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ABSTRACT

Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem that has been
extensively studied in recent years. We study a hypergraph version of the problem. Let G”(n, p) denote the r-uniform Erd6s-Rényi

hypergraph model with n vertices and edge density p. We consider detecting the presence of a planted G (n", n~*) subhypergraph in
a G"(n, ") hypergraph, where 0 < @ < f < r —1and 0 < y < 1. Focusing on tests that are degree-n°" polynomials of the entries of
the adjacency tensor, we determine the threshold between the easy and hard regimes for the detection problem. More precisely, for
0 < y < 1/2, the threshold is given by « = fy, and for 1/2 <y < 1, the threshold is given by a = /2 + r(y — 1/2). Our results are
already new in the graph case r = 2, as we consider the subtle log-density regime where hardness based on average-case reductions

is not known. Our proof of low-degree hardness is based on a conditional variant of the standard low-degree likelihood calculation.

1 | Introduction

Finding a dense subgraph in a given undirected graph is an
iconic problem at the intersection of graph theory, computer
science, and statistics, and it finds broad applications in social
and biological sciences. The last few decades have observed a
wide range of research on multiple variants of the problem,
including the planted clique problem [1, 2], densest k-subgraph
problem [3, 4], community detection [5, 6], and hypergraph ver-
sions [7-9], among others. In this work, we focus on the problem
of detecting the presence of a planted dense subhypergraph in a
given r-uniform hypergraph H on n vertices. More precisely, an
r-uniform hypergraph H is a tuple (V, E) of vertices and edges,
where E is a collection of r-element subsets of V. In the language
of statistical hypothesis testing, we consider the task of testing

between the following two distributions on H (defined formally
in Section 2):

« the null distribution is the r-uniform Erd6s-Rényi hyper-
graph G"(n, q) with edge density g;

« the planted distribution randomly selects ~ pn vertices to lie
in the planted subhypergraph, the edges within the subhy-
pergraph occur independently with probability p, and all
other edges occur independently with probability g.

Given a single hypergraph H drawn from one of these two distri-
butions, the goal is to distinguish the two cases with high proba-
bility (w.h.p.), that is, probability 1 — o(1) as n — oo, where p, g, p
may scale with n. We assume the parameters p, g, p are known.
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Our focus is on understanding the power and limitation of com-
putationally efficient tests, that is, polynomial-time algorithms.
We currently lack complexity-theoretic tools to prove computa-
tional hardness of average-case problems like this one (where
the input is random), so the leading approaches are either
based on average-case reductions which formally relate different
average-case problems to each other (see e.g., [10] and references
therein) or unconditional lower bounds against restricted classes
of algorithms.

Our main result establishes sharp necessary and sufficient con-
ditions on p, g, p for success of low-degree polynomial tests. This is
a powerful class of tests including statistics like small subgraph
counts (edges, triangles, etc.). It is by now well-established that
these low-degree tests are a useful proxy for computationally
efficient tests, in the sense that the best-known polynomial-time
algorithms for a wide variety of high-dimensional testing prob-
lems are captured by the low-degree class; see for example,
[11,12].

More specifically, we focus on the so-called log-density regime
[3] where p=n~% g=n"*, and p = n’~! for constants 0 < a <
p <r—1and y € (0,1). The assumption f < r—1 is a natural
non-degeneracy condition: if # > r — 1 then the expected num-
ber of hyperedges incident to a fixed non-planted vertex is o(1),
so the vast majority of non-planted vertices will be isolated. We
show thatif 0 <y <1/2and a < fiy,orif1/2<y <1l and a <
/2 + r(y —1/2), there is a constant-degree polynomial test that
distinguishes the null and the planted distribution w.h.p. On the
other hand, if 0 <y <1/2and a > fy,orif1/2<y <1land a« >
B/2 + r(y — 1/2), then no degree-n°® polynomial can separate
the null and the planted distribution.

1.1 | Relation to Prior Work

1.1.1 | Planted Dense Subgraph

Our results are already interesting in the graph case r =2, in
which case we are considering the planted dense subgraph detec-
tion problem. The statistical threshold is well-studied [5, 13-15],
and the computational threshold has also been established in var-
ious parameter regimes via reduction from the presumed-hard
planted clique problem [14, 16, 17]. However, existing reductions
assume that p and g are of the same order, and so we are currently
lacking reduction-based evidence for hardness in the log-density
regime where p=n=% g=n"", and p = n’~! for constants 0 <
a < f <1landy € (0,1). Here the problem undergoes a qualita-
tive change at y = 1/2. Namely, when y > 1/2, the best-known
polynomial-time algorithm is simply to threshold the total num-
ber of edges in the graph, and this succeeds when a < /2 +
2(y —1/2). On the other hand, when y < 1/2, the best-known
polynomial-time algorithm is a more subtle subgraph-counting
procedure which succeeds when a < fy; see section 3.2 of [3]
(they give only a proof sketch, as their main goal is to give
guarantees for approximating the densest k-vertex subgraph in
worst-case graphs).

Our main result shows that for every y € (0, 1), low-degree tests
cannot surpass the thresholds above, providing evidence for
optimality of the existing algorithms. We also give a matching

low-degree testing upper bound, confirming that the above
algorithms are captured by the low-degree framework; in the
case y < 1/2, our test is simpler than that of [3], although their
algorithm can also recover the planted subgraph.

In contrast, the statistical (i.e., information-theoretic) thresh-
old for detection (i.e., testing) is distinct from the compu-
tational threshold above, at least in some parameter regime
s [5, 15]. Specifically, there is a gap between the statistical and
computational thresholds whenever y € (0,1/2]. Also, when y €
(1/2,2/3) there is a gap for some values of g. We will elaborate
further in our discussion of the hypergraph case below.

While it is not our main focus, we note that the sta-
tistical and computational aspects of recovering a planted
dense subgraph (i.e., identifying the planted vertices) are also
well-studied [18-21]. Formally, the recovery problem is at least as
hard as the detection problem (via a polynomial-time reduction
in the style of [22, section 5.1]). Notably, when y > 1/2, the
recovery problem is strictly harder, that is, the computational
thresholds for detection and recovery are different (at least for
low-degree algorithms), with recovery requiring a« < /24y —
1/2[23]. When y < 1/2, our result shows low-degree hardness of
detection at the same threshold as the recovery algorithm of [3],
so there is no detection-recovery gap in this regime, resolving a
question left open by [23, section 2.4.1].

1.1.2 | Low-Degree Testing

A successful degree- D test is a degree- D multivariate polynomial
in the input variables (in our case, the (Z) hyperedge-indicator

variables) whose real-valued output separates (see Definition 2.1)
samples from the planted and null distributions. The idea to study
this class of tests emerged from the line of work [11, 24-26]; see
also [12] for a survey. Tests of degree O(log n) are generally taken
as a proxy for polynomial-time tests, as they capture leading algo-
rithmic approaches such as spectral methods. Our upper bound
will give a constant-degree test, which yields a polynomial-time
algorithm for testing; our lower bound will rule out all tests of
degree n°D.

There is by now a standard method for proving low-degree test-
ing bounds based on the low-degree likelihood ratio (see section
2.3 of [11]), which boils down to finding an orthonormal basis
of polynomials with respect to the null distribution, and comput-
ing the expectations of these basis polynomials under the planted
distribution. However, our setting is more subtle because (for
y < 1/2) the second moment of the low-degree likelihood ratio
diverges due to rare “bad” events under the planted distribution.
We therefore need to carry out a conditional low-degree argu-
ment whereby the planted distribution is conditioned on some
“good” event.

Conditional low-degree arguments of this kind have appeared
before in a few instances [27, 28], but our argument differs on a
technical level. Prior work chose to condition on an event that
would seem to make direct computations with the orthogonal
polynomials very complicated; to overcome this, they bound the
conditional low-degree likelihood ratio in an indirect way by first
relating it to a certain “low-overlap” second moment (also called
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the Franz-Parisi criterion in [27]). In contrast our approach is
more direct: we are careful to condition on an event for which
computations with the orthogonal polynomials remain tractable.

1.1.3 | Integrality Gaps for Densest k-Subgraph

Complementary to our results is a line of work on estab-
lishing integrality gaps for convex relaxations of densest
k-subgraph [29-31] (and [30] also considers the extension
to hypergraphs). Here the setting of interest is to find, in a
worst-case graph, a subgraph induced on k vertices (for a given k)
whose density of edges is guaranteed to be within some factor of
the densest such k-subgraph. The best-known polynomial-time
approximation factor is ~ n'/*, due to [3]. The integrality gap
results mentioned above show that powerful families of convex
relaxations fail to improve upon this.

In fact, the proofs of these integrality gaps show that the con-
vex relaxations fail on certain random distributions such as the
ones we study. The hard instance for approximation factor n'/4-¢
is precisely our testing problem with parametersa = 1/4 + ¢, f =
1/2,y =1/2 (and so our result provides additional evidence that
this approximation factor is unimprovable). The work on convex
relaxations that is most relevant to our result is the recent result
of [31] which was obtained independently from ours. We provide
a detailed comparison below.

1.14 | Comparison to Independent Work
on Sum-Of-Squares [31]

In concurrent and independent work, [31] proved that the
sum-of-squares (SoS) hierarchy (a powerful family of semidefi-
nite programming relaxations) at degree n®® fails to improve the
approximation factor n'/# discussed above. This is the strongest
known result on integrality gaps for the densest k-subgraph
problem. While they are conjectured to be closely related (see [11,
25]), we are not aware of any formal implications in either direc-
tion between failure of SoS and failure of low-degree tests.

More specifically, the authors of [31] consider the same
hypothesis testing problem that we do (in the graph case r = 2)
and write down a particular SoS program that takes as input
a sample from the null distribution G(n,q) and attempts to
refute the existence of a (1 + o(1))pn-vertex subgraph with (1 +
o(1))p(pn)?/2 edges. Note that a subgraph of this density exists
in the planted distribution with high probability, and thus, if
SoS succeeds at the refutation task (w.h.p.) this also gives an
algorithm for the detection (i.e., testing) task with the same
parameters p, g, p. The result of [31] shows that SoS fails to
solve the refutation task when y < 1/2 and a« > fy, matching the
threshold in our result. This gives strong evidence for computa-
tional hardness of the refutation problem in this regime. However,
this need not imply hardness of the detection problem (the focus
of our work), since detection is a formally easier problem.

To illustrate the previous point, when y > 1/2 (a regime not cov-
ered by [31]) we expect an inherent gap between the detection
and refutation tasks, with polynomial-time detection requiring
a < f/2+2(y —1/2) and polynomial-time refutation requiring

a < p/2+y—1/2; see Appendix A for more details. Therefore,
in this regime, we expect that checking feasibility of the SoS pro-
gram of [31] is a strictly suboptimal algorithm for the detection
problem. Accordingly, one strength of our result is that it directly
addresses the detection problem and captures the best-known
computational threshold for all y € (0, 1).

The above discussion warns that one should be careful when tak-
ing an SoS lower bound as evidence for hardness of detection
(rather than refutation). However, in this case the situation is
more subtle because the proof of [31] uses the pseudo-calibration
approach [24], and so a key step in their analysis is closely related
to the low-degree testing lower bounds that we prove. Namely
they prove that the low-degree likelihood ratio L_;, (in their
notation, E[l]) is 1+ o(1) with high probability over the null
distribution (and like our result, this involves some condition-
ing arguments). Our approach is related but distinct: we show
that the second moment of the conditional low-degree likeli-
hood ratio (see Section 3) is 1+ o(1), and this is what implies
our desired result (failure of weak separation). The proof of [31]
also requires some additional steps, notably a rather involved and
impressive analysis to show that their moment matrix is positive
semidefinite.

1.1.5 | Planted Dense Subhypergraphs

Compared to planted dense subgraphs, the generalized problem
for hypergraphs is less well-studied. For the worst-case densest
subhypergraph problem [32], shows that it is hard to approxi-
mate the densest subhypergraph to within an »¢ factor for a fixed
€ > 0 based on a pseudorandomness assumption. In the line of
research on integrality gaps discussed above, the result of [30]
holds for r-uniform hypergraphs, establishing an integrality gap
of ~ n"~Y/* for the Sherali-Adams hierarchy, which matches the
log-density threshold. However, unlike the graph case r = 2, no
polynomial-time approximation algorithm is known to match the
above threshold for r > 4, and partial progress has been made for
r=3by|[7].

Considering the same planted dense subhypergraph model as
ours [9], studies both the detection and the recovery problem.
For the detection problem with p =1 and ¢ = 1/2 (i.e., planted
clique), it is proved that degree-O(logn) polynomial tests fail
if y < 1/2. This is complementary to our result as we consider
p=n"%and g =n"’ with 0 <a < ff <r—1. For the recovery
problem [9], focuses on the regime y > 1/2 and proposes an
efficient algorithm succeeding when a < /2 + (r — 1)(y — 1/2).
In addition, if « > /2 + (r — 1)(y — 1/2), it is shown that poly-
nomials of degree polylog(n) fail to recover the planted dense
subhypergraph. Note that this recovery threshold is different
from the detection threshold a = /2 + r(y —1/2) proved in
this work; therefore, these two results together generalize the
detection-recovery gap in the regime y > 1/2 shown in [23] for
r = 2 to the case of hypergraphs.

Another line of research [33-35] concerns the statistical thresh-
olds for planted dense subhypergraphs. In particular, in the
same vein as the results from [5], it is shown in [35] that the
optimal statistical threshold for detection is achieved either by
a total degree test or a computationally inefficient scan test.
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When the former dominates, the detection threshold naturally
matches our result, but when the scan test performs better, there
is a statistical-computational gap. To be more precise, the total
degree test succeeds when a < ay, := f/2+r(y — 1/2) and the
scan test succeeds when a < ag,, :=y(r—1). If y <1/2, the
scan test strictly outperforms our condition @ < fy, so there is a
statistical-computational gap. Moreover, we also have a gap when
1/2 <y <r/(r+1)and 2r(y — 1/2) < f < r — 2y (where the first
condition on y ensures the second interval for # is nonempty),
since in this case ag,, > age, and age, < f (note that when ay., >

B, the total degree test succeeds for all @ < § and there is no gap).

In addition [8, 36], study the recovery of a planted dense subhy-
pergraph via a tensor PCA model with additive Gaussian noise.
They probe the computational threshold of the problem using
Approximate Message Passing, but the result is not directly com-
parable to ours. Finally, we refer the reader to a recent survey [37,
section 5.7] for more related works on dense subhypergraphs.

1.2 | Notation

Let N denote the set of positive integers. For any n € N, let [n] :=
{1,2, ...,n}. Throughout this work, we consider n — oo and use
the asymptotic notation O(-), o(-), and so forth.

For a fixed integer r > 2, let K| denote the complete r-uniform
hypergraph on n vertices. For any hypergraph H, let V' (H) denote
its vertex set and let E(H ) denote its edge set. For a hypergraph H
and S C E(H), let H[.S]denote the subgraph of H induced by .S
Note that any set of hyperedges S C E(K) can be identified with
the subhypergraph K[S], so we sometimes view .S as a subhy-
pergraph without ambiguity. For brevity, we often refer to hyper-
graphs and hyperedges simply as graphs and edges, respectively.

For a distribution P, let E;, denote the expectation under P, and
with slight abuse of notation, let 7 also denote the associated
probability. Let Var,(-) denote the variance of a random variable
under P. Let Ber(p) denote the Bernoulli distribution with param-
eter p € [0, 1], and let Bin(n, p) denote the Binomial distribution
with parameters n € N and p € [0, 1].

2 | Main Results

Let n,reNwithn>r>2,andlet 0<a<pf<r—1and y €
(0,1). Define M := ( 'r’ ).We will be considering random n-vertex
r-uniform hypergraph models where the output is an undirected
hypergraph H with adjacency tensor Y € {0,1}™. To be more
precise, a hyperedge e is a subset of [n] of cardinality r; we let
[M] := (['r']> denote the set of all hyperedges of K and write
e € [M]. The adjacency tensor Y is indexed by e € [M], and
Y, € {0,1} indicates the presence of hyperedge e.

We formulate the detection of a dense random subhypergraph as
a statistical hypothesis testing problem between distributions P
and Q, defined as follows:

« Under P, let z,...,z, be iid. random variables from
the Bernoulli distribution Ber(p), where p :=n’"1, and let

Z :={ie€[n]: z; =1}. Conditional on Z, we observe an
r-uniform hypergraph H with independent hyperedges

v Ber(q) ife & Z
¢ Ber(p) ife C Z

where p :=n"*and q :=n"".

« Under Q, we observe an r-uniform Erdés-Rényi hyper-
graph H with adjacency tensor Y, where the hyperedges are
i.i.d. Y, ~ Ber(q) with g := n".

There are two points in the above definition that can be relaxed.
First, in the definition of P, instead of including each of the n
vertices with probability p in the set Z, we could defined Z to be
a uniformly random subset of [n] of a fixed size k = np. Our main
results would still hold under this alternative definition of Z. We
choose the current definition for technical convenience. Second,
our results would remain valid if we assumed p = n7~1+°® p =
n~+D and g = n~#*+°D with extra o(1) terms that vanish as n —
oo in the exponents. This will be clear from the proofs and we
omit the o(1) terms for brevity.

To probe the computational threshold for testing between P and
Q, we focus on low-degree polynomial algorithms (e.g., [11, 12]).
Let R[Y].,, denote the set of multivariate polynomials in the
entries of Y with degree at most D. With some abuse of notation,
we will often say “a polynomial” to mean a sequence of polyno-
mials f = f, € R[Y],), one for each problem size n; the degree
D = D, of such a polynomial may scale with x. To study the abil-
ity of a polynomial in testing P against Q, we consider the notions
of strong separation and weak separation defined in [27], with the
former being stronger than the latter.

Definition 2.1. ([27], Definition 1.6).
nomial f € R[Y]p is said to

As n — oo, a poly-

« strongly separate P and Q if \/Varp( SY) v Varg(f(Y)) =
o(|EpLf ()] = Eglf(N]]);

« weakly separate P and Q if \/Varp(f(Y)) V Varg (f(Y)) =
O(|Eplf (V)] = Eolf M),

where we use the notation a v b := max{a, b}.

See [27] for a detailed discussion on why these conditions are nat-
ural for hypothesis testing. In particular, by Chebyshev’s inequal-
ity, strong separation implies that we can threshold f(Y) to test
P against Q with vanishing type I and type II errors. Our main
results are the following.

Theorem 2.1. Suppose that we observe a random n-vertex
r-uniform hypergraph Y € {0,1}™ from either P or Q with param-
eters p=n" g=n", and p=n1 forfixedr >2,0<a < f <
r—1,y €(0,1),n - co,and M = (:’)

« (Lower bound) Suppose that either (1)y > 1/2anda > /2 +
r(y —1/2), or (2) y <1/2 and a > fy. If D = n°D then no
polynomial in R[Y |, weakly separates P and Q.

« (Upper bound) Suppose that either (1)y > 1/2anda < /2 +
r(y = 1/2),0r (2) y < 1/2 and a < By. There exists a positive
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integer D depending only on (a, f,y) and a polynomial in
R[Y ], that strongly separates P and Q.

We have therefore completely characterized the low-degree
detection threshold for both y > 1/2 and y < 1/2. We choose
not to consider the boundary cases such as a = § to simplify
the presentation, but the method of low-degree polynomials can
be used in these cases too. The lower bound in Theorem 2.1
is proved at the beginning of Section 3. The upper bound is
proved at the beginning of Section 4. In particular, in each regime
stated in the upper bound, the strong separation is achieved by
a constant-degree polynomial in the entries of Y, so the testing
algorithm is polynomial-time.

3 | Detection Lower Bound
Following the framework of low-degree polynomial algorithms

[11, 12, 27], we first introduce the notation used in this section.
Let Y, be the standardized hyperedge under Q, that is,

Y, := 1)

where o 1= y/Vary(Y,) = Va(1 — q). We define

ps(¥) :=[]¥.. VS ciM] )

eeS

Note that Y, and Yf are independent under Q for e # f. There-
fore, as Ye is centered, we have

Eolps(Y)ps (Y] = 0ifs#Ss"
OESETT 1t s =5,

so that {¢g : § C[M]} is an orthonormal basis of the set of

real-valued functions of Y.

In order to study polynomials of degree at most D > 0, we define
the following quantity

ILepll? i= Y (Eplgps(N])® 3)

SC(M],
|51<D

When considering an event € and the conditional distribution P’
on &, we define analogously

ILIP = ) Eplds(]) @

SCIM].
|S|1<D

The notation || L. || stands for the norm of the degree-D likeli-
hood ratio between P and Q. We remark that || L_p|| is the same
as the quantity LD(D) in [27, Definition 1.3], and the equivalence
is justified in [11, section 2.3].

Proofof Theorem 2.1. (lower bound). Let € be an event such
that P(€) =1 — o(1). Let P’ be the distribution obtained from P
by conditioning on the event £. By [27, Proposition 6.2], to prove
that no polynomial in R[Y']., weakly separates P and Q, it suf-
fices to show that

ILpllI* =1+ 0(1) ®)

Ify >1/2and a > /2 + r(y — 1/2), we take € to be the full sam-
ple space so that P = P’ and establish (5) in Proposition 3.1. If
y <1/2anda > Py, we define the high-probability event £ in (11)
and establish (5) in Proposition 3.2.

Remark 3.1. We attempt to briefly explain why condition-
ing is needed. The quantity ||L_p]| is equal to the supremum
over degree- D polynomials f of the ratio E,[f(Y)]/ \/m
While boundedness of this ratio is a sufficient condition to rule
out degree-D separation, it may not be a necessary condition:
there can be polynomials that achieve a large value for this ratio
(diverging to o0) yet do not work as distinguishers. For a simple
example, consider the planted dense subgraph model (r = 2) with
qg=0,p=n"%andp=n""',andlet f be the degree-( ’2"> polyno-
mial that counts the number of m-vertex cliques in the graph, for
some constant m. Now the ratio is infinite since Eg[f Y)*1=0
while E,[f(Y)] > 0; however, for ym < a(';'), f is not a good
distinguisher because E,[f(Y)] <1 and so f =0 with high
probability under both the planted and null distributions. This
type of phenomenon can persist in cases where ¢ is nonzero,
including cases where the testing problem is low-degree hard.
One can imagine “fixing” this issue by conditioning 7 on the
high-probability event that there are no m-cliques. This is essen-
tially what we will need to do, but for all “problematic” sub-
graphs, not just cliques.

3.1 | Lower Bound for Large y

We will first consider the case that y > 1/2, that is, the case that
the set Z is expected to be “large”.

Proposition 3.1. Supposep = n~%,q=n"",and p = n" "L with
fixedr >2,0<a<pf<r—1,andy € (0,1) such that

, a>£+r<y——>. (6)
2
If D = n°Y, then we have
ILpll* =1+ o(D).

Let us consider an arbitrary subgraph .S C [ M ]. We first compute
Eplgs(Y)].

Lemma 3.1. For S C[M],let ¢p4(Y) be as defined in (2), and
let V' (S) C [n] denote the vertex set of the hypergraph induced by S'.
Then we have

—vesn(P—4 151
Eplds(M)]=0p ( 5 > .
Proof.  We note the following:

Eplgs(V)] = E, [Eplps(V)IZ]].

We note that Y, and Y, are conditionally independent for e # f,
given Z. In particular, we have

Eplgs()1Z] = [ [EplY.1Z1.

e€eS

Furthermore, by definition of P, we have
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- 4 e.cz7
EplY |Z]=4 °

With this in hand, we have

— S|
Eplds (V)| Z] = (’%) 1{V(S) C 7},

from where we get

_ vl P=a\"
Epls (V)] = p"I(E=2)
as desired. O

Let S, ,, be the set of all edge-induced subhypergraphs of K’ hav-
ing ¢ vertices and m edges, or, more formally,

Spm =ASCK 1 V(S| =¢, |[ES)|=m} (7
The following inequalities will be used throughout the proofs and
hold for » sufficiently large:
®)

T<o2<q p-q>
e

[N S

Proof of Proposition 3.1.  Note that as the graphs in S, are
edge induced and we only consider .S C [M] such that |S| < D,
we have

r<?Z<rD, ¢/r<m<D.

With the result of Lemma 3.1, we can conclude

(P f1>’

where the summand 1 comes from the term .S = 0. Let us com-
pute an upper bound for |.S, ,|. To do so, we first consider the
possible choices for the # vertices V'(.S) among all n vertices, and

rD D

ILeplP=1+D 3 Y 4

¢=rm=¢[rSES,,

then the m edges E(.S) among all ( ) possible edges. We have

15,01 < (;><<;>) < (0) < (L) sweorm

©)

since # < rD. Furthermore, as p > g, we have (p — ¢)*> < p>. We
can now get

rD D
Iecpl? <1+ Y Y nf oy (E24)"
C=rm=C[r
rb D r+1pr 2\ "
by®)] <1+ YD Y <u>
£=r m=¢[r q
[by D = n°V] <1+ Z Qr-1¢ Z (B=2a+o(L))m

m=¢/r

By (6),we have f — 2a + o(1) < —r(2y — 1) — 6 for a fixed constant
6 = 6(a, B,y,r) > 0. It follows that

||L<D||2 <1+ Z Qy-1¢ Z

m=¢[r

—r(2y—1)—6)m

Since y > 1/2, we have n~"®~Y=% < 1/2 for n sufficiently large.
Therefore,

rD
||L5D||2 <1+ Zzn@y—l)f p(r@r=1-8)Y/r
‘=r
rD
=1+2) 7 <1440
‘=r

as desired. |

3.2 | Lower Bound for Small y

We now consider the regime y < 1/2 and show that the desired
threshold is @ > fy. In this case, the degree-D likelihood ratio
L_p, between P and Q has unbounded norm due to certain rare
events under P. To mitigate this issue, we modify our approach
by conditioning on the complement of these rare events. We then
study the degree- D likelihood ratio L’S p between the conditional
distribution P’ and Q.

3.2.1 | A High-Probability Event

Recall that S, , is defined in (7). Fix an arbitrarily small constant
8 = 6(a, B,y) > 0 to be chosen later. For Z € N, define

m, = [f’(£+6>] (10)

Moreover, we define a set of pairs of integers
I:={¢meN : m,<m<D,S,, +o}.
Let C := H[Z] denote the subhypergraph of the observed graph

H induced by Z. In other words, C is the planted subhypergraph
to be detected. We define the following events:

&, {385 € S;,, such that S C C}
g (11)

&,mel

.m ot

E

where £ = is the complement of the event £, . In particular,
under &, every subset of edges S that induces a dense hyper-
graph does not appear in C, where “dense” means that the
edge-to-vertex ratio of S is at least 5 +6. For ye {0,1}M, we
define a distribution P’ by

PY =yl{ye &}

P(Y =) = @)

We will show P(€) =1 — o(1). To assist with the bound, we start
with the following lemma.

Lemma 3.2. Under model P, we have

14 v
"z <3,
2 2
with probability at least 1—2exp(—cn’) for some absolute

constant ¢ > 0.
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Proof. Note that | Z| = }"_ z, is the sum of n i.i.d. Ber(p) vari-

ables, that is, | Z| ~ Bin(n, p). It follows from the Chernoff bound
[38, Exercise 2.3.5] that

7)(|Z| o3 <li %)[EPHZH) < 2exp<—C[EP[|Z|]>’

4

for some absolute constant C > 0. The lemma follows as
EpllZ|1 = np=n. o
Lemma 3.3. Wehave P(€) =1 —o0(1).

Proof. For any events A and B, we have P[A] < P[A|B] +

P[B¢]. We let A be £° and B be the event that |Z| is bounded
asin Lemma 3.2. As a result,

3n

P(ES) < P(S” % <1z < 7) +2exp(—cn’)  (12)

3n

‘We now condition on a realization of Z such that % <|Z| < =
We define the following set to assist with our proof:

S, m(Z) = (SES,,  V(S)CZ).

An identical argument as that in (9) shows that

3 N\
< - Y rm
1S, (Z)] < (211 ) (eDy™.

With this in hand, we have

PEal2) < Y P(SCEQ)Z)
SES, . (Z)

N
< (2. rm C .
< <2n ) (eD) Ser?ﬁ)éz)P(S C EO)|Z)

For S € S,,(Z), as Y, and Y, are conditionally independent
given Z, we have

PSS CEO|Z)=p"=n"".
Plugging in this value above, we have
3 f
P(Sf,mlz) < (En7> (eD)rmn—am < nyf—(a—o(l))m.

Let us now bound P(&¢|Z) < Z(f,m)el P(Esu1Z). We have

rD D rD D
P(gclz) < Z Z nyff(zzfo(l)) m _ Zn}/f Z n*(afo(l)) m
£=rm=m, C=r m=ny,
rD
<2 Y e me,
‘=r

By (10), we have m, > f(i +6), so
rD
P(gclz) < 22’1—(&1—0(1)) 4 < 4n—6ar/2.

£=r

This combined with (12) completes the proof. O

3.2.2 | Bounding the Low-Degree Norm

The main result of this subsection consists in controlling the
norm of the degree- D likelihood ratio between P’ and Q defined
in (4).

Proposition 3.2. Supposep = n~%,q=n"",and p = n’" with
fixedr >2,0<a < f<r—1,andy € (0,1) such that

1
r<s3. a>fy. (13)

If D = n°Y, then we have
2
ILLpI% = 1+ o(D).

To prove the proposition, we start from (4). Note the following as
aresult of §3.2.1:

Epls(Y)] = % Epls (VLY € £} »

=1+ o(1)Eplps(NLY € £}]

It is now enough to consider the final term. We first condition on
the outcome Z to get

EplgsMUY € E}] = E4[Eplps(V)L{Y € £} Z]].

Consider a realization Z. Suppose there exists e € S such that
e ¢ Z. Since £ is determined by the edges in C, Y, is condition-
ally independent of ¢ (., (Y)L{Y € £}, given Z. In particular,
we have

Eplos(MILY € £}|Z]
=EplY | Z] Eplgps, (o)UY € E}|Z] =0,
asEp[Y,|Z] = 0fore ¢ Z. It follows that
Eplgs(NLY € £}]
=E4[Eplos(MILY € EYZ] {V(S) € Z}]

15)

We split the set of S C K with |.S| < D into a set of “bad” sub-
graphs and a set of “good” subgraphs, defined respectively as

B = U Syms G:={SCK! : |S|<D}\B.

&.mel

Let us first consider a good subgraph .S. We prove the following
lemma.

Lemma3.4. LetS € Gbeagood subgraph on ¢ vertices and m
edges. We have

|Eplbs(IL(Y € £} < M(%) ,

Proof. Note the following as a result of (15) and Jensen’s
inequality:

[Eplds(NI{Y € E}]|
SEZ[EpllgpsWMIL{Y € EHZ] T{V(S) € Z}]

16)

Let us consider Ep[|¢ps(Y)|1L{Y € £}|Z] for V(S) C Z. Since
[$ps(Y)| > 0 we have

7 0f 16
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EpllesMIL{Y € £} Z] < Epllgs(Y)IIZ]

_(ra-9+0-pg\" _(2\"
a c “\o /)’

where the last step follows since g < p. We now have:
[Eplds(NIL{Y € £}
< (%)mﬁz[ﬂ{vm czy=/ (%)m
as desired. m]

Next, let us consider a bad subgraph .S. We will prove the follow-
ing lemma.

Lemma 3.5. Let S € Bbea bad subgraph on ¢ vertices and m
edges. We have
Gm

Eplbs (DY € £)]] < ,f(m m 1)%

;=

Proof. As in the proof of Lemma 3.4, we will first bound
EnllpsNIL{Y € £}|Z] for V(S) C Z. By the definition of &
in (11), Y € € implies that C contains at most m, — 1 edges in
S € B which has m edges. Therefore, for s :=m—-m, +1>1,
there exist e;, ..., e, € S such that ¥, = 0 for each i € [s]. With
this in mind, we have

EpllosMIL{Y € £}|Z]

< Y EllgsMILLY, = ... =Y, =0}|Z]
e, ..., e ES
g\ (pAd-q9)+1A—-pqg\"" q° 2p)"~*
< () ()=

where the last step follows since ¢ < p. By (16) again, we obtain

[Eplds(VI{Y € £}]|
<m> g 2pm

N o™

S 2 m—s
e s c zn=p (") L2,

Um

<

as desired. ]

Recall our original goal of bounding (4). By (14), we can simplify
4 to
L., I

=(1+0(1) ) Eplps(NIL{Y € £}

ScIM],
|S|<D

17
=1+ o(1>)<Z[Ep[¢S<Y>n{Y € &} an

Seg

+ Y Eplps(NI{Y € 8}12)

seB

Let us consider the first sum in (17).
Lemma 3.6. Wehave Y ¢ Ep[ps(Y)I{Y € E}]* =1+ o(1).

Proof. If S is the empty graph, then Ep[¢g(Y)] =1. For
nonempty S € S, , € G, we have

~ IS

<m<m,—1,

since .S has no isolated vertices. From (9) and Lemma 3.4, we
obtain

D EpldsMIL{Y € )7

Seg

rD min(m,—1,D) 2 2m
<1+ > Y p”(;p)

‘=r m=C[r S€E€S,,

rD min(m,—1,D) 2 2m
S1+Z Z nf(eD)rmp2f<_p>
o

=r  m=C{/r
rD min(m,—1,D) 43 2\ M
e"™D" p
<1vy 3w (C2E)
=r m=C[r 4

min(m,—1,D)

rD
=1+ Zn(Zy—l)/ 2 n(ﬂ—2a+a(1))m’
‘=r m=¢[r

where we use (8). We now consider two cases. First, suppose f <
2a. Then, we have for some small enough constant 6, = 6,(a, ) >
0 and » large enough:

rD min(m,—1,D) rD

Zn(Zy—l)f Z n(ﬂ—2a+0(1))m < Zn(Zy—l)f

‘=r m=¢[r f=r

min(m,—1,D) rD

Z nhm < 2Zn(2y—l)/—51f/r.

m=¢[r ‘=r

Since y < 1/2, we can simplify the above further to get

rD rD
zzn(ZV—l)f—élf/r < Zzn—ﬁlf/r < 4}’1_61,
‘=r ‘=r

as desired. Now, let us assume # > 2a. We have

min(m,—1,D)

rD
Zn(Zy—l)f 2 n(ﬁ—2a+o(1))m
‘=r

m=¢[r
rD f
< Zn(Zy—l)f (D -4 1>n(ﬂ—2a+o(1))(mﬁ—l) (18)
r
‘=r
rD
< Zn(Zy—l)f+(ﬂ—2a+n(l))(mf—1)+n(1)
‘=r

Let us now consider the coefficient of m, — 1 in the exponent of
n. By the definition of m, in (10), we have

mf—1<f(z+5).
a
With this in hand, we have

(B —2a+o01))(m, —1)

<(f-2a+ o(1))<£ +5>£

< <& —2y+r5>f.
a
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From here it follows that the exponent in (18) can be bounded as

o

Qy =1 +(f—2a+o0(1)(m, —1)+0(1) < (ﬁ -1 +2r5>t’

< =6¢
(19)

where the last step holds in view of the condition & > gy in (13),
once we choose § = §(a, f,7) > 0 to be sufficiently small. Then
(18) can be further bounded as

rD rD
Zn(Zy—l)f+(ﬂ—2a+o(l))(m[—1)+o(l) < Zn—sf <m0,
‘=r ‘=r

as desired. |

Now, let us consider the bad subgraphs and bound the second
sum in (17).

Lemma3.7. Wehave ¥ ,Eplps(Y)L{Y € E}12 = o(1).
Proof. Note that for S € .S, ,, € B, we have
m, <m< D.

From (9) and Lemma 3.5, we have

D Eplgs(NL(Y € €)F

sen
2(m—m,+1) (zp)Z(m, -1)

rD D m 2q
Iy X ()

£=rm=m,S€ES,,,

rD D _ 2(m;—1)
q 2(m=m,+1) (2 m p
< nf eD)™ 2f<_>
DIPNACVLAC -
C=rm=m,
rD D m 2(m,—1)
e’ D" q2 2m p 4
< no?)’
; Z (np?) < > p
=rm=nmy
rD D
- Zn@y—l)f p2(B—ato(1)(m,~1) Z p(—PHoim
C=r m=mg,

where we use (8). Note that the coefficient of m in the exponent
is negative for large enough n. Thus, we can further simplify the
above to

D Eplps(NL(Y € €)F

SeB

rD
< Zzn@y—l)f p2(B—a+o)my=1) p(=po(L)m,

£=r

rD
— 2Zn(z;/—l)f+(ﬁ—2a+o(1))(m, —D=p+o(1)

=r

Once again, we consider two cases. First, let us assume f < 2a.
Asy < 1/2, we have for n large enough:

rD
Z[Ep[d?s(Y)Il{Y €&’ < Zzn—ﬂ+o(1)
Sen ~

< 2rDn o) < b2

as desired. Now, let us assume f > 2a. An identical argument as
in the proof of (19) shows that

Qy -1 +(f-2a+o01)(m, —1) = p+0(1) <=6 - f.

In particular, we have

rD
Z Eplds(V)L{Y € £})* < ZZn_M‘ﬂ < 4p~P-or,
SeB =~
as desired. .

Proofof Proposition 3.2.  Itsuffices to combine (17) with Lem-
mas 3.6 and 3.7. ]

4 | Detection Upper Bound

As in the previous section, we split the analysis into two cases
based on the value y. For y > 1/2, we consider the signed count
of the total number of hyperedges in H, as defined in (20). In par-
ticular, it is a linear function in the entries of the adjacency tensor
Y. For y < 1/2, our statistic is the (unsigned) count of the occur-
rences of a certain balanced subhypergraph in H, as defined in
(25). The size of the subhypergraph depends only on the fixed
parameters (a, f§,y) as given in Proposition 4.2. Therefore, the
statistic in (25) is a constant-degree polynomial in the entries of
Y and can be computed in polynomial time.

Proof of Theorem 2.1. (upper bound). Ify >1/2 and « <
B/2+ r(y —1/2), Proposition 4.1 shows that the statistic 7'
defined in (20) strongly separates P and Q. Ify < 1/2and a < fy,
Proposition 4.3 shows that the statistic 7' defined in (25) strongly
separates P and Q.

4.1 | Upper Bound for Large y

In the regime where y > 1/2, we will use the signed count of
hyperedges in H as our test statistic. Recall M = <': ) as defined

in §2, and [M] denotes the set of all possible hyperedges. We
define

T:= ZY (20)

e
e€[M]

where Y, is defined in (1). Trivially, 7 is a degree-1 polynomial of
the entries of Y.

Proposition 4.1. Supposep = n=%,q =n"",and p = n’" with
fixedr>2,0<a<pf<r—1,andy € (0,1) such that

a<§+r<y—l>. (21)

1
>_’
r=3 2

For the statistic T defined in (20), we have \/ Vary,(T) v Vary(T) =
o(|EpT] - EolT1]).

Let us first compute the expectation and variance under each
distribution.
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Lemma4.1. We have

EolT1=0. Varg()=M, EpTl=M p*<u),
o2
2Mp" p N 2 M " 1p?l p?

Var,(T) < M + = =

Proof. Note that Y, is defined by standardizing ¥, under the
distribution Q, and Y, and Y} are independent under Q for e # f.
The results on [EQ[T] and Var(t) follow immediately.

Let us now consider an edge e € [M]. We have
EplY 1=p <p q) +Q-p)-0= p’(u),
o o
which leads to the desired formula for [EP[T].

Now, we have the following for the variance under P:

Var,(T) = 2 Covp(Y,.Y ).

e.f€[M]

Notice that ¥, and Y, are independent for en f = o. It fol-
lows that

Var,(T)= ) Covp(¥,.¥ )

e.fe[M],
enf+#o

= » - (24
efelM], ¢ c (22)
enf#o

~2 ~ ~

< D EY+ ) ) EplP, Y]

ee[M] e€[M] selM\e,

enf#o

Let us consider the first term. We have

2 1-q\° q\?

et = (n(52) +a-n(2)
1-q\’ q\?
+(1—p’)<q<7> +1-o(%) )

<pr(p(1—q)2+(1—p)q2> 1

= 0_2
»

2p
o

< p

+1,

as g> < g < p. For the second term in (22), let us first compute
EplY,Y,]. As Y, and Y, are independent given Z, we have

EplY,Y 1= EL[Ep[Y,Y /| Z]] = E4[E,[Y,| ZIEL[Y /| Z]].
We note the following:

Epl¥ 121 = (21

(”Gq)n{e czy)

)IL{eC Z}+0-1{e ¢ Z}

In particular, we have

where the last step follows since p > ¢. Putting these bounds
together with (22), we now have

2M 2r 2
I’P+P f Z Z p—|enf|.
0% e[ réidie,
enf#o

Var,(T) < M +

Let us fix e. We will consider bounding

IEE D)

fEIM]\e, s=lvy,..., v,E€e  JEM]
enf#o ..o 05 ES

For a fixed vy, ..., v,, there are at most ( " ) < n"~% choices for
r—s

f. Similarly, there are at most (:) < r* choices for vy, ..., v,. It
follows that

r=1 s
Zp—\eﬁf\<z rs—s_an(#>.

fEIM]\e, s=1
enf#o

Note that np = n” > r and so we have

Z p—leﬂfl < zrnr—lp—I.

FEM]\e.
enf#o

Plugging this value in for our variance computation, we get

2Mrnr—1p2r—1p2

2Mp"
PP+ K i

Varp(T) < M + 5
(o}

o

as desired. O

Proof of Proposition 4.1.
to show

Lemma 4.1 implies that it is enough

2Mpr p N 2M rnr—1p2r—l pZ
c? c?
(D~ q) 1 Zpr P 2 rnr—1p2r—1 P2
< —_— ) > —+ + .
’ ( - M Mo? Mo?

_ 2
szzr(u> > M +
o

Let us first lower bound the left-hand side. From (8), we have

2r 2
'p = o221 —D+p-20a

esq

LHS >

Next, let us upper bound the right-hand side. Note that M =
(") > (g) so that i = n~"+M_From (8), we have

L) 2
RHS < n—r+o(l) + nr(y—2)+ﬂ—a+a(1) + n—1+(2r—l)(y—1)+ﬁ—20¢+0(1).
It remains to verify that

2ry =)+ f —2a > —r+o(1),
2ry =D+ f—-2a>r(y —2)+ f —a+o(1),

—g\2
= C prrlens| (u )
ErlY Y11= EZ[( )ﬂ{euf & c 2y =D+ f=2a> -1+ @2r =1y = 1)+ f — 2a + o(1),
p2r—|enf\ p2
< Y using the assumption (21), which is straightforward. O
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4.2 | Upper Bound for Small y

In this subsection, we will assume

y<i a<py. (23)

%
As in the previous subsection, we will define a test statistic 7" to
distinguish between P and Q.

4.2.1 | Balanced Hypergraphs

The statistic T we choose will count the occurrences of a specific
hypergraph H in H. We first define balanced hypergraphs.

Definition 4.1. A hypergraph H is balanced if for every
nonempty H' C H, we have

|[E(H")| _ |E(H)|

[V(HN ~ [V(H)I

Let us now define our hypergraph of interest H, whose existence
is guaranteed by [39] for » = 2 and by [40] in the general case.

Proposition 4.2. Assuming (23), there exists a balanced
hypergraph H with ¢ vertices and m edges satisfying

1 m v

—<=—<Z 24

57 & (24
Proof. Sincea < fy by assumption, there is a rational number 4
suchthat L < A < 5 Furthermore, note that 4 > % > % By [40,
Theorem 2], there exists a balanced hypergraph with ¢ vertices
and m edges such that ; = A, completing the proof. O

Similar to (2), we define

ws() =[]

eeS

VS C [M].

With A in hand, we are ready to define T:

T:= ZWS(Y), where S := {5 C [M]

Ses

D K'[S|=H)

(25)

In particular, T counts the number of edge-induced subgraphs
in H isomorphic to H. Since the number of edges m in H
is a constant depending only on (a, f,7), the statistic T is a
constant-degree polynomial in the entries of Y. We remark that T’
is taken to be the (unsigned) count rather than the signed count
mainly for technical convenience. The fact that y¢(Y') takes value
only in {0, 1} simplifies the computation of the variance of T'.

Before turning to the main result of this section, we note a simple
fact about balanced hypergraphs that will be useful in the proof
later.

Claim 4.1. Let H be a balanced hypergraph and let H' be a
proper subhypergraph of H with V(H') C V(H). Then,

|E(H)| - |E(H)| _ |E(H)|

V| = V(H) — [VH)|

Proof. If H' = o, the inequality holds trivially. Therefore, we
may assume H'’ is nonempty. As H is balanced and H' is
nonempty, by Definition 4.1 we have

\ECG)| — B VEGD] = VDS
V() = [VHN = V)] = [V HD)]
_EGDI(V D] ~ [V(HD) _ |ECH))
VDV = [VHD) V)

as desired. O

4.2.2 | Strong Separation

We now show that the statistic T strongly separates P and Q in
the regime of interest.

Proposition 4.3. Supposep = n~%,q=n"",and p = n" "L with
fixedr>2,0<a<p<r—1,andy € (0,1) such that (23) holds.
The statistic T defined in (25) satisfies \/Varp(T) Vv Varg(T) =
o(|EplT] = EoIT1|).

Let us first consider 7' under Q. We have the following lemma.

Lemma4.2. With T as defined in (25), we have

EolT1= N ¢", Vary(T)

< max{mz N nf(l—l/m) fr(m—l) q2m—1,mm+1IEQ[T]},
where N = |S]|.

Proof. AsY,and Y, are independent for e # f under Q, we note
that for any .S C [M], we have

ws(Y) ~ Ber(g"),

from where the result on E,[7'] follows. For the variance, we have

Vary(T) = Z Covg (ws, (V). s, (V).
S,.5,€8

Note that ws, (Y) and v, (Y)are independent if §; N .S, = 0. Fur-
thermore, we have

vs Mws, =[x ]Tv.= TT v 11

eES; €S, eESINS,  e€SAS,
vo= [[v]]v=1IIv
eeS|NS, e€SAS, e€S|US,

as Ye2 =Y,. In particular, we can bound the variance by

Vary(T)
= D, Covg(ws,().ws,(V)
S51.5,€S,
S51nS#0
= D (Eglws, My, (V)] = Eg[ws, (V)] Eglws, (1))
51.5,€8,
S1NSy#0 (26)
= Z EQ[V/Slu.S‘Z(Y)]
S51.5,€S,
S1nSy#0
— [S1US,| — 2m =181nS;|
= q =4q q
S1NSy#0 S1nSy#0

Let us fix ;. We will consider bounding
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IR ARSI @7)

S5H€S, m'=1 s'csy. €S,
S1nSH#0 187 |=m! S'CS;

Let us first consider a fixed §” and bound the number of choices
for S, in the inner-most sum. There are at most n* V" choices
for the remaining vertices of .S, and at most £7"="") choices for
the remaining edges S, \ S’. We note that, as.S" C §; and K/[S)]
is isomorphic to a balanced hypergraph H, we have

2\’
> wesh 2 450
m

!
[’ om
VsnH — ¢

In particular, we can bound (27) by

Z q—|51”Sz|

5,€S.
S1nSy#0

m
£=|\V(SH pr(m—m')y —m'
< Z Z n z q

m'=1 s'csy,
I8 |=m

m m'
¢ prm m
sn" ¢ Z(f’r nt/m q> ?

m'=1

where we use the fact that there are at most m™ choices for S’,
given §,. Note that the sum above is dominated by either the first
or last term. Therefore, we get

m
—151nSy] < ¢ prm m m
Z q < mn” 2™ max { l/ﬂrnf/mq’ <Lﬂrnf/mq :

SHES,
S1nSy#0

With this in hand, we return to our original computation of the
variance to get

m
2m £ prm m m
Varg(T)<m N ¢™" n" ¢ max{ﬂmﬁ'"q’(f’nf/mq) }

= max {mZ N nzf’(l—l/m) fr(m—l) q2m—1’mm+lN qm}’

as desired. ]

Before studying the expectation and variance of 7" under P, we
establish the following lemma.

Lemma4.3. Fix S,.S, € S as defined in (25). Assume (23)
and (24). Then we have

Ep [WSIUSZ(Y)] < 22fp|V(S]USZ)|p|SIUS2|.

Proof. By considering all possible realizations of V' (S; U S,) N
Z, we have

Ep [‘I/slus2 (Y)]

= 2 PV (S USHNZ=V") Plysys,(Y)
VICV(5,US;)

=1V (S uS)NZ=V"

)

VISV (S5,US,)

pIV IPIE(V )l q\SltJSzI—IE(V ol

where E(V') consists of the edges in .S} U .S, whose vertices are
contained entirely in V'. We claim that the summand above is

maximized when V' = V(S; U S,). Given the claim, each sum-
mand is bounded by p!V (51Ul pl$iUS:| “and there are at most 2%
choices of V. Thus, the result follows.

To prove the claim, we first note that if ¥’ maximizes
PV IpIEOL gI$1US:1=IEVDI then the subgraph (V/, E(V')) has no
isolated vertices. This is because removing isolated vertices from
V'’ only decreases the exponent in p, which then increases the
overall value as p < 1. As a result, we may instead consider the

problem

' ' R\
max_plV I pIS' gIS1US:1-18]

S'CS,US, P

q

where V(S”) is the set of vertices induced by S’. We will show

that the maximizer is S’ =5, U S,. We make the following

definitions:
S:=85US, S :=5nSs, S :=5\5.

In particular, S} C S; and S) N .S; = S, NS, = o. The goal is to

show the following:

VSl

1S >p\V(S’)I 171 ,1S1-1S8"]

P p pq >
which is equivalent to showing
N
PVl <£> > 1. (28)
q

Let us first consider the exponent of p/q. We have
IS = 18] = 1511 + 5,1 = 1S, 0 S,] = S]] = 155
=S, = 1] + 15,1 = 1(S; N Sy U S,

as S, NS; NS, =0. Next, let us consider the exponent of p.
We have

V(S| = VSO = V(ISP + [V(S)I = V(S NV (Sl
= V(SDI = [V(SPI+ [V (SH NV (S
= V(S = IV SDI+ V(S = V(S NV (S,)
= [V(SHI+ V(S NV (SHI.
We note the following:
V(SHNV(S) CV(S)NV(S)NV(S),

as S/ C S;. Therefore,

V(I = V(S

SIVESHI= IV SDI+ IV(S)I = IV (SH N V(S| = [V (S)I
+V(SHNV(S)NV(S)I

SIWVESHI= IV SDI+ VS)I = IV (S) NV (S)) UV (S))

SIVSHI= IV SDI+ VS)I = IV ((S; n S U SHI,

where the last inequality follows from the fact that

V((S;NS,)US)=V(S NS)UV(S)
CV(SHNV(S))UV(S).
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We can now simplify the LHS of (28) to get:

1S1-1.57]
PV (E)
q
> PV SDI=VEDIHV SV ($in$,)US)]

» 1Sy =187 1+1851=1(S1nS,)uUsS; |
<‘1>

’

15,1151
V(SDI-IV(S) <P) VSV (SIS, US))

q

<£) |Sz|—|(31ﬁ82)usé|
q

Hence, it suffices to show that

=

15, 1-1S7]

PV SOV (E) >1 (29a)
q

>1 (29b)

q

p

15, 1-1(S1nSUS; |
[V (S)I=1V (S;nS,)uS))] <P>

We now prove (29a). The proof of (29b) is the same once .S,
is replaced by S, and S] is replaced by (S, nS,) U S,. First,
if V(S{) =V (S,), then the LHS of (29a) can be simplified to
(§)|Sl|‘|si|,which isatleast 1as p > gq. Therefore, we may assume
that V'(S]) € V(S)). Recall that K'[S, ] is isomorphic to H,abal-
anced hypergraph with ¢ vertices and m edges. By Claim 4.1,

we have
[Sy1=1S571
PIASY RIS <£> '
q
st \IVESDIFIVE)I
D\ VS-S
= p —_
q
me\ [V SIS
- (o2) |
q
Note that

m/t
P ( 2) — g+ B-aom/t
q

It is enough to show the exponent above is nonnegative, which
holds if (f — a)m > (1 — y)£. From (23) and (24), we have

B=a)ym>(f=Prym=>0-y)pm> 1 -y),
as desired. O
Let us now bound expectation and variance of T’ under P.
Lemma4.4. With T as defined in (25), we have
EplT]> Np’p", Vary(T) < 8 Npf tgitrm 2 =1pm-m/¢
where N = |S]|.

Proof. AsY, and Y, are conditionally independent for e # f
given Z, we note that for a specific .§ € S, we have

Pys(¥) =1|V(S) C Z) = p".

In addition, y¢(Y) € {0,1}, so we have

EplT1> )\ P(V(S)C Z) P(ws(Y) = 1[V(S)C Z) = Np'p".
Ses

For the variance, we note that z; and z ; are independent for i # j
and so v, (Y) and v, (Y) are independent if V'(S;) N V' (S,) = o.
Using again the argument that gives (26), we obtain

Vary(T)= ). Covp (s (), ws (V)

S51.52€S,
V(SN (Sy)#0

)

51.5,€S.
VSNV (Sy)#0

Ep[ws,us, (V)]

By Lemma 4.3, we then get
Var,(T) < Z 22fp|V(SIUS2)|p|SIUSZ|

51.5,€S.
V(S)NV(Sy)#0

v pzf p2m Z p—IV(Sl)nV(Sz)Ip—ISmSz\

S1.57€S,
VSNV (Sy)#0

(30)

where we use the facts

[S1US | =2m =[S NS, [V(S;US)]=
V(SHUVS) =20 = [V(S) NV (Sl

As in the proof of Lemma 4.2, let us fix S, and bound the

following:
—[V(S)NV(S)] ,~|S,nS.
pl(l) (z)lp|1 |
Sy€S,
V(S1)nV(Sy)#0

< i Z Z p—f'p—lslﬂszl
4

'=1v'cv(sy).  $2ES.
Wl=¢!  V'CV(Sy)

(€29

Let us first consider a fixed ¥’ and bound the number of choices
for .S, in the inner-most sum. There are at most n~*" choices
for the remaining vertices in ., and at most #"” possible choices
for the edges in S,. Note that V'(S; N S,) € V(S;) N V(S,). Fur-
thermore, as §; N S, C S, and K/[S,] is a balanced hypergraph,

we have
[S1NS,] |51 NS,

VSHNVSHI ™~ V(S NSyl

<z
7

In particular, we can bound (31) by

Z p_|V(Sl)nV(Sz)‘p_|SlnSz|

SH€S,
VSNV (Sy)#0

< é Z nf—f’ o p—f’p—mf’/f

£'=1v'cv(sy,
v’ |=¢"

¢ 7 4
< 4 o ,
=" Z("P p’"/f)

'=1

where we use the fact that there are at most #?’ choices for V’
given S;. Let us consider the term in the sum. We have

Lyt
npp"/”
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Note that as a result of (24), we have

m
— -y <o
af 4

In particular, we have for some small constant 6 = 6(«, f,7) > 0:

__ <tnl < 1
nppm/? 2

Finally, we can bound (31) as follows:

P VSOV 1SS < gt prm (L
nppm/f

$H€ES,
V(S)NV(Sy)#0

With this in hand, we return to our original computation for the
variance in (30) to get

Varp(Tl) < 22f+1 N nf frmpM p2m
np pm/f

< 8)/" N nf—l f1+rm p2f—1p2m—m/f,
as desired. ]

Proof of Proposition 4.3. Let A := N p’ p”. By Lemma 4.4,
we have E,[T] > A. Therefore, it suffices to show that
1. Eo[T] = o(4),
2. Varg(T) = o(4%),
3. Varp(T) = o(A?).
Let us first consider Ey[T]. By Lemma 4.2, we have
EolT] _ Ng”

A - prpm
< pA=E=pQA=pm _ ,A=p)¢=pm) — o(1),

— p=ne=(p=am

where the bounds follow from the conditions a < fy in (23), 7 <
mpin(24),and 1 — y > 0. This completes the proof of Condition 1.

Now, let us consider the bound on Var,(T') from Lemma 4.2. We
note the following

¢
n n
> >(=) .
N2 (7)2(3)
With this and the above bound on Ey-[T'], we have

mm+1ff

mm+1 [EQ[T] mm+1
< =
nfpfpm

AZ - - nam—yf+o(1) - 0(1)’

because am < yZ by (24). Now, in order to prove Condition 2, it
remains to bound the following:

m2 N nf(lfl/m) fr(mfl) q2m71
12 N p2¢ p2m

m2 n—f/m fzf’+r(m—1) q2m—l (32)
p2fp2m

m2 nf(lfl/m) fr(mfl) q2m71

— n—f/m+ﬁ+2f(l—y)—2m(ﬁ—a)+o(1)

Let us consider the exponent in (32). As a result of (23), we have

—C/m+p+20(1—y)—2m(f —a)

- <1—y—ﬁ)2f— (ﬂ(l—i)—aﬁm

<<1—y—%)2f—2mﬂ(1—y—$)

_ 2(1 . ﬁ)(ﬁ—mﬁ).

Since y <1/2 and m > 1, we have 1 —y —1/(2m) > 0. In addi-
tion, # < mp as a result of (24). Hence, the quantity above is neg-
ative, and so (32) is o(1). Putting it all together, we have proved
Var%zm = 0(1), which is Condition 2.

Finally, let us consider the bound on Var,(T) in Lemma 4.4.
We have

Var,(T) 8" N pl~1 gltrm p26=1pom=m/¢
<
A2 N2p2f pm
M = poem/C=r+o) — o(1)
np pm/f >

¢
where we again use N > (;) and am/¢ —y < 0 by (24). This
proves Condition 3. O
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Appendix A
Detection-Refutation Gap

Here we justify the claim that for y > 1/2 we expect an inherent
detection-refutation gap, implying that tests based on checking feasi-
bility of a convex relaxation (e.g., the sum-of-squares program of [31])
are strictly suboptimal for detection. We focus throughout on the graph
caser =2.

We first formally define the refutation task. We say that a graph contains
a “dense subgraph” if there is a subgraph on (1 + o(1))pn vertices with
(1 + o(1))p(pn)? /2 edges, where each o(1) stands for some particular o(1)
quantity chosen so that the planted distribution P (defined in Section 2)
will contain a dense subgraph with high probability (i.e., probability 1 —
0(1)). Refutation is the following algorithmic task. Given a graph G, the
goal is to output NO or MAYBE with the following two guarantees: (1) if G
contains a dense subgraph then the output must be MAYBE, and (2) if G is
drawn from the null distribution Q = G(n, q), the output must be NO with
probability 1 — o(1). For intuition, it is crucial to note that the algorithm
is only allowed to output NO if it has proven with absolute certainty that
there is no dense subgraph. Refutation (or certification) tasks of this flavor
have been considered in prior work, e.g., [41-46].

A natural approach to solve the refutation problem is to check feasibility
of a convex relaxation for existence of a dense subgraph. If the relaxation
is infeasible w.h.p. over Q (for some parameters p, q, p), we have a suc-
cessful refutation algorithm: output NO if the relaxation is infeasible,
and MAYBE otherwise. (Note that by virtue of being a relaxation, if the
relaxation is infeasible then this proves there is no dense subgraph.) This
also gives a successful detection algorithm: output “Q” if the relaxation is
infeasible, and “P” otherwise. (Note that by design, the relaxation will be
feasible w.h.p. over P, because a dense subgraph exists.)

Our goal in this section is to argue that for y > 1/2, the refutation problem
is computationally hard whenever a > /2 + y — 1/2, making it strictly
harder than detection (because detection is easy whenever a < /2 +
2(y — 1/2)). As a result, we expect that any test based on checking fea-
sibility of a convex relaxation (in the sense described above) cannot be
optimal for detection, or else this would imply a too-good-to-be-true refu-
tation algorithm. Indeed, if the relaxation succeeds at detection, it must
be infeasible w.h.p. over Q, meaning it also succeeds at refutation.

We will argue hardness of refutation in a manner similar to [42]: we will
construct a different planted distribution P that, like P, contains a dense
subgraph w.h.p.; we will then show low-degree hardness of distinguishing
P from Q, leading us to conjecture that no polynomial-time algorithm can
distinguish P and Q. This conjecture, if true, formally implies hardness
of refutation because a successful refutation algorithm could be used to
distinguish P and Q as discussed above.

To summarize, our goal for the rest of this section is to construct a distri-
bution P over graphs such that a dense subgraph exists w.h.p., and then
prove thatify > 1/2 and a > f#/2 + y — 1/2 then no degree-n°V’ polyno-
mial weakly separates P and Q.

Construction of P

We now construct an auxiliary planted distribution P that has a planted
dense subgraph but is more difficult to distinguish from Q = G(n, ¢) than
P is. As in the main text, we fix parameters0 < a < f < 1and y € (0, 1),
and consider the scaling p = n™%, ¢ = n=?, and p = n’~1. It will be conve-
nient to parametrize the observed graph in an unusual way: for i < j, let
Y, =a:=1/(1-q)/qifedge(i,j)ispresentand Y;; = b := —1/q/(1 — q)
otherwise. (This ensures E4[Y;;] = 0 and [EQ[Y:'?] = 1.) A graph is sampled
from P as follows. As before, sample a set of planted vertices Z C [n]
where each vertex is included independently with probability p. Define

ueR"byu, =+/Q-p)/pifie Zandu, = —+/p/(1 —p)ifi & Z. (This

ensures E[«;] = 0 and [E[ul.z] = 1.) Now, conditioned on u, let Y = Y:)i<j
have independent entries Y;; € {a, b} such that Ep[Y};|u] = Auu;. Choose
the scalar 4 so that planted edges have the desired probability, that is,
edge (i, j) occurs with probability p when i, j € Z; this gives 1 = (1 +
o(W)pp/+/4.

Proof of Low-Degree Hardness

We now show that if y > 1/2, @ > /2+y —1/2, and D = n°D, then
||ZSD|| =1+ o0(1), which rules out weak separation as discussed in
Section 3. By [41, Proposition B.1] along with the fact that revealing extra
observations (Y};);»; can only increase ||ZS olls

D D
~ 1 /‘tZd
1L pl? < dZﬁ[E(iuuT, dovTy = dz_d' Eu, 0)*,
=0 " =0 “°

where u is defined above and v is an independent copy of u. Note that
(u,v)isasum of ni.i.d. bounded random variables and following the proof
of [23, Lemma B.3], we may conclude

Edu, v)* < V2rp 2 [(4dp*n)" + (84 /3)%].

Combining this with the above, IIZS pll =1+ 0(1) provided A < p and
A*n < 1. Since y > 1/2, this reduces to the condition a > #/2+y —1/2
as desired.

16 of 16

Random Structures & Algorithms, 2025

d ‘T ST0T ‘8148601

:sdjy woly papeoy!

2SUADIT SUOWIO)) dANEAI)) d[qeatjdde ) £q PauIoA0S oI sa[oNIE YO (9SN JO SI[NI 10§ AIRIqIT AUIUQ AJ[IAN UO (SUOHIPUOD-PUB-SULIN)/ WO AA[IM " AIRIGI[DUIUO//:SANY) SUOHIPUO)) PUE SWIA L Y} 39S *[S70T/Z1/61] U0 A1eiqry aurjuQ AdJIA “9ouel] oueIyoo)) £q 6.7 1Z°8S1/2001°01/10p/wod Kaim-



	Detection of Dense Subhypergraphs by Low-Degree Polynomials
	ABSTRACT
	1 | Introduction
	1.1 | Relation to Prior Work
	1.1.1 | Planted Dense Subgraph
	1.1.2 | Low-Degree Testing
	1.1.3 | Integrality Gaps for Densest k-Subgraph
	1.1.4 | Comparison to Independent Work on Sum-Of-Squares [31]
	1.1.5 | Planted Dense Subhypergraphs

	1.2 | Notation

	2 | Main Results
	3 | Detection Lower Bound
	3.1 | Lower Bound for Large [[gamma]]
	3.2 | Lower Bound for Small [[gamma]]
	3.2.1 | A High-Probability Event
	3.2.2 | Bounding the Low-Degree Norm



	4 | Detection Upper Bound
	4.1 | Upper Bound for Large [[gamma]]
	4.2 | Upper Bound for Small [[gamma]]
	4.2.1 | Balanced Hypergraphs
	4.2.2 | Strong Separation


	Acknowledgments
	Data Availability Statement
	References
	Appendix A Detection-Refutation Gap
	Construction of &Pscr;[[tilde]]
	Proof of Low-Degree Hardness

