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Dissolved low molecular weight (LMW) compounds in soil can either be assimilated by microbes or sorb onto
mineral surfaces, forming mineral-associated organic matter (MAOM). This creates possible ‘competition’ be-
tween microbes and mineral surfaces for LMW compounds, potentially influencing whether particulate organic
matter (POM) is retained or depolymerized by microbes to produce LMW substrates. Therefore, microscale in-
teractions between unoccupied mineral surfaces and microbial enzymes may mediate patterns of POM and
MAOM storage, particularly in soils varying in MAOM saturation. To explore this, we adapted an individual-
based microscale model to simulate POM retention and new MAOM formation under different initial POM
qualities (carbon:nitrogen ratio; C:N) and MAOM saturation levels, while also considering microbial social-like
dynamics, which emerge from interactions between microbes with different capacities to produce and share
public goods (in this case, extracellular enzymes). Consistent with prior findings, the presence of these dynamics
slowed decomposition of initial POM pools, particularly at high C:N ratios. Additionally, MAOM saturation
affected microbial community properties, MAOM formation, and POM decomposition in ways that depended on
POM C:N, but only when social dynamics were included. The patterns of POM decomposition and MAOM for-
mation identified in our work align with observations of simultaneous POM and MAOM formation in under-
saturated soils from prior field studies, suggesting that regulation of enzyme production via microbial
interactions may be an additional driver of POM and MAOM storage in such soils. Overall, this highlights the
importance of explicitly incorporating microbial ecology into our conceptual understanding of C and N cycling,
particularly to improve the predictive capacity of ecosystem models and inform soil management strategies that
enhance global change mitigation, especially in degraded soils likely to be undersaturated.

1. Introduction

Rising levels of atmospheric carbon dioxide (CO2) significantly
impact the global climate, resulting in continuous warming and neces-
sitating the development of innovative strategies to drawdown COy
while reducing its emissions to the atmosphere. Soils, which represent
the largest terrestrial carbon (C) store, may play a critical role in global
change mitigation efforts through storage of atmospheric CO2 (Smith,
2016). In conjunction with the soil’s role in provisioning many essential
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ecosystem services, including nutrient cycling, water filtration, and
sustaining plant productivity (Smith et al., 2015), understanding the
complex mechanisms that influence soil C gains and losses is crucial to
global change mitigation efforts. This includes examining processes at a
variety of spatial and temporal scales, from interactions between soil
microbes at the molecular level, who are important mediators of C
storage in soil organic matter (SOM), to large-scale ecosystem dynamics
that occur over decades or centuries.

Conceptualizing SOM as physically and functionally distinct
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fractions, including particulate (POM) and mineral-associated organic
matter (MAOM), is helpful in understanding how soils might respond to
global change, as well as the mechanisms that can be leveraged to
enhance the capacity of the soil to store C (Cotrufo and Lavallee, 2022).
POM is made of polymeric compounds derived primarily from frag-
mentation of structural plant inputs, whereas MAOM is formed via
sorption of low molecular weight (LMW) soluble compounds (i.e., dis-
solved organic matter; DOM) to soil mineral surfaces (Yu et al., 2022).
While the structural compounds composing POM require enzymatic
depolymerization before they can be taken up by microbes, the LMW
compounds that serve as precursors to MAOM can be readily taken up
and metabolized by microbes if found in solution. However, when
bound to soil minerals in MAOM, they are strongly protected from mi-
crobial degradation, giving MAOM a longer average residence time than
POM (Lavallee et al., 2020; Heckman et al., 2023). Soil microbes play a
key role in mediating the formation and persistence of both these frac-
tions. Structural components of microbial necromass such as cell walls
can serve as precursors to POM (Cotrufo et al., 2022), while the soluble
components of cells and compounds derived from POM depolymeriza-
tion can sorb to mineral surfaces to form MAOM (Kallenbach et al.,
2016; Liang et al., 2019). In fact, microbial necromass may account for
as much as half of the total MAOM pool in some ecosystems (Angst et al.,
2021; Whalen et al., 2022). When it is not protected by aggregation,
POM is especially susceptible to decomposition via enzyme activity,
whereby conditions that support microbial decomposition, including
higher temperatures and optimal pH, lead to lower POM storage than in
soils in colder climates or acidic soils (Hansen et al., 2024). As such, in
both life and death, the structural and functional characteristics of mi-
crobes mediate C accumulation and loss in POM and MAOM.

Requiring the availability of active mineral surfaces to form, MAOM
is additionally controlled by saturation dynamics, whereby the accu-
mulation of new MAOM is limited by the proportion of mineral surfaces
available for organic matter sorption (Hassink, 1997; Six et al., 2002,
2024; Stewart et al., 2007, 2008; Cotrufo et al., 2019; Georgiou et al.,
2022, 2025). Though exact saturation limits are debated (Begill et al.,
2023; Cotrufo et al., 2023; Salonen et al., 2023), many modeling and
experimental studies concur that soils that are low in MAOM relative to
the available active mineral surface area (i.e., are undersaturated) tend
to accumulate more new C in response to inputs than those that are
closer to saturation limits (Stewart et al., 2007, 2008; Georgiou et al.,
2022). Patterns of C accumulation in undersaturated soils have been
fairly robustly explored, and are influenced by a combination of soil
properties, C inputs, and management practices. Specifically, besides
texture (Hassink, 1997; Cotrufo et al., 2019), mineralogy (Georgiou
et al., 2022; King et al., 2023), net primary production (Poeplau et al.,
2024), and management (West and Six, 2007) also play a role.

In comparison to soil properties, plant inputs, and management,
relatively little work has investigated the extent to which microbial
function influences patterns of C accumulation in undersaturated soils.
Because MAOM saturation influences DOM availability, microbial
functions related to how microbes access and metabolize C substrates
may be especially relevant in undersaturated soils, whereby soils with
high matrix capacity force could microbes to compete with minerals for
access to DOM. Evidence that sorption of inorganic nutrients to mineral
surfaces limits their uptake by microbes (Zhu et al., 2016) suggests that
when soils are unsaturated, meaning that the majority of mineral sorp-
tion sites are unoccupied and are therefore available for DOM sorption,
DOM may become limiting to microbes. In turn, microbial communities
may require more enzymes in order to depolymerize structural sub-
strates (e.g., POM) to meet their metabolic needs. This could mean that
microbial functions, particularly those related to enzyme production, in
soils with low DOM availability (e.g., due to high sorption of soluble
substrates driven by undersaturation) compared to soils where DOM
availability is high (e.g., due to high saturation of mineral surfaces)
could be a key mediator of whether POM is depolymerized or retained in
the soil. Given that many conventionally-managed cropland soils and
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subsoils are typically undersaturated (Georgiou et al., 2022, 2025),
microbial traits related to enzyme production may be particularly
important to consider in cropland settings and other sites where man-
agement may have led to soil degradation.

This proposed relationship between microbial enzyme activity,
MAOM saturation, and POM retention is supported by theoretical,
individual-based modeling work that demonstrates how microbial social
dynamics promote retention of structural forms of litter and SOM
(Allison, 2005; Kaiser et al., 2015). While the term ‘social dynamics’
broadly refers to situations where individual and collect interests con-
flict (e.g., Axelrod and Hamilton, 1981; Crespi, 2001; West et al., 2007;
Cremer et al., 2019), we define them in the present study specifically as
exploitative dynamics between microbes that produce enzymes at
maximal capacity (i.e., “producers”) and those that do not produce any
enzymes at all (i.e., “cheaters,” who are thus dependent on the activity of
enzymes synthesized by producers and exploit them for survival). In
Kaiser et al., hypothetical microbial communities comprised entirely of
producers had high rates of enzyme production and turnover, regardless
of the amount of soluble resources available for immediate uptake. This
inefficient use of DOM created faster breakdown of structural SOM, and
therefore low retention of that SOM pool. On the other hand, microbial
communities with cheaters gained the ability to downregulate enzyme
production at the community level, due to a feedback mechanism driven
by exploitative interactions between the cheaters and enzyme pro-
ducers. This community-driven feedback mechanism works like a
self-regulating control loop: if enzymatic activity generates DOM in
excess, it goes to the benefit of cheaters, who do not need to pay the costs
for enzyme production. This in turn increases the proportion of cheaters
within the community, thereby lowering the total amount of enzymes
produced at the community level. If DOM becomes limiting, however,
the proportion of cheaters will decrease. Due to the ongoing adjustment
of the ratio between enzyme producers and cheaters, the system even-
tually downregulates its overall enzyme production rate to the minimum
necessary to sustain the community (Kaiser et al., 2015). Given that
MAOM saturation state may influence DOM availability to microbes, the
above-described feedback loop between DOM abundance and propor-
tional producer versus cheater biomass indicate that saturation state may
influence community-level enzyme production, with effects on POM
decomposition.

Compared to hypothetical communities with only enzyme pro-
ducers, those that also contained cheaters produced more necromass
that could be recycled within the system relative to the DOM produced
by enzymatic breakdown that could be lost via leaching (Kaiser et al.,
2015). As demonstrated in Kaiser et al., the presence of cheaters led to
more efficient use of available resources with less waste, conferring to
overall higher community carbon use efficiency (CUE), and ultimately
slowing decomposition of structural SOM and lowering overall loss of C
from the system. Additionally, by increasing the amount of N-rich sub-
strates (i.e., necromass) in the system, cheater presence reduced the
overall C:N of DOM produced from the decomposition of both the N-rich
necromass and the initial structural substrate that was relatively high in
C:N. Thus, the presence of cheaters also allowed the microbial com-
munity to overcome any N limitation that may occur due to high initial
C:N (Kaiser et al., 2014, 2015). This importance of enzyme regulation to
both emergent community metrics like CUE and the fate of different C
pools is broadly echoed in other modeling studies. For instance,
trade-offs between enzyme production and CUE (Calabrese et al., 2022),
feedbacks between substrate availability and enzymes (Sihi et al., 2016),
and interactions among enzyme production and diffusion of substrates
(Allison, 2005; Abs et al., 2020) all have impacts on soil C decomposi-
tion, microbial interactions, and community diversity, highlighting their
broad ecological significance (Folse and Allison, 2012; Guseva et al.,
2024). Altogether, given that undersaturation of MAOM may also stress
microbial communities via reduced DOM, interactions between
community-level enzyme production (e.g., proportional cheater versus
producer biomass), structural substrate C:N, and DOM availability
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indicate that the relative presence (or lack of) microbial social dynamics
may play a role in dictating how long structural SOM forms (i.e., POM)
are retained in soils that vary in both MAOM saturation (i.e., DOM
availability) and POM C:N.

Despite experimental evidence of microbial necromass contributions
to C storage in POM and MAOM (Kallenbach et al., 2016; Liang et al.,
2019; Haddix et al., 2020), as well as frameworks of microbial func-
tional contributions to C storage (e.g., Malik et al., 2020), our empirical
understanding of the mechanisms driving POM and MAOM formation
and persistence lacks detailed insights into microbial functionality,
including emergent behaviors resulting from interactions between mi-
crobes that differ in enzyme production capacity. Studies that do not
incorporate microbial or enzyme traits explain low variability in POM
and MAOM carbon stocks on a global scale (Hansen et al., 2024), sug-
gesting that these traits might account for some of the unexplained
variation in soil C storage. More knowledge about how specific micro-
bial interactions, including exploitative interactions between enzyme
producers and cheaters, influence C accumulation and loss in the soil
would enhance our mechanistic understanding of SOM fraction storage,
with broader impacts that could ultimately enable the development of
robust, microbe-centric land management strategies aimed at maxi-
mizing the retention of C inputs into the soil.

To begin filling this knowledge gap, we used the Kaiser et al. (2015)
individual-based model that simulates emergent behaviors of in-
teractions between microbial enzyme producers and cheaters to inves-
tigate the extent to which these interactions influence POM
decomposition under varying degrees of MAOM saturation. Sensu Kaiser
et al. (2015), we hypothesized that communities containing both
enzyme producers and cheaters would exhibit greater POM retention
compared to communities consisting of producers only, where exploit-
ative interactions between producers and cheaters do not exist.
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Additionally, for communities that contain cheaters, we hypothesized
that in saturated soils, high availability of immediately assimilable DOM
will require less enzyme investment (therefore allowing for higher
proportional cheater biomass), leading to enhanced community CUE as
well as greater POM retention. By contrast, in undersaturated soils with
low DOM availability, we expected that higher enzyme production (and
thus a higher proportion of producer biomass) is needed to maintain the
microbial community, and POM will be decomposed faster compared to
when soils are saturated. Finally, we hypothesized that the C:N of POM
would modulate responses to MAOM saturation, with higher POM C:N
requiring greater microbial enzyme investment to meet cell stoichio-
metric needs than when POM C:N is low.

2. Materials and methods
2.1. Individual-based modeling

We applied a previously developed, individual-based, and spatially-
explicit microscale model (Fig. 1; Kaiser et al., 2015) to understand how
microbial social dynamics influence emergent community behavior and
POM retention under varying degrees of MAOM saturation.
Individual-based models simulate the behavior and interactions of in-
dividual entities or ‘agents’ within a system. The main objective of these
models is to observe how microscale interactions between individual
agents give rise to larger scale, emergent properties and behaviors. Our
model simulates a 1 x 1 mm? piece of decomposing organic matter as a
grid of 100 x 100 microsites or agents. Each microsite measures 10 x 10
x 10 pm and contains a microbial growth model that simulates
decomposition of different types of organic matter (Fig. 1). These
include complex, plant-derived substrate (i.e., plant-derived POM) and
microbial-derived C-rich and N-rich substrates, which represent the

Model grid represents \
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necromass

N-rich
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Total POM
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Fig. 1. Conceptual diagram of individual-based model structure reproduced following Kaiser et al. (2015), with modifications to match the current model. Solid
arrows indicate flow of carbon (C) and nitrogen (N), while dotted arrows indicate the effects of an enzyme pool on the breakdown of its associated substrate (Table 1;
Table S1). We consider the sum of the initial plant-derived POM input and the C- and N-rich microbial necromass pools (i.e., microbial-derived POM) that can
accumulate or be recycled by living microbes throughout the course of the simulation to represent total POM. MAOM formation is an output that depends on both its
saturation state (i.e., potential of the system to form MAOM, modeled via frg;) and the amount of DOM produced via enzymatic activity. Model results are aggregated
across the entire grid at each timestep (i.e., 1 h). POM: particulate organic matter; MAOM: mineral-associated organic matter; DOM: dissolved organic matter; DIN:

dissolved inorganic nitrogen.
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remains of microbes after cell death (i.e., microbial-derived POM or
necromass). Soluble components of dead microbial cells that do not
require enzymes to be metabolized contribute directly to the model’s
DOM pool following microbial cell death. While plant- and
microbial-derived POM pools have a fixed C:N ratio, DOM C:N is dy-
namic throughout the simulation and varies with the accumulation and
degradation of POM (Table 1). At model initialization, 98.5 % of the
initial total POM pool consists of plant-derived POM and 1.5 % consists
of microbial necromass. There is also a pool of dissolved inorganic

Table 1

Key parameters controlling microbial physiology and substrate availability,
reproduced following Kaiser et al. (2015), with modifications to match the
current model. Additional information about model structure, assumptions, and
equations can be found in Table S1, Kaiser et al. (2015), and the supplementary
materials therewithin.

Parameter

Description

Value

Microbial cell composition and stoichiometry

MBmom

MBycr

MBing

CNup

Fraction of cell biomass accounting for
soluble substrates available for
immediate uptake by living microbes
upon cell death (C:N = 15)

Fraction of cell biomass accounting for
C-rich, complex necromass (e.g., cell
wall compounds, lipids, starch; C:N =
150)

Fraction of cell biomass accounting for
N-rich, complex necromass (e.g.,
proteins, DNA, RNA; C:N = 5)
Resulting microbial biomass C:N

Microbial physiology and enzyme production

0.06

0.57

0.37

12.22

MBgg Fraction of C uptake invested into enzyme production, following
deduction for maintenance respiration
Producers 0.12
Cheaters 0.0
Epom:Efcr: Ratio in which enzymes are produced for degradation of plant-
Egnr derived POM:C-rich microbial necromass:N-rich microbial necromass
Producers 0.7:0.15:0.15
Microbial cell size and turnover
MBsmax Maximum microbial cell size, at which 100 fmol C
a cell divides and colonizes a
neighboring microsite
MBsmin Minimum microbial cell size, at which 10 fmol C
a cell dies from starvation
MB,c Maximum number of microbial cells 1

per microsite

Initial pool size and C:N ratio in each microsite

Cpom_plant Initial size of the plant-derived POM 8333 fmol C (i.e., 83.33
pool in each microsite nmol C across entire grid)
CNpom plant Initial C:N of plant-derived POM 10-100, depending on
scenario”
Cpom cr Initial size of the C-rich microbial- 100 fmol C (i.e., 1 nmol C
derived POM pool in each microsite across the entire grid)
CNpom cr Initial C:N of C-rich microbial-derived 150
POM (e.g., cell wall compounds, lipids,
starch) released upon microbial cell
death
Cpom NR Initial size of the N-rich microbial- 30 fmol C (i.e., 0.3 nmol C
derived POM pool in each microsite across the entire grid)
CNpom NrR Initial C:N of N-rich microbial-derived 5
POM (e.g., proteins, DNA, RNA)
released upon microbial cell death
Cpom Initial size of the DOM pool in each 7 fmol C (i.e., 0.07 nmol C
microsite across the entire grid)
CNpom® Initial C:N of DOM" 8
CNN.pom C:N of soluble necromass released 15

upon microbial cell death

MAOM formation rates

frag

Parameter controlling the fraction of
diffusing DOM at each timestep that is
capable of sorbing to mineral surfaces;
input to Eq. (2) and determined by fr;,
(Eq. (3))

0.0087-0.058, depending
on scenario”

@ Parameter values altered from Kaiser et al. (2015).
> CNpou is is a dynamic parameter varying throughout model simulations.
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nitrogen (DIN) that can change in size depending on microbial immo-
bilization and mineralization rates, two processes that respond to stoi-
chiometric imbalances between C and N uptake. There is no new input of
plant-derived = POM  throughout the simulations, though
microbial-derived POM can accumulate depending on microbial mor-
tality and necromass decomposition rates. Model simulations end when
the total amount of substrate is too low or too spatially distant to support
microbial activity, and all microbes die.

Depending on functional group (see section 2.2, Model scenarios),
microbes synthesize three separate enzymes that degrade one of the
three structural substrates within our model (i.e., plant-derived POM, C-
rich, and N-rich necromass) following Michealis-Menten kinetics:

Cs

dC = kcatcenzk—

.1
m CS (eq )

where d¢ is the amount of C released by the enzyme-catalyzed reaction
in the microsite within one timestep (i.e., 1 h), k¢ is the number of
reactions catalyzed per enzyme per timestep, Cs is the amount of sub-
strate within the microsite, Cen, is the amount of enzyme within the
microsite, and k, is the half saturation constant for an enzyme on its
given substrate (Table 1, S1; Fig. 1; Kaiser et al., 2015). Decomposition
products from these reactions, along with the soluble compounds
released following microbial cell death, contribute to the DOM pool and
are thus available for immediate uptake (Table 1; Fig. 1). All enzymes
decay following a first order rate constant of 0.036 timestep™! and
contribute to the N-rich microbial necromass pool after inactivation
(Fig. 1).

At model initialization, microbes begin at half of their maximum cell
size and are randomly distributed across the grid. Throughout the
simulation, each microbial cell takes up DOM and DIN according to their
availability within local microsites as well as cell-specific maximum
uptakes rates. After uptake, microbes must first meet maintenance
respiration needs (Table S1). After maintenance respiration, a functional
group-specific proportion of the remaining C uptake is invested into
enzyme production (Table 1; see section 2.2, Model scenarios). Any C and
N remaining after both maintenance and enzyme production is invested
into growth. Microbial cells that grow larger than their maximum size
reproduce and can colonize empty neighboring microsites (Table 1) or
invade an already-occupied microsite (Table S1). Conversely, microbes
die when their biomass reaches a lower biomass limit (MBgpn; Table 1),
after failing to access substrate and are thus required to perform main-
tenance metabolism from their own existing biomass. After death, their
necromass is released into the C- and N-rich microbial-derived POM
pools, as well as the DOM pool. In addition to starvation, microbes
experience random catastrophic death through a stochastic mortality
rate (Table S1). After maintenance, enzyme production, and growth
needs are met, any stoichiometric imbalances between the amount of C
and N acquired are accounted for by either overflow respiration (i.e., in
the case of excess C), or by N mineralization or immobilization (i.e.,
excess N released into or taken up from the DIN pool; Fig. 1).

At each time step, 8/9 of the total DOM and DIN in each microsite
diffuse to its eight neighboring microsites such that 1/9 remains in the
original microsite. A fraction of the total amount of diffusing DOM is lost
from the system entirely through sorption to mineral surfaces (i.e.,
MAOM formation; Fig. 1), following:

Coomfrag

1 (eq. 2)

Cumaom =n
where Cpaoum is the amount of C leaving the system via MAOM forma-
tion, n is the number of neighboring microsites (i.e., n = 8), Cpou is the
total amount of DOM in the microsite, and frgys is the fraction of
diffusing DOM per timestep (Kaiser et al., 2015). Values of frgys are
determined following:
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frag = (eq. 3)

fr

1+fr
where fr; is analogous to the same parameter as described in Kaiser et al.
(2015), where it was used to represent leaching from the grid. However,
given that leaching and sorption of DOM to mineral surfaces both
represent loss of available DOM to microbes within the system, we use
fraifs here to describe saturation state, or the potential of the system to
form new MAOM (Fig. 1). Note that sorption of DOM to minerals de-
pends on both the free mineral surface area (indicating saturation state)
and the amount of diffusing DOM in the environment. In this context,
frayracts as a relative parameter, where the amount of MAOM formed at
each timestep depends not just on the value of frgyy, but also on the
amount of DOM that is diffusing across the grid and how much new
DOM is produced by the activity of any enzymes present in the system.
We varied frg; to simulate the effects of differences in the potential to
form new MAOM on microbes, where low values of frgyy approximate
low potential for sorption of DOM to mineral surfaces when soils are
already saturated with MAOM, and high values of fr; approximate high
potential of DOM sorption to minerals when soils are unsaturated (see
section 2.2, Model scenarios). Importantly, we assume that the amount of
DOM sorbing to minerals does not significantly alter the state of MAOM
saturation during our simulations, and therefore frgs is kept constant
throughout each simulation.

Additional information about model structure, assumptions, and
equations can be found in Table S1, Kaiser et al. (2015), and the sup-
plementary materials therewithin.

2.2. Model scenarios

We compare model scenarios in which all microbes produce extra-
cellular enzymes at the full rate (i.e., 0.12 of the C uptake at each
timestep is invested into enzyme production, after deductions for
maintenance respiration) with scenarios in which only half of the mi-
crobial community produces enzymes. We define the microbes that do
not produce any enzymes as “cheaters,” and those that do as “producers”
(Table 1). Given that cheaters do not produce any enzymes, their sur-
vival relies to at least some extent upon access to DOM that has already
been produced by the enzyme activity of producers. Outside of enzyme
production, all microbes invest the same amount of acquired resources
into cellular maintenance and growth and possess identical cell chemical
composition and stoichiometry (Table 1; Fig. 1). Note that while trade-
offs between enzyme production and growth, including return-on-
investment for new resource acquisition, are key aspects of microbial
physiology, they have been robustly explored in other modeling studies
(e.g.,Allison, 2005; Calabrese et al., 2022) and are therefore not a focus
of this study. As such, our work considers a direct comparison of com-
munities that contain microbial cheaters versus those that contain only
producers, without introducing any other axes of variation in microbial
growth, resource acquisition, or life history traits.

In addition to enzyme production, we compare scenarios varying the
C:N ratio of plant-derived POM inputs as well as the rate of new MAOM
formation. We consider plant-derived POM C:N ratios from 10 to 100, in
intervals of 10, corresponding to different input qualities spanning from
the low C:N of leguminous plants to the high C:N of woody plants. We
also consider seven different MAOM saturation states by altering the
fraction of soluble C leaving the system (fry) through consideration of
seven different values of fr; (i.e., 0.0088, 0.0176, 0.0264, 0.0352, 0.044,
0.0528, and 0.0616; Eq. (3); Table 1), which were determined by
varying the value of fr; parameterized in previous modeling work,
0.0088 (Kaiser et al., 2014), by a factor of one through seven. These fr;,
values correspond to frg values of 0.0087, 0.0173, 0.0257, 0.034,
0.0421, 0.0502, and 0.0508 (Table 1; Fig. 1). While we trialed higher
values of frgr, communities in these simulations were strongly limited
by DOM availability and often failed to survive beyond 30 days (data not
shown). As such, we chose to exclude those simulations and frg;s values
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from our analysis. We interpret high potential for MAOM formation (i.e.,
loss of diffusible C) to be representative of an undersaturated soil, where
a higher proportion of diffusing DOM is inaccessible to microbes, while
low potential for MAOM formation represents a soil that is already
saturated with respect to MAOM, where a higher proportion of DOM is
available for immediate uptake.

For both communities that did and did not contain cheaters, we ran
simulations in fully factorial combinations of the initial plant-derived
POM C:N and MAOM saturation (i.e., potential to form new MAOM)
parameter values described above. To account for the stochastic nature
of the model, we ran ten replicate simulations of each initial plant-
derived POM C:N and MAOM saturation combination for simulations
containing only enzyme producers and for simulations containing both
producers and cheaters. However, some of the above combinations of
plant-derived POM C:N and MAOM saturation were strongly limiting to
microbes, causing the full community to die before they were able to
begin degrading the initial POM input. This was particularly true for
model scenarios of both producers and cheaters when POM C:N and frgig
were greater than 80 and 0.0502, respectively. We excluded any such
replicates from downstream analyses. Further details on how many
replicates were excluded from specific combinations of POM C:N and
fraify are located in Table S2.

2.3. Model outputs

We investigated the effects of interactions between microbial en-
zymes producers and cheaters on hypothetical soils that vary in both
initial, plant-derived POM C:N and MAOM saturation by evaluating how
sensitive cumulative MAOM formation was to variations in both initial
POM C:N and frg (i.e., saturation state). We also assessed how multiple
community properties responded to initial POM C:N and fray, including
total enzyme production, total microbial biomass, the ratio of enzyme
production to biomass (i.e., enzymes:total biomass; indicative of pro-
portional enzyme investment needed to support the community), com-
munity CUE (Manzoni et al., 2012; Kaiser et al., 2015), net growth rate,
and for simulations that contained cheaters, the ratio of cheater to total
microbial biomass (i.e., cheater:total biomass). Following Kaiser et al.,
each of these microbial metrics were calculated from C fluxes aggre-
gated across the grid, such that each represents an emergent property of
the full microbial and soil system. In particular, community CUE was
calculated following:

(Uboc — R — Perz)

CUE =
Uboc

(eq. 4)

where Upc is the total amount of dissolved organic carbon (DOC) taken
up by all of the microbes on the grid, R is the total amount of C respired
by all microbes, and P, is the total amount of C released as enzymes
(Manzoni et al., 2012; Kaiser et al., 2015). Because the model’s behavior
is highly random when microbes become limited by resource avail-
ability, especially towards the end of the simulation, we considered
values of these variables when 60 % of the total initial C pool was
degraded (Kaiser et al., 2015). Lastly, to understand how interactions
between producers and cheaters, as well as variation in both
plant-derived POM C:N and MAOM saturation affect decomposition
rates of the total POM pool (i.e., both plant- and microbial-derived
POM), we assessed how the amount of time it took the community to
decompose 60 % of the initial C pool was affected by both initial POM C:
N and frg.

3. Results

3.1. Sensitivity of cumulative MAOM formation to cheater presence,
initial plant-derived POM C:N, and frgs

We first sought to understand whether relationships between frg (i.
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e., MAOM saturation state), initial plant-derived POM C:N, and the cu-
mulative amount of MAOM formed differed between simulations that
contained only enzyme producers, and those that also contained
cheaters. Model scenarios that contained only producers exhibited
greater cumulative MAOM formation than those that contained both
producers and cheaters, and largely responded only to changes in initial
plant-derived POM C:N (Fig. 2). Specifically, cumulative MAOM for-
mation in producer-only scenarios decreased with increases in POM C:N,
particularly when C:N was greater than 30. On the other hand, cumu-
lative MAOM formation in simulations that contained both cheaters and
producers was sensitive to both frg and initial, plant-derived POM C:N.
In these scenarios, cumulative MAOM formed increased with increasing
values of frgr and decreased slightly with increases in POM C:N, espe-
cially when it was greater than 30 (Fig. 2). Additionally, within indi-
vidual levels of frgiy, lower initial, plant-derived POM C:N values led to
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greater cumulative MAOM formation than when initial C:N was high
(Fig. 2).

3.2. Microbial community responses to initial plant-derived POM C:N and
fragr

Emergent microbial community responses to initial plant-derived
POM C:N and frg (i.e., MAOM saturation state) depended on whether
simulations consisted of only enzyme producers, or contained both
producers and cheaters. In general, emergent community properties in
simulations that contained only producers responded solely to changes
in plant-derived POM C:N, with increases in C:N leading to greater
enzyme production relative to total biomass (i.e., enzymes:total
biomass), but decreased community CUE, net growth rate, total biomass,
and total enzyme production (Figs. 3-4, Fig. S1).
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In contrast, emergent community properties in simulations that
contained cheaters and enzyme producers were responsive to changes in
both initial plant-derived POM C:N and frg;. Proportional enzyme in-
vestment (i.e., enzymes:total biomass ratio) in scenarios containing
cheaters was lower than that of producer-only scenarios, and generally
increased in response to frg. However, the rate at which enzymes:total
biomass increased with frg; depended on POM C:N, with higher values
of initial plant-derived POM C:N conferring to steeper increases in en-
zymes:total biomass than under low initial C:N ratios (Fig. 3a, Fig. S1).
Similarly, while cheater:total biomass generally declined with
increasing values of frg, the rate at which cheater biomass decreased
depended on plant-derived POM C:N. Higher C:N ratios led to steeper
declines in cheater:total biomass in response to frg than when C:N was
low (Fig. 3b, Fig. S1).

While community CUE, net growth rate, total microbial biomass, and
total enzymes produced in simulations that contained producers and
cheaters also depended on both initial plant-derived POM C:N and frgsy,
the dynamics of these responses differed markedly from those of pro-
portional enzyme investment and cheater biomass (Fig. 4; Fig. S2).
Generally, increases in plant-derived POM C:N were associated with
declines in CUE, growth, total biomass, and enzymes. However, when
plant-derived POM had a relatively low C:N, increases in frgg had an
overall positive effect on each of the above variables, leading CUE,
growth, biomass, and enzyme production. This relationship reversed
when POM C:N was high, such that increases in frgyy had an overall
negative effect. While the presence of this reversal was consistent across
CUE, growth, total biomass, and enzyme production, the specific C:N
where the reversal occurred depended on microbial metric. For instance,
reversal of the impacts of frg occurred around a C:N of 50 for com-
munity CUE, but around a C:N of 80 for total enzyme production (Fig. 4;
Fig. $2).

3.3. Effects of initial plant-derived POM C:N and frgfs on the
decomposition of the total initial C pool

Regardless of initial plant-derived POM C:N and frg;, communities
that contained only enzyme producers decomposed 60 % of the total
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initial C pool two to four times faster than communities that consisted of
both producers and cheaters (Fig. 5; Fig. S3). The amount of time it took
for producer-only communities to degrade 60 % of the initial C pool
depended solely on plant-derived POM C:N, with increases in C:N
leading to slightly slower decomposition of the initial substrate. When
communities also contained cheaters, decomposition rates depended on
both POM C:N and fr 5. For these simulations, increases in plant-derived
POM C:N generally led to slower decomposition of the initial C pool.
However, frgi and plant-derived POM C:N interacted with one another
such that frgir had a negative effect on the amount of time it took the
community to degrade 60 % of the initial C input when POM C:N was
less than ~60, but a positive effect when C:N was greater than 60.
Additionally, decomposition responded more strongly to changes in
plant-derived POM C:N when frg was high, with decomposition rates
with respect to POM C:N decreasing much more rapidly under high
values of frgfr compared to low (Fig. 5; Fig. S3).

4. Discussion

In this study, we used individual-based modeling to understand the
potential for interactions between microbes that do and do not produce
enzymes to influence POM decomposition and new MAOM formation in
hypothetical soils that vary in their degree of MAOM saturation, simu-
lated by altering the potential of the model system to form new MAOM
(i.e., fraif). Consistent with previous findings, we demonstrate that the
presence of microbial cheaters led to slower decomposition of structural
SOM (i.e., plant-derived POM) compared to communities that consisted
of only enzyme producers (Kaiser et al., 2015). In addition, we found
that our model system responded to changes in MAOM saturation and
initial plant-derived POM C:N in unique ways, depending on whether
communities contained cheaters. While the system’s dynamics were
generally limited only by N availability when it contained just enzyme
producers, undersaturation and N availability imposed strong
co-limitations when the system contained both producers and cheaters,
with consequences on cheater buffering capacity, emergent microbial
behaviors, and structural C decomposition. Altogether, these findings
indicate that microbial traits, especially those related to regulation and
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production of enzymes, affect not only structural substrate decomposi-
tion but also new MAOM formation, and are essential to consider in
other empirical and modeling work.

Our results revealed that new MAOM formation is influenced not
only by its saturation state, but also by initial POM C:N and, most crit-
ically, by interplays between microbes that do and do not produce
extracellular enzymes. In simulations containing only enzyme pro-
ducers, where enzyme production was not regulated at the community
level (Kaiser et al., 2015), we observed no effect of frg (i.e., MAOM
saturation state) within the analyzed range (0.87-5.8 %) on total mi-
crobial biomass (Fig. 4c), total enzyme production (Fig. 4d), or POM
degradation time (Fig. 5). An effect of frgir emerged at higher values (e.
g., above 7 %; results not shown), but at these levels, microbial com-
munities faced a high risk of death due to insufficient DOM availability
and often failed to survive beyond ~30 days. The resilience of producer
communities to changes in frgis (i.e., MAOM saturation), as well as the
null effects of this parameter on cumulative MAOM formation within the
analyzed range reflect continued, excess production of DOM (Fig. S4)
due to high, unregulated enzyme production. Additionally, in these
producer-only simulations, competition for DOM between minerals and
microbes was relatively weak. This was because the microbes have
preferential access to the products generated by their own enzymes due
to their spatial proximity — they can take up the DOM that is produced in
their own microsites before it diffuses away and sorbs to minerals. This
lack of competitive dynamics between producer microbes and minerals
are generally echoed in other individual-based modeling work on the
trade-offs faced by producers of extracellular enzymes (Allison, 2005;
Guseva et al., 2024). Such studies demonstrate that low enzyme diffu-
sion rates allow the microbes that produced those enzymes to have
preferential access to decomposition products, ultimately favoring their
growth (Allison, 2005). This may indicate that excess enzyme produc-
tion, even if it results in more DOM than needed, could give enzyme
producers an advantage over their competitors for DOM, regardless of
whether those competitors are other microbes or mineral surfaces
available for sorption.

In contrast to simulations that contained only enzyme producers,
cumulative MAOM formation in those that also contained cheaters
responded to both MAOM saturation and plant-derived POM C:N. In
these scenarios, decreases in both MAOM saturation and plant-derived
POM C:N led to greater cumulative MAOM formation. These patterns
were driven by the community’s collective ability to regulate enzyme
production due to dynamic feedbacks between producers and cheaters
that made the system more responsive to shifts in MAOM saturation and
associated changes in DOM availability. For instance, in simulations that
contained both cheaters and enzyme producers, proportional cheater
abundance declined with increasing frgyy (i.e., decreased saturation).
This is likely because proportionally greater producer biomass (and
therefore enzyme production) allowed the community to outbalance
losses in DOM driven by undersaturation. These effects of saturation on
proportional cheater biomass in turn impacted cumulative MAOM for-
mation. Specifically, high saturation (i.e., low frg7) necessitated less
enzyme production to maintain the community (reflected by higher
proportional cheater biomass), leading to overall lower production of
DOM that could contribute to MAOM and as a result, lower cumulative
MAOM formation. The opposite was true under low saturation (i.e., high
fraigp)- Under these conditions, where greater enzyme production (and
therefore higher proportional producer biomass) to break down POM
was required for community maintenance, higher production of DOM
that could sorb to mineral surfaces lead to overall greater cumulative
MAOM formation. Furthermore, plant-derived POM C:N acted as an
additional limitation on cumulative MAOM formation, as lower N
availability, both within specific fry levels and across the entire range
tested, consistently led to less MAOM formation than when N avail-
ability was higher. This effect was especially pronounced under unsat-
urated conditions (i.e., high frg), where decreases in POM C:N
produced a comparatively larger increase in MAOM formation than
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under saturated conditions (i.e., low frgy). These findings align with
empirical research on interactions between MAOM saturation and N
availability (Wu et al., 2022), and lends that MAOM saturation state may
be a stronger predictor of new mineral-stabilized C accumulation than
the nutrient status of incoming C inputs.

The above dynamics of cumulative MAOM formation are generally
mirrored in the responses of emergent microbial properties to initial
plant-derived POM C:N and MAOM saturation. In support of our hy-
potheses and similar to cumulative MAOM formation, we found that
saturation and plant-derived POM C:N interacted in complex ways to
shape community dynamics when communities contained both cheaters
and enzyme producers. Overall, increases in saturation (i.e., lower frg;y)
resulted in higher cheater biomass and declines in proportional enzyme
production. In these cases, reduced DOM availability under low satu-
ration made it harder for cheaters to survive, as greater enzyme in-
vestment (and therefore greater producer biomass) was needed to break
down POM for the community to meet its metabolic needs. While this
general response was consistent across all tested initial POM C:N ratios,
its strength depended on C:N, with higher C:N ratios leading to more
rapid decreases in cheaters and corresponding increases in enzymes, in
proportion to total biomass, than under low C:N. This indicates that
communities consisting of both enzyme producers and cheaters were co-
limited by N availability and MAOM saturation. While microbial col-
imitation has been well-studied in a variety of contexts (e.g., Wutzler
and Reichstein, 2008; Choi et al., 2022; Held et al., 2024; Cui et al.,
2025), our modeling experiments indicate that the state of MAOM
saturation may represent another limiting factor on microbial growth,
whereby greater plant-derived POM C:N (or other stressors) enhance the
negative effects of MAOM undersaturation on the community.

Despite the above, findings from our analysis of community CUE, net
growth rates, total biomass and enzyme production, as well as decom-
position rates, indicate that colimitation of N availability and MAOM
undersaturation may be more nuanced than indicated with relative
enzyme production and relative cheater biomass. For each of the former
variables, increases in MAOM formation had an overall positive effect
when plant-derived POM C:N was low (i.e., C:N < 50), but a negative
effect when C:N was high (i.e., C:N > 50). This indicates our original
hypothesis — that undersaturation leads to greater enzyme production
due to competition between microbes and mineral surfaces for DOM,
and therefore faster decomposition of structural SOM — is only true when
the microbial community is not limited by N availability. High MAOM
formation rates act to reduce the number of cheaters the community can
support, thereby decreasing the flexibility of the system to respond to N
limitation via regulation of enzymes and making the system more sen-
sitive to changes in N availability. In other words, while a high capacity
to maintain cheaters (e.g., when MAOM saturation is high) has an
overall negative effect on the system when N availability is relatively
high (i.e., initial POM C:N < 50), it has a positive effect when N is low (i.
e., C:N > 50). At this point, cheaters lose their buffering capacity, and
the system begins to more closely resemble those that contain only
enzyme producers in that it becomes characterized by steep declines in
CUE, growth, total biomass, total enzymes, and decomposition rates in
response to increases in C:N.

However, POM in most environments rarely has a C:N above ~50
(unless it is derived mostly from woody litter; Cotrufo et al., 2019;
Lugato et al., 2021; Yu et al., 2022), making it unlikely that microbial
cheaters in typical, unsaturated soils lose their buffering capacity solely
due to POM-derived N limitations. However, our findings suggest
broader implications for how environmental stressors may influence the
buffering capacity of cheaters, regardless of which specific environ-
mental factor may be limiting microbial growth. Microbial growth and
activity can be constrained by multiple factors simultaneously,
including but not limited to soil moisture, temperature, nutrient avail-
ability, and accessibility of C substrates (e.g., Elser et al., 1995; Treseder,
2008; Kamble and Baath, 2016; Castle et al., 2017). In unsaturated soils
where microbes are also experiencing additional activity constraints,
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community dynamics may more closely resemble those of a system
composed solely of enzyme producers. Until MAOM storage begins to
approach saturation, this may lead to heightened sensitivity of the
community to additional stressors, with consequences on the decom-
position of structural litter and SOM.

Given the markedly different responses of the system to MAOM
saturation and POM C:N depending on cheater presence, our findings
underscore the importance of considering microbial traits in studies
seeking to understand C changes in soils that differ in MAOM saturation.
Our simulated dynamics of simultaneous MAOM formation and POM
retention in undersaturated conditions, particularly when microbial
communities include cheaters compared to those without, is consistent
with findings from several field studies and meta-analyses. For instance,
long-term adoption of regenerative agricultural practices, such as no- or
low-till, intercropping, livestock integration, and adaptive multi-
paddock grazing, in traditionally-managed agricultural soils (e.g., un-
dersaturated soils; Georgiou et al., 2022) has been shown to promote C
accumulation in both POM and MAOM (Mosier et al., 2021; Prairie
et al., 2023). Similarly, ecosystem restoration efforts, such as converting
degraded croplands to native vegetation, have been shown to increase
both C fractions concurrently (Kalinina et al., 2019; Yang et al., 2022).
In combination with the present study, these findings support the notion
that microbial social dynamics and community-level enzyme regulation
could be additional drivers of ecosystem-scale patterns of SOM accu-
mulation, in addition to the mechanisms of C accrual identified in pre-
vious work (e.g., Hassink, 1997; Stewart et al., 2007, 2008; West and
Six, 2007; Cotrufo, 2019; Georgiou et al., 2022).

Although our model was able to approximate patterns of POM and
MAOM storage in undersaturated soils, our simulations do not account
for several C cycling dynamics that are present in natural systems. These
include continuous inputs of new C to the system, which limits our
ability to investigate phenomena such as priming effects (Kuzyakov
et al., 2000; Fontaine et al., 2003) within the context of MAOM satu-
ration, N limitation, and interactions between producers and cheaters.
In addition, our model does not account for microbial decomposition of
MAOM (Jilling et al., 2021), a process known to occur particularly under
N limitation (Mazzilli et al., 2014). Despite this, high retention of both
plant- and microbial-derived POM in our model (i.e., up to ~6 years to
degrade 60 % of the total initial input) implies that any structural C
entering the system through processes such as litterfall and rhizodepo-
sition may also be retained. Furthermore, the initial plant-derived POM
input amount used in our simulations was not designed to cause any
microbial limitations by itself, although its variable properties like C:N
can (Kaiser et al., 2014, 2015). Lower microbial biomass and a reduced
capacity of cheaters to buffer the system indicate that our hypothetical
communities were N-limited, especially when both initial plant-derived
POM C:N and MAOM formation rates were high. Though our microbes
were not able to access any of the MAOM formed throughout the
simulation, communities in natural soil systems could meet their N
needs by breaking down existing MAOM stores, potentially altering
MAOM formation and POM decomposition patterns — particularly when
the latter is shaped by the co-limitation dynamics explored in this study.
Lastly, our simulations do not account for changes in MAOM saturation
state, especially the increases in saturation that could be expected to
occur as DOM produced by microbial enzyme activity sorbs to mineral
surfaces. Over the long-term, this could slowly release microbes from
limitations associated with the amount of DOM present in the system,
and, depending on N availability, shift MAOM formation and POM
decomposition rates. Although exploitative interactions between pro-
ducers and cheaters can be challenging to empirically quantify, inte-
grating -omics techniques, enzyme assays (e.g., to quantify enzyme
production relative to microbial biomass), stable isotope tracing, and
other functional measurements (e.g., Malik et al., 2020) into studies on
MAOM formation could provide clearer insights into how these limita-
tions affect our analysis. This could also build experimental evidence for
the role of interactions between enzymes producers and cheaters in
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mediating soil C storage, as well as the relative importance of these
interactions to C storage in comparison to other aspects of enzyme
production, including enzyme energetics and return on investment
(Allison, 2005; Calabrese et al., 2022).

Despite these limitations on our analysis, our ability to replicate
patterns of simultaneous POM retention and MAOM accumulation
observed in field studies underscores the significance of microbial in-
teractions and other community traits that shape enzyme production in
driving SOM formation and persistence. These traits and emergent be-
haviors are critical to consider not just in empirical work, but also in the
development of process-based models of soil C and N cycling. While
several current models include microbial biomass as a mediator of
structural C decomposition (e.g., Abramoff et al., 2022; Chandel et al.,
2023; Rocci et al., 2024), relatively few explicitly account for differences
in microbial ecology (e.g., Sistla et al., 2014; Wieder et al., 2014; Wang
et al., 2015; Georgiou et al., 2017) that are known mediators of C dy-
namics (e.g., Allison et al., 2010; Trivedi et al., 2013; Kaiser et al., 2014;
Crowther et al., 2015; Buchkowski et al., 2017; Hall et al., 2018; Brad-
ford et al., 2021). Our work builds upon calls to better incorporate mi-
crobial ecology into ecosystem models (e.g., Rocci et al., 2024), and
provides evidence that incorporating microbial interactions and other
community traits that can shape both enzyme production and decom-
position, such as the interactions between producers and cheaters
explored in this study, has the potential to increase process-based model
precision and accuracy. This may be especially true in ecosystems where
microbial communities may strongly mediate C fraction storage [e.g.,
mesic environments (Cotrufo et al., 2021);].

In addition to process-based model development, relationships be-
tween microbial enzyme regulation and structural SOM decomposition
offer a valuable framework for developing microbe-centric land man-
agement strategies that promote C storage and N retention (Kaiser et al.,
2015). For example, efforts to develop microbial bioinoculants for use in
agricultural soils may want to focus selection of consortia members on
strains or genes that promote enzyme regulation in response to soluble
substrate availability, especially for application in ecosystems where
other environmental stressors may not be strongly limiting. In combi-
nation with other management strategies to increase plant inputs, bio-
inoculation, particularly with consortia that contain enzyme regulation
traits, could maximize microbial community efficiency in ways that
retain more soil C. Alongside other regenerative practices that boost C
inputs to the soil, microbial interventions aimed at retaining or effi-
ciently recycling SOM while minimizing waste metabolism may be able
to extend the residence time of newly-formed soil C, particularly in the
form of POM.

5. Conclusions

In this study, we demonstrate that microbial social dynamics,
defined as exploitative interactions between microbes that differ in their
capacity to produce extracellular enzymes, may be an additional
mechanism contributing to observed patterns of POM and MAOM
accumulation in undersaturated soils. In particular, emergent microbial
properties, POM decomposition, and MAOM formation vary signifi-
cantly based on the ability of hypothetical microbial communities to
regulate enzyme production at the community level, as well as the
extent to which MAOM undersaturation, N availability, and other
environmental stressors impose co-limitations on the system. While
more work is needed to empirically quantify the effects of community-
level enzyme regulation on C fraction storage, our study provides a
useful roadmap for more comprehensive incorporation of microbial
ecology into process-based models of soil C and N cycling, as well as the
development of microbial interventions, including bioinoculants, to
promote C storage and N retention in managed soils. Ultimately, with an
improved understanding of how microbial community functions like
enzyme regulation impact SOM fractions, we may be better able to
realize the potential of soil microbiomes as a tool to address global
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