
Highlights

Hands-on Parallel & Distributed Computing with Raspberry Pi

Devices and Clusters

Elizabeth Shoop, Suzanne J. Matthews, Richard Brown, Joel C. Adams

• Free online interactive modules for learning PDC with Raspberry Pis

and Pi clusters.

• Self-organizing cluster: connects disparate Pis into a working cluster in

minutes.

• Free disk image pre-loaded with all activities for painless classroom

adoption.

• Our materials increase student confidence about PDC and motivation

to learn more PDC.

• Our materials increase faculty confidence and preparedness to teach

PDC.

Hands-on Parallel & Distributed Computing with

Raspberry Pi Devices and Clusters

Elizabeth Shoopa, Suzanne J. Matthewsb, Richard Brownc, Joel C. Adamsd

a
Department of Mathematics, Statistics, and Computer Science, Macalester

College, Saint Paul, 55105, MN, USA
b
Department of Electrical Engineering & Computer Science, United States Military

Academy, West Point, NY, 10996, USA
c
Department of Mathematics, Statistics, and Computer Science, St. Olaf

College, Northfield, 55057, MN, USA
d
Department of Computer Science, Calvin University, Grand Rapids, MI, 49546, USA

Abstract

Parallel and distributed computing (PDC) concepts are now required topics

for accredited undergraduate computer science programs. However, intro-

ducing PDC into the CS curriculum is challenging for several reasons, in-

cluding an instructors’ lack of PDC knowledge and di!culties in accessing

PDC hardware. This paper addresses both of these challenges by presenting

free, interactive, web-based PDC teaching modules using inexpensive Rasp-

berry Pi single board computers (SBCs). Our materials include a free disk

image that makes it possible for instructors to build Raspberry Pi clusters

in minutes and use our software in a variety of curricular contexts. Our

multi-year assessment of these materials on students and faculty members

indicates that: (i) our materials increased students’ confidence regarding

→Corresponding Author: Elizabeth Shoop
Email addresses: shoop@macalester.edu (Elizabeth Shoop),

suzanne.matthews@westpoint.edu (Suzanne J. Matthews), rab@stolaf.edu (Richard
Brown), adams@calvin.edu (Joel C. Adams)

Preprint submitted to Journal of Parallel and Distributed Computing December 19, 2025

important PDC concepts and motivated them to study PDC further; and

(ii) our materials increased faculty members’ confidence and preparedness in

teaching key PDC concepts at their own institutions.

Keywords: Raspberry Pi, Raspberry Pi clusters, parallel & distributed

computing, open-access materials

1. Introduction

It is critical that computer science (CS) undergraduates are exposed to

parallel & distributed computing (PDC) topics. Interest in incorporating

PDC in the undergraduate computer science curriculum heightened in re-

cent years due to the Accreditation Board for Engineering and Technology

(ABET) introducing a new requirement that accredited CS programs demon-

strate that all their undergraduate students are exposed to PDC [1]. This

new requirement for CS accreditation has forced faculty to take a closer look

at how best to incorporate PDC into already crowded computing curricula.

1.1. PDC Pedagogical Challenges

Incorporating PDC into undergraduate computer science curricula is chal-

lenging for a number of reasons. First, there is a need to determine how

much PDC material to cover and where in the curriculum to do it. The

ACM/IEEE-CS/AAAI Joint Task Force on Computing Curricula’s 2023 tech-

nical report (CS2023) recommends that all undergraduate CS programs re-

quire 9 hours of core topic coverage in PDC, and that institutions who focus

on Systems development as a core competency area include up to 26 addi-

tional hours of topic coverage [2]. These recommendations are an expansion

of CS2013, which recommended only about 15 hours of PDC education [3].

2

The recommendations of both reports are distilled from the earlier 2012 Core

Topics report [4] by the NSF/IEEE-TCPP Curriculum Initiative on Paral-

lel and Distributed Computing (now updated to version 2, or TCPP2020).

Specifically, TCPP encourages faculty to “judicially sprinkle” PDC topics into

existing courses, rather than radically redesign courses to include PDC [5].

If faculty are to “sprinkle” PDC into existing courses, they must first

develop confidence to teach PDC and have access to high-quality materials

with which to teach. NSF-funded initiatives such as the Center for Paral-

lel and Distributed Computing Curriculum Development and Educational

Resources (CDER) [6] and CSinParallel [7] regularly conducted faculty de-

velopment workshops for faculty new to PDC over the last decade. CDER

and CSinParallel both maintain repositories of educational materials related

to PDC: CDER’s repository collects teaching materials submitted by exter-

nal faculty, while CSinParallel’s repository takes a more curated approach,

consisting of a large number of highly-detailed modules written by a few PDC

educators. Both repositories assume that would-be educators have access to

PDC hardware with which to demonstrate PDC concepts.

A lack of access to hardware capable of demonstrating PDC topics com-

pounds the di!culty of teaching PDC to undergraduates. Colleges and uni-

versities with larger budgets may maintain larger “in-house” clusters that

allow a large number of students to apply PDC knowledge. Smaller de-

partments may deploy “virtual clusters” [8, 9] built on powerful multicore

servers that enable smaller groups of students to demonstrate PDC knowl-

edge. However, in-house systems are often costly, and usually require dedi-

cated hired personnel to build, maintain and update the clusters. Building

3

an in-house system is infeasible for faculty looking to quickly inject PDC

into their courses. Cloud-based solutions such as Amazon’s EC2 cluster o"er

an alternative, but some faculty have remarked on potential issues of the

“pay-as-you-go" model in the classroom [10, 11]; without faculty oversight,

students who are new to cloud and PDC computing may quickly exhaust

available funds, or incur unintended expense. Another approach is to give

students remote access to supercomputing resources (e.g., the NSF-sponsored

XSEDE/ACCESS [12] project). However, account creation may take days

to complete, delaying an otherwise “quick” injection of PDC concepts. Also,

most supercomputing clusters utilize a batch-reservation system for job man-

agement. Without priority access (which is often costly), students may see

long waits for the output of their PDC jobs, extending the time needed to

cover PDC concepts.

1.2. Single Board Computers

In conducting this research, we aim to make it painless for faculty to

use individual Raspberry Pis and Raspberry Pi clusters for teaching PDC

topics. We focus on the Raspberry Pi for its extreme popularity, high level

of community support, project maturity, and adoption in a variety of com-

puting courses. There is a rich history [13] of using the Raspberry Pi for

computer science and engineering education, and it is a well-established plat-

form for such purposes. For example, educators have widely used Raspberry

Pi devices in the context of CS0 [14], CS1 [15, 16] and computer systems

courses [17, 18, 19, 20]. The popularity of using the Raspberry Pi to teach

computer systems topics is an especially compelling reason to focus on the

Raspberry Pi for teaching PDC, as it allows faculty to continue to use a

4

familiar platform in a course that is a natural fit for introducing many PDC

concepts. Furthermore, the wide support of the Raspberry Pi in other courses

means that students can reuse and/or continue to learn about a platform they

were previously introduced to in other courses.

Mathematics education researchers have produced extensive evidence show-

ing that manipulative objects, or maipulatives, are e"ective for learning ab-

stract mathematical topics [21, 22, 23, 24, 25, 26, 27]. Papert [28] was perhaps

the first to apply the concepts of manipulatives to computer science, giving

birth to the notion of “tangible computing" – the use of physical objects to

manipulate and represent digital information [29]; and “physical computing"

– using inexpensive hardware to prototype real systems to drive curiosity,

imagination, and creativity [30]. Using specialized LEGO pieces combined

with a language called Logo, Resnick, Ocko, and Papert demonstrated that

manipulative robotic machines could be built and programmed by school

children, enabling abstract ideas to become concrete and allowing children

to “learn through their fingers” [31]. This use of robotic manipulatives was ex-

tended by Resnick with the introduction of the language MultiLogo, which

enabled learners to program multiple LEGO robots to work concurrently,

marking the first use of physical computing to enable understanding of par-

allel computing concepts, providing “new metaphors and constructs for con-

trolling multiple processes at once” [32].

In recent years, educators have begun to look at single board computers

(SBCs) and SBC clusters to teach students PDC [33, 34, 35, 36, 37, 38, 39,

40, 41]. Early SBCs had a single core, and thus in isolation were not suitable

for teaching parallel computing. Consequently, educators started networking

5

SBCs together to form “microclusters”, in which communication between the

SBC nodes was enabled through the use of the Message Passing Interface

(MPI) (see [33, 34] for some early examples). However, modern SBCs have

multiple cores and may include access to co-processor or GPU chips, making

them suitable as a platform for teaching shared memory concepts [37, 39,

38], and as building blocks of educational clusters for teaching larger PDC

concepts [35, 38, 40, 41]. Toth was perhaps the first [35, 40] to demonstrate

the practicality (and a"ordability) of having students build personal clusters

from SBCs to learn PDC topics.

SBCs and SBC clusters are attractive to teach PDC topics for a variety

of reasons. First, the tactile nature of a single board computer helps stu-

dents “touch” and “see” elements of a computer system (e.g., CPU, memory

unit, secondary storage, networking) that are traditionally presented in an

abstracted fashion. Assigning each student their own SBC provides students

with a standardized architecture and prevents the issue of student workloads

interfering with each other. Second, pre-configured disk images for SBCs can

easily be downloaded from the Internet, ensuring that students start with

a uniform work environment, and makes setup and maintenance relatively

painless. For busy faculty attempting to quickly inject parallelism into their

courses, a painless setup is vital. Lastly, compared to other parallel systems,

SBCs are relatively inexpensive. For example, the Raspberry Pi (arguably

the most popular SBC today and the focus of this paper) has a listed price of

$35.00 for its model 4 board. To reduce the cost-burden further, departments

can simply assign students SBCs (or SBC clusters) as lab equipment, and

collect the devices back at the end of the lab period or course.

6

Despite their promise, SBC clusters are not widely used for several rea-

sons. First, while SBC clusters and their use in the classroom are widely

discussed in several papers (e.g., [35, 42, 38, 40]), cluster setup has been a

significant barrier, usually requiring a non-trivial amount of technical knowl-

edge to fully configure a cluster for use. Next, while prior works [35, 38]

discussed how low-cost clusters can be combined with open-access educa-

tional materials, the onus is largely on the faculty member to figure out how

to combine the two. Lastly, few studies provide assessment of student/faculty

classroom experiences using these systems.

Our work is novel for several reasons. First, we design and make freely

available interactive modules for learning PDC topics on Raspberry Pi de-

vices and clusters. Our interactive modules are built using Runestone In-

teractive [43], a well-known and popular framework for building open-access

interactive educational material. Second, we design and make freely avail-

able a Raspberry Pi disk image that makes it painless for faculty to set up

Raspberry Pi devices and/or clusters for classroom use. A key component

to our design is the concept of a self-organizing cluster, which automatically

connects disparate Raspberry Pis into a functional cluster capable of run-

ning MPI jobs in a matter of minutes. By simultaneously o"ering materials

to teach PDC concepts and simplify the use of the Raspberry Pi as a PDC

platform, we provide the sca"olding instructors will need to reproduce our

approach and ascertain its benefits at their own institutions. All our mate-

rials are free and accessible at [44]

7

2. Overview of Materials

Our contributions are two-fold. First, we design novel, online, interactive

modules for learning PDC topics in conjunction with the Raspberry Pi SBCs

and clusters. Second, we design a novel Raspberry Pi cluster concept known

as a “self-organizing” cluster. To enable faculty to easily build their own self-

organizing clusters, we provide a free Raspberry Pi disk image file that faculty

simply burn to SD cards, insert those SD cards into a set of networked Pis,

and then follow our online instructions to boot the cluster. This lets students

have a personal Raspberry Pi cluster ready to use in a matter of minutes.

The subsections that follow describe each of our sets of materials in detail.

2.1. On-Line Interactive Modules for Learning PDC using Raspberry Pis

We developed two distinct PDC modules for use with Raspberry Pis:

one for teaching shared memory parallel concepts, and one for distributed

memory parallel concepts. Both modules are built using Runestone Inter-

active [43], an NSF-sponsored, open-source platform for building free inter-

active textbooks and tutorials. We use many of Runestone’s custom di-

rectives to build interactivity into our modules, such as video explanations

and visualizations of di!cult concepts, plus interactive questions to check

readers’ understanding of key PDC concepts. Runestone is heavily used in

the CS Education literature; there is also extensive literature that demon-

strates that interactive content improves students learning of computing con-

cepts [45, 46, 47, 48], including parallel computing concepts [49].

The asynchrony of parallel algorithms used in both multicore shared-

memory and cluster distributed-memory computations naturally produce

8

non-deterministic behaviors, which is new and potentially confusing to less-

experienced programmers. To ease students into parallel concepts, our ma-

terials first use PDC patternlets to introduce key multicore and distributed

computing concepts. Introduced by Adams in 2015 [42], patternlets are very

short example PDC programs that each illustrate a particular parallel pro-

gramming pattern. The brevity of the code and the hands-on experience

of tracing and running that code gives introductory students a rapid ini-

tial understanding of key PDC programming patterns. Prior work [42] has

demonstrated the e!cacy of patternlets for teaching students PDC. To illus-

trate how these patternlets lend themselves to larger, real-world programs,

our materials then present one or more “exemplar” applications that students

can explore and use in a hands-on benchmarking activity.

Shared Memory module. Our first module focuses on introducing students to

parallel concepts on an individual multicore Raspberry Pi. The module is

designed to be completed in a self-paced 90-minute period. The first fifteen

minutes presents an overview of processes, threads, multicore systems, and

provides a short introduction to OpenMP patternlets. The CPU and mem-

ory chips are visible on the learner’s Pi; our module describes the four-core

capability of that CPU, and helps learners form a mental model of relevant

architectural concepts, which is made concrete by the physical Raspberry

Pi. During the next 45 minutes, learners work through a hands-on exer-

cise where they explore select OpenMP patternlets at their own pace. The

final 30 minutes examines two OpenMP exemplars: numerical integration

and drug design. Critically, we guide students through a scenario in which

a race condition occurs when a code example is run. Students then work

9

through how to properly avoid it. In this manner, learners are exposed to

general concepts and vocabulary, simple examples, more complex programs,

and finally perform a small benchmarking study to reinforce the concepts

introduced at the beginning of the module, such as speedup. The module is

thus designed for use by students in a single lab period, working remotely

or in-person, either synchronously or asynchronously. It can be used either

as a stand-alone introduction to parallelism or in conjunction with lectures

developed by the instructor. The shared memory module is accessible at [50].

Distributed Memory module. Our second module explores parallel concepts

in distributed memory systems (such as a Raspberry Pi cluster) using the

Message Passing Interface (MPI), a standard for distributed memory parallel

computing. In MPI, independent processes communicate with one another

by sending and receiving messages. To make MPI accessible to students

with di"erent experience levels, we created two versions of our module: one

using traditional MPI C programs, and one using mpi4py, a Python library

that provides a Python interface to the MPI C functions. The distributed

memory modules are designed to be completed over a 90-minute to 2-hour

period. The first part of the module presents an overview of clusters and

their components, along with instructions on how to set up the self-organizing

cluster. This part takes at most 20 minutes to complete. During the next

45 to 60 minutes, students work through a series of MPI patternlets. In one,

we guide the learners through a deadlock experience; the exercise helps them

understand why deadlock is a problem, what causes it, and learn how to avoid

it. During the last half hour or so of the module, students have the option

of working through one of two message passing exemplars: a Monte Carlo

10

forest fire simulation or a drug design example. The Distributed Memory

module implemented using mpi4py is accessible at [51]. The C version of the

aforementioned module is accessible at [52].

2.2. Hands-On Hardware: Self-Organizing Raspberry Pi Clusters

The 2015 release of multicore Raspberry Pi SBCs enabled shared memory

concepts to be taught on the Raspberry Pi for the first time [39]. Early

kits were limited by their bulkiness, cost, and level of required setup. For

example, in 2016, Matthews et al. [39] described using the “Pimoroni” (a self-

contained Raspberry Pi kit) to teach shared memory parallel concepts. Each

“Pimoroni” unit cost approximately $150.00, and consisted of a Raspberry

Pi attached to a Pimoroni LCD monitor, a small mouse and a keyboard.

The units however were relatively bulky; a large Pelican case was needed to

house just 16 units, making it di!cult to scale to larger groups of students.

The same paper describes a more bare-bones “headless-VNC” kit [39] that

allowed users to remotely access a Raspberry Pi’s desktop via an Ethernet

cable between the Pi and the user’s laptop. A separate microUSB cable

allowed the Pi to be powered directly by the laptop, eliminating the Pi’s

bulky power supply. This bare-bones kit was highly portable, and enabled

a user to interact with the Pi via the laptop’s screen, mouse, and keyboard.

The use of a VNC client like VNC Viewer also allowed students to view

the Raspberry Pi’s desktop from their laptop, allowing them to experience

the Pi as a “normal” computer. This bare-bones kit cost about $60.00, but

required faculty to statically set IP addresses and install additional packages

for classroom use. As successive iterations of the Raspberry Pi increased

the power consumption of the device, it became impossible to power the Pi

11

using a microUSB cable from the laptop, forcing the use of an external power

supply, and increasing the form-factor of the kits.

The strong community support and large user base behind the Raspberry

Pi resolved many of these issues in subsequent years. Successive software up-

dates to the Raspberry Pi rendered some of the auxiliary setup unnecessary;

as of this writing, the latest Raspberry Pi OS comes with “zeroconf mDNS”

technology that greatly simplifies connecting a laptop and a Raspberry Pi.

Furthermore, USB-C ports have become standard on laptops in recent

years. Matthews demonstrated in 2021 [53] that a USB-C cable can be used

to power a Raspberry Pi from a user’s laptop (provided it has a USB-C port)

and wrote a tutorial on how to set up a Raspberry Pi for classroom using the

new “zeroconf” capabilities. The revised bare-bones kit costs about $65.00.

Spurred by the success of prior work that demonstrated the utility of

Raspberry Pis for teaching shared memory parallel topics, the authors began

exploring the creation of self-organizing Raspberry Pi clusters that individual

students could use to explore distributed memory parallel topics. Clusters

traditionally require significant technical know-how to properly configure; a

challenge to deploying clusters to the classroom is to minimize (or eliminate)

the configuration steps needed to teach distributed memory concepts within

a single lesson or lab exercise. If students perform these configuration steps

within the classroom, it can easily consume most of an entire lab period [37].

If faculty perform these steps prior to a class, the extra work may well be

prohibitive. Relatedly, the traditional e"ort required to deploy Raspberry

Pi clusters in the classroom may be worthwhile for courses that will use the

clusters repeatedly over the course of a semester, it proves to be too much

12

for courses looking to quickly inject PDC concepts into an existing course for

a single two-hour period or less.

For this reason, Brown and his students developed the self-organizing

cluster (SOC), which, through the running of a few commands, allows a

cluster to be configured quickly and automatically, with very little work

on part of students (or professors). The SOC software requires additional

hardware for physically forming the cluster, namely a network switch and

Ethernet cables (and perhaps laptop adapters) for connecting Raspberry Pi

SBCs via the switch. The SOC software lets a user configure a Pi cluster for

MPI computing using just two commands:

1. head-node, performed on any one of the Raspberry Pi units connected

to a switch, uses the DHCP protocol to (i) establish that Pi as the

cluster’s head node, and (ii) to organize the other Pi units as worker

nodes; and

2. soc-mpisetup, prepares the resulting cluster for MPI computing (e.g.,

generating an MPI hostfile that lists Pi units available on that network).

A third command worker-node returns a head-node Raspberry Pi to its

original settings and shuts down the cluster.

These commands require no prior knowledge of which physical Raspberry

Pi systems or network switches might be connected together. This lets inex-

perienced students configure a cluster spontaneously in a few minutes during

a class meeting (and to quickly shut down those clusters at the end of class).

It also allows a non-specialist professor to easily configure a permanent phys-

ical cluster of dozens of Raspberry Pi units using just the SOC configuration

commands.

13

Figure 1: Raspberry Pi Modalities for Learning PDC

This flexible design allows students to explore Raspberry Pi devices and

clusters in any of several modalities, while utilizing a single, common disk

image:

• Students can explore shared memory parallel concepts using the disk

image on a single Raspberry Pi (Figure 1a).

• Students can explore distributed memory parallel concepts by connect-

ing to an existing Raspberry Pi cluster built by their instructor and

using it to run MPI jobs (Figure 1b).

• A group of students can collaboratively create a Raspberry Pi cluster

by each connecting their personal Pi to a switch, then running the

above-mentioned two commands on any of those Pi units that cause

the individual nodes to “self-organize” into a cluster (Figure 1c). The

group of students can then use the resulting cluster to run MPI jobs.

In this manner, students interact with a touchable physical cluster of

Raspberry Pi units, a network switch, cables, and adapters. In the class-

14

shares-one-cluster modality (see Figure 1b), each student interacts with a

pre-built computer cluster, observing the cluster’s Raspberry Pi nodes and

the physical network that connects them. In the modality where a team of

students creates a cluster (see Figure 1c), students connect their own Pi de-

vices to a network switch to create that cluster. Likewise, in the one-cluster-

per-student modality (Figure 1a), each student builds their own personal

cluster from multiple Pi devices and a network switch. Each modality thus

provides concrete experiences that help students develop accurate mental

models of cluster operation and distributed computing.

Table 1: Approximate Cost Breakdown of 3-node Raspberry Pi Cluster Kit, assuming

the single Pi cluster/student model. This is the most expensive of the three modalities

presented in Figure 1.

Qty. Item Cost/unit Total

3 Raspberry Pi $35.00 $105.00

3 microSD card $8.00 $24.00

2 Raspberry Pi power supply $10.00 $20.00

1 Gigabit 5-port Ethernet Switch $12.00 $12.00

4 1-ft Ethernet Cables $2.00 $8.00

2 Ethernet to USB Adapters $10.00 $20.00

1 USB-C to microUSB (or USB-C) charging cable $10.00 $10.00

3 velcro dots to connect Pis to switch $0.02 $0.06

1 Kit case $20.00 $20.00

Total Kit Cost $219.06

The cost of a cluster of three Raspberry Pi units and a 1G network switch

used for the last two modalities is approximately $220.00, or about the cost of

a textbook (see Table 1). Beyond purchasing the required parts, faculty just

15

need to burn our Raspberry Pi disk image onto each Pi’s microSD card. The

above-mentioned SOC commands handle everything else. The Raspberry Pi

disk image can be found at [54]. It requires at least an 8 GB SD card.

3. Research Methods

To assess the e!cacy of our materials, we began by formulating the fol-

lowing research questions, which were designed to assess the materials’ e"ects

on their users’ confidence and motivation:

• RQ1: Do our materials for the Raspberry Pi improve students’ con-

fidence about understanding shared-memory parallel computing con-

cepts?

• RQ2: Do our materials for the Raspberry Pi clusters improve students’

confidence about understanding distributed-memory parallel comput-

ing concepts?

• RQ3: Do our materials for the Raspberry Pi motivate students to learn

more about PDC topics?

• RQ4: Do our materials for the Raspberry Pi improve instructors’ con-

fidence about understanding PDC concepts?

• RQ5: Do our materials for the Raspberry Pi clusters improve instruc-

tors’ confidence to teach PDC topics?

• RQ6: Do our materials for the Raspberry Pi motivate instructors to

learn more about PDC topics?

16

To answer these questions, we conducted a multi-year assessment over

several populations of students and faculty, both at our home institutions

and from around the United States. Our focus in evaluating students was

to assess their self-confidence about di"erent concepts that are central to

shared memory and distributed memory parallel programming. Our focus

in evaluating faculty instructors was to measure their self-confidence and

preparedness for delivering PDC concepts to students in their courses.

Prior to performing our assessments, the IRB for our study was reviewed

and approved at St. Olaf, which was designated the IRB institution of record.

The other institutions then ceded IRB authority to St. Olaf. The assessments

shown in this paper include faculty and student populations, some attending

in-person workshops at conferences, others in in-person classroom settings.

We did not gather or store any personal or identifiable data on participants.

3.1. Assessment Design

The surveys presented in this work were conducted over a six-year period

prior to the release of CS2023, so we mapped our assessments and materials

against CS2013, the primary curricula report available at the time. In Section

5.2, we discuss the mapping of our materials to the CS2023 topics; for the

remainder of this section however, we focus on CS2013.

Table 2 presents our analysis of how our materials map to CS2013’s PD

knowledge area, which outlines 30 PDC learning outcomes spread over two

“core” tiers: core tier 1 (C1) and core tier 2 (C2). According to CS2013,

learning outcomes classified as “core tier 1” should be required of every CS

undergraduate, while “core tier 2” outcomes are deemed essential [3] coverage.

CS2013 further recommends that all core tier 1 outcomes, at least 80% of

17

core tier 2, and “most” elective content be covered in undergraduate CS

programs. Our Raspberry Pi modules cover a significant percentage of the

learning outcomes required by CS2013.

Table 2: Coverage of CS2013 PD Knowledge Area Outcomes By Our Materials

PD Knowledge Area

(Coverage)

Outcomes covered by our materials

Parallel Fundamentals 1. Parallelism vs. concurrency [C1]
(100% C1) 2. Types of synchronization. [C1]

3. Data Races vs. Other Races [C1]
Parallel Decomposition 1. Explain need for synchronization. [C1]
(100% C1, 75% C2) 2. Identify parallelism opportunities [C1]

3. Write correct scalable parallel program [C2]
4. Use task-based decomposition. [C2]
5. Use data decomposition. [C2]

Communication 1. Use Mutual exclusion [C1]
& Coordination 2. Give example of a data race. [C1]
(100% C1, 66% C2) 3. Give example of deadlock. [C2]

4. Uses of multicasts/event-based messaging. [C2]
5. Write concurrent task program [C2]
6. Used shared bu!er among activities [C2]
7. Explain need for atomicity [C2]
8. Write program that reveals a data race [C2]

Parallel Algorithms 3. Define speedup, explain scalability. [C2]
Analysis, & Programming 4. Identify independent tasks. [C2]
(71.4% C2) 5. Describe what can(not) be parallelized. [C2]

6. Implement parallel divide and conquer. [C2]
7. Decompose a problem via map+reduce operations [C2]

Parallel Architecture 1. Explain shared, distributed memory di!erences [C1]
(100% C1, 66% C2) 2. Describe SMP architecture [C2]

After determining our shared memory materials’ coverage of the CS2013

PD outcomes (Table 2), we developed four questions to assess our materials’

achievement of specific outcomes. Table 3 shows the mapping of the CS2013

PD Knowledge Area outcomes for shared memory parallelism topics (left and

middle columns) to our four assessment questions (right column).

Prior to each session in which we used our materials, we asked attendees

18

Table 3: Shared Memory Assessment Questions for CS2013 PD Outcomes

PD Knowledge

Area

Outcomes covered by

our materials

Assessment Questions

Parallel 3. Data Races vs. How confident are you that you can
Fundamentals Other Races [C1] describe what a race condition is and how

to avoid it when writing parallel programs
that use shared memory?

Parallel 1. Explain need for How confident are you that you could
Decomposition synchronization. [C1] describe the advantages and disadvan-

tages of using parallel programming on
shared memory multicore machines to
someone familiar with programming?

5. Use data How confident are you that you can
decomposition. [C2] describe how to decompose a problem us-

ing multiple threads and implement it us-
ing a parallel loop?

Parallel 3. Define speedup, How confident are you that you can
Algorithms explain scalability. [C2] define speedup and describe it to someone

familiar with programming?

to complete a 4-question pre-survey, consisting of four questions shown in

Table 3. The response to each question was a 5-point Likert scale with “1”

indicating “not confident at all”, “3” indicating “somewhat confident”, and

“5” indicating “very confident”. At the end of a session, we asked attendees

to complete a post-survey that was identical to the pre-survey, except that

it included a fifth question asking participants to assess (on a scale of 1 to

5) the e"ect of the Raspberry Pi in motivating them to learn more about

parallel computing. Here, “1” indicated “no increase”, “3” indicated “some

increase”, while “5” indicated “a lot of increase”. This question was followed

by an open-ended response opportunity to explain their answer further.

We followed an identical process when designing our assessment for our

distributed memory module. Table 4 shows a similar mapping for distributed

memory parallel computing concepts from CS2013 and the associated ques-

19

tions we developed for our pre- and post-surveys. The 5-question pre-survey

asked participants to rate their confidence on each of five questions shown in

Table 4, using a 5-point Likert scale with “1” indicating “not confident at all”,

“3” indicating “somewhat confident”, and “5” indicating “very confident”. Af-

ter completing the module, attendees were asked to complete a post-survey

containing the identical five questions, plus two additional Raspberry Pi-

specific questions to assess their level of engagement and their motivation to

learn more.

Table 4: Distributed Memory Assessment Questions for CS2013 PD Outcomes

PD Knowledge

Area

Outcomes covered by

our materials

Assessment Questions

Parallel 2. Types of How confident are you that you can
Fundamentals synchronization [C1] describe the use of point to point com-

munication between processes to a person
familiar with programming?

Parallel 3. Data Races vs. How confident are you that you can
Fundamentals Other Races [C1] describe what deadlock is and how to

avoid it in message passing programs?
Parallel 1. Explain need for How confident are you that you can
Decomposition synchronization [C1] describe the advantages and disadvan-

tages of using message passing on a com-
puting cluster to someone familiar with
programming?

5. Use data How confident are you that you can
decomposition [C2] decompose a problem by having multiple

processes perform a parallel loop?
Communication Uses of multicasts/ How confident are you that you can

event-based messaging
[C2]

describe the use of collective communica-
tion between processes to a person famil-
iar with programming?

In addition to classroom use, we used these modules in multi-day, annual

professional development faculty workshops held over three years, two which

were conducted remotely due to the COVID-19 pandemic. To aid in gath-

20

ering unbiased and independent feedback at these workshops, we contracted

with an independent evaluator, Anne Gurnee Consulting (AGC) to survey

the remote workshop participants. To evaluate the workshop, AGC asked

participants to indicate on a 5-point Likert Scale (1 is “not at all useful”, 5 is

“extremely useful”) the perceived usefulness of each workshop session (i) in

helping them implement PDC topics in courses at their institutions, and (ii)

for professional development.

AGC also used pre- and post-workshop surveys with common Likert-

scaled questions to gauge the workshop’s e"ects on the participants’ confi-

dence and preparation for implementing PDC topics in their courses. The

first question was “Indicate your current level of confidence in implementing

PDC topics in your courses.”, where 1 corresponded to “not at all confident”,

2 corresponded to “slightly confident”, 3 corresponded to “moderately confi-

dent”, 4 corresponded to “very confident”, and 5 corresponded to “extremely”

confident. The second question was “How prepared do you feel to successfully

implement PDC topics in your courses?” For this question, 1 corresponded

to “not at all”, 2 corresponded to “a little bit”, 3 corresponded to “somewhat”,

4 corresponded to “quite a lot” and 5 corresponded to “very much”.

3.2. Characteristics of our Student Participants

We evaluated our materials on six groups of undergraduate computing

students, with three groups evaluating our shared memory materials, and

three groups evaluating our distributed materials. While our materials were

designed for CS undergraduates with no prior exposure to parallelism, we

had very diverse audiences that included students from a variety of majors.

21

For our shared memory parallelism module, each of our three groups of

students covered the material over a 90-minute session:

• Our first group consisted of 33 primarily undergraduates who had never

been exposed to parallel computing (B for “Beginners”). These students

self-selected to attend a workshop we o"ered at the ACM Richard Tapia

Conference, which celebrates diversity in computing. Most students

had no prior exposure to Raspberry Pi SBCs.

• The second group were 16 undergraduates in a college classroom with

the majority having prior exposure to parallel concepts, but not OpenMP

(I for “Intermediate”). A significant number also had prior experience

with Raspberry Pi SBCs.

• Our last shared memory group consisted of 16 primarily graduate stu-

dents, some with prior parallel programming experience (A for “Ad-

vanced”). This group of students chose to attend a parallel computing

workshop at the SIAM Conference on Computational Science and En-

gineering. Some students had prior exposure to Raspberry Pi SBCs.

We also tested our distributed memory MPI materials on groups of un-

dergraduate students in laboratory sessions at three di"erent undergraduate

institutions:

• Forty-two West Point students (W) used our materials over a 2-hour

lab period near the end of a computer systems course that included a

10-lesson unit on concurrency with threads.

• Thirty-two St. Olaf students (S) used our materials over two one-hour

class sessions in a hardware design course that used Raspberry Pi SBCs

22

throughout; the students learned how to assemble their clusters in the

first session and worked through our interactive MPI exercises during

the second session.

• Twenty-three Macalester (M) students used our materials in self-directed

pairs over two 1.5 hour class periods of a parallel and distributed com-

puting course. This group of students had some prior experience with

OpenMP shared memory parallel computing, but this experience was

their first time using Raspberry Pi clusters and MPI.

We were thus able to test our materials on a wide variety of students.

3.3. Characteristics of our Faculty Participants

In addition to running classroom sessions with students, we piloted our

materials to faculty at two separate 3-hour in-person workshops at the ACM

SIGCSE conference, and also at two separate multi-day virtual summer work-

shops. We introduced these materials slightly di"erently to the SIGCSE par-

ticipants vs. the summer participants, owing to the di"erent amounts of time

and modalities available to us:

• To demonstrate to faculty at SIGCSE how they would teach with our

materials, we conducted each 3-hour SIGCSE workshop in-person; each

included a 90-minute lab period that we ran exactly the same as we

did with students in-person.

• In contrast, we conducted our 2020 and 2021 summer workshops in

a fully remote format, due to the COVID-19 pandemic. Prior to the

workshop, we mailed each participant a Raspberry Pi kit (see Table

23

1) and emailed them links to videos to guide them through assembly

and setup. The workshop sessions were conducted synchronously. In

both years, the workshop participants worked through our first (shared

memory) Raspberry Pi module during a 2-hour session on the first

morning. In 2021, the participants worked through the second (dis-

tributed memory) module the second morning. (In 2020, the SOC

software was not completed.) We added an extra half hour for both

sessions as a precaution, in case our remote participants encountered

technical issues.

As with our student groups, these workshops let us test our materials with

a variety of faculty members and under a variety of circumstances.

Our remote faculty development workshops attracted diverse audiences:

The 22 participants in our 2020 summer workshop were a mix of faculty

members (85%) and graduate students (15%). Of these, 19 were from in-

stitutions in the continental U.S., one was from Puerto Rico, and two were

international. 77% of the attendees identified as male, 18% as female, and

5% as other. 46% of the attendees were tenured or tenure track at their in-

stitutions; 39% were non-tenure track; the 15% who were graduate students

expected to graduate within a year and wanted to learn how to teach PDC

at their future institutions. Likewise, our 2021 summer workshop attracted

19 participants, consisting of 95% faculty and 5% K-12 classroom teachers.

In this workshop, 64% of the attendees identified as male, 16% as female,

and three preferred not to answer. 84% of those 2021 attendees were tenured

or tenure-track at their institutions, while 11% were non-tenure track.

24

4. Results

4.1. Student Feedback

Here we report survey results from sessions of student participants.

Table 5: OpenMP Workshop Student Pre- and Post-Survey Results.

Pre-Survey Means Post-Survey Means p-values
B I A B I A

Questions/ Number of
Responses

n = 33 n = 16 n = 16 n = 32 n = 16 n = 16

1. How confident are
you that you can de-
scribe how to decom-
pose a problem using
multiple threads and
implement it using a
parallel loop?

2.15 2.00 2.38 3.66 3.56 4.18 B: 3.129→10↑8

I: 1.118→ 10↑4

A: 1.653→10↑4

2. How confident are
you that you could de-
scribe the advantages
and disadvantages of
using parallel pro-
gramming on shared
memory multicore
machines to someone
familiar with program-
ming?

2.55 2.56 3.06 3.94 3.75 4.38 B: 1.071→10↑6

I: 9.046→ 10↑4

A: 6.742→10↑4

3. How confident are
you that you can define
speedup and describe
it to someone familiar
with programming?

2.27 1.94 2.81 3.95 3.69 4.5 B: 5.912→10↑7

I: 5.890→ 10↑6

A: 1.965→10↑4

4. How confident are
you that you can de-
scribe what a race con-
dition is and how to
avoid it when writing
parallel programs that
use shared memory?

2.48 2.38 2.81 3.76 3.94 4.5 B: 2.349→10↑5

I: 7.779→ 10↑4

A: 6.933→10↑4

25

4.1.1. Shared Memory (OpenMP) Results

Table 5 summarizes the results for the student sessions using our OpenMP

(shared memory) materials. The third row reports the number of responses

we received on the pre- and post-surveys for the three populations (B=Beginner,

A = Advanced, and I=Intermediate). For example, 33 Beginner participants

completed the pre-survey, while 32 completed the post-survey.

The mean response for each pre- and post-survey question is shown in

columns two and three respectively. We conducted a two-sample unpaired t-

test using the R statistics package [55] to test the significance of the di"erence

between the mean scores. For each question, the null hypothesis of the t-test

was that the means for the two groups would be equivalent, and we reject the

null hypothesis when p < 0.05. The rightmost column of Table 5 provides

the results of our t-test analyses.

There is a significant di"erence in the means of the pre- and post-surveys

for questions 1 through 4 for each of our student workshops, despite the

fact that we had di"erent populations of students with varying exposures to

parallelism. The Beginner population workshop (which had our lowest p-

values) had the highest number of novice students; the Advanced population

workshop had more experienced students; and the Intermediate workshop

contained a large component of undergraduate students who had some prior

exposure to some parallel concepts. Unsurprisingly, more advanced groups

had higher p-values than the beginning group; however, all measured p-

values are below our significance threshold of 0.05, so we reject the null

hypothesis. Table 5 thus provides evidence that our materials are e"ective

in helping students from a variety of backgrounds gain confidence regarding

26

shared memory programming concepts.

Table 6: MPI Lab Student Pre- and Post-Survey Results.

Pre-Survey Means Post-Survey Means p-values
W S M W S M

Questions/ Number of Responses 40 32 23 42 28 23
1. How confident are you that
you decompose a problem by hav-
ing multiple processes perform a
parallel loop?

2.63 2.06 2.57 3.42 2.86 3.73 W: 2.945→ 10↑5

S: 7.815 → 10↑3

M: 4.395→ 10↑4

2. How confident are you that
you can describe the advantages
and disadvantages of using mes-
sage passing on a computing clus-
ter to someone familiar with pro-
gramming?

2.15 1.88 1.73 3.57 2.86 3.78 W: 3.016→10↑11

S: 3.595 → 10↑4

M: 1.488→ 10↑9

3. How confident are you that
you can describe the use of point
to point communication between
processes to a person familiar
with programming?

2.02 1.81 1.48 3.49 2.61 3.26 W: 2.222→10↑13

S: 3.43 → 10↑3

M: 2.894→ 10↑7

4. How confident are you that
you can describe the use of collec-
tive communication between pro-
cesses to a person familiar with
programming?

2.08 1.81 1.61 3.43 2.57 3.61 W: 3.628→10↑11

S: 2.452 → 10↑3

M: 7.102→10↑10

5. How confident are you that
you can describe what deadlock
is and how to avoid it in message
passing programs?

2.05 1.78 1.61 3.74 2.68 4.17 W: 3.263→10↑13

S: 1.858 → 10↑3

M: 2.317→10↑12

4.1.2. Distributed Memory (MPI) Results

Table 6 summarizes the MPI results for our three groups of students. As

with our OpenMP results, we conducted a two-sample unpaired t-test using

the R statistics package [55] to test the significance of the di"erence between

the mean scores. For each question, the null hypothesis of the t-test is that

the means for the two groups are equivalent, and we reject the null hypothesis

when p < 0.05.

27

The West Point students, having completed a 10-unit lesson on shared

memory programming (though no lessons on distributed computing) had the

highest pre-survey confidence across across all sections. The Macalester stu-

dents also had some experience with OpenMP shared memory programming,

but had lower confidence regarding distributed programming going into the

MPI programming exercises. Despite the variations in the way the interven-

tion was conducted, all populations of students experienced a statistically

significant increase in confidence on core concepts, providing evidence that

our materials successfully helped students gain confidence in their under-

standing of distributed memory parallel concepts.

4.1.3. Impact on Student Motivation and Engagement

The post-surveys given to the students taking both the shared memory

and distributed memory interventions contained a question asking students

how much using the Raspberry Pi (Cluster) motivated them to learn more

about PDC topics. On the OpenMP post-surveys, the question was “To what

extent did using an inexpensive multicore computer (e.g. the Raspberry Pi)

to run parallel programs motivate you to learn more about parallel computing

in the future?”. On the MPI post-surveys, the question was “To what extent

did using a cluster of inexpensive small computers motivate you to learn more

about parallel and distributed computing?”. For both surveys, students were

presented with a 5-point Likert scale where 1 corresponded to “no increase

in motivation” and 5 indicated “highly motivated”.

Figure 2 depicts the distribution of responses on both sets of surveys. A

total of 64 students answered this question for the OpenMP post-surveys,

and 93 students answered this question on the MPI post-surveys. The green

28

and blue bars depict the students’ responses to the motivation question from

the OpenMP workshop surveys and the MPI lab surveys, respectively. We

normalized the y-axis to depict the percent of students that gave a particular

response. The mean response for the question on the OpenMP and MPI

surveys are 4.05 and 3.66, respectively.

Figure 2: Students: “How much did using the The Raspberry Pi/Raspberry Pi Cluster

motivate you to learn more?”

As can be seen in Figure 2, 76.6% of the students surveyed in the OpenMP

groups answered with a ’4’ or ’5’, indicating that using the Raspberry Pi

motivated them to learn more about parallel computing. A smaller majority

(64.5%) of the students surveyed from the MPI group answered ’4’ or ’5’,

again indicating that the Raspberry Pi clusters motivated them to learn

more. We theorize that one of the reasons that motivation was lower for the

MPI surveys had to do with the novelty factor of the Raspberry Pi devices:

In our OpenMP sessions, most students had not seen (or used) a Raspberry

Pi prior to the session. In contrast, the majority of the students in the MPI

sessions (76.2%) had prior exposure to Raspberry Pis earlier in the semester

at their respective institutions, reducing the novelty of the experience.

29

4.2. Faculty Feedback

In this section, we report the pre- and post-survey results of those using

our materials at faculty development workshops.

4.2.1. In-person Faculty Survey Results

Table 7 summarizes the assessment results of the OpenMP and MPI fac-

ulty workshops at SIGCSE. The OpenMP workshop consisted of 17 partic-

ipants, who all took the survey. The MPI workshop consisted of 13 partic-

ipants, 11 of whom took the pre-survey and 8 which took the post-survey.

We believe the reason for this di"erence in response rates had to do with the

modality in which surveys were provided. At the OpenMP workshop, pa-

per surveys were administered. In contrast, at the MPI workshop, electronic

surveys were administered.

Table 7: Pre-Survey and Post-Survey Results of OpenMP and MPI workshops taken by
Faculty at SIGCSE workshops. Note there were only 4 questions on the OpenMP survey.

OpenMP Workshop Means MPI Workshop Means
Question Pre-Survey

(n=17)
Post-Survey
(n=17)

p-value Pre-Survey
(n=11)

Post-Survey
(n=8)

p-value

Q1 2.88 4.06 0.0046 2.72 4.00 0.0180
Q2 3.18 4.12 0.0275 2.82 4.00 0.0594
Q3 3.12 4.23 0.0208 2.63 3.75 0.1278
Q4 3.11 4.18 0.0077 2.36 3.75 0.0221
Q5 – – – 2.72 4.13 0.0264

At these workshops, faculty were given pre- and post-surveys that had

identical questions to the student surveys discussed in Section 4.1. For the

OpenMP workshop, faculty indicated a significant increase in confidence for

all concepts. Interestingly, while faculty confidence did increase for the use

of point-to-point communication (question 3), the increase did not meet the

30

threshold for significance. We speculate this may be due to di"erence in pop-

ulation between the pre- and post-survey respondents for the MPI workshop;

the small sample size is also likely a factor.

Figure 3 shows the the distribution of faculty responses to the post-survey

question, “How much did using the Raspberry Pi (Cluster) motivate you to

learn more about parallel (and distributed) computing?”.

Figure 3: Faculty: “How much did using the The Raspberry Pi/Raspberry Pi Cluster

motivate you to learn more?”

While the average score for the OpenMP workshop (where each partic-

ipant was given a single Raspberry Pi) was 3.88, the average score for the

MPI workshop (where each participant was given a Raspberry Pi cluster)

was higher at 4.25. The MPI workshop survey added a question about en-

gagement ; faculty self-reported an average engagement of 4.5. We speculate

that faculty found the clusters more motivating due to their novelty. All the

concepts of the OpenMP workshop could be taught on any modern multi-

core workstation or laptop. However, we suspect that the novelty, form-factor

and additional processing elements provided by the Raspberry Pi clusters led

31

faculty attendees to find them highly appealing as a learning platform.

Table 8: Top 3 Most Useful Sessions ranked by faculty for (A) implementing PDC in their
courses; and (B) for their own professional development

2019 (n=19) 2020 (n=22) 2021 (n=19)
(A) (B) (A) (B) (A) (B)
OpenMP on
Remote Mul-
tiprocessor

Building
Raspberry Pi
Clusters

OpenMP on
Raspberry Pi

OpenMP on
Raspberry Pi

OpenMP on
Raspberry Pi

mpi4py on
Raspberry Pi
Cluster

MPI on
Remote
Clusters

TSGL; MPI
on Remote
Clusters
(tied)

CSinParallel
Modules;
MPI on Re-
mote Clus-
ters; PDC
Teaching
Experiences
(3-way tie)

CSinParallel
Modules

PDC Re-
sources
“Show and
Tell”; PDC
Teaching
Experiences;
Curriculum
Workshop
(3-way tie)

PDC Re-
sources
“Show and
Tell” / PDC
Teaching
Experiences
(tie)

OpenMP on
Raspberry Pi

Hybrid
OpenM-
P/MPI
program-
ming

Strategies
for teaching
PDC Re-
motely

MPI on Re-
mote Clus-
ters/ PDC
Teaching
Experiences
(tie)

CSinParallel
Modules

OpenMP on
Raspberry Pi
/ CSinParal-
lel Modules
(tie)

4.2.2. Remote Faculty Survey Results

Table 8 shows how useful faculty members found our remote workshop

sessions in 2020 and 2021. For the sake of comparison, we also include data

from our pre-pandemic summer workshop in 2019, which was conducted in-

person. All multi-day summer workshops included other (non-Raspberry Pi)

sessions that were devoted to other demonstrations of tools and modules,

and discussions related to PDC education. We initially reported part of

these results in 2021 [56].

In 2019, faculty ranked the “OpenMP on a Remote Multiprocessor” (µ =

4.47) and “MPI on Remote Clusters” (µ = 4.41) as the sessions that they

32

found most useful to help them implement PDC topics at their own institu-

tions. While the “OpenMP on the Raspberry Pi” (µ = 4.35) session made

it to the top 3, we believe it did not have as big of an impact as the other

sessions due to the lack of ready-made online instructional material to ac-

company the hardware platforms. Faculty rated the “Building Raspberry Pi

Clusters” session as the most useful (µ = 4.56) in terms of professional devel-

opment, while “MPI on Remote Clusters” (µ = 4.53) and “Hands-On Hybrid

MPI/OpenMP Programming” (µ = 4.40) sessions were ranked second and

third. We suspect that this is due to our participants generally being less

familiar with distributed memory concepts coming into the workshop.

At the 2020 workshop, we debuted the OpenMP Runestone interactive tu-

torial to accompany the Raspberry Pi. At the 2021 workshop, we debuted the

mpi4py Runestone interactive tutorial to accompany the (revamped) Rasp-

berry Pi cluster kits. Our results clearly demonstrate the power of having

compelling hardware accompanied by quality materials. Faculty ranked the

“OpenMP on the Raspberry Pi” session the highest in 2020 and 2021 for PDC

implementation, and the “mpi4py on Raspberry Pi Cluster” session the most

highly for professional development in 2021. Furthermore, the “OpenMP for

Raspberry Pi” was ranked the highest for professional development in 2020

and tied for third place for professional development in 2021. We believe

these results reflect the quality and compelling nature of our interactive ma-

terials combined with hands-on hardware.

Figure 4 shows how our materials increased participant confidence. A

Student’s t-test indicates that participants experienced a significant increase

in confidence (preµ = 2.82, postµ = 3.59, p = 7.624 → 10→4). Figure 5

33

Figure 4: Faculty remote participants’ confidence in implementing PDC in their courses

Figure 5: Faculty remote participants’ preparedness in implementing PDC in their courses

34

shows how our modules increased participants’ feelings of preparedness. A

paired Student’s t-test showed this increase to be significant (preµ = 2.85,

postµ = 3.66, p = 4.947→ 10→7).

5. Discussion

PDC content has become a necessary component in undergraduate com-

puter science curricula, as expressed in reports such as CS2013 [3], TCPP2012 [4],

and more recently in the ABET accreditation standards for CS [1] and the

CS2023 report [2]. In order to address these imperatives, we have developed

PDC learning materials for both shared-memory and distributed-memory

parallelism that can be “judiciously sprinkled” [5] into existing courses at all

undergraduate curricular levels, including the introductory sequence, without

radically redesigning those courses for PDC.

Our work was inspired by the pioneering work in physical computing

whose aim was to drive curiosity, imagination, and creativity in students

learning computer science [30, 32]. We designed our materials for Raspberry

Pi single-board computers, including individual Pi units attached to a user’s

laptop or desktop, or multiple Pi units connected to a network switch to form

a Beowulf cluster via our self-organizing cluster software.

Our analysis in Section 4 (Results) provided evidence that the combi-

nation of our materials with Raspberry Pi SBCs and Raspberry Pi clusters

helped both students and instructors gain confidence about learning PDC

concepts, improved instructors’ confidence about teaching PDC topics, and

motivated both students and instructors to learn more about PDC. Note that

our research questions RQ1 to RQ6 appear near the beginning of Section 3

35

(Methods).

5.1. Summary of Findings

1. Students gained confidence about their understanding of both shared-

memory parallel and distributed-memory parallel computing concepts

after using our materials for learning with Raspberry Pi technologies, as

shown in Tables 5 (Section 4.1.1) and 6 (Section 4.1.2). This indicates

an a!rmative answer to research questions RQ1 and RQ2.

2. Faculty (at in-person workshops) significantly gained confidence about

understanding shared-memory parallel computing concepts after us-

ing our materials, as shown in Table 7 (Section 4.2.1). That sec-

tion also suggests that faculty gained confidence about understand-

ing distributed-memory parallel computing concepts, where a majority

(but not all) of the survey questions reveal significant increases (at

p<=0.05) in confidence. These comments provide a largely a!rmative

answer to research question RQ4.

3. Faculty (at remote workshops) reported a significantly higher mean

level of confidence and preparedness to implement PDC concepts in

their courses, as shown in Figure 4 (Section 4.2.2). This indicates an

a!rmative answer for research question RQ5.

4. Both faculty (at in-person workshops) and students reported increased

motivation to learn more about shared-memory parallel and distributed-

memory parallel computing after using our materials, as indicated by

Figures 2 (Section 4.1.3) and 3 (Section 4.2.1). This indicates an a!r-

mative answer to research questions RQ3 and RQ6.

36

5.2. Mapping to CS2023

As previously mentioned, our materials were created and assessed prior

to the recent release of the CS2023 Curricula Final Report [2]; it contains

numerous CS knowledge areas, and breaks these down into knowledge units.

The knowledge units are further divided into CS core topics and additional

knowledge area (KA) topics. Each knowledge area also contains some

example Illustrative Learning Outcomes, which don’t necessarily match each

topic (e.g., there are fewer learning outcomes than topics).

The revised Parallel and Distributed Computing (PDC) Knowledge Area

in CS2023 has five knowledge units: Programs, Communication, Coordina-

tion, Evaluation, and Algorithms. Certain topics related to PDC are in other

knowledge areas and are considered prerequisites for the PDC topics. These

include System Fundamentals (SF), Architecture (AR), and Foundations of

Programming Languages (FPL). According to CS2023 [2], the PDC CS Core

topics “span approaches to parallel and distributed computing, but restrict

coverage to those that apply to nearly all of them.”

Table 9 shows the relevant knowledge area units (KA-Unit) in the left col-

umn and in the right column, their CS2023 core learning outcomes covered

by our materials. Our analysis suggests that our materials, despite having

been developed prior to the release of CS2023, are more relevant than ever,

covering many of the important PDC topics in CS2023.

5.3. Additional Considerations

As noted in Figures 2 and 3, the majority of the people using our materials

reported a desire to learn more about PDC. Some of this motivation may arise

from the novelty of using the Pi devices as a PDC hardware platform.

37

Table 9: CS2023 Topic Coverage

KA-Unit Topics/Learning Outcomes Covered By Our Materials

SF-Foundations Write a parallel program from a sequential one.
Evaluate performance of parallel programs via speedup.
Explain how exploiting parallelism decreases elapsed time.

AR-Heterogeneity MIMD architectures.
Heterogen. Arch. Shared memory vs distributed memory.
FPL-Parallel Explain lack of sequential consistency with data races.
Parallel and Implement correct concurrent programs.
Distributed Use synchronization constructions.
Computing Model data dependency using simple programming constructs.

Model control dependency using simple constructs.
PDC-Programs Parallelism (declarative, defining order, ensuring ordering).

Distribution (places: defining, naming, activities across).
Starting activities (tools for actions, procedural, dependent.)
Execution properties (nondeterministic execution, consistency, fault-
tolerance).

PDC- Media (MPI, Shared Memory), hardware Channels (MPI).
Communication Memory (shared memory, memory hierarchy).

Use task-based decomposition.
Use data decomposition.

PDC- Dependencies (why they exist, are needed)
Coordination Control constructs (barriers, thread joins).

Atomicity (mutual exclusion, deadlock avoidance).
PDC-Evaluation Identifying errors.

Performance metrics (scalability, communication costs).
Performance of design choices (granularity, overhead).
Scalability limitations (Amdahl’s Law).

PDC-Algorithms Implement a PDC algorithm (e.g., threads, MPI).
Common application domains (multicore, data parallel, cluster).

38

Although our numbers of participants in our groups may seem modest

by some measures, the p-values reported in our survey responses concerning

student confidence in understanding of PDC concepts indicates a significant

increase in that confidence, since each group met a criterion of p < 0.005 for

each question, with one exception (which easily met a p < 0.05 standard).

This provides evidence that using Raspberry Pi devices and clusters to learn

about PDC concepts–including abstract notions such as race conditions and

deadlock–is an e"ective pedagogical strategy.

It is worth mentioning that the global chip shortage that occurred during

the COVID-19 pandemic temporarily made new Raspberry Pis harder to

acquire. While many of the supply chain issues have eased (at time of writing)

and Pis are once again easy to order, it is possible that disruptions are

possible in the future. Importantly, the disk images that we created are

fully compatible with (and tested on) older models of the Raspberry Pi.

At West Point for example, all MPI clusters were built using Raspberry Pi

hardware released nearly six years ago, and our image worked well on these

clusters, as it has on clusters at St. Olaf and Macalester that use newer

models. Our results indicate that older models of Raspberry Pis can serve as

a successful platform for teaching and learning PDC. This in turn suggests

that our materials can help breath “new life” into older models of Raspberry

Pi, which are often neglected and underutilized as newer models are released.

If an institution prefers to use another type of single-board computer

besides Raspberry Pi, our system setup would have to be ported to that

hardware platform. This may involve porting of the SOC software, but aside

from that, our learning materials should not require any changes.

39

We have found that it is more convenient to use our materials in a sin-

gle longer laboratory session than in multiple shorter class meetings, as the

longer sessions reduce the percentage of time spent in setup and teardown

activities. Also, less experienced students will usually require more total time

to work through our materials’ exercises than more advanced learners.

Our learning materials (summarized in Table 10) use free open source

software (Linux, the GNU software suite, MPI, and so on), and so have no

cost to students and can be used on any Linux or Linux-related platform

(e.g., MacOS, Windows Subsystem for Linux, etc.). However the Raspberry

Pi SBCs and other hardware components in our kits do entail modest costs; in

the cluster-per-student modality, these costs could constitute an entry barrier

for some students. One way to reduce such barriers is for the department,

university, or local industry partners to underwrite the cost of the kits. West

Point, for example, built a set of Raspberry Pi cluster kits and have reused

them in class over the last several years, incurring a one-time cost to the

institution, and zero cost to students.

Table 10: Linked Materials

Module/Resource

• OpenMP Shared Memory Module
• mpi4py Distributed Memory Module
• C MPI Distributed Memory Module
• Disk Image

5.4. Future Directions

The findings in this paper encourage these future research initiatives:

Add more PDC concepts Our materials for the Raspberry Pi cover key

outcomes for multiple units in the PD Knowledge Area (KA) of CS2013

40

https://www.learnpdc.org/RaspberryPiHandout/
https://selkie.macalester.edu/rpi_images/shrunk_csip_mpi_010622.img.zip

and the PDC KA of CS2023. However some topics and outcomes re-

main uncovered; the feasibility of extending our materials to cover those

topics is one possible direction.

Extend to other CS knowledge areas The learning e"ectiveness and mo-

tivational value of Raspberry Pi systems or other SBCs could be ex-

plored in other computing areas besides PDC, for example, computer

organization/systems, operating systems, computer networks, or ele-

mentary programming courses.

Extend to other SBCs Given the plethora of other available SBC devices,

Brown plans to create a version of the self-organizing cluster (SOC)

software for Ubuntu Linux. This will make our materials deployable

on other SBC devices.

6. ACKNOWLEDGMENTS

Special thanks to Max Narvaez ’21 of St. Olaf College who played a large

role in the production of the Raspberry Pi kits and their software image,

including the Self-Organizing Cluster software. We are grateful to Anne

Gurney Consulting for conducting faculty surveys for our multi-day remote

workshops. This work was supported by the National Science Foundation

grants DUE-1822480/1822486/1855761. The views expressed in this article

are those of the author and do not reflect the o!cial policy or position of the

Department of the Army, Department of Defense or the U.S. Government.

41

References

[1] ABET Computing Accreditation Commission, Criteria for accred-

iting computing programs, https://www.abet.org/wp-content/

uploads/2018/02/C001-18-19-CAC-Criteria-Version-2.

0-updated-02-12-18.pdf (2018).

[2] ACM/IEEE-CS/AAAI Joint Task Force on Computing Curricula, Com-

puter science curricula 2013, Tech. rep., ACM Press and IEEE Computer

Society Press (January 2024).

URL https://csed.acm.org/cs2023-report-with-feedback/

[3] ACM/IEEE-CS Joint Task Force on Computing Curricula, Computer

science curricula 2013, Tech. rep., ACM Press and IEEE Computer So-

ciety Press (December 2013). doi:10.1145/2534860.

URL http://dx.doi.org/10.1145/2534860

[4] The NSF/IEEE-TCPP Curriculum Working Group, NSF/IEEE-TCPP

curriculum initiative on parallel and distributed computing - core

topics for undergraduates (version 2.0), https://tcpp.cs.gsu.edu/

curriculum/ (2020).

[5] The NSF/IEEE-TCPP Curriculum Initiative, NSF/IEEE-TCPP Cur-

riculum Initiative on Parallel and Distributed Computing (How to use

these guidelines), https://tcpp.cs.gsu.edu/curriculum/?q=node/

21742#3 (2020).

[6] The NSF/IEEE-TCPP Curriculum Initiative, The CDER center,

https://tcpp.cs.gsu.edu/curriculum/?q=node/21183 (2012).

42

https://www.abet.org/wp-content/uploads/2018/02/C001-18-19-CAC-Criteria-Version-2.0-updated-02-12-18.pdf
https://www.abet.org/wp-content/uploads/2018/02/C001-18-19-CAC-Criteria-Version-2.0-updated-02-12-18.pdf
https://www.abet.org/wp-content/uploads/2018/02/C001-18-19-CAC-Criteria-Version-2.0-updated-02-12-18.pdf
https://csed.acm.org/cs2023-report-with-feedback/
https://csed.acm.org/cs2023-report-with-feedback/
https://csed.acm.org/cs2023-report-with-feedback/
http://dx.doi.org/10.1145/2534860
http://dx.doi.org/10.1145/2534860
https://doi.org/10.1145/2534860
http://dx.doi.org/10.1145/2534860
https://tcpp.cs.gsu.edu/curriculum/
https://tcpp.cs.gsu.edu/curriculum/
https://tcpp.cs.gsu.edu/curriculum/?q=node/21742#3
https://tcpp.cs.gsu.edu/curriculum/?q=node/21742#3
https://tcpp.cs.gsu.edu/curriculum/?q=node/21183

[7] J. C. Adams, R. Brown, S. J. Matthews, E. Shoop, CSinParal-

lel: Parallel computing in the computer science curriculum, https:

//csinparallel.org/ (2010).

[8] R. Brown, E. Shoop, Teaching undergraduates using local virtual clus-

ters, in: 2013 IEEE International Conference on Cluster Computing

(CLUSTER), 2013, pp. 1–8. doi:10.1109/CLUSTER.2013.6702622.

[9] J. Eckroth, Teaching big data with a virtual cluster, in: Proceedings of

the 47th ACM Technical Symposium on Computing Science Education,

SIGCSE ’16, Association for Computing Machinery, New York, NY,

USA, 2016, p. 175–180. doi:10.1145/2839509.2844651.

URL https://doi.org/10.1145/2839509.2844651

[10] J. Eickholt, S. Shrestha, Teaching big data and cloud computing with

a physical cluster, in: Proceedings of the 2017 ACM SIGCSE Technical

Symposium on Computer Science Education, SIGCSE ’17, Association

for Computing Machinery, New York, NY, USA, 2017, p. 177–181. doi:

10.1145/3017680.3017705.

URL https://doi.org/10.1145/3017680.3017705

[11] A. S. Rabkin, C. Reiss, R. Katz, D. Patterson, Experiences teaching

mapreduce in the cloud, in: Proceedings of the 43rd ACM Technical

Symposium on Computer Science Education, SIGCSE ’12, Association

for Computing Machinery, New York, NY, USA, 2012, p. 601–606. doi:

10.1145/2157136.2157310.

URL https://doi.org/10.1145/2157136.2157310

43

https://csinparallel.org/
https://csinparallel.org/
https://doi.org/10.1109/CLUSTER.2013.6702622
https://doi.org/10.1145/2839509.2844651
https://doi.org/10.1145/2839509.2844651
https://doi.org/10.1145/2839509.2844651
https://doi.org/10.1145/3017680.3017705
https://doi.org/10.1145/3017680.3017705
https://doi.org/10.1145/3017680.3017705
https://doi.org/10.1145/3017680.3017705
https://doi.org/10.1145/3017680.3017705
https://doi.org/10.1145/2157136.2157310
https://doi.org/10.1145/2157136.2157310
https://doi.org/10.1145/2157136.2157310
https://doi.org/10.1145/2157136.2157310
https://doi.org/10.1145/2157136.2157310

[12] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither, A. Grimshaw,

V. Hazlewood, S. Lathrop, D. Lifka, G. D. Peterson, R. Roskies,

J. R. Scott, N. Wilkins-Diehr, Xsede: Accelerating scientific discov-

ery, Computing in Science & Engineering 16 (5) (2014) 62–74. doi:

10.1109/MCSE.2014.80.

[13] J. A. Ariza, H. Baez, Understanding the role of single-board computers

in engineering and computer science education: A systematic literature

review, Computer Applications in Engineering Education 30 (1) (2022)

304–329.

[14] B. Krupp, A. Watkins, Cs0: Introducing computing with raspberry pis,

in: Proceedings of the 50th ACM Technical Symposium on Computer

Science Education, SIGCSE ’19, Association for Computing Machin-

ery, New York, NY, USA, 2019, p. 832–838. doi:10.1145/3287324.

3287488.

URL https://doi.org/10.1145/3287324.3287488

[15] M. Wirth, J. McCuaig, Making programs with the raspberry pi, in:

Proceedings of the Western Canadian Conference on Computing Edu-

cation, WCCCE ’14, Association for Computing Machinery, New York,

NY, USA, 2014. doi:10.1145/2597959.2597970.

URL https://doi.org/10.1145/2597959.2597970

[16] M. Kölling, Educational programming on the raspberry pi, Electronics

5 (3) (2016). doi:10.3390/electronics5030033.

URL https://www.mdpi.com/2079-9292/5/3/33

44

https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1145/3287324.3287488
https://doi.org/10.1145/3287324.3287488
https://doi.org/10.1145/3287324.3287488
https://doi.org/10.1145/3287324.3287488
https://doi.org/10.1145/2597959.2597970
https://doi.org/10.1145/2597959.2597970
https://doi.org/10.1145/2597959.2597970
https://www.mdpi.com/2079-9292/5/3/33
https://doi.org/10.3390/electronics5030033
https://www.mdpi.com/2079-9292/5/3/33

[17] D. Tarno", Integrating the arm-based raspberry pi into an architecture

course, J. Comput. Sci. Coll. 30 (5) (2015) 67–73.

[18] J. Kawash, A. Kuipers, L. Manzara, R. Collier, Undergraduate assembly

language instruction sweetened with the raspberry pi, in: Proceedings of

the 47th ACM Technical Symposium on Computing Science Education,

SIGCSE ’16, Association for Computing Machinery, New York, NY,

USA, 2016, p. 498–503. doi:10.1145/2839509.2844552.

URL https://doi.org/10.1145/2839509.2844552

[19] W. Zhu, Teaching assembly programming for arm-based microcon-

trollers in a professional development kit, in: 2017 IEEE International

Conference on Microelectronic Systems Education (MSE), 2017, pp. 23–

26. doi:10.1109/MSE.2017.7945077.

[20] P. J. McGee, R. Latinovich, D. Brylow, Using embedded xinu and the

raspberry pi 3 to teach operating systems, in: 2020 IEEE International

Parallel and Distributed Processing Symposium Workshops (IPDPSW),

2020, pp. 307–315. doi:10.1109/IPDPSW50202.2020.00063.

[21] E. Sowell, E"ects of manipulative materials in mathematics instruction,

Journal for Research in Mathematics Education 20 (5) (1989) 498–505,

dOI=10.2307/749423.

[22] W. Carroll, D. Porter, Invented strategies can develop meaningful math-

ematical procedures, Teaching Children Mathematics 3 (7) (1997) 370–

374.

45

https://doi.org/10.1145/2839509.2844552
https://doi.org/10.1145/2839509.2844552
https://doi.org/10.1145/2839509.2844552
https://doi.org/10.1145/2839509.2844552
https://doi.org/10.1109/MSE.2017.7945077
https://doi.org/10.1109/IPDPSW50202.2020.00063

[23] D. Clements, “concrete” manipulatives, concrete ideas, Contemporary

Issues in Early 1 (1) (Childhood) 45–60.

[24] L. Jordan, M. Miller, C. Mercer, The e"ects of concrete to semi-concrete

to abstract, instruction in the acquisition and retention of fraction con-

cepts and skills 9 (1998) 115–122.

[25] P. Moch, Manipulatives work!, The Educational Forum (Fall 2001).

[26] R. Ross, R. Kurtz, Making manipulatives work: A strategy for success,

The Arithmetic Teacher 40 (1993) 254–258.

[27] M. Chappell, M. Strutchens, Mathematics Teaching in the Middle

School, National Council of Teachers of Mathematics, 2001, Ch. Cre-

ating connections: Promoting algebraic thinking with concrete models.

[28] S. A. Papert, Mindstorms: Children, computers, and powerful ideas,

Basic books, 2020.

[29] M. Horn, M. Bers, et al., Tangible computing, The Cambridge handbook

of computing education research 1 (2019) 663–678.

[30] M. Przybylla, R. Romeike, Physical computing and its scope–towards a

constructionist computer science curriculum with physical computing.,

Informatics in Education 13 (2) (2014) 241–254.

[31] M. Resnick, S. Ocko, S. Papert, Lego, logo, and design, Children’s En-

vironments Quarterly (1988) 14–18.

[32] M. Resnick, Multilogo: A study of children and concurrent program-

ming, Interactive learning environments 1 (3) (1990) 153–170.

46

[33] S. J. Cox, J. T. Cox, R. P. Boardman, S. J. Johnston, M. Scott, N. S.

O’brien, Iridis-pi: a low-cost, compact demonstration cluster, Cluster

Computing 17 (2) (2014) 349–358.

[34] A. M. Pfalzgraf, J. A. Driscoll, A low-cost computer cluster for high-

performance computing education, in: IEEE International Conference

on Electro/Information Technology, 2014, pp. 362–366. doi:10.1109/

EIT.2014.6871791.

[35] D. Toth, A portable cluster for each student, in: 2014 IEEE Interna-

tional Parallel & Distributed Processing Symposium Workshops, IEEE,

2014, pp. 1130–1134.

[36] J. Wolfer, A model supercomputer for instructional support, in: 2015

3rd Experiment International Conference (exp.at’15), 2015, pp. 114–115.

doi:10.1109/EXPAT.2015.7463231.

[37] S. J. Matthews, Teaching with parallella: A first look in an under-

graduate parallel computing course, Journal of Computing Sciences in

Colleges 31 (3) (2016) 18–27.

[38] J. C. Adams, S. J. Matthews, E. Shoop, D. Toth, J. Wolfer, Using inex-

pensive microclusters and accessible materials for cost-e"ective parallel

and distributed computing education, Journal of Computational Science

Education 8 (3) (2017) 2.

[39] S. J. Matthews, J. C. Adams, R. A. Brown, E. Shoop, Portable parallel

computing with the Raspberry Pi, in: Proceedings of the 49th ACM

Technical Symposium on Computer Science Education, SIGCSE ’18,

47

https://doi.org/10.1109/EIT.2014.6871791
https://doi.org/10.1109/EIT.2014.6871791
https://doi.org/10.1109/EXPAT.2015.7463231
https://doi.org/10.1145/3159450.3159558
https://doi.org/10.1145/3159450.3159558

Association for Computing Machinery, New York, NY, USA, 2018, p.

92–97. doi:10.1145/3159450.3159558.

URL https://doi.org/10.1145/3159450.3159558

[40] S. Holt, A. Meaux, J. Roth, D. Toth, Making the one cluster per student

method of teaching parallel computing financially practical, J. Comput.

Sci. Coll. 33 (4) (2018) 106–113.

[41] D. Gooch, J. Rosewell, D. Leith, M. Richards, Passive or active learn-

ing: the challenges of teaching distributed computing using raspberry

pi clusters to open distance university students, Open Learning: The

Journal of Open, Distance and e-Learning (2022) 1–15.

[42] J. C. Adams, Patternlets: A teaching tool for introducing students to

parallel design patterns, in: 2015 IEEE International Parallel and Dis-

tributed Processing Symposium Workshop, IEEE, 2015, pp. 752–759.

[43] B. Miller, D. Ranum, Runestone interactive: tools for creating interac-

tive course materials, in: Proceedings of the first ACM conference on

Learning@ scale conference, 2014, pp. 213–214.

[44] S. J. Matthews, E. Shoop, R. Brown, J. C. Adams, Learnpdc.org -

free hands-on materials for learning pdc, https://www.learnpdc.org/

(2020).

[45] C. Kehoe, J. Stasko, A. Taylor, Rethinking the evaluation of algorithm

animations as learning aids: an observational study, International Jour-

nal of Human-Computer Studies 54 (2) (2001) 265–284.

48

https://doi.org/10.1145/3159450.3159558
https://doi.org/10.1145/3159450.3159558
https://www.learnpdc.org/

[46] T. L. Naps, G. Rößling, V. Almstrum, W. Dann, R. Fleischer, C. Hund-

hausen, A. Korhonen, L. Malmi, M. McNally, S. Rodger, J. A.

Velázquez-Iturbide, Exploring the role of visualization and engagement

in computer science education, SIGCSE Bull. 35 (2) (2002) 131–152.

doi:10.1145/782941.782998.

URL https://doi.org/10.1145/782941.782998

[47] C. A. Sha"er, M. L. Cooper, A. J. D. Alon, M. Akbar, M. Stewart,

S. Ponce, S. H. Edwards, Algorithm visualization: The state of the field,

ACM Transactions on Computing Education (TOCE) 10 (3) (2010) 1–

22.

[48] E. Fouh, M. Akbar, C. A. Sha"er, The role of visualization in computer

science education, Computers in the Schools 29 (1-2) (2012) 95–117.

[49] J. C. Adams, P. A. Crain, C. P. Dilley, S. M. Nelesen, J. B. Unger,

M. B. Vander Stel, Seeing is believing: Helping students visualize

multithreaded behavior, in: Proceedings of the 47th ACM Technical

Symposium on Computing Science Education, SIGCSE ’16, Associa-

tion for Computing Machinery, New York, NY, USA, 2016, p. 473–478.

doi:10.1145/2839509.2844557.

URL https://doi.org/10.1145/2839509.2844557

[50] S. J. Matthews, E. Shoop, R. Brown, J. C. Adams, Raspberry pi - virtual

handout, https://www.learnpdc.org/RaspberryPiHandout/ (2020).

[51] E. Shoop, S. J. Matthews, R. Brown, J. C. Adams, Distributed comput-

49

https://doi.org/10.1145/782941.782998
https://doi.org/10.1145/782941.782998
https://doi.org/10.1145/782941.782998
https://doi.org/10.1145/782941.782998
https://doi.org/10.1145/2839509.2844557
https://doi.org/10.1145/2839509.2844557
https://doi.org/10.1145/2839509.2844557
https://doi.org/10.1145/2839509.2844557
https://www.learnpdc.org/RaspberryPiHandout/

ing using python and the raspberry pi, https://www.learnpdc.org/

RaspberryPi-mpi4py/ (2020).

[52] E. Shoop, S. J. Matthews, R. Brown, J. C. Adams, Distributed com-

puting using mpi and the raspberry pi, https://www.learnpdc.org/

RaspberryPi-mpi/ (2020).

[53] S. J. Matthews, Raspberry pi os - 64-bit headless

with vnc, https://www.suzannejmatthews.com/post/

2021-08-17-raspberrypi4-headless/ (2021).

[54] R. Brown, E. Shoop, S. J. Matthews, R. Brown, J. C. Adams, Csin-

parallel raspberry pi soc cluster image, https://www.learnpdc.org/

images/shrunk_csip_mpi_010622.img.zip (2020).

[55] R Core Team, R: A Language and Environment for Statistical Comput-

ing, R Foundation for Statistical Computing, Vienna, Austria (2021).

URL https://www.R-project.org

[56] J. C. Adams, R. Brown, S. J. Matthews, E. Shoop, Teaching pdc in

the time of covid: Hands-on materials for remote learning, in: 2021

IEEE International Parallel and Distributed Processing Symposium

Workshops (IPDPSW), 2021, pp. 342–349. doi:10.1109/IPDPSW52791.

2021.00061.

50

https://www.learnpdc.org/RaspberryPi-mpi4py/
https://www.learnpdc.org/RaspberryPi-mpi4py/
https://www.learnpdc.org/RaspberryPi-mpi/
https://www.learnpdc.org/RaspberryPi-mpi/
https://www.suzannejmatthews.com/post/2021-08-17-raspberrypi4-headless/
https://www.suzannejmatthews.com/post/2021-08-17-raspberrypi4-headless/
https://www.learnpdc.org/images/shrunk_csip_mpi_010622.img.zip
https://www.learnpdc.org/images/shrunk_csip_mpi_010622.img.zip
https://www.R-project.org
https://www.R-project.org
https://www.R-project.org
https://doi.org/10.1109/IPDPSW52791.2021.00061
https://doi.org/10.1109/IPDPSW52791.2021.00061

	Introduction
	PDC Pedagogical Challenges
	Single Board Computers

	Overview of Materials
	On-Line Interactive Modules for Learning PDC using Raspberry Pis
	Hands-On Hardware: Self-Organizing Raspberry Pi Clusters

	Research Methods
	Assessment Design
	Characteristics of our Student Participants
	Characteristics of our Faculty Participants

	Results
	Student Feedback
	Shared Memory (OpenMP) Results
	Distributed Memory (MPI) Results
	Impact on Student Motivation and Engagement

	Faculty Feedback
	In-person Faculty Survey Results
	Remote Faculty Survey Results

	Discussion
	Summary of Findings
	Mapping to CS2023
	Additional Considerations
	Future Directions

	ACKNOWLEDGMENTS

