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Abstract— Robots built from soft materials have the po-
tential for intuitively-safer interactions with humans and
the environment. However, soft robots’ embodiments have
many sources of failure that could lead to unsafe conditions
in closed-loop control, such as degradation of sensors or
fracture of actuators. This article proposes a fault detection
system for sensors attached to artificial muscle actuators
that satisfies a formal safety condition. Our approach com-
bines redundant sensing, model-based state estimation,
and Gaussian process regression to determine when one
sensor’s reading statistically diverges from another, indi-
cating a fault condition. We apply the approach to elec-
trothermal shape memory alloy (SMA) artificial muscles,
demonstrating that our method prevents the overheating
and fire damage risk that could otherwise occur. Experi-
ments show that when the muscle’s nominal sensor (tem-
perature via a thermocouple) is fractured from the robot, the
redundant sensor (electrical resistance) combined with our
method prevents violation of state constraints. Deploying
this system in real-world human-robot interaction could
help make soft robots more robust and reliable.

Index Terms— Fault Detection, Soft Robotics, Eletrother-
mal Actuators, Fault Tolerant Control.

I. INTRODUCTION

SOft robots have the potential to overcome fundamental
challenges in human-robot interaction by reducing re-

liance on modeling and sensing. For a soft robot, mistakes
are often less severe: for example, soft materials apply lower
forces upon impact with humans [1]. This concept has been
extended to formally-safe control in soft robots, such as
invariance of critical states [2], limits on forces [3], [4], or
anti-collision [5]. These techniques sidestep the challenges [6]
with feedback control of soft systems [7] by optimizing for
constraint satisfaction rather than tracking error.

However, safety-verified control systems can fail in practice,
particularly with soft robots. Soft actuators can degrade [8] or
fail catastrophically due to puncture [9] or overheating [10],
and are prone to model mismatch [11]. These phenomena
are faults: a component of the system behaves differently
than its model for controllers, therefore drives the system
into an unsafe state. For example, a temperature sensor might

This work was in part supported by the U.S. National Science Foun-
dation under Award No. 2340111 and 2209783.

1R. Jing, C. Van Hook, I. Yang, and A.P. Sabelhaus are
with the Department of Mechanical Engineering, Boston Uni-
versity, Boston MA, USA. {rjing, cvanhook, alviny21,
asabelha}@bu.edu.

2A.P. Sabelhaus is also with the Division of Systems Engineering,
Boston University, Boston MA, USA.

∗Equal Contribution.

thermocouple detached

Fig. 1. Our approach detects faults in a sensor in soft robots, such
as fracture of a thermocouple in an electrothermal artificial muscle, and
responds in closed-loop to ensure invariance of safety-critical states.
Experiments show 100% recall on fault triggers (red LED).

disconnect from its fixture [12] in a thermal shape memory
alloy (SMA) artificial muscle when in contact with a human
(Fig. 1). No prior work incorporates detection and recovery of
such faults into formal safety for soft robot control, as prior
work is not verifiable [13]–[15], or only focuses on tolerance
to partial actuation failures [16], [17].

This manuscript proposes redundant self-sensing in soft
robots to detect and respond to faults. Our insight is that
smart actuators often have additional signals that indicate their
internal state, such as electrical resistance in shape memory
materials [18]. Since the relationship between these redundant
signals and actuator state is often challenging to model, we
propose a learning method (Gaussian Process Regression [19])
to predict the state. Our approach detects faults by comparing
predictions against a nominal sensor. We provide a proof of
set invariance under certain conditions. The method is applied
to the shape memory muscle in Fig. 1, demonstrating a 100%
recall on detection of catastrophic fracture of a thermal sensor.

This article contributes:
• A formalization of sensor faultiness, via divergence in

nominal vs. redundant estimators, as a safety margin,
• An analysis of this method’s assumptions in a formal

proof of invariance during safety-critical control,
• A validation on electrothermal soft robot muscles in both

simulation and hardware.
To our knowledge, this manuscript establishes the first

generalizable approach to detecting and responding to faults
in soft artificial muscles that maintains a safety verification.



II. BACKGROUND AND PRIOR WORK

Many past techniques have proven stability of feedback con-
trol with redundant sensing in the presence of faults for well-
characterized systems [20], as well as responses that satisfy
a set-invariance safety condition [21], [22]. These methods
work well with actuator failure in traditional machines, but
unfortunately, accurate low-order models are often unavailable
in smart materials for soft robots [10], particularly when
hysteresis is present [12].

In contrast, machine learning can detect faults in systems
that are difficult to model [23]. When a learned fault detector
is sufficiently accurate, control barrier functions and their
neural variants could be used for verifiable safety [24]–[26].
However, learned soft robot models are notoriously imperfect
due mismatch between infinite-dimensional state spaces and
finite-dimensional sensing [27].

Rather than directly classifying a signal as faulty or not
[28] or relying on model-based approaches, we propose a
conservative combination of all the above. Our approach
assumes a nominal model for the nominal sensor, possibly
faulty, and uses learning for the redundant self-sensing smart
material. We rely on the well-defined statistical properties of
Gaussian Process Regression [19], which captures the quality
of feature selection in the redundant sensor signals.

III. PROBLEM SETUP AND APPROACH

Our problem assumes an existing soft robot limb under
feedback control [2], [8]. Fig. 2 shows the assumptions as
well as application in a shape-memory alloy soft limb with
redundant sensing as the muscle’s electrical resistance [18].

A. Equations of Motion and Existing Conditions
Consider a robot actuated by artificial muscles whose states

are safety-critical. If the full state of the robot is x =[
. . . w

]⊤ ∈ RN , we denote w ∈ R the artificial muscle state
without loss of generality (i.e., our method can be applied to
M -many artificial muscles independently, w1 . . . wM ). Many
soft artificial muscles are such scalar systems [29]. The safety
constraint is w ∈ S ⊂ R.

We assume there is some nominal dynamics of the actuator
(muscle) state, with a scalar control input,

w(t+ 1) = f(w(t), u(t)) (1)

and that there exists a feedback controller that ensures safety
under idealized measurements of w, applying u(t) = u∗(t),

u∗(x) : w(0) ∈ S ⇒ w(t) ∈ S ∀t. (2)

Nominal sensors give measurements as xt, which contains
wt modeled as additive noise: wt = w(t) + εw, with εw ∼
N (0, σ2

w). The idealized control law is assumed to be proba-
bilistically safe to n-many standard deviations:

Assumption 1: u = u∗(x)|w=wt ⇒ w ∈ S for wt ≥
w(t)−nσw, i.e., the true state is under-measured by n standard
deviations. We are implicitly choosing an upper bound as the
safe criterion, S = {w|w < wmax}, and that the actuator
dynamics are a monotonic control system:

Assumption 2: u1 < u2 ⇒ w1(t + 1) < w2(t + 1) where
wi(t+ 1) = f(w(t), ui).
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Fig. 2. This manuscript assumes a system architecture for a soft
robotic limb with (a) controllers for the limb’s pose states xt using control
inputs to the artificial muscles ut, estimating a nominal signal wt for
the muscles’ low-level states, and redundant sensors ξt. For shape
memory muscles in a planar limb, these are correspondingly the limb’s
bending angle, electrical power (voltage), muscle temperature, and
muscle electrical resistance. Our fault detection system (b) estimates
a ŵt using Gaussian Process Regression over a featurized sequence
ξt−ND:t and applies a safety-ensured input ū if estimates diverge
larger than some variance.

This is a common setup in artificial muscles: higher voltages
lead to more force in dielectrics, higher pressures similarly
in pneumatics, and larger currents to higher temperatures in
electrothermal muscles.

B. Sensor Fault Problem Statement
Now consider a fault condition on the sensors, as in:

wt = wF
t < w(t)− nσw, (3)

i.e., our sensor reports a faulty reading lower than can be
bounded by the nominal safe controller.

The proof for the nominal controller then fails:
u∗(x)|w=wF

t
̸⇒ w(t + 1) ∈ S , i.e., the controller may

send the system beyond wmax. We seek to detect this
condition and respond.

Assume there is an input that is always safe to the muscle,
for example u = ū = 0, such that w(t + 1) ∈ S ∀w(t) ∈
S if w(t + 1) = f(w(t), ū). We next denote the redundant
sensing information about the muscle’s state as ξ ∈ RP , such
as electrical resistance and hysteresis calculations.

We define a safety margin ρ that uses ξ in addition to
wt, as ρ(w, ξ) : R × RP 7→ R. The proposed fault-aware
probabilistically-safe controller is:

u = v∗(x, ξ) =

{
ū if ρ(w, ξ) < ρL

u∗(x) else.
(4)

with ρL ∈ R a lower limit on safety that triggers a fault.
We seek a ρ(·) and ρL such that w(t + 1) ∈ S, w(t +
1) = f(w(t), v∗(xt, ξt)). Propose the safety margin as the
difference between the nominal and redundant estimates,

ρt := ρ(wt, ξt) := wt − ŵ(ξt) (5)
where ŵ is an estimate of the best case possible actuator state
per the redundant sensors, to be synthesized later. Intuitively,
when ρt − ρL < 0, the nominal sensor reading is lower than



the most generous possible value per the redundant sensors,
and shutoff occurs.

C. Gaussian Process Regression for State Estimation
Our framework predicts the nominal sensor outputs using

a Gaussian Process Regressor. With measurement information
ξ ∈ RP , the GP assumes an underlying function fξ(·) : RP 7→
R that deterministically defines the sensor’s output w(t) from
ξ, and that additive noise corrupts this measurement: w =
fξ(ξ) + εξ. Here, εξ ∼ N (0, σ2

n), and so w is a random
variable with some mean and variance at time t, i.e., we are
re-estimating wt ∼ N (µt, σ

2
t ) from ξ.

To do so, GPs employ the kernel trick [19]. The kernel
function k(·, ·) : RP×P 7→ R models the covariance between
the test points. Based on empirical evaluations, we select the
squared exponential (SE) kernel plus white noise for more
conservativeness:

k(·, ·) = σ2
f exp

(
−1

2
(ξa − ξb)

⊤Λ−1(ξa − ξb)

)
+ σ2

s . (6)

with the hyperparameters of signal variance σ2
f , noise σs,

and characteristic length scales Λ = diag[ℓ1, . . . , ℓN ] which
determine the relative influence of each redundant sensor
state on the estimator output. The SE kernel is known for
its smoothness assumption and has seen past successes in
modeling artificial muscle actuators [30], [31], and white noise
reflects past experience with imperfect soft robot test setups
[18]. As is standard [19], [32], hyperparameters are tuned via
log-likelihood maximization.

Predicting µt and σt applies the kernel to our known
datapoints and a test point. We have a precollected set of
K-many datapoints as a time series, {Ξ,w}, where Ξ =
[ξ(0), . . . , ξ(K)] ∈ RP×K and w = [w(0), . . . , w(K)]⊤ ∈
RK . Assuming we have found a set of hyperparameters for
the kernel, the prediction (via [19]) at a new test point ξt is

µt = k⊤
ξt

(
K+ σ2

nI
)−1

w, (7)

σ2
t = 1− k⊤

ξt

(
K+ σ2

nI
)−1

kξt
, (8)

where kξt
∈ RK and K ∈ RK×K are

k∗ =

 k(ξ∗, ξ1)
...

k(ξ∗, ξK)

 ,K =

k(ξ1, ξ1) k(ξ1, ξ2) . . .
k(ξ2, ξ1) k(ξ2, ξ2) . . .

...
. . .

...

 .

D. Safe Control with the GP Fault Detector
We propose ŵ(ξ) and ρL based on the GP model:

ŵ(ξ) = µt(ξ)−mσt(ξ), ρL = −nσw (9)
where m is the number of standard deviations desired for
probabilistic safety. These satisfy Theorem 1.

Theorem 1: Fault-Aware Safety. Consider applying the
fault-aware, probabilistically-safe controller in (4), using the
safety margin of (5), estimator with fault guard of (9), in a
problem statement where Assumption 1 (noise) and Assump-
tion 2 (monotonicity) hold. If in addition:

3) The function w = fξ(ξ) is stationary, i.e. a fixed value
of ξ uniquely defines a w,

4) Training data are of sufficient quality that true value of
the function w(t) lies in the interval µt−mσt < w(t) <
µt +mσt per eqns. (7)-(8),

then u = v∗ ⇒ w(t+ 1) ∈ S for wt = wF
t to the level of m-

many standard deviations in the GP predictor. Therefore the
set S is forward invariant (i.e. safe).

Proof: Assume wt = wF
t , so that the measurement is

outside the statistical variance allowed of the true value wt <
w(t)− nσw discussed in Assumption 1. Then,

wt − ŵ(ξt) < w(t)− nσw − ŵ(ξt)

ρt < w(t)− nσw − µ(ξt) +mσt(ξ)

ρt − ρL < (w(t)− µt(ξt)) +mσt(ξ)

Consider when the true actuator state is at the lower border
of the GP’s statistical prediction, w(t) = µt − mσt. Then,
ρt − ρL < mσt − mσt so ρt − ρL < 0, and consequently,
v∗ = ū, giving w(t) ∈ S ⇒ w(t+ 1) = f(w(t), v∗) ∈ S .

Remark 1: Although assumptions 1-2 are mild, assump-
tions 3-4 are strong and may not hold in practice. Smart
artificial muscles often have many latent states [12], [32] not
sensed. The primary use of Theorem 1 is in our controller
tuning procedure for arbitrarily low-quality sensing. We chose
to assess the safety margin experimentally.

E. Safety Under Outliers

Though proposed method can be tuned for conservativeness
by increasing m in the fault guard, outlier measurements in
sensors (common in smart materials) give false positives using
the controller in eqn. (4). Instead, consider a detection window
of ND-many steps before the guard is activated:

v∗(x, ξt−ND:t) =

{
ū if ρt < ρL ∀t ∈ {t−ND : t}
u∗(x) else.

(10)
This controller also meets a formal safety condition.

Theorem 2: Safety Under Outliers. Assume that Theorem
1 holds, and in addition:

5) There exists a constraint on the input, u ≤ umax,
6) A backward-reachable set of ND steps using u = umax

is calculated as SD = {w|w < wmax
ND

}, where wmax
ND

=
f−ND (wmax, umax), using f from eqn. (1).

Then if wt is in SD, applying u = v∗ in eqn. (10) ⇒ w(t +
k) ∈ S ∀k ∈ R+.

Proof: Assumption 2 gives monotone dynamics, so
f−1 exists. Calculate wmax

ND
as above. Consider t such that

wt = wF
t , and the worst-case when u∗

t:t+ND
= umax. If

wt ∈ SD, then wt+ND
< wmax ∈ S by monotonicity. But

then, ρt . . . ρt+ND
< ρL, and by eqn. (10), v∗t+ND

= ū.
Theorem 1 ensures invariance of S inductively for t > t+ND.

Remark 2: Informally, Theorem 2 states that as long as the
safe controller keeps the system at least ND-many steps of
u = umax away from unsafety, then we may operate under a
detection window of ND. Future work will make this approach
less tautological by analyzing outlier statistics.



IV. APPLICATION TO ELECTROTHERMAL ACTUATORS

Our motivation for fault detection is a soft limb powered
by shape memory alloy wires, which contract via temperature
change from electrical heating. The temperature sensors for
these wires (thermocouples) are fragile and commonly fracture
under human contact (Fig. 1). However, the electrical connec-
tion is robust, and since the induced stress is well-modeled
by the electrical resistance in the muscle [33], [34], resistance
serves as a redundant sensor to temperature [18].

A. Robot Architecture and Hardware Framework
To obtain temperature and resistance measurements, we

use the sensing and control framework from our prior work
[2], [18]. The setup (Fig. 1-2) contains a 10cm-long soft
limb cast from silicone rubber, with M = 1 active SMA
coil (Dynalloy Flexinol 90◦ C, 0.020”) along one edge. It
is connected to a programmable power supply that applies
a voltage, u = V ∈ R+, and measures electrical current I
for resistance calculations as Rt = Vt/It. A computer vision
system using AprilTags [35] captures fiducials from which
one constant-curvature [6] bending angle is measured, θ(t). A
type-K thermocouple is adhered to the rear of the SMA coil
with thermally-conducting epoxy. Therefore, actuator state in
one muscle is temperature, w = T , and the overall robot state
includes the bending angle as x = [θ, θ̇, w]⊤.

B. Redundant Sensing Featurization
Applying Theorem 1 requires choosing the input vector

ξ. We propose a featurization motivated by hysteresis in
SMAs [12], [36] and the availability of a nominal thermal
model, wt+1 = f(wt, ut). For hysteresis, we store a sliding
window of Nr-many resistance measurements R = [R(t −
Nr), . . . , R(t)]⊤, normalize as R̄ = (1/

∑
R)R, and take

its 25%, 50%, and 75% quartiles as R̄Q1, R̄Q2, R̄Q3. This
choice of window and quartiles was motivated by observations
within our datasets and prior work [18]. For other applications,
domain knowledge must be used to adapt this featurization as
needed, or first-principles models such as Prandtl-Ishlinskii
[37] could be employed instead. The nominal model for Joule
heating of a wire approximated as linear, T̂t+1(Tt, ut) =
a1Tt + a2ut + a3 where a1...3 are constants calibrated from
the dataset Ξ. Prior work has shown good agreement with
this model when temperature sensors are not faulty [2], [32].
Consequently,

ξt =
[
Rt R̄Q1,t R̄Q2,t R̄Q3,t T̂t(µt−1, ut−1)

]⊤ ∈ R5

(11)
where the mean of the GP is w = T and so represents an open-
loop rollout from a non-faulty T0. This differs from residual
learning [38], as we predict wt rather than errors e = wt+1 −
wt, allowing for hysteresis-dependence.

C. Nominal Controller and Fault-Free Safe Controller
We adopt our prior work for the no-fault safety-verified

controller, u∗(x), needed in eqn. (4). Any nominal controller
for the robot is unom(x), for example, we use PID feedback
on the pose of the robot θ − θ̄(t) per [2]. We dynamically
saturate the control input as u∗ = min(unom(xt), γusat(xt)),

where γ ∈ (0, 1] is a conservativeness tuning parameter. The
saturating limit inverts the nominal model as usat(xt) =
(1/a2)(T

max
adj − a1Tt − a3) with the adjusted setpoint of

Tmax
adj = (1/γ − a1((1− γ)/γ))Tmax − a3((1− γ)/γ) giving

stability around the equilibrium of Tmax, c.f. Sec. III-A,
wmax = Tmax. Prior work proves invariance of the set
S = {T |T < Tmax} under the action of this u∗ assuming
noise-free measurements of actuator temperature.

In this soft robot prototype, inaccuracies in the redundant
sensor are much more significant than nominal sensor noise:
σw << σt. So, we take nσw = 0 ⇒ ρL = 0 below.

V. EXPERIMENTAL RESULTS

We validate our approach with both simulated and real-
world failures of temperature measurement on an SMA ac-
tuator. We consider the following events during tests:

Definition 1: Active Fault, when ρ̇t < 0, i.e., the fault time
occurs as the robot is becoming less safe,

Definition 2: Pre-fault, when ρ̇t > 0, i.e., v∗ = u∗ as the
robot is already retreating from the safe boundary.

In our application, active faults occur as the muscle is
heating actively whereas pre-faults occur during cooling or
non-operation below the safety boundary (u = 0).

A. Model Training and Validation
We use the dataset Ξ from [18], containing 10k sec. of

motions of a prototype with one SMA. Training and testing
of the GP, eqn. (7)-(8), was performed with a 70-30 split.

We validate our model on three new prototypes, which
necessarily have manufacturing differences, over a total of
∼450 sec. of data with both heating and cooling. Predictions of
the GP using the older Ξ on the new dataset give a root mean
squared error (RMSE) 8.79◦C using the GP, closely matching
prior work [32]. Fig. 3 shows this high performance as a test
under a representative fault guard (3σt).

B. Tuning via Simulated Faults
The proposed fault response controller has multiple param-

eters to tune, in particular, the m standard deviations for the
safety margin, and the ND detection window per eqn. (10). To
do so, we execute a series of simulated faults on the dataset
from Sec. V-A and compare against Theorem 2.
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Since the most conservative scenario of thermal change for
SMA is a pure dissipation model, we take u = 0 as the
simulated fault. If the system can detect failure under this
condition, it is expected to alert faster in actual experiments.
So, we generate 100 rollouts where tF is uniformly sampled
from (0, tmax) and set utF :tmax

= 0. We then iterate over
each rollout with increasing m (safety margin), and for each
m, also iterate with increasing window size ND until 100%
precision is obtained (no false alerts). This produces the
minimum number of consecutive steps needed to trip faults
for a given conservativeness level. We record the time-to-
detection (t−tF ), and plot the averages in Fig. 4, color-coding
according to ND. Intuitively, a tradeoff exists between delay
in detection (color) and safety level. We selecte the lowest
average detection time as a compromise: m = 5.5, ND = 2.
We ensure not just 100% precision, but observationally, also
100% recall: all simulated faults are detected.
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C. Hardware Experiments

Finally, we verify the system’s fault detection and response
performance in real-time tests of five prototype muscles with
thermocouple affixed (see Supplementary Video). In each ex-
periment, the nominal controller tracks a predefined trajectory
of bending angles θ(t) which includes infeasible poses: some
θt which would require muscle temperatures above Tmax. We
apply the safety-verified controller from [2], which prevents
overheating so long as no faults occur.

During each test, we manually fracture the thermocouple
from the SMA muscle (Fig. 1). We test both active faults (u >
0, heating) as well as pre-faults (u = 0, cooling). An example
with the fault detection but no fault response (v∗ = u∗) is
shown in Fig. 5, illustrating how the muscle will continue to
heat when the thermocouple itself is detached and starts to
cool down (red v.s. black line). The other four experiments
used the fault-aware controller in eqn. (10), and fractured the
thermocouple at ∼ 100◦ C. Theorem 2 held in all cases: the
muscles remained below Tmax = 130◦ C.

D. Comparison Against Baseline

To evaluate the performance improvement of our method,
we implement a comparison baseline that replaces eqn. (9)
with a linear fit for ŵ(ξ) rather than the GP:
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Fig. 5. Real-time plot from an SMA temperature sensing failure test
illustrating the GP model’s fault detection. The orange dashed line marks
sensor failure (at t = 30s), while the light yellow region indicates the
detected interval (begins at t = 33s), reflecting a 3s detection delay.

ŵB(ξ) =
P∑
i=1

ciξi + c0, (w − ŵB) < ρL ⇒ u = ū (12)

We fit the constants c using the Ξ dataset. The detection
threshold was manually optimized for detection time versus
number of false positives: ρL = 55◦ C.

Table I compares the detection time (∆t) and timesteps with
a false positive (FP) between our method and this baseline. Our
detector successfully and promptly captures sensor failures
under both active and pre-faults, outperforming the baseline
model in terms of response time and the number of false
positive prediction timesteps for most active fault experiments.
For pre-fault time, our method shows more consistent detec-
tion delays than the baseline, and achieves zero false positive
predictions. We expect that pre-faults take significantly longer
to detect (compare SMA 1 vs. 2), as detections only occur
when the muscle is heating, and arbitrary time elapses between
heating cycles. The detector trips a fault with the same delay
in repeated pre-fault tests of SMA 2.

TABLE I
FAULT DETECTOR RESPONSE TIME AND FALSE POSITIVE RESULTS

Active Fault Pre-fault
SMA Res. steps (∆t) FP steps Res. steps (∆t) FP steps

ID Ours linear Ours linear Ours linear Ours linear
1 3 ↓ −− 1 ↑ 0 6 ↑ 5 0 ↓ 1
2 9 ↓ 12 0 ↓ 1 8 ↓ 19 0 − 0
3 4 ↓ 11 0 ↓ 1 9 ↓ −− 0 ↓ 1
4 4 − 4 3 ↓ 7 8 ↑ 2 0 ↓ 2
5 3 ↓ 15 0 ↓ 1 9 − 9 0 ↓ 1

Avg. 4.6 10.5 0.8 2.0 8.0 8.75 0 1.0

Arrows indicate when our method outperforms the baseline:
(↓) denotes a lower value (better). ‘−−’ indicates no
detection. Faults coded as: ⇒ u > 0, ⇒ u = 0.

VI. CONCLUSION

This work presents, to the authors’ knowledge, the first
generalizable approach to detecting and responding to sen-
sor faults in soft artificial muscles that formally maintains
safety conditions under feedback control. Using redundant
self-sensing, a learned fault detector was able to successfully
respond with both 100% precision and 100% recall on a
simulated experiment, and met the safety-critical state criterion
in five hardware experiments on an electrothermal artificial



muscle. This approach offers a formal engineering tool to
enhance the trustworthiness of soft robots working alongside
humans, extending the informal claim of ‘safety’ in soft robots
into a control synthesis method.

Future work will address the limitations in the proposed
method. The strong assumptions underlying Theorem 1 and
Theorem 2 could be relaxed by alternative formulations of
ρ and ŵ that are tailored to specific smart materials, or are
amenable to statistical testing beforehand, or use alternative
learning methods. Sources of error could be addressed to
improve Assumption 3 regarding ξ and w, in particular, an
increase in sensing frequency and noise reduction.

The method here may also be extended to more complex set-
tings, such as coupled actuator-robot models. Non-catastrophic
faults that arise from degradation could be addressed by
incorporating adaptation, for example, online learning into
the GP while pruning the original dataset for outliers [31].
Similarly, intermittent faults could be addressed by actively
adapting the detection window, i.e., recalculating mσt by
continually performing the Fig. 4 tuning process online. In
addition, recovery strategies could be improved to have more
intelligent maneuvers than simple shutdown.
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