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A B S T R A C T

Dissolved low molecular weight (LMW) compounds in soil can either be assimilated by microbes or sorb onto 
mineral surfaces, forming mineral-associated organic matter (MAOM). This creates possible ‘competition’ be
tween microbes and mineral surfaces for LMW compounds, potentially influencing whether particulate organic 
matter (POM) is retained or depolymerized by microbes to produce LMW substrates. Therefore, microscale in
teractions between unoccupied mineral surfaces and microbial enzymes may mediate patterns of POM and 
MAOM storage, particularly in soils varying in MAOM saturation. To explore this, we adapted an individual- 
based microscale model to simulate POM retention and new MAOM formation under different initial POM 
qualities (carbon:nitrogen ratio; C:N) and MAOM saturation levels, while also considering microbial social-like 
dynamics, which emerge from interactions between microbes with different capacities to produce and share 
public goods (in this case, extracellular enzymes). Consistent with prior findings, the presence of these dynamics 
slowed decomposition of initial POM pools, particularly at high C:N ratios. Additionally, MAOM saturation 
affected microbial community properties, MAOM formation, and POM decomposition in ways that depended on 
POM C:N, but only when social dynamics were included. The patterns of POM decomposition and MAOM for
mation identified in our work align with observations of simultaneous POM and MAOM formation in under
saturated soils from prior field studies, suggesting that regulation of enzyme production via microbial 
interactions may be an additional driver of POM and MAOM storage in such soils. Overall, this highlights the 
importance of explicitly incorporating microbial ecology into our conceptual understanding of C and N cycling, 
particularly to improve the predictive capacity of ecosystem models and inform soil management strategies that 
enhance global change mitigation, especially in degraded soils likely to be undersaturated.

1. Introduction

Rising levels of atmospheric carbon dioxide (CO2) significantly
impact the global climate, resulting in continuous warming and neces
sitating the development of innovative strategies to drawdown CO2 
while reducing its emissions to the atmosphere. Soils, which represent 
the largest terrestrial carbon (C) store, may play a critical role in global 
change mitigation efforts through storage of atmospheric CO2 (Smith, 
2016). In conjunction with the soil’s role in provisioning many essential 

ecosystem services, including nutrient cycling, water filtration, and 
sustaining plant productivity (Smith et al., 2015), understanding the 
complex mechanisms that influence soil C gains and losses is crucial to 
global change mitigation efforts. This includes examining processes at a 
variety of spatial and temporal scales, from interactions between soil 
microbes at the molecular level, who are important mediators of C 
storage in soil organic matter (SOM), to large-scale ecosystem dynamics 
that occur over decades or centuries.

Conceptualizing SOM as physically and functionally distinct 
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fractions, including particulate (POM) and mineral-associated organic 
matter (MAOM), is helpful in understanding how soils might respond to 
global change, as well as the mechanisms that can be leveraged to 
enhance the capacity of the soil to store C (Cotrufo and Lavallee, 2022). 
POM is made of polymeric compounds derived primarily from frag
mentation of structural plant inputs, whereas MAOM is formed via 
sorption of low molecular weight (LMW) soluble compounds (i.e., dis
solved organic matter; DOM) to soil mineral surfaces (Yu et al., 2022). 
While the structural compounds composing POM require enzymatic 
depolymerization before they can be taken up by microbes, the LMW 
compounds that serve as precursors to MAOM can be readily taken up 
and metabolized by microbes if found in solution. However, when 
bound to soil minerals in MAOM, they are strongly protected from mi
crobial degradation, giving MAOM a longer average residence time than 
POM (Lavallee et al., 2020; Heckman et al., 2023). Soil microbes play a 
key role in mediating the formation and persistence of both these frac
tions. Structural components of microbial necromass such as cell walls 
can serve as precursors to POM (Cotrufo et al., 2022), while the soluble 
components of cells and compounds derived from POM depolymeriza
tion can sorb to mineral surfaces to form MAOM (Kallenbach et al., 
2016; Liang et al., 2019). In fact, microbial necromass may account for 
as much as half of the total MAOM pool in some ecosystems (Angst et al., 
2021; Whalen et al., 2022). When it is not protected by aggregation, 
POM is especially susceptible to decomposition via enzyme activity, 
whereby conditions that support microbial decomposition, including 
higher temperatures and optimal pH, lead to lower POM storage than in 
soils in colder climates or acidic soils (Hansen et al., 2024). As such, in 
both life and death, the structural and functional characteristics of mi
crobes mediate C accumulation and loss in POM and MAOM.

Requiring the availability of active mineral surfaces to form, MAOM 
is additionally controlled by saturation dynamics, whereby the accu
mulation of new MAOM is limited by the proportion of mineral surfaces 
available for organic matter sorption (Hassink, 1997; Six et al., 2002, 
2024; Stewart et al., 2007, 2008; Cotrufo et al., 2019; Georgiou et al., 
2022, 2025). Though exact saturation limits are debated (Begill et al., 
2023; Cotrufo et al., 2023; Salonen et al., 2023), many modeling and 
experimental studies concur that soils that are low in MAOM relative to 
the available active mineral surface area (i.e., are undersaturated) tend 
to accumulate more new C in response to inputs than those that are 
closer to saturation limits (Stewart et al., 2007, 2008; Georgiou et al., 
2022). Patterns of C accumulation in undersaturated soils have been 
fairly robustly explored, and are influenced by a combination of soil 
properties, C inputs, and management practices. Specifically, besides 
texture (Hassink, 1997; Cotrufo et al., 2019), mineralogy (Georgiou 
et al., 2022; King et al., 2023), net primary production (Poeplau et al., 
2024), and management (West and Six, 2007) also play a role.

In comparison to soil properties, plant inputs, and management, 
relatively little work has investigated the extent to which microbial 
function influences patterns of C accumulation in undersaturated soils. 
Because MAOM saturation influences DOM availability, microbial 
functions related to how microbes access and metabolize C substrates 
may be especially relevant in undersaturated soils, whereby soils with 
high matrix capacity force could microbes to compete with minerals for 
access to DOM. Evidence that sorption of inorganic nutrients to mineral 
surfaces limits their uptake by microbes (Zhu et al., 2016) suggests that 
when soils are unsaturated, meaning that the majority of mineral sorp
tion sites are unoccupied and are therefore available for DOM sorption, 
DOM may become limiting to microbes. In turn, microbial communities 
may require more enzymes in order to depolymerize structural sub
strates (e.g., POM) to meet their metabolic needs. This could mean that 
microbial functions, particularly those related to enzyme production, in 
soils with low DOM availability (e.g., due to high sorption of soluble 
substrates driven by undersaturation) compared to soils where DOM 
availability is high (e.g., due to high saturation of mineral surfaces) 
could be a key mediator of whether POM is depolymerized or retained in 
the soil. Given that many conventionally-managed cropland soils and 

subsoils are typically undersaturated (Georgiou et al., 2022, 2025), 
microbial traits related to enzyme production may be particularly 
important to consider in cropland settings and other sites where man
agement may have led to soil degradation.

This proposed relationship between microbial enzyme activity, 
MAOM saturation, and POM retention is supported by theoretical, 
individual-based modeling work that demonstrates how microbial social 
dynamics promote retention of structural forms of litter and SOM 
(Allison, 2005; Kaiser et al., 2015). While the term ‘social dynamics’ 
broadly refers to situations where individual and collect interests con
flict (e.g., Axelrod and Hamilton, 1981; Crespi, 2001; West et al., 2007; 
Cremer et al., 2019), we define them in the present study specifically as 
exploitative dynamics between microbes that produce enzymes at 
maximal capacity (i.e., “producers”) and those that do not produce any 
enzymes at all (i.e., “cheaters,” who are thus dependent on the activity of 
enzymes synthesized by producers and exploit them for survival). In 
Kaiser et al., hypothetical microbial communities comprised entirely of 
producers had high rates of enzyme production and turnover, regardless 
of the amount of soluble resources available for immediate uptake. This 
inefficient use of DOM created faster breakdown of structural SOM, and 
therefore low retention of that SOM pool. On the other hand, microbial 
communities with cheaters gained the ability to downregulate enzyme 
production at the community level, due to a feedback mechanism driven 
by exploitative interactions between the cheaters and enzyme pro
ducers. This community-driven feedback mechanism works like a 
self-regulating control loop: if enzymatic activity generates DOM in 
excess, it goes to the benefit of cheaters, who do not need to pay the costs 
for enzyme production. This in turn increases the proportion of cheaters 
within the community, thereby lowering the total amount of enzymes 
produced at the community level. If DOM becomes limiting, however, 
the proportion of cheaters will decrease. Due to the ongoing adjustment 
of the ratio between enzyme producers and cheaters, the system even
tually downregulates its overall enzyme production rate to the minimum 
necessary to sustain the community (Kaiser et al., 2015). Given that 
MAOM saturation state may influence DOM availability to microbes, the 
above-described feedback loop between DOM abundance and propor
tional producer versus cheater biomass indicate that saturation state may 
influence community-level enzyme production, with effects on POM 
decomposition.

Compared to hypothetical communities with only enzyme pro
ducers, those that also contained cheaters produced more necromass 
that could be recycled within the system relative to the DOM produced 
by enzymatic breakdown that could be lost via leaching (Kaiser et al., 
2015). As demonstrated in Kaiser et al., the presence of cheaters led to 
more efficient use of available resources with less waste, conferring to 
overall higher community carbon use efficiency (CUE), and ultimately 
slowing decomposition of structural SOM and lowering overall loss of C 
from the system. Additionally, by increasing the amount of N-rich sub
strates (i.e., necromass) in the system, cheater presence reduced the 
overall C:N of DOM produced from the decomposition of both the N-rich 
necromass and the initial structural substrate that was relatively high in 
C:N. Thus, the presence of cheaters also allowed the microbial com
munity to overcome any N limitation that may occur due to high initial 
C:N (Kaiser et al., 2014, 2015). This importance of enzyme regulation to 
both emergent community metrics like CUE and the fate of different C 
pools is broadly echoed in other modeling studies. For instance, 
trade-offs between enzyme production and CUE (Calabrese et al., 2022), 
feedbacks between substrate availability and enzymes (Sihi et al., 2016), 
and interactions among enzyme production and diffusion of substrates 
(Allison, 2005; Abs et al., 2020) all have impacts on soil C decomposi
tion, microbial interactions, and community diversity, highlighting their 
broad ecological significance (Folse and Allison, 2012; Guseva et al., 
2024). Altogether, given that undersaturation of MAOM may also stress 
microbial communities via reduced DOM, interactions between 
community-level enzyme production (e.g., proportional cheater versus 
producer biomass), structural substrate C:N, and DOM availability 
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indicate that the relative presence (or lack of) microbial social dynamics 
may play a role in dictating how long structural SOM forms (i.e., POM) 
are retained in soils that vary in both MAOM saturation (i.e., DOM 
availability) and POM C:N.

Despite experimental evidence of microbial necromass contributions 
to C storage in POM and MAOM (Kallenbach et al., 2016; Liang et al., 
2019; Haddix et al., 2020), as well as frameworks of microbial func
tional contributions to C storage (e.g., Malik et al., 2020), our empirical 
understanding of the mechanisms driving POM and MAOM formation 
and persistence lacks detailed insights into microbial functionality, 
including emergent behaviors resulting from interactions between mi
crobes that differ in enzyme production capacity. Studies that do not 
incorporate microbial or enzyme traits explain low variability in POM 
and MAOM carbon stocks on a global scale (Hansen et al., 2024), sug
gesting that these traits might account for some of the unexplained 
variation in soil C storage. More knowledge about how specific micro
bial interactions, including exploitative interactions between enzyme 
producers and cheaters, influence C accumulation and loss in the soil 
would enhance our mechanistic understanding of SOM fraction storage, 
with broader impacts that could ultimately enable the development of 
robust, microbe-centric land management strategies aimed at maxi
mizing the retention of C inputs into the soil.

To begin filling this knowledge gap, we used the Kaiser et al. (2015)
individual-based model that simulates emergent behaviors of in
teractions between microbial enzyme producers and cheaters to inves
tigate the extent to which these interactions influence POM 
decomposition under varying degrees of MAOM saturation. Sensu Kaiser 
et al. (2015), we hypothesized that communities containing both 
enzyme producers and cheaters would exhibit greater POM retention 
compared to communities consisting of producers only, where exploit
ative interactions between producers and cheaters do not exist. 

Additionally, for communities that contain cheaters, we hypothesized 
that in saturated soils, high availability of immediately assimilable DOM 
will require less enzyme investment (therefore allowing for higher 
proportional cheater biomass), leading to enhanced community CUE as 
well as greater POM retention. By contrast, in undersaturated soils with 
low DOM availability, we expected that higher enzyme production (and 
thus a higher proportion of producer biomass) is needed to maintain the 
microbial community, and POM will be decomposed faster compared to 
when soils are saturated. Finally, we hypothesized that the C:N of POM 
would modulate responses to MAOM saturation, with higher POM C:N 
requiring greater microbial enzyme investment to meet cell stoichio
metric needs than when POM C:N is low.

2. Materials and methods

2.1. Individual-based modeling

We applied a previously developed, individual-based, and spatially- 
explicit microscale model (Fig. 1; Kaiser et al., 2015) to understand how 
microbial social dynamics influence emergent community behavior and 
POM retention under varying degrees of MAOM saturation. 
Individual-based models simulate the behavior and interactions of in
dividual entities or ‘agents’ within a system. The main objective of these 
models is to observe how microscale interactions between individual 
agents give rise to larger scale, emergent properties and behaviors. Our 
model simulates a 1 × 1 mm2 piece of decomposing organic matter as a 
grid of 100 x 100 microsites or agents. Each microsite measures 10 x 10 
× 10 μm and contains a microbial growth model that simulates 
decomposition of different types of organic matter (Fig. 1). These 
include complex, plant-derived substrate (i.e., plant-derived POM) and 
microbial-derived C-rich and N-rich substrates, which represent the 

Fig. 1. Conceptual diagram of individual-based model structure reproduced following Kaiser et al. (2015), with modifications to match the current model. Solid 
arrows indicate flow of carbon (C) and nitrogen (N), while dotted arrows indicate the effects of an enzyme pool on the breakdown of its associated substrate (Table 1; 
Table S1). We consider the sum of the initial plant-derived POM input and the C- and N-rich microbial necromass pools (i.e., microbial-derived POM) that can 
accumulate or be recycled by living microbes throughout the course of the simulation to represent total POM. MAOM formation is an output that depends on both its 
saturation state (i.e., potential of the system to form MAOM, modeled via frdiff) and the amount of DOM produced via enzymatic activity. Model results are aggregated 
across the entire grid at each timestep (i.e., 1 h). POM: particulate organic matter; MAOM: mineral-associated organic matter; DOM: dissolved organic matter; DIN: 
dissolved inorganic nitrogen.
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remains of microbes after cell death (i.e., microbial-derived POM or 
necromass). Soluble components of dead microbial cells that do not 
require enzymes to be metabolized contribute directly to the model’s 
DOM pool following microbial cell death. While plant- and 
microbial-derived POM pools have a fixed C:N ratio, DOM C:N is dy
namic throughout the simulation and varies with the accumulation and 
degradation of POM (Table 1). At model initialization, 98.5 % of the 
initial total POM pool consists of plant-derived POM and 1.5 % consists 
of microbial necromass. There is also a pool of dissolved inorganic 

nitrogen (DIN) that can change in size depending on microbial immo
bilization and mineralization rates, two processes that respond to stoi
chiometric imbalances between C and N uptake. There is no new input of 
plant-derived POM throughout the simulations, though 
microbial-derived POM can accumulate depending on microbial mor
tality and necromass decomposition rates. Model simulations end when 
the total amount of substrate is too low or too spatially distant to support 
microbial activity, and all microbes die.

Depending on functional group (see section 2.2, Model scenarios), 
microbes synthesize three separate enzymes that degrade one of the 
three structural substrates within our model (i.e., plant-derived POM, C- 
rich, and N-rich necromass) following Michealis-Menten kinetics: 

dC = kcatCenz
CS

km + CS
(eq. 1) 

where dC is the amount of C released by the enzyme-catalyzed reaction 
in the microsite within one timestep (i.e., 1 h), kcat is the number of 
reactions catalyzed per enzyme per timestep, CS is the amount of sub
strate within the microsite, Cenz is the amount of enzyme within the 
microsite, and km is the half saturation constant for an enzyme on its 
given substrate (Table 1, S1; Fig. 1; Kaiser et al., 2015). Decomposition 
products from these reactions, along with the soluble compounds 
released following microbial cell death, contribute to the DOM pool and 
are thus available for immediate uptake (Table 1; Fig. 1). All enzymes 
decay following a first order rate constant of 0.036 timestep−1 and 
contribute to the N-rich microbial necromass pool after inactivation 
(Fig. 1).

At model initialization, microbes begin at half of their maximum cell 
size and are randomly distributed across the grid. Throughout the 
simulation, each microbial cell takes up DOM and DIN according to their 
availability within local microsites as well as cell-specific maximum 
uptakes rates. After uptake, microbes must first meet maintenance 
respiration needs (Table S1). After maintenance respiration, a functional 
group-specific proportion of the remaining C uptake is invested into 
enzyme production (Table 1; see section 2.2, Model scenarios). Any C and 
N remaining after both maintenance and enzyme production is invested 
into growth. Microbial cells that grow larger than their maximum size 
reproduce and can colonize empty neighboring microsites (Table 1) or 
invade an already-occupied microsite (Table S1). Conversely, microbes 
die when their biomass reaches a lower biomass limit (MBSmin; Table 1), 
after failing to access substrate and are thus required to perform main
tenance metabolism from their own existing biomass. After death, their 
necromass is released into the C- and N-rich microbial-derived POM 
pools, as well as the DOM pool. In addition to starvation, microbes 
experience random catastrophic death through a stochastic mortality 
rate (Table S1). After maintenance, enzyme production, and growth 
needs are met, any stoichiometric imbalances between the amount of C 
and N acquired are accounted for by either overflow respiration (i.e., in 
the case of excess C), or by N mineralization or immobilization (i.e., 
excess N released into or taken up from the DIN pool; Fig. 1).

At each time step, 8/9 of the total DOM and DIN in each microsite 
diffuse to its eight neighboring microsites such that 1/9 remains in the 
original microsite. A fraction of the total amount of diffusing DOM is lost 
from the system entirely through sorption to mineral surfaces (i.e., 
MAOM formation; Fig. 1), following: 

CMAOM = n
CDOMfrdiff

n + 1
(eq. 2) 

where CMAOM is the amount of C leaving the system via MAOM forma
tion, n is the number of neighboring microsites (i.e., n = 8), CDOM is the 
total amount of DOM in the microsite, and frdiff is the fraction of 
diffusing DOM per timestep (Kaiser et al., 2015). Values of frdiff are 
determined following: 

Table 1 
Key parameters controlling microbial physiology and substrate availability, 
reproduced following Kaiser et al. (2015), with modifications to match the 
current model. Additional information about model structure, assumptions, and 
equations can be found in Table S1, Kaiser et al. (2015), and the supplementary 
materials therewithin.

Parameter Description Value

Microbial cell composition and stoichiometry
MBfDOM Fraction of cell biomass accounting for 

soluble substrates available for 
immediate uptake by living microbes 
upon cell death (C:N = 15)

0.06

MBfCR Fraction of cell biomass accounting for 
C-rich, complex necromass (e.g., cell 
wall compounds, lipids, starch; C:N =
150)

0.57

MBfNR Fraction of cell biomass accounting for 
N-rich, complex necromass (e.g., 
proteins, DNA, RNA; C:N = 5)

0.37

CNMB Resulting microbial biomass C:N 12.22
Microbial physiology and enzyme production
MBfE Fraction of C uptake invested into enzyme production, following 

deduction for maintenance respiration
Producers 0.12
Cheaters 0.0

EfPOM:EfCR: 
EfNR

Ratio in which enzymes are produced for degradation of plant- 
derived POM:C-rich microbial necromass:N-rich microbial necromass
Producers 0.7:0.15:0.15

Microbial cell size and turnover
MBSmax Maximum microbial cell size, at which 

a cell divides and colonizes a 
neighboring microsite

100 fmol C

MBSmin Minimum microbial cell size, at which 
a cell dies from starvation

10 fmol C

MBnC Maximum number of microbial cells 
per microsite

1

Initial pool size and C:N ratio in each microsite
CPOM_plant Initial size of the plant-derived POM 

pool in each microsite
8333 fmol C (i.e., 83.33 
nmol C across entire grid)

CNPOM_plant Initial C:N of plant-derived POM 10-100, depending on 
scenarioa

CPOM_CR Initial size of the C-rich microbial- 
derived POM pool in each microsite

100 fmol C (i.e., 1 nmol C 
across the entire grid)

CNPOM_CR Initial C:N of C-rich microbial-derived 
POM (e.g., cell wall compounds, lipids, 
starch) released upon microbial cell 
death

150

CPOM_NR Initial size of the N-rich microbial- 
derived POM pool in each microsite

30 fmol C (i.e., 0.3 nmol C 
across the entire grid)

CNPOM_NR Initial C:N of N-rich microbial-derived 
POM (e.g., proteins, DNA, RNA) 
released upon microbial cell death

5

CDOM Initial size of the DOM pool in each 
microsite

7 fmol C (i.e., 0.07 nmol C 
across the entire grid)

CNDOM
b Initial C:N of DOMb 8

CNN-DOM C:N of soluble necromass released 
upon microbial cell death

15

MAOM formation rates
frdiff

a Parameter controlling the fraction of 
diffusing DOM at each timestep that is 
capable of sorbing to mineral surfaces; 
input to Eq. (2) and determined by frL 

(Eq. (3))

0.0087-0.058, depending 
on scenarioa

a Parameter values altered from Kaiser et al. (2015).
b CNDOM is is a dynamic parameter varying throughout model simulations.
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frdiff =
frL

1 + frL
(eq. 3) 

where frL is analogous to the same parameter as described in Kaiser et al. 
(2015), where it was used to represent leaching from the grid. However, 
given that leaching and sorption of DOM to mineral surfaces both 
represent loss of available DOM to microbes within the system, we use 
frdiff here to describe saturation state, or the potential of the system to 
form new MAOM (Fig. 1). Note that sorption of DOM to minerals de
pends on both the free mineral surface area (indicating saturation state) 
and the amount of diffusing DOM in the environment. In this context, 
frdiff acts as a relative parameter, where the amount of MAOM formed at 
each timestep depends not just on the value of frdiff, but also on the 
amount of DOM that is diffusing across the grid and how much new 
DOM is produced by the activity of any enzymes present in the system. 
We varied frdiff to simulate the effects of differences in the potential to 
form new MAOM on microbes, where low values of frdiff approximate 
low potential for sorption of DOM to mineral surfaces when soils are 
already saturated with MAOM, and high values of frdiff approximate high 
potential of DOM sorption to minerals when soils are unsaturated (see 
section 2.2, Model scenarios). Importantly, we assume that the amount of 
DOM sorbing to minerals does not significantly alter the state of MAOM 
saturation during our simulations, and therefore frdiff is kept constant 
throughout each simulation.

Additional information about model structure, assumptions, and 
equations can be found in Table S1, Kaiser et al. (2015), and the sup
plementary materials therewithin.

2.2. Model scenarios

We compare model scenarios in which all microbes produce extra
cellular enzymes at the full rate (i.e., 0.12 of the C uptake at each 
timestep is invested into enzyme production, after deductions for 
maintenance respiration) with scenarios in which only half of the mi
crobial community produces enzymes. We define the microbes that do 
not produce any enzymes as “cheaters,” and those that do as “producers” 
(Table 1). Given that cheaters do not produce any enzymes, their sur
vival relies to at least some extent upon access to DOM that has already 
been produced by the enzyme activity of producers. Outside of enzyme 
production, all microbes invest the same amount of acquired resources 
into cellular maintenance and growth and possess identical cell chemical 
composition and stoichiometry (Table 1; Fig. 1). Note that while trade- 
offs between enzyme production and growth, including return-on- 
investment for new resource acquisition, are key aspects of microbial 
physiology, they have been robustly explored in other modeling studies 
(e.g.,Allison, 2005; Calabrese et al., 2022) and are therefore not a focus 
of this study. As such, our work considers a direct comparison of com
munities that contain microbial cheaters versus those that contain only 
producers, without introducing any other axes of variation in microbial 
growth, resource acquisition, or life history traits.

In addition to enzyme production, we compare scenarios varying the 
C:N ratio of plant-derived POM inputs as well as the rate of new MAOM 
formation. We consider plant-derived POM C:N ratios from 10 to 100, in 
intervals of 10, corresponding to different input qualities spanning from 
the low C:N of leguminous plants to the high C:N of woody plants. We 
also consider seven different MAOM saturation states by altering the 
fraction of soluble C leaving the system (frdiff) through consideration of 
seven different values of frL (i.e., 0.0088, 0.0176, 0.0264, 0.0352, 0.044, 
0.0528, and 0.0616; Eq. (3); Table 1), which were determined by 
varying the value of frL parameterized in previous modeling work, 
0.0088 (Kaiser et al., 2014), by a factor of one through seven. These frL 
values correspond to frdiff values of 0.0087, 0.0173, 0.0257, 0.034, 
0.0421, 0.0502, and 0.0508 (Table 1; Fig. 1). While we trialed higher 
values of frdiff, communities in these simulations were strongly limited 
by DOM availability and often failed to survive beyond 30 days (data not 
shown). As such, we chose to exclude those simulations and frdiff values 

from our analysis. We interpret high potential for MAOM formation (i.e., 
loss of diffusible C) to be representative of an undersaturated soil, where 
a higher proportion of diffusing DOM is inaccessible to microbes, while 
low potential for MAOM formation represents a soil that is already 
saturated with respect to MAOM, where a higher proportion of DOM is 
available for immediate uptake.

For both communities that did and did not contain cheaters, we ran 
simulations in fully factorial combinations of the initial plant-derived 
POM C:N and MAOM saturation (i.e., potential to form new MAOM) 
parameter values described above. To account for the stochastic nature 
of the model, we ran ten replicate simulations of each initial plant- 
derived POM C:N and MAOM saturation combination for simulations 
containing only enzyme producers and for simulations containing both 
producers and cheaters. However, some of the above combinations of 
plant-derived POM C:N and MAOM saturation were strongly limiting to 
microbes, causing the full community to die before they were able to 
begin degrading the initial POM input. This was particularly true for 
model scenarios of both producers and cheaters when POM C:N and frdiff 
were greater than 80 and 0.0502, respectively. We excluded any such 
replicates from downstream analyses. Further details on how many 
replicates were excluded from specific combinations of POM C:N and 
frdiff are located in Table S2.

2.3. Model outputs

We investigated the effects of interactions between microbial en
zymes producers and cheaters on hypothetical soils that vary in both 
initial, plant-derived POM C:N and MAOM saturation by evaluating how 
sensitive cumulative MAOM formation was to variations in both initial 
POM C:N and frdiff (i.e., saturation state). We also assessed how multiple 
community properties responded to initial POM C:N and frdiff, including 
total enzyme production, total microbial biomass, the ratio of enzyme 
production to biomass (i.e., enzymes:total biomass; indicative of pro
portional enzyme investment needed to support the community), com
munity CUE (Manzoni et al., 2012; Kaiser et al., 2015), net growth rate, 
and for simulations that contained cheaters, the ratio of cheater to total 
microbial biomass (i.e., cheater:total biomass). Following Kaiser et al., 
each of these microbial metrics were calculated from C fluxes aggre
gated across the grid, such that each represents an emergent property of 
the full microbial and soil system. In particular, community CUE was 
calculated following: 

CUE =
(UDOC − R − Penz)

UDOC
(eq. 4) 

where UDOC is the total amount of dissolved organic carbon (DOC) taken 
up by all of the microbes on the grid, R is the total amount of C respired 
by all microbes, and Penz is the total amount of C released as enzymes 
(Manzoni et al., 2012; Kaiser et al., 2015). Because the model’s behavior 
is highly random when microbes become limited by resource avail
ability, especially towards the end of the simulation, we considered 
values of these variables when 60 % of the total initial C pool was 
degraded (Kaiser et al., 2015). Lastly, to understand how interactions 
between producers and cheaters, as well as variation in both 
plant-derived POM C:N and MAOM saturation affect decomposition 
rates of the total POM pool (i.e., both plant- and microbial-derived 
POM), we assessed how the amount of time it took the community to 
decompose 60 % of the initial C pool was affected by both initial POM C: 
N and frdiff.

3. Results

3.1. Sensitivity of cumulative MAOM formation to cheater presence, 
initial plant-derived POM C:N, and frdiff

We first sought to understand whether relationships between frdiff (i. 
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e., MAOM saturation state), initial plant-derived POM C:N, and the cu
mulative amount of MAOM formed differed between simulations that 
contained only enzyme producers, and those that also contained 
cheaters. Model scenarios that contained only producers exhibited 
greater cumulative MAOM formation than those that contained both 
producers and cheaters, and largely responded only to changes in initial 
plant-derived POM C:N (Fig. 2). Specifically, cumulative MAOM for
mation in producer-only scenarios decreased with increases in POM C:N, 
particularly when C:N was greater than 30. On the other hand, cumu
lative MAOM formation in simulations that contained both cheaters and 
producers was sensitive to both frdiff and initial, plant-derived POM C:N. 
In these scenarios, cumulative MAOM formed increased with increasing 
values of frdiff and decreased slightly with increases in POM C:N, espe
cially when it was greater than 30 (Fig. 2). Additionally, within indi
vidual levels of frdiff, lower initial, plant-derived POM C:N values led to 

greater cumulative MAOM formation than when initial C:N was high 
(Fig. 2).

3.2. Microbial community responses to initial plant-derived POM C:N and 
frdiff

Emergent microbial community responses to initial plant-derived 
POM C:N and frdiff (i.e., MAOM saturation state) depended on whether 
simulations consisted of only enzyme producers, or contained both 
producers and cheaters. In general, emergent community properties in 
simulations that contained only producers responded solely to changes 
in plant-derived POM C:N, with increases in C:N leading to greater 
enzyme production relative to total biomass (i.e., enzymes:total 
biomass), but decreased community CUE, net growth rate, total biomass, 
and total enzyme production (Figs. 3–4, Fig. S1).

Fig. 2. Sensitivity of cumulative amount of mineral-associated organic matter (MAOM) formed to a) changes in frdiff (i.e., MAOM saturation state) and b) initial 
plant-derived particulate organic matter carbon to nitrogen ratio (POM C:N). In both panels, dark blue boxes indicate simulations that contain only microbes that 
produce enzymes at the maximum rate (i.e., producers), and light blue boxes indicate simulations that also contain microbes that do not produce any enzymes at all 
(i.e., cheaters). All simulations begin with the same microbial biomass, and simulations that contain cheaters begin with a 50:50 mix of enzyme producers and 
cheaters. In a), points colored in shades of orange indicate the distribution of data with initial plant-derived POM C:N, and in b) points in shades of green indicate the 
distribution of data with values of frdiff. Darker shades of orange and green represent higher values of POM C:N and frdiff, respectively.
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Fig. 3. Response of a) the ratio of total enzymes produced to total microbial biomass; and b) the ratio of cheater biomass to total microbial biomass to changes in frdiff 
(i.e., saturation) as mediated by initial plant-derived particulate organic matter carbon to nitrogen ratio (POM C:N). In all panels, shades of blue indicate plant- 
derived POM C:N, with darker colors corresponding to higher C:N. Triangles represent simulations that contain only microbial enzyme producers, and circles 
represent those that also contain cheaters. All simulations begin with the same total microbial biomass, and simulations that contain cheaters begin with a 50:50 mix 
of each microbial group. Points represent group means of each initial POM C:N and frdiff combination, and error bars indicate standard error.

Fig. 4. Response of a) community carbon use efficiency (CUE); b) net microbial growth rate; and c) total microbial biomass to initial plant-derived particulate 
organic matter carbon to nitrogen ratio (POM C:N) and frdiff (i.e., saturation state). Shades of green indicate values of frdiff, with darker shades corresponding to higher 
frdiff. Triangles correspond to simulations containing only enzyme producers, and circles to simulations that also contain cheaters. All simulations begin with the same 
microbial biomass, and simulations that contain cheaters begin with a 50:50 mix of enzyme producers and cheaters. Points represent group means of each initial 
plant-derived POM C:N and frdiff combination, and error bars indicate standard error.
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In contrast, emergent community properties in simulations that 
contained cheaters and enzyme producers were responsive to changes in 
both initial plant-derived POM C:N and frdiff. Proportional enzyme in
vestment (i.e., enzymes:total biomass ratio) in scenarios containing 
cheaters was lower than that of producer-only scenarios, and generally 
increased in response to frdiff. However, the rate at which enzymes:total 
biomass increased with frdiff depended on POM C:N, with higher values 
of initial plant-derived POM C:N conferring to steeper increases in en
zymes:total biomass than under low initial C:N ratios (Fig. 3a, Fig. S1). 
Similarly, while cheater:total biomass generally declined with 
increasing values of frdiff, the rate at which cheater biomass decreased 
depended on plant-derived POM C:N. Higher C:N ratios led to steeper 
declines in cheater:total biomass in response to frdiff than when C:N was 
low (Fig. 3b, Fig. S1).

While community CUE, net growth rate, total microbial biomass, and 
total enzymes produced in simulations that contained producers and 
cheaters also depended on both initial plant-derived POM C:N and frdiff, 
the dynamics of these responses differed markedly from those of pro
portional enzyme investment and cheater biomass (Fig. 4; Fig. S2). 
Generally, increases in plant-derived POM C:N were associated with 
declines in CUE, growth, total biomass, and enzymes. However, when 
plant-derived POM had a relatively low C:N, increases in frdiff had an 
overall positive effect on each of the above variables, leading CUE, 
growth, biomass, and enzyme production. This relationship reversed 
when POM C:N was high, such that increases in frdiff had an overall 
negative effect. While the presence of this reversal was consistent across 
CUE, growth, total biomass, and enzyme production, the specific C:N 
where the reversal occurred depended on microbial metric. For instance, 
reversal of the impacts of frdiff occurred around a C:N of 50 for com
munity CUE, but around a C:N of 80 for total enzyme production (Fig. 4; 
Fig. S2).

3.3. Effects of initial plant-derived POM C:N and frdiff on the 
decomposition of the total initial C pool

Regardless of initial plant-derived POM C:N and frdiff, communities 
that contained only enzyme producers decomposed 60 % of the total 

initial C pool two to four times faster than communities that consisted of 
both producers and cheaters (Fig. 5; Fig. S3). The amount of time it took 
for producer-only communities to degrade 60 % of the initial C pool 
depended solely on plant-derived POM C:N, with increases in C:N 
leading to slightly slower decomposition of the initial substrate. When 
communities also contained cheaters, decomposition rates depended on 
both POM C:N and frdiff. For these simulations, increases in plant-derived 
POM C:N generally led to slower decomposition of the initial C pool. 
However, frdiff and plant-derived POM C:N interacted with one another 
such that frdiff had a negative effect on the amount of time it took the 
community to degrade 60 % of the initial C input when POM C:N was 
less than ~60, but a positive effect when C:N was greater than 60. 
Additionally, decomposition responded more strongly to changes in 
plant-derived POM C:N when frdiff was high, with decomposition rates 
with respect to POM C:N decreasing much more rapidly under high 
values of frdiff compared to low (Fig. 5; Fig. S3).

4. Discussion

In this study, we used individual-based modeling to understand the 
potential for interactions between microbes that do and do not produce 
enzymes to influence POM decomposition and new MAOM formation in 
hypothetical soils that vary in their degree of MAOM saturation, simu
lated by altering the potential of the model system to form new MAOM 
(i.e., frdiff). Consistent with previous findings, we demonstrate that the 
presence of microbial cheaters led to slower decomposition of structural 
SOM (i.e., plant-derived POM) compared to communities that consisted 
of only enzyme producers (Kaiser et al., 2015). In addition, we found 
that our model system responded to changes in MAOM saturation and 
initial plant-derived POM C:N in unique ways, depending on whether 
communities contained cheaters. While the system’s dynamics were 
generally limited only by N availability when it contained just enzyme 
producers, undersaturation and N availability imposed strong 
co-limitations when the system contained both producers and cheaters, 
with consequences on cheater buffering capacity, emergent microbial 
behaviors, and structural C decomposition. Altogether, these findings 
indicate that microbial traits, especially those related to regulation and 

Fig. 5. The amount of time it takes the microbial community to degrade 60 % of the total initial carbon (C) pool in response to initial plant-derived particulate 
organic matter carbon to nitrogen ratio (POM C:N) and frdiff (i.e., saturation state). Shades of green indicate values of frdiff, with darker shades corresponding to higher 
frdiff. Triangles represent simulations that contain only enzyme producers, and circles represent those that also contain cheaters. Points represent group means of each 
plant-derived POM C:N and frdiff combination, and error bars indicate standard error.
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production of enzymes, affect not only structural substrate decomposi
tion but also new MAOM formation, and are essential to consider in 
other empirical and modeling work.

Our results revealed that new MAOM formation is influenced not 
only by its saturation state, but also by initial POM C:N and, most crit
ically, by interplays between microbes that do and do not produce 
extracellular enzymes. In simulations containing only enzyme pro
ducers, where enzyme production was not regulated at the community 
level (Kaiser et al., 2015), we observed no effect of frdiff (i.e., MAOM 
saturation state) within the analyzed range (0.87–5.8 %) on total mi
crobial biomass (Fig. 4c), total enzyme production (Fig. 4d), or POM 
degradation time (Fig. 5). An effect of frdiff emerged at higher values (e. 
g., above 7 %; results not shown), but at these levels, microbial com
munities faced a high risk of death due to insufficient DOM availability 
and often failed to survive beyond ~30 days. The resilience of producer 
communities to changes in frdiff (i.e., MAOM saturation), as well as the 
null effects of this parameter on cumulative MAOM formation within the 
analyzed range reflect continued, excess production of DOM (Fig. S4) 
due to high, unregulated enzyme production. Additionally, in these 
producer-only simulations, competition for DOM between minerals and 
microbes was relatively weak. This was because the microbes have 
preferential access to the products generated by their own enzymes due 
to their spatial proximity – they can take up the DOM that is produced in 
their own microsites before it diffuses away and sorbs to minerals. This 
lack of competitive dynamics between producer microbes and minerals 
are generally echoed in other individual-based modeling work on the 
trade-offs faced by producers of extracellular enzymes (Allison, 2005; 
Guseva et al., 2024). Such studies demonstrate that low enzyme diffu
sion rates allow the microbes that produced those enzymes to have 
preferential access to decomposition products, ultimately favoring their 
growth (Allison, 2005). This may indicate that excess enzyme produc
tion, even if it results in more DOM than needed, could give enzyme 
producers an advantage over their competitors for DOM, regardless of 
whether those competitors are other microbes or mineral surfaces 
available for sorption.

In contrast to simulations that contained only enzyme producers, 
cumulative MAOM formation in those that also contained cheaters 
responded to both MAOM saturation and plant-derived POM C:N. In 
these scenarios, decreases in both MAOM saturation and plant-derived 
POM C:N led to greater cumulative MAOM formation. These patterns 
were driven by the community’s collective ability to regulate enzyme 
production due to dynamic feedbacks between producers and cheaters 
that made the system more responsive to shifts in MAOM saturation and 
associated changes in DOM availability. For instance, in simulations that 
contained both cheaters and enzyme producers, proportional cheater 
abundance declined with increasing frdiff (i.e., decreased saturation). 
This is likely because proportionally greater producer biomass (and 
therefore enzyme production) allowed the community to outbalance 
losses in DOM driven by undersaturation. These effects of saturation on 
proportional cheater biomass in turn impacted cumulative MAOM for
mation. Specifically, high saturation (i.e., low frdiff) necessitated less 
enzyme production to maintain the community (reflected by higher 
proportional cheater biomass), leading to overall lower production of 
DOM that could contribute to MAOM and as a result, lower cumulative 
MAOM formation. The opposite was true under low saturation (i.e., high 
frdiff). Under these conditions, where greater enzyme production (and 
therefore higher proportional producer biomass) to break down POM 
was required for community maintenance, higher production of DOM 
that could sorb to mineral surfaces lead to overall greater cumulative 
MAOM formation. Furthermore, plant-derived POM C:N acted as an 
additional limitation on cumulative MAOM formation, as lower N 
availability, both within specific frdiff levels and across the entire range 
tested, consistently led to less MAOM formation than when N avail
ability was higher. This effect was especially pronounced under unsat
urated conditions (i.e., high frdiff), where decreases in POM C:N 
produced a comparatively larger increase in MAOM formation than 

under saturated conditions (i.e., low frdiff). These findings align with 
empirical research on interactions between MAOM saturation and N 
availability (Wu et al., 2022), and lends that MAOM saturation state may 
be a stronger predictor of new mineral-stabilized C accumulation than 
the nutrient status of incoming C inputs.

The above dynamics of cumulative MAOM formation are generally 
mirrored in the responses of emergent microbial properties to initial 
plant-derived POM C:N and MAOM saturation. In support of our hy
potheses and similar to cumulative MAOM formation, we found that 
saturation and plant-derived POM C:N interacted in complex ways to 
shape community dynamics when communities contained both cheaters 
and enzyme producers. Overall, increases in saturation (i.e., lower frdiff) 
resulted in higher cheater biomass and declines in proportional enzyme 
production. In these cases, reduced DOM availability under low satu
ration made it harder for cheaters to survive, as greater enzyme in
vestment (and therefore greater producer biomass) was needed to break 
down POM for the community to meet its metabolic needs. While this 
general response was consistent across all tested initial POM C:N ratios, 
its strength depended on C:N, with higher C:N ratios leading to more 
rapid decreases in cheaters and corresponding increases in enzymes, in 
proportion to total biomass, than under low C:N. This indicates that 
communities consisting of both enzyme producers and cheaters were co- 
limited by N availability and MAOM saturation. While microbial col
imitation has been well-studied in a variety of contexts (e.g., Wutzler 
and Reichstein, 2008; Choi et al., 2022; Held et al., 2024; Cui et al., 
2025), our modeling experiments indicate that the state of MAOM 
saturation may represent another limiting factor on microbial growth, 
whereby greater plant-derived POM C:N (or other stressors) enhance the 
negative effects of MAOM undersaturation on the community.

Despite the above, findings from our analysis of community CUE, net 
growth rates, total biomass and enzyme production, as well as decom
position rates, indicate that colimitation of N availability and MAOM 
undersaturation may be more nuanced than indicated with relative 
enzyme production and relative cheater biomass. For each of the former 
variables, increases in MAOM formation had an overall positive effect 
when plant-derived POM C:N was low (i.e., C:N < 50), but a negative 
effect when C:N was high (i.e., C:N > 50). This indicates our original 
hypothesis – that undersaturation leads to greater enzyme production 
due to competition between microbes and mineral surfaces for DOM, 
and therefore faster decomposition of structural SOM – is only true when 
the microbial community is not limited by N availability. High MAOM 
formation rates act to reduce the number of cheaters the community can 
support, thereby decreasing the flexibility of the system to respond to N 
limitation via regulation of enzymes and making the system more sen
sitive to changes in N availability. In other words, while a high capacity 
to maintain cheaters (e.g., when MAOM saturation is high) has an 
overall negative effect on the system when N availability is relatively 
high (i.e., initial POM C:N < 50), it has a positive effect when N is low (i. 
e., C:N > 50). At this point, cheaters lose their buffering capacity, and 
the system begins to more closely resemble those that contain only 
enzyme producers in that it becomes characterized by steep declines in 
CUE, growth, total biomass, total enzymes, and decomposition rates in 
response to increases in C:N.

However, POM in most environments rarely has a C:N above ~50 
(unless it is derived mostly from woody litter; Cotrufo et al., 2019; 
Lugato et al., 2021; Yu et al., 2022), making it unlikely that microbial 
cheaters in typical, unsaturated soils lose their buffering capacity solely 
due to POM-derived N limitations. However, our findings suggest 
broader implications for how environmental stressors may influence the 
buffering capacity of cheaters, regardless of which specific environ
mental factor may be limiting microbial growth. Microbial growth and 
activity can be constrained by multiple factors simultaneously, 
including but not limited to soil moisture, temperature, nutrient avail
ability, and accessibility of C substrates (e.g., Elser et al., 1995; Treseder, 
2008; Kamble and Bååth, 2016; Castle et al., 2017). In unsaturated soils 
where microbes are also experiencing additional activity constraints, 
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community dynamics may more closely resemble those of a system 
composed solely of enzyme producers. Until MAOM storage begins to 
approach saturation, this may lead to heightened sensitivity of the 
community to additional stressors, with consequences on the decom
position of structural litter and SOM.

Given the markedly different responses of the system to MAOM 
saturation and POM C:N depending on cheater presence, our findings 
underscore the importance of considering microbial traits in studies 
seeking to understand C changes in soils that differ in MAOM saturation. 
Our simulated dynamics of simultaneous MAOM formation and POM 
retention in undersaturated conditions, particularly when microbial 
communities include cheaters compared to those without, is consistent 
with findings from several field studies and meta-analyses. For instance, 
long-term adoption of regenerative agricultural practices, such as no- or 
low-till, intercropping, livestock integration, and adaptive multi- 
paddock grazing, in traditionally-managed agricultural soils (e.g., un
dersaturated soils; Georgiou et al., 2022) has been shown to promote C 
accumulation in both POM and MAOM (Mosier et al., 2021; Prairie 
et al., 2023). Similarly, ecosystem restoration efforts, such as converting 
degraded croplands to native vegetation, have been shown to increase 
both C fractions concurrently (Kalinina et al., 2019; Yang et al., 2022). 
In combination with the present study, these findings support the notion 
that microbial social dynamics and community-level enzyme regulation 
could be additional drivers of ecosystem-scale patterns of SOM accu
mulation, in addition to the mechanisms of C accrual identified in pre
vious work (e.g., Hassink, 1997; Stewart et al., 2007, 2008; West and 
Six, 2007; Cotrufo, 2019; Georgiou et al., 2022).

Although our model was able to approximate patterns of POM and 
MAOM storage in undersaturated soils, our simulations do not account 
for several C cycling dynamics that are present in natural systems. These 
include continuous inputs of new C to the system, which limits our 
ability to investigate phenomena such as priming effects (Kuzyakov 
et al., 2000; Fontaine et al., 2003) within the context of MAOM satu
ration, N limitation, and interactions between producers and cheaters. 
In addition, our model does not account for microbial decomposition of 
MAOM (Jilling et al., 2021), a process known to occur particularly under 
N limitation (Mazzilli et al., 2014). Despite this, high retention of both 
plant- and microbial-derived POM in our model (i.e., up to ~6 years to 
degrade 60 % of the total initial input) implies that any structural C 
entering the system through processes such as litterfall and rhizodepo
sition may also be retained. Furthermore, the initial plant-derived POM 
input amount used in our simulations was not designed to cause any 
microbial limitations by itself, although its variable properties like C:N 
can (Kaiser et al., 2014, 2015). Lower microbial biomass and a reduced 
capacity of cheaters to buffer the system indicate that our hypothetical 
communities were N-limited, especially when both initial plant-derived 
POM C:N and MAOM formation rates were high. Though our microbes 
were not able to access any of the MAOM formed throughout the 
simulation, communities in natural soil systems could meet their N 
needs by breaking down existing MAOM stores, potentially altering 
MAOM formation and POM decomposition patterns – particularly when 
the latter is shaped by the co-limitation dynamics explored in this study. 
Lastly, our simulations do not account for changes in MAOM saturation 
state, especially the increases in saturation that could be expected to 
occur as DOM produced by microbial enzyme activity sorbs to mineral 
surfaces. Over the long-term, this could slowly release microbes from 
limitations associated with the amount of DOM present in the system, 
and, depending on N availability, shift MAOM formation and POM 
decomposition rates. Although exploitative interactions between pro
ducers and cheaters can be challenging to empirically quantify, inte
grating -omics techniques, enzyme assays (e.g., to quantify enzyme 
production relative to microbial biomass), stable isotope tracing, and 
other functional measurements (e.g., Malik et al., 2020) into studies on 
MAOM formation could provide clearer insights into how these limita
tions affect our analysis. This could also build experimental evidence for 
the role of interactions between enzymes producers and cheaters in 

mediating soil C storage, as well as the relative importance of these 
interactions to C storage in comparison to other aspects of enzyme 
production, including enzyme energetics and return on investment 
(Allison, 2005; Calabrese et al., 2022).

Despite these limitations on our analysis, our ability to replicate 
patterns of simultaneous POM retention and MAOM accumulation 
observed in field studies underscores the significance of microbial in
teractions and other community traits that shape enzyme production in 
driving SOM formation and persistence. These traits and emergent be
haviors are critical to consider not just in empirical work, but also in the 
development of process-based models of soil C and N cycling. While 
several current models include microbial biomass as a mediator of 
structural C decomposition (e.g., Abramoff et al., 2022; Chandel et al., 
2023; Rocci et al., 2024), relatively few explicitly account for differences 
in microbial ecology (e.g., Sistla et al., 2014; Wieder et al., 2014; Wang 
et al., 2015; Georgiou et al., 2017) that are known mediators of C dy
namics (e.g., Allison et al., 2010; Trivedi et al., 2013; Kaiser et al., 2014; 
Crowther et al., 2015; Buchkowski et al., 2017; Hall et al., 2018; Brad
ford et al., 2021). Our work builds upon calls to better incorporate mi
crobial ecology into ecosystem models (e.g., Rocci et al., 2024), and 
provides evidence that incorporating microbial interactions and other 
community traits that can shape both enzyme production and decom
position, such as the interactions between producers and cheaters 
explored in this study, has the potential to increase process-based model 
precision and accuracy. This may be especially true in ecosystems where 
microbial communities may strongly mediate C fraction storage [e.g., 
mesic environments (Cotrufo et al., 2021);].

In addition to process-based model development, relationships be
tween microbial enzyme regulation and structural SOM decomposition 
offer a valuable framework for developing microbe-centric land man
agement strategies that promote C storage and N retention (Kaiser et al., 
2015). For example, efforts to develop microbial bioinoculants for use in 
agricultural soils may want to focus selection of consortia members on 
strains or genes that promote enzyme regulation in response to soluble 
substrate availability, especially for application in ecosystems where 
other environmental stressors may not be strongly limiting. In combi
nation with other management strategies to increase plant inputs, bio
inoculation, particularly with consortia that contain enzyme regulation 
traits, could maximize microbial community efficiency in ways that 
retain more soil C. Alongside other regenerative practices that boost C 
inputs to the soil, microbial interventions aimed at retaining or effi
ciently recycling SOM while minimizing waste metabolism may be able 
to extend the residence time of newly-formed soil C, particularly in the 
form of POM.

5. Conclusions

In this study, we demonstrate that microbial social dynamics, 
defined as exploitative interactions between microbes that differ in their 
capacity to produce extracellular enzymes, may be an additional 
mechanism contributing to observed patterns of POM and MAOM 
accumulation in undersaturated soils. In particular, emergent microbial 
properties, POM decomposition, and MAOM formation vary signifi
cantly based on the ability of hypothetical microbial communities to 
regulate enzyme production at the community level, as well as the 
extent to which MAOM undersaturation, N availability, and other 
environmental stressors impose co-limitations on the system. While 
more work is needed to empirically quantify the effects of community- 
level enzyme regulation on C fraction storage, our study provides a 
useful roadmap for more comprehensive incorporation of microbial 
ecology into process-based models of soil C and N cycling, as well as the 
development of microbial interventions, including bioinoculants, to 
promote C storage and N retention in managed soils. Ultimately, with an 
improved understanding of how microbial community functions like 
enzyme regulation impact SOM fractions, we may be better able to 
realize the potential of soil microbiomes as a tool to address global 
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