)
k|k−1 = η2n Σ̄

(n)
k−1|k−1 + (1− η2n) Φ̄n. (22b)

Define matrix Fk =ΩΛP
kS

P
k , which is a diagonal measurement

matrix corresponding to the proposed pilot and feedback model
in (8). Following [[66], Ch. 13], we can write the equations
corresponding to the update step of the KF as

C
(n)
k = FkΣ̄

(n)
k|k−1F

H
k + σ2

nρ
−1
tx IMnz

, (23a)

G
(n)
k = Σ̄

(n)
k|k−1F

H
k (C

(n)
k )−1, (23b)

μ̄
(n)
k|k = μ̄

(n)
k|k−1 +G

(n)
k

(
y
(n)
k − Fkμ̄

(n)
k|k−1

)
, (23c)

Σ̄
(n)
k|k = Σ̄

(n)
k|k−1 −G

(n)
k F

(n)
k Σ̄

(n)
k|k−1. (23d)

As the beamspace codebook is designed to resolve distinct
paths in different directions, the process noise covariance matrix
Φ̄n = limk→∞ cov(h̄k|h̄(n)

0 ) approximately obeys a diagonal
structure. For example, in the case of DFT codebooks for ULA,
if all channel paths are at the centers of the codebook beams,
there is no leakage to the other beams. However, in practice, the
same communication path may be illuminated by multiple adja-
cent beams, and hence, correlation would be introduced. Addi-
tionally, some of this correlation is introduced due to sidelobes.
However, the off-diagonal values are still typically significantly
smaller compared to the diagonal values. It is well justified to
set the initial covariance matrix as Σ̄0|0 = Φ̄n to represent the
stationary distribution. As the prediction and update equations
in (22) and (23) involve only operations with diagonal or ap-
proximately diagonal matrices, the resulting matrices Σ̄

(n)
k|k−1

and Σ̄
(n)
k|k also convey nearly diagonal form for any k ∈ [K].

B. Approximate MI Criterion

Consider the pilot matrix XP
k with the structure in (6) and the

feedback model in (8). For convenience, re-write the feedback
model as

y =ΩΛSΓh+ ε (24)

where we omit the superscript ·(n) about the user index and
subscript ·k about the time block index for clarity, and ε∼
NC(0,

σ2

ρtx
IMnz

). We assume that the prior or posterior distri-
bution of the channel coefficient is h∼NC(μ,Σ), where μ is
the mean and Σ is the covariance, computed, for example, via
Kalman filtering in Section IV-B. Thus, the marginal distribu-
tion of the feedback signal is

P (y) =NC

(
ΩΛSΓμ,ΩΛSΣ̄SHΛHΩH +

σ2

ρtx
IMnz

)

(25)

where Σ̄= ΓΣΓH is the covariance matrix of the channel in the
beamspace domain. Furthermore, the conditional distribution is

P (y|h) =NC

(
0,

σ2

ρtx
IMnz

)
. (26)

Therefore, the MI I(y;h) can be written as

I(y;h) =H(y)−H(y|h) (27)

= log

⎛

⎝
det

(
ΩΛSΣ̄SHΛHΩH + σ2

ρtx
IMnz

)

det
(

σ2

ρtx
IMnz

)

⎞

⎠ (28)

= log det
(ρtx
σ2

ΩΛSΣ̄SHΛHΩH + IMnz

)
. (29)

The beamspace transform matrix Γ is designed to resolve
distinct and approximately independent paths of the channel.
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According to Appendix A, this means that Σ̄ is approximately
a diagonal matrix. If we approximate Σ̄ as a diagonal, the matrix
G= ρtx

σ2 ΩΛSΣ̄SHΛHΩH + IMnz
in (29) is also diagonal due

to the simple row and column selection and scaling. As follows,
we can write an approximation of the MI criterion as

I(y;h)≈
Mnz∑

i=1

log
(
1 +

ρtx
σ2

[Σ̄]αi,αi
[Λ]2i,i

)
, (30)

where the variable αi ∀ i ∈ [Mrf ] that refers to the beam in-
dex in the codebook assigned to the specific chain RF i (i.e.,
[S]i,αi

= 1). Even when the matrix G is not exactly diago-
nal, the determinant can still be approximated by the product
of its diagonal elements. For example, this follows from the
Geršgorin disc theorem [80, Ch. 8], written in terms of log-
determinant as:

log det(G)≥
M∑

i=1

nz log

⎛

⎝[G]i,i −
M∑

j=1,j �=i

nz|[G]i,j |

⎞

⎠ ,

(31a)

log det(G)≤
M∑

i=1

nz log

⎛

⎝[G]i,i +
M∑

j=1,j �=i

nz|[G]i,j |

⎞

⎠ .

(31b)

The inequalities in (31) hold with equality if and only if G is a
diagonal matrix. However, (31) indicate that the determinant of
the matrix G can be well-approximated by the product of diag-
onal elements if [G]i,i �

∑M
j=i+1 nz|[G]i,j | for all i ∈ [Mnz].

C. Derivation of Feedback Bits for UE-Centric Scheme

In the considered UE-centric feedback scheme described in
Section IV-A, Mfb elements are selected to be fed back to the
BS from the total of M beamspace elements. The number of
distinct combinations is given by the binomial coefficient

(
M

Mfb

)
=

M !

Mfb!(M −Mfb)!
.

Therefore, the number of bits needed to indicate which elements
are included in the feedback is

log2

((
M

Mfb

))
= log2

(
M !

Mfb!(M −Mfb)!

)
. (32)

Each of the Mfb selected elements is quantized using QA
uc bits

for amplitude and QP
uc bits for phase, resulting in a total of

Quc =QA
uc +QP

uc bits per element. Therefore, the total number
of bits required to quantize all selected elements is QucMfb.
Consequently, the total number of feedback bits Buc in (17) is
the sum of two terms: the bits needed to indicate the selected
beam indices and the bits required to quantize the corresponding
complex coefficients.
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