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ABSTRACT
Detection of a planted dense subgraph in a random graph is a fundamental statistical and computational problem that has been
extensively studied in recent years. We study a hypergraph version of the problem. Let 𝐺𝑟(𝑛, 𝑝) denote the 𝑟-uniform Erdős–Rényi
hypergraph model with 𝑛 vertices and edge density 𝑝. We consider detecting the presence of a planted 𝐺𝑟(𝑛𝛾 , 𝑛−𝛼) subhypergraph in
a 𝐺𝑟(𝑛, 𝑛−𝛽 )hypergraph, where 0 < 𝛼 < 𝛽 < 𝑟 − 1 and 0 < 𝛾 < 1. Focusing on tests that are degree-𝑛𝑜(1) polynomials of the entries of
the adjacency tensor, we determine the threshold between the easy and hard regimes for the detection problem. More precisely, for
0 < 𝛾 < 1∕2, the threshold is given by 𝛼 = 𝛽𝛾 , and for 1∕2 ≤ 𝛾 < 1, the threshold is given by 𝛼 = 𝛽∕2 + 𝑟(𝛾 − 1∕2). Our results are
already new in the graph case 𝑟 = 2, as we consider the subtle log-density regime where hardness based on average-case reductions
is not known. Our proof of low-degree hardness is based on a conditional variant of the standard low-degree likelihood calculation.

1 | Introduction

Finding a dense subgraph in a given undirected graph is an
iconic problem at the intersection of graph theory, computer
science, and statistics, and it finds broad applications in social
and biological sciences. The last few decades have observed a
wide range of research on multiple variants of the problem,
including the planted clique problem [1, 2], densest 𝑘-subgraph
problem [3, 4], community detection [5, 6], and hypergraph ver-
sions [7–9], among others. In this work, we focus on the problem
of detecting the presence of a planted dense subhypergraph in a
given 𝑟-uniform hypergraph 𝐻 on 𝑛 vertices. More precisely, an
𝑟-uniform hypergraph 𝐻 is a tuple (𝑉 , 𝐸) of vertices and edges,
where 𝐸 is a collection of 𝑟-element subsets of 𝑉 . In the language
of statistical hypothesis testing, we consider the task of testing
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between the following two distributions on 𝐻 (defined formally
in Section 2):

• the null distribution is the 𝑟-uniform Erdős–Rényi hyper-
graph 𝐺𝑟(𝑛, 𝑞) with edge density 𝑞;

• the planted distribution randomly selects ≈ 𝜌𝑛 vertices to lie
in the planted subhypergraph, the edges within the subhy-
pergraph occur independently with probability 𝑝, and all
other edges occur independently with probability 𝑞.

Given a single hypergraph 𝐻 drawn from one of these two distri-
butions, the goal is to distinguish the two cases with high proba-
bility (w.h.p.), that is, probability 1 − 𝑜(1) as 𝑛 → ∞, where 𝑝, 𝑞, 𝜌

may scale with 𝑛. We assume the parameters 𝑝, 𝑞, 𝜌 are known.
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Our focus is on understanding the power and limitation of com-
putationally efficient tests, that is, polynomial-time algorithms.
We currently lack complexity-theoretic tools to prove computa-
tional hardness of average-case problems like this one (where
the input is random), so the leading approaches are either
based on average-case reductions which formally relate different
average-case problems to each other (see e.g., [10] and references
therein) or unconditional lower bounds against restricted classes
of algorithms.

Our main result establishes sharp necessary and sufficient con-
ditions on 𝑝, 𝑞, 𝜌 for success of low-degree polynomial tests. This is
a powerful class of tests including statistics like small subgraph
counts (edges, triangles, etc.). It is by now well-established that
these low-degree tests are a useful proxy for computationally
efficient tests, in the sense that the best-known polynomial-time
algorithms for a wide variety of high-dimensional testing prob-
lems are captured by the low-degree class; see for example,
[11, 12].

More specifically, we focus on the so-called log-density regime
[3] where 𝑝 = 𝑛−𝛼 , 𝑞 = 𝑛−𝛽 , and 𝜌 = 𝑛𝛾−1 for constants 0 < 𝛼 <

𝛽 < 𝑟 − 1 and 𝛾 ∈ (0, 1). The assumption 𝛽 < 𝑟 − 1 is a natural
non-degeneracy condition: if 𝛽 > 𝑟 − 1 then the expected num-
ber of hyperedges incident to a fixed non-planted vertex is 𝑜(1),
so the vast majority of non-planted vertices will be isolated. We
show that if 0 < 𝛾 < 1∕2 and 𝛼 < 𝛽𝛾 , or if 1∕2 ≤ 𝛾 < 1 and 𝛼 <

𝛽∕2 + 𝑟(𝛾 − 1∕2), there is a constant-degree polynomial test that
distinguishes the null and the planted distribution w.h.p. On the
other hand, if 0 < 𝛾 < 1∕2 and 𝛼 > 𝛽𝛾 , or if 1∕2 ≤ 𝛾 < 1 and 𝛼 >

𝛽∕2 + 𝑟(𝛾 − 1∕2), then no degree-𝑛𝑜(1) polynomial can separate
the null and the planted distribution.

1.1 | Relation to Prior Work

1.1.1 | Planted Dense Subgraph

Our results are already interesting in the graph case 𝑟 = 2, in
which case we are considering the planted dense subgraph detec-
tion problem. The statistical threshold is well-studied [5, 13–15],
and the computational threshold has also been established in var-
ious parameter regimes via reduction from the presumed-hard
planted clique problem [14, 16, 17]. However, existing reductions
assume that 𝑝 and 𝑞 are of the same order, and so we are currently
lacking reduction-based evidence for hardness in the log-density
regime where 𝑝 = 𝑛−𝛼 , 𝑞 = 𝑛−𝛽 , and 𝜌 = 𝑛𝛾−1 for constants 0 <

𝛼 < 𝛽 < 1 and 𝛾 ∈ (0, 1). Here the problem undergoes a qualita-
tive change at 𝛾 = 1∕2. Namely, when 𝛾 ≥ 1∕2, the best-known
polynomial-time algorithm is simply to threshold the total num-
ber of edges in the graph, and this succeeds when 𝛼 < 𝛽∕2 +
2(𝛾 − 1∕2). On the other hand, when 𝛾 < 1∕2, the best-known
polynomial-time algorithm is a more subtle subgraph-counting
procedure which succeeds when 𝛼 < 𝛽𝛾 ; see section 3.2 of [3]
(they give only a proof sketch, as their main goal is to give
guarantees for approximating the densest 𝑘-vertex subgraph in
worst-case graphs).

Our main result shows that for every 𝛾 ∈ (0, 1), low-degree tests
cannot surpass the thresholds above, providing evidence for
optimality of the existing algorithms. We also give a matching

low-degree testing upper bound, confirming that the above
algorithms are captured by the low-degree framework; in the
case 𝛾 < 1∕2, our test is simpler than that of [3], although their
algorithm can also recover the planted subgraph.

In contrast, the statistical (i.e., information-theoretic) thresh-
old for detection (i.e., testing) is distinct from the compu-
tational threshold above, at least in some parameter regime
s [5, 15]. Specifically, there is a gap between the statistical and
computational thresholds whenever 𝛾 ∈ (0, 1∕2]. Also, when 𝛾 ∈
(1∕2, 2∕3) there is a gap for some values of 𝛽. We will elaborate
further in our discussion of the hypergraph case below.

While it is not our main focus, we note that the sta-
tistical and computational aspects of recovering a planted
dense subgraph (i.e., identifying the planted vertices) are also
well-studied [18–21]. Formally, the recovery problem is at least as
hard as the detection problem (via a polynomial-time reduction
in the style of [22, section 5.1]). Notably, when 𝛾 > 1∕2, the
recovery problem is strictly harder, that is, the computational
thresholds for detection and recovery are different (at least for
low-degree algorithms), with recovery requiring 𝛼 < 𝛽∕2 + 𝛾 −
1∕2 [23]. When 𝛾 < 1∕2, our result shows low-degree hardness of
detection at the same threshold as the recovery algorithm of [3],
so there is no detection-recovery gap in this regime, resolving a
question left open by [23, section 2.4.1].

1.1.2 | Low-Degree Testing

A successful degree-𝐷 test is a degree-𝐷 multivariate polynomial
in the input variables (in our case, the

(
𝑛

𝑟

)
hyperedge-indicator

variables) whose real-valued output separates (see Definition 2.1)
samples from the planted and null distributions. The idea to study
this class of tests emerged from the line of work [11, 24–26]; see
also [12] for a survey. Tests of degree 𝑂(log 𝑛) are generally taken
as a proxy for polynomial-time tests, as they capture leading algo-
rithmic approaches such as spectral methods. Our upper bound
will give a constant-degree test, which yields a polynomial-time
algorithm for testing; our lower bound will rule out all tests of
degree 𝑛𝑜(1).

There is by now a standard method for proving low-degree test-
ing bounds based on the low-degree likelihood ratio (see section
2.3 of [11]), which boils down to finding an orthonormal basis
of polynomials with respect to the null distribution, and comput-
ing the expectations of these basis polynomials under the planted
distribution. However, our setting is more subtle because (for
𝛾 < 1∕2) the second moment of the low-degree likelihood ratio
diverges due to rare “bad” events under the planted distribution.
We therefore need to carry out a conditional low-degree argu-
ment whereby the planted distribution is conditioned on some
“good” event.

Conditional low-degree arguments of this kind have appeared
before in a few instances [27, 28], but our argument differs on a
technical level. Prior work chose to condition on an event that
would seem to make direct computations with the orthogonal
polynomials very complicated; to overcome this, they bound the
conditional low-degree likelihood ratio in an indirect way by first
relating it to a certain “low-overlap” second moment (also called
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the Franz-Parisi criterion in [27]). In contrast our approach is
more direct: we are careful to condition on an event for which
computations with the orthogonal polynomials remain tractable.

1.1.3 | Integrality Gaps for Densest 𝒌-Subgraph

Complementary to our results is a line of work on estab-
lishing integrality gaps for convex relaxations of densest
𝑘-subgraph [29–31] (and [30] also considers the extension
to hypergraphs). Here the setting of interest is to find, in a
worst-case graph, a subgraph induced on 𝑘 vertices (for a given 𝑘)
whose density of edges is guaranteed to be within some factor of
the densest such 𝑘-subgraph. The best-known polynomial-time
approximation factor is ≈ 𝑛1∕4, due to [3]. The integrality gap
results mentioned above show that powerful families of convex
relaxations fail to improve upon this.

In fact, the proofs of these integrality gaps show that the con-
vex relaxations fail on certain random distributions such as the
ones we study. The hard instance for approximation factor 𝑛1∕4−𝜖

is precisely our testing problem with parameters 𝛼 = 1∕4 + 𝜖, 𝛽 =
1∕2, 𝛾 = 1∕2 (and so our result provides additional evidence that
this approximation factor is unimprovable). The work on convex
relaxations that is most relevant to our result is the recent result
of [31] which was obtained independently from ours. We provide
a detailed comparison below.

1.1.4 | Comparison to Independent Work
on Sum-Of-Squares [31]

In concurrent and independent work, [31] proved that the
sum-of-squares (SoS) hierarchy (a powerful family of semidefi-
nite programming relaxations) at degree 𝑛Ω(1) fails to improve the
approximation factor 𝑛1∕4 discussed above. This is the strongest
known result on integrality gaps for the densest 𝑘-subgraph
problem. While they are conjectured to be closely related (see [11,
25]), we are not aware of any formal implications in either direc-
tion between failure of SoS and failure of low-degree tests.

More specifically, the authors of [31] consider the same
hypothesis testing problem that we do (in the graph case 𝑟 = 2)
and write down a particular SoS program that takes as input
a sample from the null distribution 𝐺(𝑛, 𝑞) and attempts to
refute the existence of a (1 + 𝑜(1))𝜌𝑛-vertex subgraph with (1 +
𝑜(1))𝑝(𝜌𝑛)2∕2 edges. Note that a subgraph of this density exists
in the planted distribution with high probability, and thus, if
SoS succeeds at the refutation task (w.h.p.) this also gives an
algorithm for the detection (i.e., testing) task with the same
parameters 𝑝, 𝑞, 𝜌. The result of [31] shows that SoS fails to
solve the refutation task when 𝛾 < 1∕2 and 𝛼 > 𝛽𝛾 , matching the
threshold in our result. This gives strong evidence for computa-
tional hardness of the refutation problem in this regime. However,
this need not imply hardness of the detection problem (the focus
of our work), since detection is a formally easier problem.

To illustrate the previous point, when 𝛾 > 1∕2 (a regime not cov-
ered by [31]) we expect an inherent gap between the detection
and refutation tasks, with polynomial-time detection requiring
𝛼 < 𝛽∕2 + 2(𝛾 − 1∕2) and polynomial-time refutation requiring

𝛼 < 𝛽∕2 + 𝛾 − 1∕2; see Appendix A for more details. Therefore,
in this regime, we expect that checking feasibility of the SoS pro-
gram of [31] is a strictly suboptimal algorithm for the detection
problem. Accordingly, one strength of our result is that it directly
addresses the detection problem and captures the best-known
computational threshold for all 𝛾 ∈ (0, 1).

The above discussion warns that one should be careful when tak-
ing an SoS lower bound as evidence for hardness of detection
(rather than refutation). However, in this case the situation is
more subtle because the proof of [31] uses the pseudo-calibration
approach [24], and so a key step in their analysis is closely related
to the low-degree testing lower bounds that we prove. Namely
they prove that the low-degree likelihood ratio 𝐿≤𝐷 (in their
notation, 𝔼̃[1]) is 1 + 𝑜(1) with high probability over the null
distribution (and like our result, this involves some condition-
ing arguments). Our approach is related but distinct: we show
that the second moment of the conditional low-degree likeli-
hood ratio (see Section 3) is 1 + 𝑜(1), and this is what implies
our desired result (failure of weak separation). The proof of [31]
also requires some additional steps, notably a rather involved and
impressive analysis to show that their moment matrix is positive
semidefinite.

1.1.5 | Planted Dense Subhypergraphs

Compared to planted dense subgraphs, the generalized problem
for hypergraphs is less well-studied. For the worst-case densest
subhypergraph problem [32], shows that it is hard to approxi-
mate the densest subhypergraph to within an 𝑛𝜖 factor for a fixed
𝜖 > 0 based on a pseudorandomness assumption. In the line of
research on integrality gaps discussed above, the result of [30]
holds for 𝑟-uniform hypergraphs, establishing an integrality gap
of ≈ 𝑛(𝑟−1)∕4 for the Sherali-Adams hierarchy, which matches the
log-density threshold. However, unlike the graph case 𝑟 = 2, no
polynomial-time approximation algorithm is known to match the
above threshold for 𝑟 ≥ 4, and partial progress has been made for
𝑟 = 3 by [7].

Considering the same planted dense subhypergraph model as
ours [9], studies both the detection and the recovery problem.
For the detection problem with 𝑝 = 1 and 𝑞 = 1∕2 (i.e., planted
clique), it is proved that degree-𝑂(log 𝑛) polynomial tests fail
if 𝛾 < 1∕2. This is complementary to our result as we consider
𝑝 = 𝑛−𝛼 and 𝑞 = 𝑛−𝛽 with 0 < 𝛼 < 𝛽 < 𝑟 − 1. For the recovery
problem [9], focuses on the regime 𝛾 ≥ 1∕2 and proposes an
efficient algorithm succeeding when 𝛼 < 𝛽∕2 + (𝑟 − 1)(𝛾 − 1∕2).
In addition, if 𝛼 > 𝛽∕2 + (𝑟 − 1)(𝛾 − 1∕2), it is shown that poly-
nomials of degree 𝑝𝑜𝑙𝑦𝑙𝑜𝑔(𝑛) fail to recover the planted dense
subhypergraph. Note that this recovery threshold is different
from the detection threshold 𝛼 = 𝛽∕2 + 𝑟(𝛾 − 1∕2) proved in
this work; therefore, these two results together generalize the
detection-recovery gap in the regime 𝛾 ≥ 1∕2 shown in [23] for
𝑟 = 2 to the case of hypergraphs.

Another line of research [33–35] concerns the statistical thresh-
olds for planted dense subhypergraphs. In particular, in the
same vein as the results from [5], it is shown in [35] that the
optimal statistical threshold for detection is achieved either by
a total degree test or a computationally inefficient scan test.
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When the former dominates, the detection threshold naturally
matches our result, but when the scan test performs better, there
is a statistical-computational gap. To be more precise, the total
degree test succeeds when 𝛼 < 𝛼deg ∶= 𝛽∕2 + 𝑟(𝛾 − 1∕2) and the
scan test succeeds when 𝛼 < 𝛼scan ∶= 𝛾(𝑟 − 1). If 𝛾 ≤ 1∕2, the
scan test strictly outperforms our condition 𝛼 < 𝛽𝛾 , so there is a
statistical-computational gap. Moreover, we also have a gap when
1∕2 < 𝛾 < 𝑟∕(𝑟 + 1) and 2𝑟(𝛾 − 1∕2) < 𝛽 < 𝑟 − 2𝛾 (where the first
condition on 𝛾 ensures the second interval for 𝛽 is nonempty),
since in this case 𝛼scan > 𝛼deg and 𝛼deg < 𝛽 (note that when 𝛼deg ≥

𝛽, the total degree test succeeds for all 𝛼 < 𝛽 and there is no gap).

In addition [8, 36], study the recovery of a planted dense subhy-
pergraph via a tensor PCA model with additive Gaussian noise.
They probe the computational threshold of the problem using
Approximate Message Passing, but the result is not directly com-
parable to ours. Finally, we refer the reader to a recent survey [37,
section 5.7] for more related works on dense subhypergraphs.

1.2 | Notation

Let ℕ denote the set of positive integers. For any 𝑛 ∈ ℕ, let [𝑛] ∶=
{1, 2, . . . , 𝑛}. Throughout this work, we consider 𝑛 → ∞ and use
the asymptotic notation 𝑂(⋅), 𝑜(⋅), and so forth.

For a fixed integer 𝑟 ≥ 2, let 𝐾𝑟
𝑛

denote the complete 𝑟-uniform
hypergraph on 𝑛 vertices. For any hypergraph 𝐻 , let 𝑉 (𝐻) denote
its vertex set and let 𝐸(𝐻) denote its edge set. For a hypergraph 𝐻

and 𝑆 ⊆ 𝐸(𝐻), let 𝐻[𝑆] denote the subgraph of 𝐻 induced by 𝑆.
Note that any set of hyperedges 𝑆 ⊆ 𝐸(𝐾𝑟

𝑛
) can be identified with

the subhypergraph 𝐾𝑟
𝑛
[𝑆], so we sometimes view 𝑆 as a subhy-

pergraph without ambiguity. For brevity, we often refer to hyper-
graphs and hyperedges simply as graphs and edges, respectively.

For a distribution  , let 𝔼 denote the expectation under  , and
with slight abuse of notation, let  also denote the associated
probability. Let Var (⋅) denote the variance of a random variable
under . Let Ber(𝑝)denote the Bernoulli distribution with param-
eter 𝑝 ∈ [0, 1], and let Bin(𝑛, 𝑝) denote the Binomial distribution
with parameters 𝑛 ∈ ℕ and 𝑝 ∈ [0, 1].

2 | Main Results

Let 𝑛, 𝑟 ∈ ℕ with 𝑛 ≥ 𝑟 ≥ 2, and let 0 < 𝛼 < 𝛽 < 𝑟 − 1 and 𝛾 ∈
(0, 1). Define 𝑀 ∶=

(
𝑛

𝑟

)
. We will be considering random 𝑛-vertex

𝑟-uniform hypergraph models where the output is an undirected
hypergraph 𝐻 with adjacency tensor 𝑌 ∈ {0, 1}𝑀 . To be more
precise, a hyperedge 𝑒 is a subset of [𝑛] of cardinality 𝑟; we let
[𝑀] ∶=

(
[𝑛]
𝑟

)
denote the set of all hyperedges of 𝐾𝑟

𝑛
and write

𝑒 ∈ [𝑀]. The adjacency tensor 𝑌 is indexed by 𝑒 ∈ [𝑀], and
𝑌𝑒 ∈ {0, 1} indicates the presence of hyperedge 𝑒.

We formulate the detection of a dense random subhypergraph as
a statistical hypothesis testing problem between distributions 

and , defined as follows:

• Under  , let 𝑧1, . . . , 𝑧𝑛 be i.i.d. random variables from
the Bernoulli distribution Ber(𝜌), where 𝜌 ∶= 𝑛𝛾−1, and let

𝑍 ∶= {𝑖 ∈ [𝑛] ∶ 𝑧𝑖 = 1}. Conditional on 𝑍, we observe an
𝑟-uniform hypergraph 𝐻 with independent hyperedges

𝑌𝑒 ∼

{
Ber(𝑞) if 𝑒 ⊈ 𝑍

Ber(𝑝) if 𝑒 ⊆ 𝑍

where 𝑝 ∶= 𝑛−𝛼 and 𝑞 ∶= 𝑛−𝛽 .

• Under , we observe an 𝑟-uniform Erdős–Rényi hyper-
graph 𝐻 with adjacency tensor 𝑌 , where the hyperedges are
i.i.d. 𝑌𝑒 ∼ Ber(𝑞) with 𝑞 ∶= 𝑛−𝛽 .

There are two points in the above definition that can be relaxed.
First, in the definition of  , instead of including each of the 𝑛

vertices with probability 𝜌 in the set 𝑍, we could defined 𝑍 to be
a uniformly random subset of [𝑛] of a fixed size 𝑘 = 𝑛𝜌. Our main
results would still hold under this alternative definition of 𝑍. We
choose the current definition for technical convenience. Second,
our results would remain valid if we assumed 𝜌 = 𝑛𝛾−1+𝑜(1), 𝑝 =
𝑛−𝛼+𝑜(1), and 𝑞 = 𝑛−𝛽+𝑜(1) with extra 𝑜(1) terms that vanish as 𝑛 →
∞ in the exponents. This will be clear from the proofs and we
omit the 𝑜(1) terms for brevity.

To probe the computational threshold for testing between  and
, we focus on low-degree polynomial algorithms (e.g., [11, 12]).
Let ℝ[𝑌 ]≤𝐷 denote the set of multivariate polynomials in the
entries of 𝑌 with degree at most 𝐷. With some abuse of notation,
we will often say “a polynomial” to mean a sequence of polyno-
mials 𝑓 = 𝑓𝑛 ∈ ℝ[𝑌 ]≤𝐷, one for each problem size 𝑛; the degree
𝐷 = 𝐷𝑛 of such a polynomial may scale with 𝑛. To study the abil-
ity of a polynomial in testing against, we consider the notions
of strong separation and weak separation defined in [27], with the
former being stronger than the latter.

Definition 2.1. ([27], Definition 1.6). As 𝑛 → ∞, a poly-
nomial 𝑓 ∈ ℝ[𝑌 ]≤𝐷 is said to

• strongly separate  and  if
√

Var (𝑓 (𝑌 )) ∨ Var(𝑓 (𝑌 )) =
𝑜
(||𝔼 [𝑓 (𝑌 )] − 𝔼[𝑓 (𝑌 )]||);

• weakly separate  and  if
√

Var (𝑓 (𝑌 )) ∨ Var(𝑓 (𝑌 )) =
𝑂
(||𝔼 [𝑓 (𝑌 )] − 𝔼[𝑓 (𝑌 )]||),

where we use the notation 𝑎 ∨ 𝑏 ∶= max{𝑎, 𝑏}.

See [27] for a detailed discussion on why these conditions are nat-
ural for hypothesis testing. In particular, by Chebyshev’s inequal-
ity, strong separation implies that we can threshold 𝑓 (𝑌 ) to test
 against  with vanishing type I and type II errors. Our main
results are the following.

Theorem 2.1. Suppose that we observe a random 𝑛-vertex
𝑟-uniform hypergraph 𝑌 ∈ {0, 1}𝑀 from either  or with param-
eters 𝑝 = 𝑛−𝛼 , 𝑞 = 𝑛−𝛽 , and 𝜌 = 𝑛𝛾−1 for fixed 𝑟 ≥ 2, 0 < 𝛼 < 𝛽 <

𝑟 − 1, 𝛾 ∈ (0, 1), 𝑛 → ∞, and 𝑀 =
(

𝑛

𝑟

)
.

• (Lower bound) Suppose that either (1) 𝛾 ≥ 1∕2 and 𝛼 > 𝛽∕2 +
𝑟(𝛾 − 1∕2), or (2) 𝛾 < 1∕2 and 𝛼 > 𝛽𝛾 . If 𝐷 = 𝑛𝑜(1) then no
polynomial in ℝ[𝑌 ]≤𝐷 weakly separates  and .

• (Upper bound) Suppose that either (1) 𝛾 ≥ 1∕2 and 𝛼 < 𝛽∕2 +
𝑟(𝛾 − 1∕2), or (2) 𝛾 < 1∕2 and 𝛼 < 𝛽𝛾 . There exists a positive
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integer 𝐷 depending only on (𝛼, 𝛽, 𝛾) and a polynomial in
ℝ[𝑌 ]≤𝐷 that strongly separates  and .

We have therefore completely characterized the low-degree
detection threshold for both 𝛾 ≥ 1∕2 and 𝛾 < 1∕2. We choose
not to consider the boundary cases such as 𝛼 = 𝛽 to simplify
the presentation, but the method of low-degree polynomials can
be used in these cases too. The lower bound in Theorem 2.1
is proved at the beginning of Section 3. The upper bound is
proved at the beginning of Section 4. In particular, in each regime
stated in the upper bound, the strong separation is achieved by
a constant-degree polynomial in the entries of 𝑌 , so the testing
algorithm is polynomial-time.

3 | Detection Lower Bound

Following the framework of low-degree polynomial algorithms
[11, 12, 27], we first introduce the notation used in this section.
Let 𝑌 𝑒 be the standardized hyperedge under , that is,

𝑌 𝑒 ∶=
𝑌𝑒 − 𝑞

𝜎
(1)

where 𝜎 ∶=
√

Var(𝑌𝑒) =
√

𝑞(1 − 𝑞). We define

𝜙𝑆 (𝑌 ) ∶=
∏
𝑒∈𝑆

𝑌 𝑒, ∀𝑆 ⊆ [𝑀] (2)

Note that 𝑌𝑒 and 𝑌𝑓 are independent under  for 𝑒 ≠ 𝑓 . There-
fore, as 𝑌 𝑒 is centered, we have

𝔼[𝜙𝑆 (𝑌 )𝜙𝑆′ (𝑌 )] =

{
0 if 𝑆 ≠ 𝑆′,

1 if 𝑆 = 𝑆′,

so that {𝜙𝑆 ∶ 𝑆 ⊆ [𝑀]} is an orthonormal basis of the set of
real-valued functions of 𝑌 .

In order to study polynomials of degree at most 𝐷 > 0, we define
the following quantity

||𝐿≤𝐷||2 ∶=
∑

𝑆⊆[𝑀],|𝑆|≤𝐷

(
𝔼 [𝜙𝑆 (𝑌 )]

)2 (3)

When considering an event  and the conditional distribution  ′

on  , we define analogously

||𝐿′
≤𝐷

||2 ∶=
∑

𝑆⊆[𝑀],|𝑆|≤𝐷

(𝔼 ′ [𝜙𝑆 (𝑌 )])2 (4)

The notation ||𝐿≤𝐷|| stands for the norm of the degree-𝐷 likeli-
hood ratio between  and . We remark that ||𝐿≤𝐷|| is the same
as the quantity LD(𝐷) in [27, Definition 1.3], and the equivalence
is justified in [11, section 2.3].

Proof of Theorem 2.1. (lower bound). Let  be an event such
that () = 1 − 𝑜(1). Let  ′ be the distribution obtained from 

by conditioning on the event  . By [27, Proposition 6.2], to prove
that no polynomial in ℝ[𝑌 ]≤𝐷 weakly separates  and , it suf-
fices to show that ||𝐿′

≤𝐷
||2 = 1 + 𝑜(1) (5)

If 𝛾 ≥ 1∕2 and 𝛼 > 𝛽∕2 + 𝑟(𝛾 − 1∕2), we take  to be the full sam-
ple space so that  =  ′ and establish (5) in Proposition 3.1. If
𝛾 < 1∕2 and 𝛼 > 𝛽𝛾 , we define the high-probability event in (11)
and establish (5) in Proposition 3.2.

Remark 3.1. We attempt to briefly explain why condition-
ing is needed. The quantity ||𝐿≤𝐷|| is equal to the supremum
over degree-𝐷 polynomials 𝑓 of the ratio 𝔼 [𝑓 (𝑌 )]∕

√
𝔼[𝑓 (𝑌 )2].

While boundedness of this ratio is a sufficient condition to rule
out degree-𝐷 separation, it may not be a necessary condition:
there can be polynomials that achieve a large value for this ratio
(diverging to ∞) yet do not work as distinguishers. For a simple
example, consider the planted dense subgraph model (𝑟 = 2) with
𝑞 = 0, 𝑝 = 𝑛−𝛼 , and 𝜌 = 𝑛𝛾−1, and let 𝑓 be the degree-

(
𝑚

2

)
polyno-

mial that counts the number of 𝑚-vertex cliques in the graph, for
some constant 𝑚. Now the ratio is infinite since 𝔼[𝑓 (𝑌 )2] = 0
while 𝔼 [𝑓 (𝑌 )] > 0; however, for 𝛾𝑚 < 𝛼

(
𝑚

2

)
, 𝑓 is not a good

distinguisher because 𝔼 [𝑓 (𝑌 )] ≪ 1 and so 𝑓 = 0 with high
probability under both the planted and null distributions. This
type of phenomenon can persist in cases where 𝑞 is nonzero,
including cases where the testing problem is low-degree hard.
One can imagine “fixing” this issue by conditioning  on the
high-probability event that there are no 𝑚-cliques. This is essen-
tially what we will need to do, but for all “problematic” sub-
graphs, not just cliques.

3.1 | Lower Bound for Large 𝜸

We will first consider the case that 𝛾 ≥ 1∕2, that is, the case that
the set 𝑍 is expected to be “large”.

Proposition 3.1. Suppose 𝑝 = 𝑛−𝛼 , 𝑞 = 𝑛−𝛽 , and 𝜌 = 𝑛𝛾−1 with
fixed 𝑟 ≥ 2, 0 < 𝛼 < 𝛽 < 𝑟 − 1, and 𝛾 ∈ (0, 1) such that

𝛾 ≥
1
2

, 𝛼 >
𝛽

2
+ 𝑟

(
𝛾 − 1

2

)
. (6)

If 𝐷 = 𝑛𝑜(1), then we have

||𝐿≤𝐷||2 = 1 + 𝑜(1).

Let us consider an arbitrary subgraph 𝑆 ⊆ [𝑀]. We first compute
𝔼 [𝜙𝑆 (𝑌 )].

Lemma 3.1. For 𝑆 ⊆ [𝑀], let 𝜙𝑆 (𝑌 ) be as defined in (2), and
let 𝑉 (𝑆) ⊆ [𝑛] denote the vertex set of the hypergraph induced by 𝑆.
Then we have

𝔼 [𝜙𝑆 (𝑌 )] = 𝜌|𝑉 (𝑆)|(𝑝 − 𝑞

𝜎

)|𝑆|
.

Proof. We note the following:

𝔼 [𝜙𝑆 (𝑌 )] = 𝔼𝑍

[
𝔼 [𝜙𝑆 (𝑌 )|𝑍]

]
.

We note that 𝑌𝑒 and 𝑌𝑓 are conditionally independent for 𝑒 ≠ 𝑓 ,
given 𝑍. In particular, we have

𝔼 [𝜙𝑆 (𝑌 )|𝑍] =
∏
𝑒∈𝑆

𝔼 [𝑌 𝑒|𝑍].

Furthermore, by definition of  , we have
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𝔼 [𝑌 𝑒|𝑍] =

{
𝑝−𝑞

𝜎
𝑒 ⊆ 𝑍

0 𝑒 ⊈ 𝑍

With this in hand, we have

𝔼 [𝜙𝑆 (𝑌 )|𝑍] =
(𝑝 − 𝑞

𝜎

)|𝑆|
1{𝑉 (𝑆) ⊆ 𝑍},

from where we get

𝔼 [𝜙𝑆 (𝑌 )] = 𝜌|𝑉 (𝑆)|(𝑝 − 𝑞

𝜎

)|𝑆|
,

as desired. ◽

Let 𝑆𝓁,𝑚 be the set of all edge-induced subhypergraphs of 𝐾𝑟
𝑛

hav-
ing 𝓁 vertices and 𝑚 edges, or, more formally,

𝑆𝓁,𝑚 ∶= {𝑆 ⊆ 𝐾𝑟
𝑛
∶ |𝑉 (𝑆)| = 𝓁, |𝐸(𝑆)| = 𝑚} (7)

The following inequalities will be used throughout the proofs and
hold for 𝑛 sufficiently large:

𝑞

𝑒
≤ 𝜎2 ≤ 𝑞, 𝑝 − 𝑞 ≥

𝑝

𝑒
(8)

Proof of Proposition 3.1. Note that as the graphs in 𝑆𝓁,𝑚 are
edge induced and we only consider 𝑆 ⊆ [𝑀] such that |𝑆| ≤ 𝐷,
we have

𝑟 ≤ 𝓁 ≤ 𝑟𝐷, 𝓁∕𝑟 ≤ 𝑚 ≤ 𝐷.

With the result of Lemma 3.1, we can conclude

||𝐿≤𝐷||2 = 1 +
𝑟𝐷∑
𝓁=𝑟

𝐷∑
𝑚=𝓁∕𝑟

∑
𝑆∈𝑆𝓁,𝑚

𝜌2𝓁
(𝑝 − 𝑞

𝜎

)2𝑚

,

where the summand 1 comes from the term 𝑆 = ø. Let us com-
pute an upper bound for |𝑆𝓁,𝑚|. To do so, we first consider the
possible choices for the 𝓁 vertices 𝑉 (𝑆) among all 𝑛 vertices, and
then the 𝑚 edges 𝐸(𝑆) among all

(
𝓁
𝑟

)
possible edges. We have

|𝑆𝓁,𝑚| ≤ (
𝑛

𝓁

)((
𝓁
𝑟

)
𝑚

)
≤ 𝑛𝓁

(
𝓁
𝑟

)𝑚

≤ 𝑛𝓁
(

𝑒𝓁
𝑟

)𝑟𝑚

≤ 𝑛𝓁(𝑒𝐷)𝑟𝑚,

(9)

since 𝓁 ≤ 𝑟𝐷. Furthermore, as 𝑝 > 𝑞, we have (𝑝 − 𝑞)2 ≤ 𝑝2. We
can now get

||𝐿≤𝐷||2 ≤ 1 +
𝑟𝐷∑
𝓁=𝑟

𝐷∑
𝑚=𝓁∕𝑟

𝑛𝓁 (𝑒𝐷)𝑟𝑚𝜌2𝓁
(𝑝 − 𝑞

𝜎

)2𝑚

[by(8)] ≤ 1 +
𝑟𝐷∑
𝓁=𝑟

(𝑛𝜌2)𝓁
𝐷∑

𝑚=𝓁∕𝑟

(
𝑒𝑟+1𝐷𝑟 𝑝2

𝑞

)𝑚

[by 𝐷 = 𝑛𝑜(1)] ≤ 1 +
𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁
𝐷∑

𝑚=𝓁∕𝑟

𝑛(𝛽−2𝛼+𝑜(1))𝑚.

By (6), we have 𝛽 − 2𝛼 + 𝑜(1) < −𝑟(2𝛾 − 1) − 𝛿 for a fixed constant
𝛿 = 𝛿(𝛼, 𝛽, 𝛾, 𝑟) > 0. It follows that

||𝐿≤𝐷||2 ≤ 1 +
𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁
𝐷∑

𝑚=𝓁∕𝑟

𝑛(−𝑟(2𝛾−1)−𝛿)𝑚.

Since 𝛾 ≥ 1∕2, we have 𝑛−𝑟(2𝛾−1)−𝛿 < 1∕2 for 𝑛 sufficiently large.
Therefore,

||𝐿≤𝐷||2 ≤ 1 + 2
𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁 𝑛(−𝑟(2𝛾−1)−𝛿)𝓁∕𝑟

= 1 + 2
𝑟𝐷∑
𝓁=𝑟

𝑛−𝛿𝓁∕𝑟 ≤ 1 + 4𝑛−𝛿,

as desired. ◽

3.2 | Lower Bound for Small 𝜸

We now consider the regime 𝛾 < 1∕2 and show that the desired
threshold is 𝛼 > 𝛽𝛾 . In this case, the degree-𝐷 likelihood ratio
𝐿≤𝐷 between  and  has unbounded norm due to certain rare
events under  . To mitigate this issue, we modify our approach
by conditioning on the complement of these rare events. We then
study the degree-𝐷 likelihood ratio 𝐿′

≤𝐷
between the conditional

distribution  ′ and .

3.2.1 | A High-Probability Event

Recall that 𝑆𝓁,𝑚 is defined in (7). Fix an arbitrarily small constant
𝛿 = 𝛿(𝛼, 𝛽, 𝛾) > 0 to be chosen later. For 𝓁 ∈ ℕ, define

𝑚𝓁 ∶=
⌈
𝓁
( 𝛾

𝛼
+ 𝛿

)⌉
(10)

Moreover, we define a set of pairs of integers

𝐼 ∶= {(𝓁, 𝑚) ∈ ℕ2 ∶ 𝑚𝓁 ≤ 𝑚 ≤ 𝐷, 𝑆𝓁,𝑚 ≠ ø}.

Let  ∶= 𝐻[𝑍] denote the subhypergraph of the observed graph
𝐻 induced by 𝑍. In other words,  is the planted subhypergraph
to be detected. We define the following events:

𝓁,𝑚 ∶= {∃𝑆 ∈ 𝑆𝓁,𝑚 such that 𝑆 ⊆ }

 ∶=
⋂

(𝓁,𝑚)∈𝐼

 𝑐
𝓁,𝑚

(11)

where  𝑐
𝓁,𝑚

is the complement of the event 𝓁,𝑚. In particular,
under  , every subset of edges 𝑆 that induces a dense hyper-
graph does not appear in , where “dense” means that the
edge-to-vertex ratio of 𝑆 is at least 𝛾

𝛼
+ 𝛿. For 𝑦 ∈ {0, 1}𝑀 , we

define a distribution  ′ by

 ′(𝑌 = 𝑦) ∶= (𝑌 = 𝑦)1{𝑦 ∈ }
()

.

We will show () = 1 − 𝑜(1). To assist with the bound, we start
with the following lemma.

Lemma 3.2. Under model  , we have

𝑛𝛾

2
≤ |𝑍| ≤ 3𝑛𝛾

2
,

with probability at least 1 − 2 exp(−𝑐𝑛𝛾 ) for some absolute
constant 𝑐 > 0.
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Proof. Note that |𝑍| = ∑𝑛
𝑖=1𝑧𝑖 is the sum of 𝑛 i.i.d. Ber(𝜌) vari-

ables, that is, |𝑍| ∼ Bin(𝑛, 𝜌). It follows from the Chernoff bound
[38, Exercise 2.3.5] that



(|𝑍| ∉ (
1 ± 1

2

)
𝔼 [|𝑍|]) ≤ 2 exp

(
−𝐶

𝔼 [|𝑍|]
4

)
,

for some absolute constant 𝐶 > 0. The lemma follows as
𝔼 [|𝑍|] = 𝑛𝜌 = 𝑛𝛾 . ◽

Lemma 3.3. We have () = 1 − 𝑜(1).

Proof. For any events 𝐴 and 𝐵, we have ℙ[𝐴] ≤ ℙ[𝐴|𝐵] +
ℙ[𝐵𝑐]. We let 𝐴 be  𝑐 and 𝐵 be the event that |𝑍| is bounded
as in Lemma 3.2. As a result,

( 𝑐) ≤ 

(
 𝑐 ||| 𝑛𝛾

2
≤ |𝑍| ≤ 3 𝑛𝛾

2

)
+ 2 exp(−𝑐 𝑛𝛾 ) (12)

We now condition on a realization of 𝑍 such that 𝑛𝛾

2
≤ |𝑍| ≤ 3 𝑛𝛾

2
.

We define the following set to assist with our proof:

𝑆𝓁,𝑚(𝑍) ∶= {𝑆 ∈ 𝑆𝓁,𝑚 ∶ 𝑉 (𝑆) ⊆ 𝑍}.

An identical argument as that in (9) shows that

|𝑆𝓁,𝑚(𝑍)| ≤ (3
2

𝑛𝛾
)𝓁

(𝑒𝐷)𝑟𝑚.

With this in hand, we have

(𝓁,𝑚|𝑍) ≤
∑

𝑆∈𝑆𝓁,𝑚(𝑍)
(𝑆 ⊆ 𝐸()|𝑍)

≤

(3
2

𝑛𝛾
)𝓁

(𝑒𝐷)𝑟𝑚 max
𝑆∈𝑆𝓁,𝑚(𝑍)

(𝑆 ⊆ 𝐸()|𝑍).

For 𝑆 ∈ 𝑆𝓁,𝑚(𝑍), as 𝑌𝑒 and 𝑌𝑓 are conditionally independent
given 𝑍, we have

(𝑆 ⊆ 𝐸()|𝑍) = 𝑝𝑚 = 𝑛−𝛼𝑚.

Plugging in this value above, we have

(𝓁,𝑚|𝑍) ≤
(3

2
𝑛𝛾

)𝓁
(𝑒𝐷)𝑟𝑚𝑛−𝛼𝑚 ≤ 𝑛𝛾𝓁−(𝛼−𝑜(1))𝑚.

Let us now bound ( 𝑐|𝑍) ≤
∑

(𝓁,𝑚)∈𝐼 (𝓁,𝑚|𝑍). We have

( 𝑐|𝑍) ≤
𝑟𝐷∑
𝓁=𝑟

𝐷∑
𝑚=𝑚𝓁

𝑛𝛾𝓁−(𝛼−𝑜(1)) 𝑚 =
𝑟𝐷∑
𝓁=𝑟

𝑛𝛾𝓁
𝐷∑

𝑚=𝑚𝓁

𝑛−(𝛼−𝑜(1)) 𝑚

≤ 2
𝑟𝐷∑
𝓁=𝑟

𝑛𝛾𝓁𝑛−(𝛼−𝑜(1)) 𝑚𝓁 .

By (10), we have 𝑚𝓁 ≥ 𝓁( 𝛾

𝛼
+ 𝛿), so

( 𝑐|𝑍) ≤ 2
𝑟𝐷∑
𝓁=𝑟

𝑛−(𝛿𝛼−𝑜(1)) 𝓁 ≤ 4𝑛−𝛿𝛼𝑟∕2.

This combined with (12) completes the proof. ◽

3.2.2 | Bounding the Low-Degree Norm

The main result of this subsection consists in controlling the
norm of the degree-𝐷 likelihood ratio between  ′ and  defined
in (4).

Proposition 3.2. Suppose 𝑝 = 𝑛−𝛼 , 𝑞 = 𝑛−𝛽 , and 𝜌 = 𝑛𝛾−1 with
fixed 𝑟 ≥ 2, 0 < 𝛼 < 𝛽 < 𝑟 − 1, and 𝛾 ∈ (0, 1) such that

𝛾 <
1
2

, 𝛼 > 𝛽 𝛾. (13)

If 𝐷 = 𝑛𝑜(1), then we have

||𝐿′
≤𝐷

||2 = 1 + 𝑜(1).

To prove the proposition, we start from (4). Note the following as
a result of §3.2.1:

𝔼 ′ [𝜙𝑆 (𝑌 )] = 1
()

𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]

= (1 + 𝑜(1))𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]
(14)

It is now enough to consider the final term. We first condition on
the outcome 𝑍 to get

𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }] = 𝔼𝑍 [𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }|𝑍]].

Consider a realization 𝑍. Suppose there exists 𝑒 ∈ 𝑆 such that
𝑒 ⊈ 𝑍. Since  is determined by the edges in , 𝑌𝑒 is condition-
ally independent of 𝜙𝑆⧵{𝑒}(𝑌 )1{𝑌 ∈ }, given 𝑍. In particular,
we have

𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }|𝑍]

= 𝔼 [𝑌 𝑒|𝑍] 𝔼 [𝜙𝑆⧵{𝑒}(𝑌 )1{𝑌 ∈ }|𝑍] = 0,

as 𝔼 [𝑌 𝑒|𝑍] = 0 for 𝑒 ⊈ 𝑍. It follows that

𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]

= 𝔼𝑍 [𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }|𝑍] 1{𝑉 (𝑆) ⊆ 𝑍}]
(15)

We split the set of 𝑆 ⊆ 𝐾𝑟
𝑛

with |𝑆| ≤ 𝐷 into a set of “bad” sub-
graphs and a set of “good” subgraphs, defined respectively as

 ∶=
⋃

(𝓁,𝑚)∈𝐼

𝑆𝓁,𝑚,  ∶= {𝑆 ⊆ 𝐾𝑟
𝑛

∶ |𝑆| ≤ 𝐷} ⧵ .

Let us first consider a good subgraph 𝑆. We prove the following
lemma.

Lemma 3.4. Let 𝑆 ∈  be a good subgraph on 𝓁 vertices and 𝑚

edges. We have

|𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]| ≤ 𝜌𝓁
(

2𝑝

𝜎

)𝑚

.

Proof. Note the following as a result of (15) and Jensen’s
inequality:

|𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]|
≤ 𝔼𝑍 [𝔼 [|𝜙𝑆 (𝑌 )|1{𝑌 ∈ }|𝑍] 1{𝑉 (𝑆) ⊆ 𝑍}]

(16)

Let us consider 𝔼 [|𝜙𝑆 (𝑌 )|1{𝑌 ∈ }|𝑍] for 𝑉 (𝑆) ⊆ 𝑍. Since|𝜙𝑆 (𝑌 )| ≥ 0 we have
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𝔼 [|𝜙𝑆 (𝑌 )|1{𝑌 ∈ }|𝑍] ≤ 𝔼 [|𝜙𝑆 (𝑌 )||𝑍]

=
(

𝑝(1 − 𝑞) + (1 − 𝑝)𝑞
𝜎

)𝑚

≤

(
2𝑝

𝜎

)𝑚

,

where the last step follows since 𝑞 < 𝑝. We now have:

|𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]|
≤

(
2𝑝

𝜎

)𝑚

𝔼𝑍 [1{𝑉 (𝑆) ⊆ 𝑍}] = 𝜌𝓁
(

2𝑝

𝜎

)𝑚

,

as desired. ◽

Next, let us consider a bad subgraph 𝑆. We will prove the follow-
ing lemma.

Lemma 3.5. Let 𝑆 ∈  be a bad subgraph on 𝓁 vertices and 𝑚

edges. We have

|𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]| ≤ 𝜌𝓁
(

𝑚

𝑚𝓁 − 1

)
𝑞𝑚−𝑚𝓁+1(2𝑝)𝑚𝓁−1

𝜎𝑚
.

Proof. As in the proof of Lemma 3.4, we will first bound
𝔼 [|𝜙𝑆 (𝑌 )|1{𝑌 ∈ }|𝑍] for 𝑉 (𝑆) ⊆ 𝑍. By the definition of 

in (11), 𝑌 ∈  implies that  contains at most 𝑚𝓁 − 1 edges in
𝑆 ∈  which has 𝑚 edges. Therefore, for 𝑠 ∶= 𝑚 − 𝑚𝓁 + 1 ≥ 1,
there exist 𝑒1, . . . , 𝑒𝑠 ∈ 𝑆 such that 𝑌𝑒𝑖

= 0 for each 𝑖 ∈ [𝑠]. With
this in mind, we have

𝔼 [|𝜙𝑆 (𝑌 )|1{𝑌 ∈ }|𝑍]

≤
∑

𝑒1 , . . . ,𝑒𝑠∈𝑆

𝔼 [|𝜙𝑆 (𝑌 )|1{𝑌𝑒1
= . . . = 𝑌𝑒𝑠

= 0}|𝑍]

≤
∑

𝑒1 , . . . ,𝑒𝑠∈𝑆

( 𝑞

𝜎

)𝑠
(

𝑝(1 − 𝑞) + (1 − 𝑝)𝑞
𝜎

)𝑚−𝑠

≤

(
𝑚

𝑠

) 𝑞𝑠 (2𝑝)𝑚−𝑠

𝜎𝑚
,

where the last step follows since 𝑞 < 𝑝. By (16) again, we obtain

|𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]|
≤

(
𝑚

𝑠

) 𝑞𝑠 (2𝑝)𝑚−𝑠

𝜎𝑚
𝔼𝑍 [1{𝑉 (𝑆) ⊆ 𝑍}] = 𝜌𝓁

(
𝑚

𝑠

) 𝑞𝑠 (2𝑝)𝑚−𝑠

𝜎𝑚
,

as desired. ◽

Recall our original goal of bounding (4). By (14), we can simplify
(4) to ||𝐿′

≤𝐷
||2

= (1 + 𝑜(1))
∑

𝑆⊆[𝑀],|𝑆|≤𝐷

𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]2

= (1 + 𝑜(1))

(∑
𝑆∈

𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]2

+
∑
𝑆∈

𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]2

)
(17)

Let us consider the first sum in (17).

Lemma 3.6. We have
∑

𝑆∈ 𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]2 = 1 + 𝑜(1).

Proof. If 𝑆 is the empty graph, then 𝔼 [𝜙𝑆 (𝑌 )] = 1. For
nonempty 𝑆 ∈ 𝑆𝓁,𝑚 ⊆ , we have

𝓁
𝑟
≤ 𝑚 ≤ 𝑚𝓁 − 1,

since 𝑆 has no isolated vertices. From (9) and Lemma 3.4, we
obtain ∑

𝑆∈
𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]2

≤ 1 +
𝑟𝐷∑
𝓁=𝑟

min(𝑚𝓁−1,𝐷)∑
𝑚=𝓁∕𝑟

∑
𝑆∈𝑆𝓁,𝑚

𝜌2𝓁
(

2𝑝

𝜎

)2𝑚

≤ 1 +
𝑟𝐷∑
𝓁=𝑟

min(𝑚𝓁−1,𝐷)∑
𝑚=𝓁∕𝑟

𝑛𝓁(𝑒𝐷)𝑟𝑚𝜌2𝓁
(

2𝑝

𝜎

)2𝑚

≤ 1 +
𝑟𝐷∑
𝓁=𝑟

min(𝑚𝓁−1,𝐷)∑
𝑚=𝓁∕𝑟

(𝑛𝜌2)𝓁
(

𝑒𝑟+3𝐷𝑟 𝑝2

𝑞

)𝑚

= 1 +
𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁
min(𝑚𝓁−1,𝐷)∑

𝑚=𝓁∕𝑟

𝑛(𝛽−2𝛼+𝑜(1))𝑚,

where we use (8). We now consider two cases. First, suppose 𝛽 <

2𝛼. Then, we have for some small enough constant 𝛿1 = 𝛿1(𝛼, 𝛽) >

0 and 𝑛 large enough:

𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁
min(𝑚𝓁−1,𝐷)∑

𝑚=𝓁∕𝑟

𝑛(𝛽−2𝛼+𝑜(1))𝑚 ≤

𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁

min(𝑚𝓁−1,𝐷)∑
𝑚=𝓁∕𝑟

𝑛−𝛿1𝑚 ≤ 2
𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁−𝛿1𝓁∕𝑟.

Since 𝛾 < 1∕2, we can simplify the above further to get

2
𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁−𝛿1𝓁∕𝑟 < 2
𝑟𝐷∑
𝓁=𝑟

𝑛−𝛿1𝓁∕𝑟 ≤ 4𝑛−𝛿1 ,

as desired. Now, let us assume 𝛽 ≥ 2𝛼. We have

𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁
min(𝑚𝓁−1,𝐷)∑

𝑚=𝓁∕𝑟

𝑛(𝛽−2𝛼+𝑜(1))𝑚

≤

𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁
(

𝐷 − 𝓁
𝑟
+ 1

)
𝑛(𝛽−2𝛼+𝑜(1))(𝑚𝓁−1)

≤

𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁+(𝛽−2𝛼+𝑜(1))(𝑚𝓁−1)+𝑜(1)

(18)

Let us now consider the coefficient of 𝑚𝓁 − 1 in the exponent of
𝑛. By the definition of 𝑚𝓁 in (10), we have

𝑚𝓁 − 1 < 𝓁
( 𝛾

𝛼
+ 𝛿

)
.

With this in hand, we have

(𝛽 − 2𝛼 + 𝑜(1))(𝑚𝓁 − 1)

< (𝛽 − 2𝛼 + 𝑜(1))
( 𝛾

𝛼
+ 𝛿

)
𝓁

<

(
𝛽𝛾

𝛼
− 2𝛾 + 𝑟𝛿

)
𝓁.
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From here it follows that the exponent in (18) can be bounded as

(2𝛾 − 1)𝓁 + (𝛽 − 2𝛼 + 𝑜(1))(𝑚𝓁 − 1) + 𝑜(1) ≤
(

𝛽𝛾

𝛼
− 1 + 2𝑟𝛿

)
𝓁

≤ −𝛿𝓁
(19)

where the last step holds in view of the condition 𝛼 > 𝛽𝛾 in (13),
once we choose 𝛿 = 𝛿(𝛼, 𝛽, 𝛾) > 0 to be sufficiently small. Then
(18) can be further bounded as

𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁+(𝛽−2𝛼+𝑜(1))(𝑚𝓁−1)+𝑜(1) ≤

𝑟𝐷∑
𝓁=𝑟

𝑛−𝛿𝓁 ≤ 2𝑛−𝛿𝑟,

as desired. ◽

Now, let us consider the bad subgraphs and bound the second
sum in (17).

Lemma 3.7. We have
∑

𝑆∈ 𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]2 = 𝑜(1).

Proof. Note that for 𝑆 ∈ 𝑆𝓁,𝑚 ⊆ , we have

𝑚𝓁 ≤ 𝑚 ≤ 𝐷.

From (9) and Lemma 3.5, we have∑
𝑆∈

𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]2

≤

𝑟𝐷∑
𝓁=𝑟

𝐷∑
𝑚=𝑚𝓁

∑
𝑆∈𝑆𝓁,𝑚

𝜌2𝓁
(

𝑚

𝑚𝓁 − 1

)2
𝑞2(𝑚−𝑚𝓁+1) (2𝑝)2(𝑚𝓁−1)

𝜎2𝑚

≤

𝑟𝐷∑
𝓁=𝑟

𝐷∑
𝑚=𝑚𝓁

𝑛𝓁(𝑒𝐷)𝑟𝑚𝜌2𝓁
( 𝑞

𝜎

)2(𝑚−𝑚𝓁+1)
(

2 𝑚 𝑝

𝜎

)2(𝑚𝓁−1)

≤

𝑟𝐷∑
𝓁=𝑟

𝐷∑
𝑚=𝑚𝓁

(𝑛𝜌2)𝓁
(

𝑒𝑟 𝐷𝑟 𝑞2

𝜎2

)𝑚(2 𝑚 𝑝

𝑞

)2(𝑚𝓁−1)

=
𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁 𝑛2(𝛽−𝛼+𝑜(1))(𝑚𝓁−1)
𝐷∑

𝑚=𝑚𝓁

𝑛(−𝛽+𝑜(1))𝑚,

where we use (8). Note that the coefficient of 𝑚 in the exponent
is negative for large enough 𝑛. Thus, we can further simplify the
above to ∑

𝑆∈
𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]2

≤ 2
𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁 𝑛2(𝛽−𝛼+𝑜(1))(𝑚𝓁−1) 𝑛(−𝛽+𝑜(1))𝑚𝓁

= 2
𝑟𝐷∑
𝓁=𝑟

𝑛(2𝛾−1)𝓁+(𝛽−2𝛼+𝑜(1))(𝑚𝓁−1)−𝛽+𝑜(1).

Once again, we consider two cases. First, let us assume 𝛽 < 2𝛼.
As 𝛾 < 1∕2, we have for 𝑛 large enough:

∑
𝑆∈

𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]2 ≤ 2
𝑟𝐷∑
𝓁=𝑟

𝑛−𝛽+𝑜(1)

≤ 2𝑟𝐷𝑛−𝛽+𝑜(1) ≤ 𝑛−𝛽∕2,

as desired. Now, let us assume 𝛽 ≥ 2𝛼. An identical argument as
in the proof of (19) shows that

(2𝛾 − 1)𝓁 + (𝛽 − 2𝛼 + 𝑜(1))(𝑚𝓁 − 1) − 𝛽 + 𝑜(1) ≤ −𝛿𝓁 − 𝛽.

In particular, we have

∑
𝑆∈

𝔼 [𝜙𝑆 (𝑌 )1{𝑌 ∈ }]2 ≤ 2
𝑟𝐷∑
𝓁=𝑟

𝑛−𝛿𝓁−𝛽 ≤ 4𝑛−𝛽−𝛿𝑟,

as desired. ◽

Proof of Proposition 3.2. It suffices to combine (17) with Lem-
mas 3.6 and 3.7. ◽

4 | Detection Upper Bound

As in the previous section, we split the analysis into two cases
based on the value 𝛾 . For 𝛾 ≥ 1∕2, we consider the signed count
of the total number of hyperedges in 𝐻 , as defined in (20). In par-
ticular, it is a linear function in the entries of the adjacency tensor
𝑌 . For 𝛾 < 1∕2, our statistic is the (unsigned) count of the occur-
rences of a certain balanced subhypergraph in 𝐻 , as defined in
(25). The size of the subhypergraph depends only on the fixed
parameters (𝛼, 𝛽, 𝛾) as given in Proposition 4.2. Therefore, the
statistic in (25) is a constant-degree polynomial in the entries of
𝑌 and can be computed in polynomial time.

Proof of Theorem 2.1. (upper bound). If 𝛾 ≥ 1∕2 and 𝛼 <

𝛽∕2 + 𝑟(𝛾 − 1∕2), Proposition 4.1 shows that the statistic 𝑇̃

defined in (20) strongly separates  and . If 𝛾 < 1∕2 and 𝛼 < 𝛽𝛾 ,
Proposition 4.3 shows that the statistic 𝑇 defined in (25) strongly
separates  and .

4.1 | Upper Bound for Large 𝜸

In the regime where 𝛾 ≥ 1∕2, we will use the signed count of
hyperedges in 𝐻 as our test statistic. Recall 𝑀 =

(
𝑛

𝑟

)
as defined

in §2, and [𝑀] denotes the set of all possible hyperedges. We
define

𝑇̃ ∶=
∑

𝑒∈[𝑀]
𝑌 𝑒 (20)

where 𝑌 𝑒 is defined in (1). Trivially, 𝑇̃ is a degree-1 polynomial of
the entries of 𝑌 .

Proposition 4.1. Suppose 𝑝 = 𝑛−𝛼 , 𝑞 = 𝑛−𝛽 , and 𝜌 = 𝑛𝛾−1 with
fixed 𝑟 ≥ 2, 0 < 𝛼 < 𝛽 < 𝑟 − 1, and 𝛾 ∈ (0, 1) such that

𝛾 ≥
1
2

, 𝛼 <
𝛽

2
+ 𝑟

(
𝛾 − 1

2

)
. (21)

For the statistic 𝑇̃ defined in (20), we have
√

Var (𝑇̃ ) ∨ Var(𝑇̃ ) =
𝑜
(||𝔼 [𝑇̃ ] − 𝔼[𝑇̃ ]||).

Let us first compute the expectation and variance under each
distribution.

9 of 16
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Lemma 4.1. We have

𝔼[𝑇̃ ] = 0, Var(𝑇̃ ) = 𝑀, 𝔼 [𝑇̃ ] = 𝑀 𝜌𝑟
(𝑝 − 𝑞

𝜎

)
,

Var (𝑇̃ ) ≤ 𝑀 + 2𝑀𝜌𝑟 𝑝

𝜎2 + 2 𝑀 𝑟𝑛𝑟−1𝜌2𝑟−1 𝑝2

𝜎2 .

Proof. Note that 𝑌 𝑒 is defined by standardizing 𝑌𝑒 under the
distribution , and 𝑌𝑒 and 𝑌𝑓 are independent under  for 𝑒 ≠ 𝑓 .
The results on 𝔼[𝑇̃ ] and Var(𝑡) follow immediately.

Let us now consider an edge 𝑒 ∈ [𝑀]. We have

𝔼 [𝑌 𝑒] = 𝜌𝑟
(𝑝 − 𝑞

𝜎

)
+ (1 − 𝜌𝑟) ⋅ 0 = 𝜌𝑟

(𝑝 − 𝑞

𝜎

)
,

which leads to the desired formula for 𝔼 [𝑇̃ ].

Now, we have the following for the variance under  :

Var (𝑇̃ ) =
∑

𝑒,𝑓∈[𝑀]
Cov (𝑌 𝑒, 𝑌 𝑓 ).

Notice that 𝑌 𝑒 and 𝑌 𝑓 are independent for 𝑒 ∩ 𝑓 = ø. It fol-
lows that

Var (𝑇̃ ) =
∑

𝑒,𝑓∈[𝑀],
𝑒∩𝑓≠ø

Cov (𝑌 𝑒, 𝑌 𝑓 )

=
∑

𝑒,𝑓∈[𝑀],
𝑒∩𝑓≠ø

(
𝔼 [𝑌 𝑒𝑌 𝑓 ] − 𝜌2𝑟

(𝑝 − 𝑞

𝜎

)2
)

≤
∑

𝑒∈[𝑀]
𝔼 [𝑌

2
𝑒
] +

∑
𝑒∈[𝑀]

∑
𝑓∈[𝑀]⧵𝑒,

𝑒∩𝑓≠ø

𝔼 [𝑌 𝑒𝑌 𝑓 ]

(22)

Let us consider the first term. We have

𝔼 [𝑌
2
𝑒
] = 𝜌𝑟

(
𝑝

(
1 − 𝑞

𝜎

)2

+ (1 − 𝑝)
( 𝑞

𝜎

)2
)

+ (1 − 𝜌𝑟)

(
𝑞

(
1 − 𝑞

𝜎

)2

+ (1 − 𝑞)
( 𝑞

𝜎

)2
)

≤ 𝜌𝑟

(
𝑝(1 − 𝑞)2 + (1 − 𝑝)𝑞2

𝜎2

)
+ 1

≤
2𝜌𝑟 𝑝

𝜎2 + 1,

as 𝑞2 < 𝑞 < 𝑝. For the second term in (22), let us first compute
𝔼 [𝑌 𝑒𝑌 𝑓 ]. As 𝑌 𝑒 and 𝑌 𝑓 are independent given 𝑍, we have

𝔼 [𝑌 𝑒𝑌 𝑓 ] = 𝔼𝑍 [𝔼 [𝑌 𝑒𝑌 𝑓 |𝑍]] = 𝔼𝑍 [𝔼 [𝑌 𝑒|𝑍]𝔼 [𝑌 𝑓 |𝑍]].

We note the following:

𝔼 [𝑌 𝑒|𝑍] =
(𝑝 − 𝑞

𝜎

)
1{𝑒 ⊆ 𝑍} + 0 ⋅ 1{𝑒 ⊈ 𝑍}

=
(𝑝 − 𝑞

𝜎

)
1{𝑒 ⊆ 𝑍}.

In particular, we have

𝔼 [𝑌 𝑒𝑌 𝑓 ] = 𝔼𝑍

[(𝑝 − 𝑞

𝜎

)2
1{𝑒 ∪ 𝑓 ⊆ 𝑍}

]
= 𝜌2𝑟−|𝑒∩𝑓 |(𝑝 − 𝑞

𝜎

)2

≤
𝜌2𝑟−|𝑒∩𝑓 | 𝑝2

𝜎2 ,

where the last step follows since 𝑝 > 𝑞. Putting these bounds
together with (22), we now have

Var (𝑇̃ ) ≤ 𝑀 + 2𝑀𝜌𝑟𝑝

𝜎2 + 𝜌2𝑟𝑝2

𝜎2

∑
𝑒∈[𝑀]

∑
𝑓∈[𝑀]⧵𝑒,

𝑒∩𝑓≠ø

𝜌−|𝑒∩𝑓 |.

Let us fix 𝑒. We will consider bounding

∑
𝑓∈[𝑀]⧵𝑒,

𝑒∩𝑓≠ø

𝜌−|𝑒∩𝑓 | ≤ 𝑟−1∑
𝑠=1

∑
𝑣1 , . . . ,𝑣𝑠∈𝑒

∑
𝑓∈[𝑀],

𝑣1 , . . . ,𝑣𝑠∈𝑓

𝜌−𝑠.

For a fixed 𝑣1, . . . , 𝑣𝑠, there are at most
(

𝑛

𝑟−𝑠

)
≤ 𝑛𝑟−𝑠 choices for

𝑓 . Similarly, there are at most
(

𝑟

𝑠

)
≤ 𝑟𝑠 choices for 𝑣1, . . . , 𝑣𝑠. It

follows that

∑
𝑓∈[𝑀]⧵𝑒,

𝑒∩𝑓≠ø

𝜌−|𝑒∩𝑓 | ≤ 𝑟−1∑
𝑠=1

𝑟𝑠𝑛𝑟−𝑠𝜌−𝑠 = 𝑛𝑟

𝑟−1∑
𝑠=1

(
𝑟

𝑛𝜌

)𝑠

.

Note that 𝑛𝜌 = 𝑛𝛾 ≫ 𝑟 and so we have∑
𝑓∈[𝑀]⧵𝑒,

𝑒∩𝑓≠ø

𝜌−|𝑒∩𝑓 | ≤ 2𝑟𝑛𝑟−1𝜌−1.

Plugging this value in for our variance computation, we get

Var (𝑇̃ ) ≤ 𝑀 + 2𝑀𝜌𝑟𝑝

𝜎2 + 2𝑀𝑟𝑛𝑟−1𝜌2𝑟−1𝑝2

𝜎2 ,

as desired. ◽

Proof of Proposition 4.1. Lemma 4.1 implies that it is enough
to show

𝑀2𝜌2𝑟
(𝑝 − 𝑞

𝜎

)2
≫ 𝑀 + 2𝑀𝜌𝑟 𝑝

𝜎2 + 2 𝑀 𝑟𝑛𝑟−1𝜌2𝑟−1 𝑝2

𝜎2

⇔ 𝜌2𝑟
(𝑝 − 𝑞

𝜎

)2
≫

1
𝑀

+ 2𝜌𝑟 𝑝

𝑀𝜎2 + 2 𝑟𝑛𝑟−1𝜌2𝑟−1 𝑝2

𝑀𝜎2 .

Let us first lower bound the left-hand side. From (8), we have

𝐿𝐻𝑆 ≥
𝜌2𝑟𝑝2

𝑒2𝑞
= 𝑒−2𝑛2𝑟(𝛾−1)+𝛽−2𝛼.

Next, let us upper bound the right-hand side. Note that 𝑀 =(
𝑛

𝑟

)
≥

(
𝑛

𝑟

)𝑟

so that 1
𝑀

= 𝑛−𝑟+𝑜(1). From (8), we have

𝑅𝐻𝑆 ≤ 𝑛−𝑟+𝑜(1) + 𝑛𝑟(𝛾−2)+𝛽−𝛼+𝑜(1) + 𝑛−1+(2𝑟−1)(𝛾−1)+𝛽−2𝛼+𝑜(1).

It remains to verify that

2𝑟(𝛾 − 1) + 𝛽 − 2𝛼 > −𝑟 + 𝑜(1),

2𝑟(𝛾 − 1) + 𝛽 − 2𝛼 > 𝑟(𝛾 − 2) + 𝛽 − 𝛼 + 𝑜(1),

2𝑟(𝛾 − 1) + 𝛽 − 2𝛼 > −1 + (2𝑟 − 1)(𝛾 − 1) + 𝛽 − 2𝛼 + 𝑜(1),

using the assumption (21), which is straightforward. ◽

10 of 16 Random Structures & Algorithms, 2025

 10982418, 2025, 1, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/rsa.21279 by C

ochrane France, W
iley O

nline L
ibrary on [19/12/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4.2 | Upper Bound for Small 𝜸

In this subsection, we will assume

𝛾 <
1
2

, 𝛼 < 𝛽 𝛾. (23)

As in the previous subsection, we will define a test statistic 𝑇 to
distinguish between  and .

4.2.1 | Balanced Hypergraphs

The statistic 𝑇 we choose will count the occurrences of a specific
hypergraph 𝐻̃ in 𝐻 . We first define balanced hypergraphs.

Definition 4.1. A hypergraph 𝐻 is balanced if for every
nonempty 𝐻 ′ ⊆ 𝐻 , we have|𝐸(𝐻 ′)||𝑉 (𝐻 ′)| ≤ |𝐸(𝐻)||𝑉 (𝐻)| .
Let us now define our hypergraph of interest 𝐻̃ , whose existence
is guaranteed by [39] for 𝑟 = 2 and by [40] in the general case.

Proposition 4.2. Assuming (23), there exists a balanced
hypergraph 𝐻̃ with 𝓁 vertices and 𝑚 edges satisfying

1
𝛽

<
𝑚

𝓁
<

𝛾

𝛼
(24)

Proof. Since 𝛼 < 𝛽𝛾 by assumption, there is a rational number 𝜆

such that 1
𝛽

< 𝜆 < 𝛾

𝛼
. Furthermore, note that 𝜆 > 1

𝛽
≥

1
𝑟−1

. By [40,
Theorem 2], there exists a balanced hypergraph with 𝓁 vertices
and 𝑚 edges such that 𝑚

𝓁
= 𝜆, completing the proof. ◽

Similar to (2), we define

𝜓𝑆 (𝑌 ) ∶=
∏
𝑒∈𝑆

𝑌𝑒, ∀𝑆 ⊆ [𝑀].

With 𝐻̃ in hand, we are ready to define 𝑇 :

𝑇 ∶=
∑
𝑆∈

𝜓𝑆 (𝑌 ), where  ∶= {𝑆 ⊆ [𝑀] ∶ 𝐾𝑟
𝑛
[𝑆] ≅ 𝐻̃}

(25)

In particular, 𝑇 counts the number of edge-induced subgraphs
in 𝐻 isomorphic to 𝐻̃ . Since the number of edges 𝑚 in 𝐻̃

is a constant depending only on (𝛼, 𝛽, 𝛾), the statistic 𝑇 is a
constant-degree polynomial in the entries of 𝑌 . We remark that 𝑇

is taken to be the (unsigned) count rather than the signed count
mainly for technical convenience. The fact that 𝜓𝑆 (𝑌 ) takes value
only in {0, 1} simplifies the computation of the variance of 𝑇 .

Before turning to the main result of this section, we note a simple
fact about balanced hypergraphs that will be useful in the proof
later.

Claim 4.1. Let 𝐻 be a balanced hypergraph and let 𝐻 ′ be a
proper subhypergraph of 𝐻 with 𝑉 (𝐻 ′) ⊊ 𝑉 (𝐻). Then,

|𝐸(𝐻)| − |𝐸(𝐻 ′)||𝑉 (𝐻)| − |𝑉 (𝐻 ′)| ≥ |𝐸(𝐻)||𝑉 (𝐻)| .
Proof. If 𝐻 ′ = ø, the inequality holds trivially. Therefore, we
may assume 𝐻 ′ is nonempty. As 𝐻 is balanced and 𝐻 ′ is
nonempty, by Definition 4.1 we have

|𝐸(𝐻)| − |𝐸(𝐻 ′)||𝑉 (𝐻)| − |𝑉 (𝐻 ′)| ≥ |𝐸(𝐻)| − |𝑉 (𝐻 ′)| |𝐸(𝐻)||𝑉 (𝐻)||𝑉 (𝐻)| − |𝑉 (𝐻 ′)|
= |𝐸(𝐻)|(|𝑉 (𝐻)| − |𝑉 (𝐻 ′)|)|𝑉 (𝐻)|(|𝑉 (𝐻)| − |𝑉 (𝐻 ′)|) = |𝐸(𝐻)||𝑉 (𝐻)| ,

as desired. ◽

4.2.2 | Strong Separation

We now show that the statistic 𝑇 strongly separates  and  in
the regime of interest.

Proposition 4.3. Suppose 𝑝 = 𝑛−𝛼 , 𝑞 = 𝑛−𝛽 , and 𝜌 = 𝑛𝛾−1 with
fixed 𝑟 ≥ 2, 0 < 𝛼 < 𝛽 < 𝑟 − 1, and 𝛾 ∈ (0, 1) such that (23) holds.
The statistic 𝑇 defined in (25) satisfies

√
Var (𝑇 ) ∨ Var(𝑇 ) =

𝑜
(||𝔼 [𝑇 ] − 𝔼[𝑇 ]||).

Let us first consider 𝑇 under . We have the following lemma.

Lemma 4.2. With 𝑇 as defined in (25), we have

𝔼[𝑇 ] = 𝑁 𝑞𝑚, Var(𝑇 )

≤ max
{
𝑚2 𝑁 𝑛𝓁(1−1∕𝑚) 𝓁𝑟(𝑚−1) 𝑞2𝑚−1, 𝑚𝑚+1𝔼[𝑇 ]

}
,

where 𝑁 = ||.
Proof. As 𝑌𝑒 and 𝑌𝑓 are independent for 𝑒 ≠ 𝑓 under, we note
that for any 𝑆 ⊆ [𝑀], we have

𝜓𝑆 (𝑌 ) ∼ Ber(𝑞𝑚),

from where the result on𝔼[𝑇 ] follows. For the variance, we have

Var(𝑇 ) =
∑

𝑆1 ,𝑆2∈
Cov

(
𝜓𝑆1

(𝑌 ), 𝜓𝑆2
(𝑌 )

)
.

Note that 𝜓𝑆1
(𝑌 ) and 𝜓𝑆2

(𝑌 ) are independent if 𝑆1 ∩ 𝑆2 = ø. Fur-
thermore, we have

𝜓𝑆1
(𝑌 )𝜓𝑆2

(𝑌 ) =
∏
𝑒∈𝑆1

𝑌𝑒

∏
𝑒∈𝑆2

𝑌𝑒 =
∏

𝑒∈𝑆1∩𝑆2

𝑌 2
𝑒

∏
𝑒∈𝑆1Δ𝑆2

𝑌𝑒 =
∏

𝑒∈𝑆1∩𝑆2

𝑌𝑒

∏
𝑒∈𝑆1Δ𝑆2

𝑌𝑒 =
∏

𝑒∈𝑆1∪𝑆2

𝑌𝑒,

as 𝑌 2
𝑒
= 𝑌𝑒. In particular, we can bound the variance by

Var(𝑇 )

=
∑

𝑆1 ,𝑆2∈ ,

𝑆1∩𝑆2≠ø

Cov
(
𝜓𝑆1

(𝑌 ), 𝜓𝑆2
(𝑌 )

)
=

∑
𝑆1 ,𝑆2∈ ,

𝑆1∩𝑆2≠ø

(
𝔼

[
𝜓𝑆1

(𝑌 )𝜓𝑆2
(𝑌 )

]
− 𝔼

[
𝜓𝑆1

(𝑌 )
]
𝔼

[
𝜓𝑆2

(𝑌 )
])

≤
∑

𝑆1 ,𝑆2∈ ,

𝑆1∩𝑆2≠ø

𝔼

[
𝜓𝑆1∪𝑆2

(𝑌 )
]

=
∑

𝑆1 ,𝑆2∈ ,

𝑆1∩𝑆2≠ø

𝑞|𝑆1∪𝑆2| = 𝑞2𝑚
∑

𝑆1 ,𝑆2∈ ,

𝑆1∩𝑆2≠ø

𝑞−|𝑆1∩𝑆2|

(26)

Let us fix 𝑆1. We will consider bounding

11 of 16
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∑
𝑆2∈ ,

𝑆1∩𝑆2≠ø

𝑞−|𝑆1∩𝑆2| ≤ 𝑚∑
𝑚′=1

∑
𝑆′⊆𝑆1 ,|𝑆′ |=𝑚′

∑
𝑆2∈ ,

𝑆′⊆𝑆2

𝑞−𝑚′
. (27)

Let us first consider a fixed 𝑆′ and bound the number of choices
for 𝑆2 in the inner-most sum. There are at most 𝑛𝓁−|𝑉 (𝑆′)| choices
for the remaining vertices of 𝑆2 and at most 𝓁𝑟(𝑚−𝑚′) choices for
the remaining edges 𝑆2 ⧵ 𝑆′. We note that, as 𝑆′ ⊆ 𝑆1 and 𝐾𝑟

𝑛
[𝑆1]

is isomorphic to a balanced hypergraph 𝐻̃ , we have

|𝑆′||𝑉 (𝑆′)| ≤ 𝑚

𝓁
⇒ |𝑉 (𝑆′)| ≥ 𝓁|𝑆′|

𝑚
.

In particular, we can bound (27) by∑
𝑆2∈ ,

𝑆1∩𝑆2≠ø

𝑞−|𝑆1∩𝑆2|

≤

𝑚∑
𝑚′=1

∑
𝑆′⊆𝑆1 ,|𝑆′ |=𝑚′

𝑛𝓁−|𝑉 (𝑆′)| 𝓁𝑟(𝑚−𝑚′) 𝑞−𝑚′

≤ 𝑛𝓁 𝓁𝑟𝑚

𝑚∑
𝑚′=1

(
𝑚

𝓁𝑟 𝑛𝓁∕𝑚 𝑞

)𝑚′

,

where we use the fact that there are at most 𝑚𝑚′ choices for 𝑆′,
given 𝑆1. Note that the sum above is dominated by either the first
or last term. Therefore, we get

∑
𝑆2∈ ,

𝑆1∩𝑆2≠ø

𝑞−|𝑆1∩𝑆2| ≤ 𝑚𝑛𝓁𝓁𝑟𝑚 max
{

𝑚

𝓁𝑟𝑛𝓁∕𝑚𝑞
,

(
𝑚

𝓁𝑟𝑛𝓁∕𝑚𝑞

)𝑚}
.

With this in hand, we return to our original computation of the
variance to get

Var(𝑇 ) ≤ 𝑚 𝑁 𝑞2𝑚 𝑛𝓁 𝓁𝑟𝑚 max
{

𝑚

𝓁𝑟 𝑛𝓁∕𝑚 𝑞
,

(
𝑚

𝓁𝑟 𝑛𝓁∕𝑚 𝑞

)𝑚}
= max

{
𝑚2 𝑁 𝑛𝓁(1−1∕𝑚) 𝓁𝑟(𝑚−1) 𝑞2𝑚−1, 𝑚𝑚+1𝑁 𝑞𝑚

}
,

as desired. ◽

Before studying the expectation and variance of 𝑇 under  , we
establish the following lemma.

Lemma 4.3. Fix 𝑆1, 𝑆2 ∈  as defined in (25). Assume (23)
and (24). Then we have

𝔼

[
𝜓𝑆1∪𝑆2

(𝑌 )
]
≤ 22𝓁𝜌|𝑉 (𝑆1∪𝑆2)|𝑝|𝑆1∪𝑆2|.

Proof. By considering all possible realizations of 𝑉 (𝑆1 ∪ 𝑆2) ∩
𝑍, we have

𝔼

[
𝜓𝑆1∪𝑆2

(𝑌 )
]

=
∑

𝑉 ′⊆𝑉 (𝑆1∪𝑆2)
(𝑉 (𝑆1 ∪ 𝑆2) ∩ 𝑍 = 𝑉 ′) (𝜓𝑆1∪𝑆2

(𝑌 )

= 1|𝑉 (𝑆1 ∪ 𝑆2) ∩ 𝑍 = 𝑉 ′)

≤
∑

𝑉 ′⊆𝑉 (𝑆1∪𝑆2)
𝜌|𝑉 ′|𝑝|𝐸(𝑉 ′)| 𝑞|𝑆1∪𝑆2|−|𝐸(𝑉 ′)|,

where 𝐸(𝑉 ′) consists of the edges in 𝑆1 ∪ 𝑆2 whose vertices are
contained entirely in 𝑉 ′. We claim that the summand above is

maximized when 𝑉 ′ = 𝑉 (𝑆1 ∪ 𝑆2). Given the claim, each sum-
mand is bounded by 𝜌|𝑉 (𝑆1∪𝑆2)| 𝑝|𝑆1∪𝑆2|, and there are at most 22𝓁

choices of 𝑉 ′. Thus, the result follows.

To prove the claim, we first note that if 𝑉 ′ maximizes
𝜌|𝑉 ′|𝑝|𝐸(𝑉 ′)| 𝑞|𝑆1∪𝑆2|−|𝐸(𝑉 ′)|, then the subgraph (𝑉 ′, 𝐸(𝑉 ′)) has no
isolated vertices. This is because removing isolated vertices from
𝑉 ′ only decreases the exponent in 𝜌, which then increases the
overall value as 𝜌 < 1. As a result, we may instead consider the
problem

max
𝑆′⊆𝑆1∪𝑆2

𝜌|𝑉 (𝑆′)|𝑝|𝑆′|𝑞|𝑆1∪𝑆2|−|𝑆′|,
where 𝑉 (𝑆′) is the set of vertices induced by 𝑆′. We will show
that the maximizer is 𝑆′ = 𝑆1 ∪ 𝑆2. We make the following
definitions:

𝑆 ∶= 𝑆1 ∪ 𝑆2, 𝑆′
1 ∶= 𝑆′ ∩ 𝑆1, 𝑆′

2 ∶= 𝑆′ ⧵ 𝑆′
1.

In particular, 𝑆′
𝑖

⊆ 𝑆𝑖 and 𝑆′
2 ∩ 𝑆′

1 = 𝑆′
2 ∩ 𝑆1 = ø. The goal is to

show the following:

𝜌|𝑉 (𝑆)|𝑝|𝑆| ≥ 𝜌|𝑉 (𝑆′)|𝑝|𝑆′|𝑞|𝑆|−|𝑆′|,
which is equivalent to showing

𝜌|𝑉 (𝑆)|−|𝑉 (𝑆′)|(𝑝

𝑞

)|𝑆|−|𝑆′|
≥ 1. (28)

Let us first consider the exponent of 𝑝∕𝑞. We have

|𝑆| − |𝑆′| = |𝑆1| + |𝑆2| − |𝑆1 ∩ 𝑆2| − |𝑆′
1| − |𝑆′

2|
= |𝑆1| − |𝑆′

1| + |𝑆2| − |(𝑆1 ∩ 𝑆2) ∪ 𝑆′
2|,

as 𝑆′
2 ∩ 𝑆1 ∩ 𝑆2 = ø. Next, let us consider the exponent of 𝜌.

We have

|𝑉 (𝑆)| − |𝑉 (𝑆′)| = |𝑉 (𝑆1)| + |𝑉 (𝑆2)| − |𝑉 (𝑆1) ∩ 𝑉 (𝑆2)|
− |𝑉 (𝑆′

1)| − |𝑉 (𝑆′
2)| + |𝑉 (𝑆′

1) ∩ 𝑉 (𝑆′
2)|

= |𝑉 (𝑆1)| − |𝑉 (𝑆′
1)| + |𝑉 (𝑆2)| − |𝑉 (𝑆1) ∩ 𝑉 (𝑆2)|

− |𝑉 (𝑆′
2)| + |𝑉 (𝑆′

1) ∩ 𝑉 (𝑆′
2)|.

We note the following:

𝑉 (𝑆′
1) ∩ 𝑉 (𝑆′

2) ⊆ 𝑉 (𝑆1) ∩ 𝑉 (𝑆2) ∩ 𝑉 (𝑆′
2),

as 𝑆′
𝑖

⊆ 𝑆𝑖. Therefore,

|𝑉 (𝑆)| − |𝑉 (𝑆′)|
≤ |𝑉 (𝑆1)| − |𝑉 (𝑆′

1)| + |𝑉 (𝑆2)| − |𝑉 (𝑆1) ∩ 𝑉 (𝑆2)| − |𝑉 (𝑆′
2)|

+ |𝑉 (𝑆1) ∩ 𝑉 (𝑆2) ∩ 𝑉 (𝑆′
2)|

≤ |𝑉 (𝑆1)| − |𝑉 (𝑆′
1)| + |𝑉 (𝑆2)| − |(𝑉 (𝑆1) ∩ 𝑉 (𝑆2)) ∪ 𝑉 (𝑆′

2)|
≤ |𝑉 (𝑆1)| − |𝑉 (𝑆′

1)| + |𝑉 (𝑆2)| − |𝑉 ((𝑆1 ∩ 𝑆2) ∪ 𝑆′
2)|,

where the last inequality follows from the fact that

𝑉 ((𝑆1 ∩ 𝑆2) ∪ 𝑆′
2) = 𝑉 (𝑆1 ∩ 𝑆2) ∪ 𝑉 (𝑆′

2)

⊆ (𝑉 (𝑆1) ∩ 𝑉 (𝑆2)) ∪ 𝑉 (𝑆′
2).
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We can now simplify the LHS of (28) to get:

𝜌|𝑉 (𝑆)|−|𝑉 (𝑆′)|(𝑝

𝑞

)|𝑆|−|𝑆′|

≥ 𝜌|𝑉 (𝑆1)|−|𝑉 (𝑆′
1)|+|𝑉 (𝑆2)|−|𝑉 ((𝑆1∩𝑆2)∪𝑆′

2)|(
𝑝

𝑞

)|𝑆1|−|𝑆′
1|+|𝑆2|−|(𝑆1∩𝑆2)∪𝑆′

2|

= 𝜌|𝑉 (𝑆1)|−|𝑉 (𝑆′
1)|(𝑝

𝑞

)|𝑆1|−|𝑆′
1|
𝜌|𝑉 (𝑆2)|−|𝑉 ((𝑆1∩𝑆2)∪𝑆′

2)|
(

𝑝

𝑞

)|𝑆2|−|(𝑆1∩𝑆2)∪𝑆′
2|
.

Hence, it suffices to show that

𝜌|𝑉 (𝑆1)|−|𝑉 (𝑆′
1)|(𝑝

𝑞

)|𝑆1|−|𝑆′
1|
≥ 1 (29a)

𝜌|𝑉 (𝑆2)|−|𝑉 ((𝑆1∩𝑆2)∪𝑆′
2)|(𝑝

𝑞

)|𝑆2|−|(𝑆1∩𝑆2)∪𝑆′
2|
≥ 1 (29b)

We now prove (29a). The proof of (29b) is the same once 𝑆1
is replaced by 𝑆2 and 𝑆′

1 is replaced by (𝑆1 ∩ 𝑆2) ∪ 𝑆′
2. First,

if 𝑉 (𝑆′
1) = 𝑉 (𝑆1), then the LHS of (29a) can be simplified to

( 𝑝

𝑞
)|𝑆1|−|𝑆′

1|, which is at least 1 as 𝑝 > 𝑞. Therefore, we may assume
that 𝑉 (𝑆′

1) ⊊ 𝑉 (𝑆1). Recall that 𝐾𝑟
𝑛
[𝑆1] is isomorphic to 𝐻̃ , a bal-

anced hypergraph with 𝓁 vertices and 𝑚 edges. By Claim 4.1,
we have

𝜌|𝑉 (𝑆1)|−|𝑉 (𝑆′
1)|(𝑝

𝑞

)|𝑆1|−|𝑆′
1|

=
⎛⎜⎜⎝𝜌

(
𝑝

𝑞

) |𝑆1 |−|𝑆′
1 ||𝑉 (𝑆1 )|−|𝑉 (𝑆′

1 )| ⎞⎟⎟⎠
|𝑉 (𝑆1)|−|𝑉 (𝑆′

1)|

≥

(
𝜌

(
𝑝

𝑞

)𝑚∕𝓁
)|𝑉 (𝑆1)|−|𝑉 (𝑆′

1)|
.

Note that

𝜌

(
𝑝

𝑞

)𝑚∕𝓁

= 𝑛𝛾−1+(𝛽−𝛼)𝑚∕𝓁 .

It is enough to show the exponent above is nonnegative, which
holds if (𝛽 − 𝛼)𝑚 ≥ (1 − 𝛾)𝓁. From (23) and (24), we have

(𝛽 − 𝛼)𝑚 > (𝛽 − 𝛽𝛾)𝑚 = (1 − 𝛾)𝛽𝑚 > (1 − 𝛾)𝓁,

as desired. ◽

Let us now bound expectation and variance of 𝑇 under  .

Lemma 4.4. With 𝑇 as defined in (25), we have

𝔼 [𝑇 ] ≥ 𝑁𝜌𝓁𝑝𝑚, Var (𝑇 ) ≤ 8𝓁𝑁𝑛𝓁−1𝓁1+𝑟𝑚𝜌2𝓁−1𝑝2𝑚−𝑚∕𝓁 ,

where 𝑁 = ||.
Proof. As 𝑌𝑒 and 𝑌𝑓 are conditionally independent for 𝑒 ≠ 𝑓

given 𝑍, we note that for a specific 𝑆 ∈  , we have


(
𝜓𝑆 (𝑌 ) = 1|𝑉 (𝑆) ⊆ 𝑍

)
= 𝑝𝑚.

In addition, 𝜓𝑆 (𝑌 ) ∈ {0, 1}, so we have

𝔼 [𝑇 ] ≥
∑
𝑆∈

(𝑉 (𝑆) ⊆ 𝑍) 
(
𝜓𝑆 (𝑌 ) = 1|𝑉 (𝑆) ⊆ 𝑍

)
= 𝑁𝜌𝓁𝑝𝑚.

For the variance, we note that 𝑧𝑖 and 𝑧𝑗 are independent for 𝑖 ≠ 𝑗

and so 𝜓𝑆1
(𝑌 ) and 𝜓𝑆2

(𝑌 ) are independent if 𝑉 (𝑆1) ∩ 𝑉 (𝑆2) = ø.
Using again the argument that gives (26), we obtain

Var (𝑇 ) =
∑

𝑆1 ,𝑆2∈ ,

𝑉 (𝑆1 )∩𝑉 (𝑆2 )≠ø

Cov
(
𝜓𝑆1

(𝑌 ), 𝜓𝑆2
(𝑌 )

)
≤

∑
𝑆1 ,𝑆2∈ ,

𝑉 (𝑆1 )∩𝑉 (𝑆2 )≠ø

𝔼

[
𝜓𝑆1∪𝑆2

(𝑌 )
]
.

By Lemma 4.3, we then get

Var (𝑇 ) ≤
∑

𝑆1 ,𝑆2∈ ,

𝑉 (𝑆1 )∩𝑉 (𝑆2 )≠ø

22𝓁𝜌|𝑉 (𝑆1∪𝑆2)|𝑝|𝑆1∪𝑆2|

= 22𝓁 𝜌2𝓁 𝑝2𝑚
∑

𝑆1 ,𝑆2∈ ,

𝑉 (𝑆1 )∩𝑉 (𝑆2 )≠ø

𝜌−|𝑉 (𝑆1)∩𝑉 (𝑆2)|𝑝−|𝑆1∩𝑆2| (30)

where we use the facts

|𝑆1 ∪ 𝑆2| = 2𝑚 − |𝑆1 ∩ 𝑆2|, |𝑉 (𝑆1 ∪ 𝑆2)| =|𝑉 (𝑆1) ∪ 𝑉 (𝑆2)| = 2𝓁 − |𝑉 (𝑆1) ∩ 𝑉 (𝑆2)|.
As in the proof of Lemma 4.2, let us fix 𝑆1 and bound the
following: ∑

𝑆2∈ ,

𝑉 (𝑆1 )∩𝑉 (𝑆2 )≠ø

𝜌−|𝑉 (𝑆1)∩𝑉 (𝑆2)|𝑝−|𝑆1∩𝑆2|

≤

𝓁∑
𝓁′=1

∑
𝑉 ′⊆𝑉 (𝑆1 ),|𝑉 ′ |=𝓁′

∑
𝑆2∈ ,

𝑉 ′⊆𝑉 (𝑆2 )

𝜌−𝓁
′
𝑝−|𝑆1∩𝑆2| (31)

Let us first consider a fixed 𝑉 ′ and bound the number of choices
for 𝑆2 in the inner-most sum. There are at most 𝑛𝓁−𝓁′ choices
for the remaining vertices in 𝑆2 and at most 𝓁𝑟𝑚 possible choices
for the edges in 𝑆2. Note that 𝑉 (𝑆1 ∩ 𝑆2) ⊆ 𝑉 (𝑆1) ∩ 𝑉 (𝑆2). Fur-
thermore, as 𝑆1 ∩ 𝑆2 ⊆ 𝑆2 and 𝐾𝑟

𝑛
[𝑆2] is a balanced hypergraph,

we have |𝑆1 ∩ 𝑆2||𝑉 (𝑆1) ∩ 𝑉 (𝑆2)| ≤ |𝑆1 ∩ 𝑆2||𝑉 (𝑆1 ∩ 𝑆2)| ≤ 𝑚

𝓁
.

In particular, we can bound (31) by∑
𝑆2∈ ,

𝑉 (𝑆1 )∩𝑉 (𝑆2 )≠ø

𝜌−|𝑉 (𝑆1)∩𝑉 (𝑆2)|𝑝−|𝑆1∩𝑆2|

≤

𝓁∑
𝓁′=1

∑
𝑉 ′⊆𝑉 (𝑆1 ),|𝑉 ′ |=𝓁′

𝑛𝓁−𝓁
′
𝓁𝑟𝑚 𝜌−𝓁

′
𝑝−𝑚𝓁′∕𝓁

≤ 𝑛𝓁 𝓁𝑟𝑚

𝓁∑
𝓁′=1

(
𝓁

𝑛𝜌 𝑝𝑚∕𝓁

)𝓁′

,

where we use the fact that there are at most 𝓁𝓁′ choices for 𝑉 ′

given 𝑆1. Let us consider the term in the sum. We have

𝓁
𝑛𝜌𝑝𝑚∕𝓁 = 𝓁𝑛𝛼𝑚∕𝓁−𝛾 .
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Note that as a result of (24), we have

𝛼
𝑚

𝓁
− 𝛾 < 0.

In particular, we have for some small constant 𝛿 = 𝛿(𝛼, 𝛽, 𝛾) > 0:

𝓁
𝑛𝜌𝑝𝑚∕𝓁 ≤ 𝓁𝑛−𝛿 <

1
2

.

Finally, we can bound (31) as follows:

∑
𝑆2∈ ,

𝑉 (𝑆1 )∩𝑉 (𝑆2 )≠ø

𝜌−|𝑉 (𝑆1)∩𝑉 (𝑆2)|𝑝−|𝑆1∩𝑆2| ≤ 2𝑛𝓁𝓁𝑟𝑚

(
𝓁

𝑛𝜌𝑝𝑚∕𝓁

)
.

With this in hand, we return to our original computation for the
variance in (30) to get

Var (𝑇 ′) ≤ 22𝓁+1 𝑁 𝑛𝓁 𝓁𝑟𝑚𝜌2𝓁 𝑝2𝑚

(
𝓁

𝑛𝜌 𝑝𝑚∕𝓁

)
≤ 8𝓁 𝑁 𝑛𝓁−1 𝓁1+𝑟𝑚 𝜌2𝓁−1𝑝2𝑚−𝑚∕𝓁 ,

as desired. ◽

Proof of Proposition 4.3. Let 𝜆 ∶= 𝑁 𝜌𝓁 𝑝𝑚. By Lemma 4.4,
we have 𝔼 [𝑇 ] ≥ 𝜆. Therefore, it suffices to show that

1. 𝔼[𝑇 ] = 𝑜(𝜆),

2. Var(𝑇 ) = 𝑜(𝜆2),

3. Var (𝑇 ) = 𝑜(𝜆2).

Let us first consider 𝔼[𝑇 ]. By Lemma 4.2, we have

𝔼[𝑇 ]
𝜆

= 𝑁𝑞𝑚

𝑁𝜌𝓁𝑝𝑚
= 𝑛(1−𝛾)𝓁−(𝛽−𝛼)𝑚

< 𝑛(1−𝛾)𝓁−𝛽(1−𝛾)𝑚 = 𝑛(1−𝛾)(𝓁−𝛽𝑚) = 𝑜(1),

where the bounds follow from the conditions 𝛼 < 𝛽𝛾 in (23), 𝓁 <

𝑚𝛽 in (24), and 1 − 𝛾 > 0. This completes the proof of Condition 1.

Now, let us consider the bound on Var(𝑇 ) from Lemma 4.2. We
note the following

𝑁 ≥

(
𝑛

𝓁

)
≥

(
𝑛

𝓁

)𝓁
.

With this and the above bound on 𝔼[𝑇 ], we have

𝑚𝑚+1𝔼[𝑇 ]
𝜆2 ≪

𝑚𝑚+1

𝜆
≤

𝑚𝑚+1𝓁𝓁

𝑛𝓁𝜌𝓁𝑝𝑚
= 𝑛𝛼𝑚−𝛾𝓁+𝑜(1) = 𝑜(1),

because 𝛼𝑚 < 𝛾𝓁 by (24). Now, in order to prove Condition 2, it
remains to bound the following:

𝑚2 𝑁 𝑛𝓁(1−1∕𝑚) 𝓁𝑟(𝑚−1) 𝑞2𝑚−1

𝜆2 = 𝑚2 𝑛𝓁(1−1∕𝑚) 𝓁𝑟(𝑚−1) 𝑞2𝑚−1

𝑁𝜌2𝓁𝑝2𝑚

≤
𝑚2 𝑛−𝓁∕𝑚 𝓁𝓁+𝑟(𝑚−1) 𝑞2𝑚−1

𝜌2𝓁𝑝2𝑚

= 𝑛−𝓁∕𝑚+𝛽+2𝓁(1−𝛾)−2𝑚(𝛽−𝛼)+𝑜(1)

(32)

Let us consider the exponent in (32). As a result of (23), we have

− 𝓁∕𝑚 + 𝛽 + 2𝓁(1 − 𝛾) − 2𝑚(𝛽 − 𝛼)

=
(

1 − 𝛾 − 1
2𝑚

)
2𝓁 −

(
𝛽
(

1 − 1
2𝑚

)
− 𝛼

)
2𝑚

<
(

1 − 𝛾 − 1
2𝑚

)
2𝓁 − 2𝑚𝛽

(
1 − 𝛾 − 1

2𝑚

)
= 2

(
1 − 𝛾 − 1

2𝑚

)
(𝓁 − 𝑚𝛽).

Since 𝛾 < 1∕2 and 𝑚 ≥ 1, we have 1 − 𝛾 − 1∕(2𝑚) > 0. In addi-
tion, 𝓁 < 𝑚𝛽 as a result of (24). Hence, the quantity above is neg-
ative, and so (32) is 𝑜(1). Putting it all together, we have proved
Var(𝑇 )

𝜆2 = 𝑜(1), which is Condition 2.

Finally, let us consider the bound on Var (𝑇 ) in Lemma 4.4.
We have

Var (𝑇 )
𝜆2 ≤

8𝓁 𝑁 𝑛𝓁−1 𝓁1+𝑟𝑚 𝜌2𝓁−1𝑝2𝑚−𝑚∕𝓁

𝑁2𝜌2𝓁𝑝2𝑚

≤
8𝓁 𝓁1+𝑟𝑚+𝓁

𝑛𝜌 𝑝𝑚∕𝓁 = 𝑛𝛼𝑚∕𝓁−𝛾+𝑜(1) = 𝑜(1),

where we again use 𝑁 ≥

(
𝑛

𝓁

)𝓁
and 𝛼𝑚∕𝓁 − 𝛾 < 0 by (24). This

proves Condition 3. ◽
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Appendix A

Detection-Refutation Gap

Here we justify the claim that for 𝛾 > 1∕2 we expect an inherent
detection-refutation gap, implying that tests based on checking feasi-
bility of a convex relaxation (e.g., the sum-of-squares program of [31])
are strictly suboptimal for detection. We focus throughout on the graph
case 𝑟 = 2.

We first formally define the refutation task. We say that a graph contains
a “dense subgraph” if there is a subgraph on (1 ± 𝑜(1))𝜌𝑛 vertices with
(1 ± 𝑜(1))𝑝(𝜌𝑛)2∕2 edges, where each 𝑜(1) stands for some particular 𝑜(1)
quantity chosen so that the planted distribution  (defined in Section 2)
will contain a dense subgraph with high probability (i.e., probability 1 −
𝑜(1)). Refutation is the following algorithmic task. Given a graph 𝐺, the
goal is to output NO or MAYBE with the following two guarantees: (1) if 𝐺

contains a dense subgraph then the output must be MAYBE, and (2) if 𝐺 is
drawn from the null distribution = 𝐺(𝑛, 𝑞), the output must be NO with
probability 1 − 𝑜(1). For intuition, it is crucial to note that the algorithm
is only allowed to output NO if it has proven with absolute certainty that
there is no dense subgraph. Refutation (or certification) tasks of this flavor
have been considered in prior work, e.g., [41–46].

A natural approach to solve the refutation problem is to check feasibility
of a convex relaxation for existence of a dense subgraph. If the relaxation
is infeasible w.h.p. over  (for some parameters 𝑝, 𝑞, 𝜌), we have a suc-
cessful refutation algorithm: output NO if the relaxation is infeasible,
and MAYBE otherwise. (Note that by virtue of being a relaxation, if the
relaxation is infeasible then this proves there is no dense subgraph.) This
also gives a successful detection algorithm: output “” if the relaxation is
infeasible, and “” otherwise. (Note that by design, the relaxation will be
feasible w.h.p. over  , because a dense subgraph exists.)

Our goal in this section is to argue that for 𝛾 > 1∕2, the refutation problem
is computationally hard whenever 𝛼 > 𝛽∕2 + 𝛾 − 1∕2, making it strictly
harder than detection (because detection is easy whenever 𝛼 < 𝛽∕2 +
2(𝛾 − 1∕2)). As a result, we expect that any test based on checking fea-
sibility of a convex relaxation (in the sense described above) cannot be
optimal for detection, or else this would imply a too-good-to-be-true refu-
tation algorithm. Indeed, if the relaxation succeeds at detection, it must
be infeasible w.h.p. over , meaning it also succeeds at refutation.

We will argue hardness of refutation in a manner similar to [42]: we will
construct a different planted distribution ̃ that, like  , contains a dense
subgraph w.h.p.; we will then show low-degree hardness of distinguishing
̃ from, leading us to conjecture that no polynomial-time algorithm can
distinguish ̃ and . This conjecture, if true, formally implies hardness
of refutation because a successful refutation algorithm could be used to
distinguish ̃ and  as discussed above.

To summarize, our goal for the rest of this section is to construct a distri-
bution ̃ over graphs such that a dense subgraph exists w.h.p., and then
prove that if 𝛾 > 1∕2 and 𝛼 > 𝛽∕2 + 𝛾 − 1∕2 then no degree-𝑛𝑜(1) polyno-
mial weakly separates ̃ and .

Construction of ̃

We now construct an auxiliary planted distribution ̃ that has a planted
dense subgraph but is more difficult to distinguish from  = 𝐺(𝑛, 𝑞) than
 is. As in the main text, we fix parameters 0 < 𝛼 < 𝛽 < 1 and 𝛾 ∈ (0, 1),
and consider the scaling 𝑝 = 𝑛−𝛼 , 𝑞 = 𝑛−𝛽 , and 𝜌 = 𝑛𝛾−1. It will be conve-
nient to parametrize the observed graph in an unusual way: for 𝑖 < 𝑗, let
𝑌𝑖𝑗 = 𝑎 ∶=

√
(1 − 𝑞)∕𝑞 if edge (𝑖, 𝑗) is present and 𝑌𝑖𝑗 = 𝑏 ∶= −

√
𝑞∕(1 − 𝑞)

otherwise. (This ensures𝔼[𝑌𝑖𝑗 ] = 0 and𝔼[𝑌 2
𝑖𝑗
] = 1.) A graph is sampled

from ̃ as follows. As before, sample a set of planted vertices 𝑍 ⊆ [𝑛]
where each vertex is included independently with probability 𝜌. Define
𝑢 ∈ ℝ𝑛 by 𝑢𝑖 =

√
(1 − 𝜌)∕𝜌 if 𝑖 ∈ 𝑍 and 𝑢𝑖 = −

√
𝜌∕(1 − 𝜌) if 𝑖 ∉ 𝑍. (This

ensures 𝔼[𝑢𝑖] = 0 and 𝔼[𝑢2
𝑖
] = 1.) Now, conditioned on 𝑢, let 𝑌 = (𝑌𝑖𝑗 )𝑖<𝑗

have independent entries 𝑌𝑖𝑗 ∈ {𝑎, 𝑏} such that 𝔼̃ [𝑌𝑖𝑗 |𝑢] = 𝜆𝑢𝑖𝑢𝑗 . Choose
the scalar 𝜆 so that planted edges have the desired probability, that is,
edge (𝑖, 𝑗) occurs with probability 𝑝 when 𝑖, 𝑗 ∈ 𝑍; this gives 𝜆 = (1 +
𝑜(1))𝑝𝜌∕

√
𝑞.

Proof of Low-Degree Hardness

We now show that if 𝛾 > 1∕2, 𝛼 > 𝛽∕2 + 𝛾 − 1∕2, and 𝐷 = 𝑛𝑜(1), then||𝐿̃≤𝐷|| = 1 + 𝑜(1), which rules out weak separation as discussed in
Section 3. By [41, Proposition B.1] along with the fact that revealing extra
observations (𝑌𝑖𝑗 )𝑖≥𝑗 can only increase ||𝐿̃≤𝐷||,

||𝐿̃≤𝐷||2 ≤

𝐷∑
𝑑=0

1
𝑑!

𝔼⟨𝜆𝑢𝑢⊤, 𝜆𝑣𝑣⊤⟩𝑑 =
𝐷∑

𝑑=0

𝜆2𝑑

𝑑!
𝔼⟨𝑢, 𝑣⟩2𝑑 ,

where 𝑢 is defined above and 𝑣 is an independent copy of 𝑢. Note that⟨𝑢, 𝑣⟩ is a sum of 𝑛 i.i.d. bounded random variables and following the proof
of [23, Lemma B.3], we may conclude

𝔼⟨𝑢, 𝑣⟩2𝑑 ≤
√

2𝜋𝜌−2𝑑
[
(4𝑑𝜌2𝑛)𝑑 + (8𝑑∕3)2𝑑

]
.

Combining this with the above, ||𝐿̃≤𝐷|| = 1 + 𝑜(1) provided 𝜆 ≪ 𝜌 and
𝜆2𝑛 ≪ 1. Since 𝛾 > 1∕2, this reduces to the condition 𝛼 > 𝛽∕2 + 𝛾 − 1∕2
as desired.
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