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ABSTRACT In this paper, we demonstrate the capability of a lensless single random phase encoding (SRPE)
system to track the lateral motion of multiple moving point-sources using a Probability Hypothesis Density
(PHD) filter. Our system consists of an image sensor and a diffuser that captures the motion of point-sources
by projecting a pseudorandom pattern on the image sensor. Using the theory of diffraction, we deduce the
mapping between the locations of point-sources in the free-space and the pseudorandom pattern obtained
from SRPE systems, obtain an initial maximum-likelihood estimate of the point-source locations, use a
Markovian motion prior to predict the locations at subsequent time-instants and, use captured video frames
to refine the predicted location estimates. Our results show that lensless SRPE systems, coupled with PHD
filtering algorithm, can estimate lateral motion of point-sources accurately and in a computationally efficient
manner. Moreover, lateral motion tracking with SRPE is robust to motion-blur and increase in image-sensor
pixel size. Tracking with lensless SRPE systems also show robustness to dimensionality reduction of the
captured pseudorandom patterns which have computational benefits. To the best of our knowledge, this is
the first work to demonstrate lensless SRPE systems as an object tracking modality.

INDEX TERMS Lensless Imaging, Object Tracking, Optical Imaging, Single Random Phase Encoding,

Tracking Point-Sources.

I. INTRODUCTION

Tracking, i.e., tracing out the trajectory of moving targets,
is a crucial image processing and computer vision problem
that finds extensive use in fields such as autonomous driving
[1], astronomy [2], security and surveillance [3] and, satellite
monitoring [4] to name a few. A significant subset of practical
tracking tasks such as astronomy, surveillance of unwarranted
aircraft and satellite monitoring is specifically concerned with
tracking of objects which are located extremely far away,
appearing almost as point-sources [4]. For such tasks, an
imaging system which is inexpensive and capable of perform-
ing motion tracking of point-sources in a computationally
efficient manner is highly beneficial. For most imaging-based
tracking mechanisms currently in use, the imager of choice
is lens-based [5]. The presence of lenses may make such
systems bulky and expensive. Moreover, because lenses focus
point-sources on an extremely small neighborhood (compris-
ing only a few pixels) on image sensors, the downstream
tracking algorithm needs to process a full-resolution image
at each time-step. For these reasons, diffuser-based lensless
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imaging systems [6]-[17] are currently emerging as an at-
tractive alternative to the conventional lens-based imaging
systems. Due to the absence of lenses, such systems are
lightweight, cost-effective and field-portable. Additionally,
due to the scattering of diffusers, such systems spread the
incoming optical information uniformly over the entire image
sensor, making it possible to recover the full 3D field from
only a small subset of image-sensor pixels [14]. This property
makes such systems a good choice for a computationally effi-
cient point-source tracking system. In this work, we focus on
a specific variant of diffuser-based lensless imaging systems
namely, lensless Single Random Phase Encoding (SRPE) sys-
tems [6]—-[9], [11] for object tracking. These systems consist
of a single diffuser combined with an image sensor and have
been shown to have good resolution [11], noise-immunity [8],
resilience to increased pixel-size [9], and robustness to dimen-
sionality reduction [6]. They have also been demonstrated
to be capable of disease classification without any need for
post-imaging computational reconstruction [6], [7]. We aim
to establish lensless SRPE systems as a novel modality for
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performing lateral motion tracking of multiple point-sources
from only small patches of captured full-resolution speckle
images.

Achieving successful multitarget tracking requires solving
a series of complicated challenges such as target association,
motion prediction, motion correction, accounting for sudden
appearance, disappearance and reappearance of targets, all
under the same framework [18]. Researchers in this area have
harnessed knowledge from various fields of mathematics and
statistics such as Bayesian statistics, multivariate calculus,
theory of random sets, to name a few, to devise increasingly
more potent algorithms to perform tracking. Kalman filter
[19], one of the classical algorithms that operates on the
assumption of linear motion prediction model and a linear
observation model, has long been a staple in this domain.
The single target Bayesian Filter [20] generalizes Kalman
Filter by defining motion prediction models and observation
models as generalized probability density functions (PDFs)
rather than deterministic estimates. The multitarget Bayesian
Filter [21] uses the theory of Random Finite Sets and set
calculus to cast the collection of targets as a set consist-
ing of a random number of random vectors. The PDFs for
multitarget Bayesian Filter are also multi-dimensional and
intractable for a large number of targets. To approximate the
multitarget Bayesian Filtering, Probability Hypothesis Den-
sity (PHD) filters [22], [23] have been proposed which, under
certain assumptions, compress the multitarget PDFs to their
corresponding multitarget first order moments, alternatively
known as PHDs. PHDs, unlike PDFs which are defined on
the cartesian product of the sample spaces of all the random
variables under consideration, are defined on a single sample
space. This makes PHDs and, consequently, PHD filtering
operations much faster compared to multitarget Bayesian
filtering [18].

In this work, we cast the lensless SRPE-based multiple
point-source tracking problem in the framework of PHD
filtering. Since our aim is not to propose a novel tracking
algorithm but to demonstrate lensless SRPE systems as a
promising tracking modality, we simplify the tracking prob-
lem by assuming that the number of targets is known and all
the targets (i.e., point-sources) are present at all times. That
is, there is no sudden disappearance, appearance or reappear-
ance of targets. Such challenges can always be addressed by
switching the PHD filter with a cardinalized-PHD (CPHD)
filter or other more sophisticated tracking algorithms.

To perform the tracking operation, we first derive the rela-
tion between the world co-ordinates of point-sources and their
corresponding speckle images to be captured by the lensless
SRPE sensor using the principles of diffraction. We then use
a lensless SRPE system to capture videos of moving point-
sources. Afterwards, in the tracking algorithm, we derive
an initial estimate of the source-locations by correlating the
initial videoframe with the point spread function (PSF) of the
lensless SRPE system and iterate PHD filtering along time to
derive the trajectory of the moving point-sources. The results
show that lensless SRPE systems, coupled with PHD filtering,
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can accurately estimate the lateral trajectory of point-sources
moving in free-space. This work paves the way for developing
a computationally inexpensive tracking device that would be
useful in several fields. To the best of our knowledge, this
work is the first report to demonstrate the utility of lensless
SRPE systems in the task of point-source tracking.

Our main objective in this work is to demonstrate the poten-
tial of lensless single random phase encoding (SRPE) systems
as a multiple point-source tracking modality. Most of the
object tracking algorithms available in literature (PHD being
one of them) are for lens-based images. Lensless SRPE sys-
tems do not produce human-interpretable images, but rather
pseudorandom patterns. In this paper, we have proposed and
implemented a pipeline through which lensless SRPE sys-
tems can be integrated into a Bayesian tracking framework.
Our work is not meant as an improvement over PHD filters.
Rather, it creates a pipeline through which lensless SRPE
systems can be interfaced with most previously proposed
tracking algorithms.

The rest of the paper is organized as follows: in Section II,
we develop the mapping between the world co-ordinates of
the point-sources and their corresponding speckle images ob-
tained by the lensless SRPE, discuss the concepts and deriva-
tions of PHD filtering pertaining to this work and specify the
metric used in the performance evaluation of the experiments.
Section III contains the details of the experimental setup, the
obtained results and the relevant discussions. Finally, Section
IV concludes the paper by summarizing the findings of the
paper and discussing future developments.

Il. METHODOLOGY

A. POINT SPREAD FUNCTION OF SINGLE RANDOM
PHASE ENCODING SYSTEMS

Our lensless diffuser-based SRPE system consists of a holo-
graphic diffuser and a lensless CMOS camera, similar to the
system used in [8], [9], [11]. As shown in Fig. 1, optical
fields emerging from point-sources travel a distance z; to
be intercepted at the diffuser. The diffuser surface roughness
spatially modulates the incoming field. The field emerging
from the diffuser travels a known distance z, to reach the
lensless image sensor which records its intensity.

Following [8], [9], [11], we use the well-developed prin-
ciples in optics to describe and analyze the properties of
the PSF of a lensless SRPE system. The world co-ordinates
of point-sources moving in the free space are denoted as
(x,y,z), assuming that the origin in this co-ordinate is located
where the optical axis intersects the diffuser. The co-ordinates
on the diffuser surface are indicated as (¢,n), and the co-
ordinates on the lensless image sensor are specified as («, 8),
as depicted in Fig. 1. The wavelength of light radiating from
a point-source is designated by A.

Say, a point source is located at (x,y,z1), emanating an
optical field ug(x,y) such that,

up(x,y) = d(x — x0,y — yo) 1)
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FIGURE 1. A schematic diagram of the point-source tracking system
using an SRPE system.

where 4(+,) is a dirac-delta function. This field travels
a distance z; to reach the diffuser. The field u; (¢, n) right
before the diffuser can be derived using Fresnel propagation:

ikz1 ;
(G ) = wo(Gom) =y exp (”(@ ; 712)) @)

JjAz Azy

where k = 27/ is the propagation constant of the field.
Fresnel propagation is valid when z; is much larger than the
dimensions of all the optical components in the SRPE system,
which we assume to be true throughout this analysis. The
diffuser modulates the arrived field with a spatially random
phase distribution ¢(¢,7) which is one realization of a 2-
dimensional (2D) uniform random process with the phases
at each location ranging from (—, 7]. The correlation of this
random process depends on the size of the surface features
of the diffuser, i.e., the larger the feature, the wider the cor-
relation function. Mathematically, the perturbation enacted
by the diffuser on the incoming field can be described by
a multiplicative diffuser-transmittance function 7p(¢,n) [8],
[9], [11] given by:

tp(¢,n) = exp (jo(¢,m)) 3)

where, j = v/ —1. Hence, the field ull (¢,n) emerging from
the diffuser can be expressed as:

wy (Cms21) = un(Cmiz) X 1p(C,m) 4)

This field further travels a distance zo to reach the image
sensor. The field us (v, 8) at the image sensor can be obtained
using Fresnel diffraction as follows:

, Jkz2
(o i) = (o)« S e (S (a7 + 52))(5)

It is worthwhile to note at this point that unlike the previous
works on this topic [8], [9], [11] that use angular spectrum
propagation [24], we choose its paraxial approximation, i.e.,
Fresnel diffraction, to model the post-diffuser field propaga-
tion. Fresnel approximation holds up here because throughout
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the experiments, we have used diffusers with very small
scattering angles (0.5° measured according to full-width half-
maximum). The reasoning for this design choice will be
discussed later in this section and in Section III-C. Due to the
narrow scattering provided by the chosen diffuser, paraxial
approximation is used even after being acted upon by the
diffuser, making Fresnel diffraction a valid choice of wave
propagation model.

The image sensor records the intensity i(«, 8) of the inci-
dent field:

i, Bi21) = |uz(a, B;21)]? (6)

where, the operator | - | computes the absolute value of a
complex variable.

A thorough expansion of (6), ignoring all the constant
terms (in the interest of brevity), begets the following expres-
sion:

o) = | [[[exo (562 4) Jn(Gmx

exp <—j27T (C (a + Z2x0> +n (ﬂ + Zz)’o)))
AZo 21 21
d¢dnl|® ©)

where, x denotes multiplication, and the distance d is
defined as follows:

S ®)

d 21 22

Since the above integration is being performed over the
entire diffuser plane, the intensity i(«, [3; z1) becomes a func-
tion of the sensor plane co-ordinates («, (), the location of
the point-source (xo,yo,z1), and the diffuser-to-sensor dis-
tance zo which is fixed for an SRPE system. From (7), we
see that if the point-spread function A(«, §;z1) of a lensless
SRPE system is captured by placing a point-source at location
(0,0,z1), the intensity pattern i(«, 5;x0,Yo,z1) for a point-
source located at (xo, yo,z1) can be written as:

. z z
i(a, B5x0,¥0,21) = h <a+zjx0,ﬁ+z2)’0) 9
1

If multiple point-sources are present, and they are all in-
coherent with respect to one another, as independent sources
often are, the resulting intensity pattern would be a super-
position of their individual intensity patterns. This has been
discussed in Section II-D, (32).

It is worth noting at this point that paraxiality of diffuser
field, as described by (5), is crucial for the linear shift-
invariance of (9). This assumption holds true for a large range
of zo, but only for small scattering angle diffusers. Previous
works [12]-[14] have also used 0.5° scattering angle diffusers
to achieve linear shift-invariance due to the diffuser field
being paraxial. For diffusers with large scattering angles,
we see deviations from linear shift-invariance. To analyze
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Diffuser Statistical properties of paraxial-deviation noise
scattering angle | Mean | Standard deviation FWHM
0.5° 0.0139 0.0582 0.1370
30° 0.0025 0.1287 0.3031

TABLE 1. Statistical properties of the deviation noise n; corresponding to
0.5° and 30° diffuser. FWHM is the full width half maximum width of the
corresponding distribution.

this deviation, we model the experimentally obtained lensless
SRPE speckle image (o — xq, 8 — yo) of a shifted point-
source as a linear combination of an accordingly shifted PSF
h(ae — xo, 8 — yo) and an additive noise ng(x,y):

i(a —x0, 8 — yo) = h(a —x0, B — yo) +na(x,y) (10)

Note that the noise n,(x,y) is not camera noise. It arises
due to the deviation from paraxiality of the field emanating
from the corresponding diffuser. For convenience, we call
this noise the paraxial-deviation noise. Fig. 2 shows the PDF
of the paraxial-deviation noise n,(x,y) for a 0.5° (Fig. 2a)
and a 30° scattering angle diffuser (Fig. 2b). Table 1 lists the
statistical properties (mean, standard deviation, width of the
distribution) of paraxial-deviation noise PDFs shown in Fig.
2. FWHM or Full Width Half Maximum in Table 1 refers
to width of the distribution measured between the points at
which the PDF attains half of its maximum value.

Since a widely scattering diffuser (30° scattering angle
in this case) imparts a paraxial-deviation noise with higher
standard deviation than a narrow scattering diffuser (~ 2.2
times higher than a 0.5° scattering angle diffuser), it produces
an image sensor pattern with a significantly worse signal-
to-noise ratio. Since such a noise has a higher likelihood of
producing false peaks at the correlation pattern calculated
during the algorithm (see (35)), the patch size of the image
sensor pattern needs to be large to eliminate the adverse effect
of this noise. This is also why using a narrow scattering
diffuser is a better choice for tracking operations.

Fig. 2b shows that high-scattering diffusers, a 30° diffuser
in this case, have a more pronounced deviation-noise than
low-scattering diffusers. Section III-C demonstrates how this
deviation affects lateral motion tracking with such diffusers.

Next, we provide backgrounds on the tracking algorithm
namely, PHD filtering, used in this work.

B. PROBABILITY HYPOTHESIS DENSITY FOR A KNOWN
NUMBER OF POINT SOURCES

Probability Hypothesis Density (PHD) is the first moment
density of a multitarget probability density. Say, we have a
sample space S such that,

S={(x,y):xeRAyeR} (11)

on which the probability density functions (PDF) of indi-
vidual point-sources have been defined. We assume that the
PDF f;(x;,y;) of the i-th point-source is Gaussian with mean
(fexis thyi) and standard deviation (oy;, 0y;), i.e.,

4

1
filxi,yi) = 7(\/%)20)”0” X

2
exp <1 <<xi_“"i> + <y’ “”) >> (12)
2 Oxi Oyi

Hence, the joint PDF of all the point-sources would be:

N

Fx) = A (13)

i=1

where X = {(x;, y,)}l 1 18 the set containing the locations
of all the point-sources under study.

PHD Dy (x,y) of the PDF f(X) is the expected number of
point-sources in a unit volume in S. To arrive at Dy (x,y), we
first start by trying to find the probability mass function of the
number of point-sources AN on a small volume AS where,

AS =dx x dy (14)

Assuming we have a known total N number of point-
sources, if we attempt to calculate the individual probabilities
of AN, we see

N
(fi(x,¥)AS) H 1 —fi(x,y)AS)

N
P(AN =1) Z

i=1 J=1#i
(15)
P(AN =2) = Y ((x,))AS) (£(x,y)AS) x
1<i<j
N
[I a-fi@xyas) (16)
k=1,k#i,j

Progressing along these lines, we see that, (replacing
Si(x,y) with f; for brevity),

P(AN =) Z H (fiAS)

i=1 \jepiCSy

I[I a-ras)
k€SN —pi
(17)
where Sy is the set of all N number of point-sources, p; is a

subset of Sy containing exactly » number of sources and angl
N

pi and p; differ at least by one element. Collectively, {pi}l-(;l
describe the set of all possible subsets of Sy of size r. And,
finally,

N

=[[rAs (18)

i=1

P(AN =N)

Hence, the expected number of point-sources in a small
area 05 would be:

N
E[AN] = iP(AN =) (19)
i=1
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FIGURE 2. PDF of noise inherent in signatures captured with (a) 0.5° scattering angle diffusers and, (b) 30° scattering angle diffusers. A component
of this noise is camera noise. However, a significant part of this noise comes from the deviation of the experimental data from the strict linear shift

invariance assumption.

A simplification of (15)-(18) yields the following expres-
sion:

N

. ()
P(AN =n) = Z(—1)"+" (:l) (AS) Z CGi(j) (20
i=n Jj=1

where C; is the ordered set of all possible distinct combi-
nation of i number of sources and C;(j) is the j-th element of
C;. Hence, (19) simplifies to:

N
E[AN]=ASY fi +
i=1

y () (Z (_Ukk(;)) o

Y0y G
Now, let us consider the following identity:

i—2 =1

-1 (@
: S0 (y)

Differentiating on both sides with respect to x, we get,

€0 =il —x) " = S0 ()t e

k=1

Evaluating (23) at x = 1, we get,

g1) = i(fl)"k <,i) =0 (24)

k=1

Substituting this in (21), we see that when the PDFs f; are
Gaussian distributed, the expected number of point-sources
on a small area AS is:

N
E[AN] = AS Y " f; (25)
i=1

Hence, the PHD Dy(x,y) of this system, the expected
number of point sources per unit volume, becomes:
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E[A al
Dy(x,y) = [ASN] => filx,y) (26)
i=1

We would like to note that, if the location probabilities
fi(x,y) were the same for all N number of sources, AN could
have been modeled using a multinomial distribution and (25)
and (26) could have been derived as its expectation in a
straightforward manner. However, the location probabilities
fi(x,y) are not identical for all i and they are changing in-
dependently during each iteration of our algorithm. This is
why the formal definition of PHDs often involve algebraic
operations on RFS [18]. However, operations on RFS can get
complicated and may seem unintuitive for readers unfamiliar
with the topic. To keep the mathematics intuitive, we have
modeled the distribution of the number of sources using only
the basic definitions of probability.

C. BACKGROUND ON PROBABILITY HYPOTHESIS
DENSITY FILTERING FOR TRACKING

In this work, we have employed probability hypothesis den-
sity (PHD) filtering to achieve multi-target tracking. PHD
[18], [22], [23] is the first order moment of a multisource joint
PDF. It is a function whose integral over a region of a sample
space gives the expected number of sources in that region
[23]. PHD filtering is similar to Multitarget Bayesian filtering
in spirit, with the only difference that probability density
functions (PDFs) are replaced with PHDs. Like Bayesian
filtering, PHD filtering is an iterative process. As the sensor
receives data in a continuous stream, PHD filtering, at each
time-step, analyzes the current data and puts it in the context
of previous data to track the current location of the sources.
Say, X; denotes the location of the sources at time-step k,
Z; denotes the data collected by the sensor at time-step k
and, Z(®) denotes the set of all data collected by the sensor
till time-step k. Also, let us define fi 11 (Xk_1|Z(k*1))
as the PDF of the previous source-locations, fix—1 (Xi|Xk—1)
as the Markovian motion model, f; x (Zx | X ) as the likelihood
PDF of current source locations estimated from the data and,
ik (Xe|Z®)) as the posterior source-location PDF. Their cor-
responding PHDs can be defined as Dy _y;—1 (Xk,l |Z(k’1)),

5
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Dyje—1 (XelXi—1), Dipe(Ze|Xe) and Dy (X4|Z®)). Then, at
each time-step k, PHD filtering performs two-steps:

(i) Prediction: Given the PHD Dy (X4—1|Z%~D)
of the previous source-locations, use the motion-
model fix—1 (Xx|Xx—1) to predict the prior PHD
Dijie—1 (Xk |z (kfl)) of the current source-locations. This
is performed using the following equation:

Dyjr—1 (Xk |Z(k71)) =

/fklk—l (Xk |X1:—1>

Diper (X l207Y) ax, @

(ii) Correction: With the prior PHD Dy (Xx|Z*~V) at
hand, use the data collected by the sensor to formulate
the likelihood PHD Dy (Z; |Xk ) and use Bayes theorem
to arrive at the posterior PHD Dy (X¢|Z*)) of the
current source-locations. This is performed using the
following equation.

Dy (Zi| Xi) D1 (Xi|Z41)
Dyje—1 (Z|Z*=1)

where, the Bayesian normalization factor at the denom-
inator is calculated using the following equation:

Dyjk—1 (Zk\z(k_l)>

= / Dy (Ze|Xi) D1 (Xk|z<k—1>) dX; (29)

As time progresses, PHD filter performs the prediction and
correction steps repeatedly to update the estimated location of
the point-sources. That is, it executes the following progres-
sion:

Doo <X0|Z(O)) — D10 <X1|Z(O)) — D11 (X1|Z(1))

Dy =

(28)

— Doy (x2|z<1>) — Dy (x2|z<2>) S (30)

where Dq)o (X0|Z (0)) is the PHD of initial location of the
point-sources. If we don’t have information regarding the
initial location of the point-sources, we can always specify
the corresponding PDF to be uniform.

Now, for N number of point-sources, the location X; would
consist of N number of 2-dimensional vectors, i.e.,

X = {[xi, 3"

where (x;,y;) is the real-world location of the i-th point-
source. Hence, the joint sample space of all N point-sources
would be a cartesian product of N number of 2-dimensional
sample spaces and would have 2V dimensions. Since all the
above PDFs are functions defined over this sample space,
they would also be 2"-dimensional functions. This high di-
mensionality renders the computation of Bayesian filtering
prohibitively expensive and intractable. However, PHD is
defined over a single 2-dimensional sample space and allows
us to compress the PDFs and still be able to perform Bayesian
filtering.

Li€[1,N]} (31)
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D. FORMULATING PHDS FOR POINT-SOURCE TRACKING
As we have seen in Section II-A, especially in (9), the lateral
movement of a point-source results in a shift in the PSF
of a lensless SRPE system. Now, if we have an N number
of distinct point-sources, they would, most likely, not be
coherent with one another. Hence, when all these sources are
present in a scene, the image Z; (o, ) captured by the sensor
at any time-instant k would be a linear summation of their
individual intensity patterns [24], i.e.:

N
a.B) =) h <a + 2x(k), B+ Z2y_,-(k)) + n(a, B)
j=1 a 21

(32)

where, (xj(k),y;(k)) is the real-world location of the j-th

point-source at the time-instant k and, n(a, 8) is a normally

distributed image sensor noise. The set X; of the locations of

all point-sources at the k-th time instant is defined as in (31).

Since all the point-sources are independent, the likelihood
PDF f;(Z| X)) would be,

S (Ze Xi) HN x(k), v (k)" 30) (33)

where, N ([x;(k), yj(k)] , 33) is a multivariate normal dis-
tribution with mean [x;(k), y;(k)]” and covariance matrix X;.
Note that the likelihood PDF is a function defined on the
sample space of X;. X; denotes the set of locations of all N
independent point sources each of which are located at co-
ordinates [x;(k),y;(k)]” on an (a, 3) grid. This is why the
joint conditional PDF fj . (Z;|Xy) is a product of N indepen-
dent conditional PDFs where the conditioning variables are
locations of individual targets. Each such conditional PDFs
are functions over the (o, 3) grid. Since [x;(k),y;(k)]" are
the true locations of the targets that would give rise to the ob-
servation Z;, each such PDFs would be normally distributed
around the mean [x;(k), y;(k)]”. The Gaussianity of the PDF
comes from the fact that the camera noise n(a, 3) in (32) is
Gaussian.

Following the discussion in Section II-B, the likelihood
PHD Dy (Zi|Xi) would be:

ZN [x;(k

Note that (34) looks like a mixture of Gaussian. It has
peaks wherever the individual normal PDFs have peak. Now,
recall the PSF h(«, 3) of a lensless SRPE system. If we
now calculate the correlation Rz, (c, ) between Z; (v, 3) and
h(a, ), we get the following result:

Dy (Zi | Xi) )" %) 34

N
Raa ) =3 or (o= 2yw.6- 2y0) 09

Jj=1

where r(«, 8) is autocorrelation of h(«, ), a function
which has a peak at the origin and falls rapidly to 0 depending
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on the speckle size of the diffuser used in the system. (35)
can be very quickly computed by using a fast Fourier trans-
form algorithm. Note that, Rzn(cv, 3) looks almost exactly
like Dy« (Zi|Xx) with the only difference that the lateral co-
ordinates are scaled by the factor zo/z;. This difference,
however, vanishes if we define PHDs on the pixel co-ordinate
plane rather than the world co-ordinate plane. We can always
transfer the results to the world co-ordinate plane by simple
co-ordinate scaling. Keeping this in mind, we see that deriv-
ing the PHD of (34) is simply a matter of fitting gaussians
to Rzn(a, B), which is how we derive the likelihood PHD
Dy (Z|Xy.) for this work.

The prediction step of PHD filtering, as shown in (27)
is also an expensive computational process due to the in-
tegration involved. However, conceptually speaking, we are
simply using a pre-specified motion model to predict the PHD
of future location of point-sources given the last location of
the point-sources. This can be simplistically performed by
extracting the last co-ordinates of the point sources, using
the motion model to predict the next location, and defining
the PHD to be gaussian around the predicted location with
an uncertainty (variance). We model the motion by assuming
constant acceleration between two successive time instants.
Essentially, we only perform a likelihood-based tracking for
the initial 3 time-instants to get Xy, X; and X,. This gives
us the following initial estimates of the locations, velocities
and accelerations of the point-sources:

Xy — Xy

X1 =Xy
At
_Vi—V,
At

where At is the time-elapsed between any two successive
instants. From the 4-th time-instant onwards, we perform the
following steps to predict the location of the point-sources at
the next instant given the same for the last time-instant:

Vo

Ay (37

Ar?
Xi = X1+ Vi1 Ar + Ak—17 (38)
X — Xi_
Vi=aVi1+(1- a)% (39)
Vi —Vi_
A=A+ (1 - 5)% (40)

where « and (5 are hyperparameters that ensure that the
velocity and the accelerations maintain a smooth transition
over time. A higher a and 3 ensure a smoother transition
whereas a lower value would cause the transition to be jagged
over time.

We would like to note here that all N number of point-
sources have been assumed to move independently. That is,
each one of Xy, V., Ay vectors are of dimension 2N x 1 (i.e.,
x and y co-ordinates corresponding to the locations of each
one of N number of independently moving point-sources).

To arrive at the prediction PHD of (27), we simply perform
the following:
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Die- (XilZ070) = TN (k). 3i(k)], 3)
i=1
Vo k), yi(k)] € X 41

where X, is the covariance matrix capturing our uncer-
tainty about the prediction.

E. METRIC FOR EVALUATION

For this task, our goal is to evaluate how accurately our
algorithm can retrieve the ground-truth trajectory of the point-
sources. For lateral motion tracking, the trajectories were
stored as images. Hence, we chose the average (Avg) peak
signal-to-noise ratio (PSNR) as a simple but intuitive metric
to compare the estimated trajectories with the ground-truth
trajectory. The metrics reported in this work were calculated
using the following expression:

1 & (max(g;))*
AvePSNR = — 101 ALy 42
vg ND l:ZI 0g10 (MSE(gl, ri) ) ( )

where, Np is the number of videos in a dataset, g; is
the ground-truth trajectory of i-th video, r; is the estimated
trajectory recovered from the i-th video and MSE(-, ) is the
mean squared error between two matrices. Note that g; and
r; are 2D matrices whose pixels contain probabilities of a
point-source existing at the pixel location. The unit of this
metric is in decibels or dB. A high AvgPSNR indicates a
higher similarity between the ground-truth and the recovered
trajectory and hence, a better tracking performance.

IIl. RESULTS AND DISCUSSIONS

In this section, we describe our experimental setups and
discuss the results. As shown in Fig. 3, we used a laser pointer
coupled with a 20X microscope objective (MO) to generate
the point-sources. The microscope objective was used so
that the incoming laser beam has a divergence at par with
a realistic point-source. The laser had a wavelength of 650
nanometers. For imaging, we placed two identical Mako G-
319 cameras side-by-side, one equipped with a diffuser and,
another with a lens assembly. The lens-based imager was
used to calculate ground truth trajectories. Unless otherwise
specified, all point-sources were kept at a distance z; of 4.555
meters from the diffuser. The distance z5 between the diffuser
and the image sensor was maintained at 24.14 millimeters
for all experiments. Each point-source (laser pointer and MO
assembly) was moved by hand to generate distinct trajectories
as reported later in this section.

Using this setup, we have imaged motions of (a) a sin-
gle point-source and, (b) two independently moving point-
sources. Unless otherwise specified, the diffuser used in this
work has a 0.5° scattering angle and a diameter of 29.2
mm. Both the image sensors (lensless and lens-based) have
(1600 x 1200) pixels, each of size 3.45 microns and an ex-
posure time of 48 milliseconds. The lens has a focal length of
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FIGURE 3. Data collection process for (a) single and, (b) multiple point-sources lateral tracking using a lensless SRPE and lens-based systems.

12.5 mm. The lateral motions of point sources were restricted
to 1.22 meters horizontally and 1.045 meters vertically. All
videos were captured at 10 frames per second unless other-
wise specified.

Fig. 4a shows the PSF of the abovementioned lensless
SRPE system with a 0.5° diffuser. Fig. 4c shows the his-
togram of this PSF. The PSF of the lensless SRPE system is
a pseudorandom pattern owing to the surface roughness of
the diffuser. This property makes it possible to recover the
motion of the point sources from any contiguous subset of
pixels of an image sensor. Fig. 4b shows the PSF of the lens-
based imaging system.

We would like to note that even though the result section
highlights the tracking capabilities of lensless SRPE systems,
no comparison has been presented with the existing works on
lensless SRPE system. This is due to the fact that our work
happens to be the first one which aims to utilize lensless SRPE
systems in the context of multiple point-source tracking. All
previous publications on the subject of lensless SRPE systems
deal with disease classification and robustness analysis of
SRPE systems making our work a novel application modality
for such systems.

A. LATERAL TRACKING OF POINT-SOURCES

For this experiment, we collected a dataset of 100 videos (see
Supplementary materials for sample videos) of single and
double point-sources moving in a plane located 4.555 meters
away from the diffuser plane. We collected videos with both
lens-based and lensless SRPE systems, as shown in Fig. 3.
To estimate all the PHDs associated with the lensless SRPE
tracking (as listed in (33)-(41)), we have used the full PSF (of
size 1600 x 1200 pixels) due to the initial location of the point
source which is assumed to be at the center of the coordinates.
For tests, the initial position of the point source could be
anywhere in the frame. We used patches of size 140 x 140
pixels of the PSFs due to new point source locations. This
process was repeated for each of the 100 videos of the point
source trajectory. For each video, we ran the PHD filtering
operation of (27)-(30) to estimate the trajectories of the point-
sources. Fig. 5 shows a few sample results for the single
point-source experiments and Fig. 6 shows sample results
for the case of two independently moving point-sources. The
ground truth trajectories were determined by running the
same PHD filtering operation on corresponding lens-based
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videos. To estimate the PHDs associated with lens-based
system, we had to use the full 1600 x 1200 pixels-wide
PSF with the full 1600 x 1200 pixels wide video frames of
moving point sources. Reducing the pixel number of lens-
based videoframes would have jeopardized the accuracy of
the tracking process since the PSF of lens-based systems (as
shown in Fig. 4b) are highly localized. Since lensless SRPE
signatures (PSFs) are distributed over the entire sensor, even
a small patch of an captured PSF speckle can estimate the
location of a point-source. This is an advantage of lensless
SRPE systems that makes the whole computational process
less expensive than what would have been the case for lens-
based systems.

As seen in Fig. 5 and 6, the PHD filtering algorithm can
accurately estimate the trajectory of moving point-sources.
Our video datasets include complex motions to test the PHD
filtering-based tracking operation on challenging trajecto-
ries consisting of circular motions, close proximity of point-
sources and multiple traversals through same points. The
PHD filtering algorithm shows the capability to successfully
handle challenging trajectories.

It is worthwhile to mention an interesting argument that
could be raised to counter the computational efficiency ben-
efits of SRPE mentioned earlier. We used a full-sized PSF of
the initial location of the point source and small patches of
PSFs due to moving point sources for lensless SRPE system.
We used a full-sized PSF and full-sized images of moving
point sources for lens-based systems. One could argue that
since the PSF of lens-based system has a very small width,
we could have used a small central crop of this PSF with
full-sized video frames of moving point sources to perform
the tracking operation. This could have brought the com-
putational expenses of both lensless and lens-based system
to the same level. However, please note that the PSF for
initial point source location is fixed throughout the process
while the video frames of moving point sources are changing.
They are interchangeable in a correlation-based PHD filtering
operation. Hypothetically speaking, if we had decided to
utilize neural networks to compute the likelihood PHDs of
(34) for the lensless SRPE system, the network would have
been able to give an accurate estimate with only a small
patch of cropped PSF of moving point sources. Due to the
innate localizing property of lens-based systems, a neural
network trained on a lens-based system would still require
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FIGURE 4. (a) Central crop of the point spread function of the lensless SRPE system captured with the point-source located at the co-ordinate
(0, 0, 4.555) meters, (b) central of the same point-source captured through a lens-based system and, (c) the empirical PDF of the PSF in (a).
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FIGURE 5. Sample tracking results for a single point-source. Lensless SRPE uses a 0.5° diffuser.
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FIGURE 6. Sample tracking results for two point-sources. Lensless SRPE uses a 0.5° diffuser.

the full-sized PSF of moving point sources to estimate the
PHDs. In other words, it is the changing item that dictates the
computational cost of a method rather than the fixed item. The
sensor-wide distribution of information thus lends the lensless
SRPE systems an inherent favorability in considerations of
computational expenses.

B. EFFECT OF NUMBER OF PIXELS ON THE TRACKING
PERFORMANCE

As shown in (35), the likelihood PHD Dy (Z;|Xy) in this
work is derived from the cross-correlation between patches
extracted from the PSFs due to the moving point sources
and the full size PSF h(«, 8) due to the initial location of
the point source. Since such a patch is a truncated part of a
larger speckle image, this correlation would approximate the
true cross-correlation between a cropped PSF and full-sized
speckle PSF. This approximation becomes gradually worse as
the patch size decreases. This sets a lower limit on the size of

VOLUME 11, 2023

the patches of speckle PSFs.

In Fig. 7, we show how the performance of lateral tracking
of point-sources suffers as we reduce the patch size of speckle
PSFs. In Fig. 7a , we see that the tracking of a single point-
source shows robustness as we decrease the patch size from
(140 x 140) to (80 x 80) pixels. The tracking of two point-
sources, as shown in Fig. 7b, shows robustness as we decrease
the patch size from (140 x 140) to (100 x 100) pixels and
deteriorates rapidly afterwards. Table 2 reports the numeric
values of the PSNR between the ground-truth trajectory and
the estimated trajectory as the patch size decreases. This is
seen more clearly in Fig. 8 which shows examples of tracking
results as the patch size decreases.

The reason why the minimum permissible patch-size in-
creases with an increase in the number of point-sources is
that for multiple point-sources, the individual speckle PSFs
are superpositions of several differently shifted PSFs (see
(32)). Hence, as the number of the point-sources increases,
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FIGURE 7. Average PSNR (in dB) for lateral tracking with a 0.5° diffuser for (a) one point source and (b) two point-sources.

Patch Size | Average PSNR (dB) for 0.5° diffuser
1 point-source 2 point-sources

40 x 40 11.0531 10.3444
60 x 60 15.9772 10.8329
80 x 80 28.5848 14.4403

100 x 100 30.9574 24.4141

120 x 120 31.6112 27.3743

140 x 140 33.3621 30.0062

TABLE 2. Average PSNR (in dB) for lateral tracking of point-sources with
a 0.5° diffuser.

the cross-correlation requires more pixels to concentrate or
exhibit a narrow peak of sufficiently high magnitude around
the accurate locations of the point-sources.

As previous literature on lensless SRPE [6], [7] shows,
such systems maintain good performance even when only
a small subset of the original image pixels is used. More-
over, their performance is invariant to the location of the
extracted pixels. Such advantages are not available for lens-
based imaging systems. Using lensless SRPE systems as a
tracking modality allows us to inherit these advantages which
may entail significant computational benefits. Table 3 shows
how the per frame execution time changes as the patch sizes
of the incoming frames get smaller. The size of the inital
PSF is same (1600 x 1200 pixels) for all cases. All the
experiments have been run on an Intel(R) Xeon(R) Gold 6130
CPU (2 processors) at 2.10 GHz with 128 GB RAM. No
parallel processing or graphics processing units (GPUs) were
involved in the operation.

As a general guideline, the sensor image patch size corre-
sponding to moving point-sources should increase as:

1) the correlation lobe width of the speckle PSF increases,

2) the number of targets increases,

3) the size of the image sensor pixels increases and,

4) the signal-to-noise ratio (SNR) of the image sensor
pattern decreases.

In future works, we would attempt to provide a precise
formula to calculate the patch size as a function of the physical
parameters of an experiment.

Patch Size Execution time/frame (s)
1 point-source | 2 point-source

1000 x 1000 0.3279 0.3328
800 x 800 0.3259 0.3275
600 x 600 0.2959 0.2995
400 x 400 0.2632 0.2648
200 x 200 0.1860 0.1879
180 x 180 0.1844 0.1855
160 x 160 0.1832 0.1848
140 x 140 0.1752 0.1784
120 x 120 0.1555 0.1596
100 x 100 0.1443 0.1478
80 x 80 0.1301 0.1401

TABLE 3. Per frame execution time for point source tracking with
different patch sizes (scattering angle of the diffuser is 0.5°) using the
proposed lensless SRPE system.

C. EFFECT OF THE DIFFUSER SCATTERING ANGLE ON THE
TRACKING PERFORMANCE

Until this point, we have used a 0.5° diffuser to perform track-
ing of point-sources. In this section, we investigate whether
there is a benefit in going for diffusers with higher degrees
of scattering. We have chosen a diffuser with a 30° scattering
angle for this purpose. Fig. 9a shows the PSF of this diffuser
and Fig. 9b shows its empirical PDF.

The scattering angle of a diffuser is a function of the size of
its surface features [8]. The smaller the features, the higher the
scattering angle. Smaller features also mean narrow spatial
correlation between features on a diffuser surface. Hence, this
section highlights how the tracking performance of a lensless
SRPE system changes as the degree of spatial correlation
changes on the surface of a diffuser.

The experimental setup for imaging with a 30° diffuser is
the same as shown in Fig. 3a and 3b. However, the wider
scattering angle makes the intensity pattern captured at the
image sensor of much lower light levels. If we try increasing
the exposure time to counteract this effect, it increases the
motion blur in the sensor patterns. Hence, we had to restrict
z1 to a lower value of 2.334 meters for this set of experiments.
For these experiments as well, we collected datasets with 100
videos with a single point-source and 100 videos with two
independently moving point-sources, all recorded with the
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FIGURE 9. (a) Point spread function (PSF) of an SRPE system with a 30° diffuser and, (b) the empirical probability density function (PDF) of the PSF.

same Mako G-319c cameras at 10 frames per second. All
the other parameters, such as, the diffuser to sensor distance,
focal length of the lens, diffuser diameter, exposure times of
the cameras and the dimension of the diffuser are kept the
same as reported at the beginning of Section III.

We ran the same PHD filtering algorithm on these videos.
For these set of experiments as well, we have used a patch-
size of (140 x 140) pixels. With this patch size, the single
and double point-source tracking performance was reason-
ably good. Fig. 10 shows examples of single point-source
tracking and Fig. 11 shows examples of two point-sources
tracking. We included complicated motions, close proximity
of point-sources and, multiple traversals through same points
to increase the tracking challenge.

Decreasing the PSF patch size of moving point sources for
these experiments, had a more drastic effect on the tracking
performance. Fig. 12a shows that even when the patch sizes
were reduced from (140 x 140) pixels to (100 x 100) pixels,
the average PSNR performance dropped by more than 5 dBs.
Fig. 12 shows tracking performance for two point-sources. In
this case, even with a patch size of (140 x 140) pixels, the
performance is worse with a 30° diffuser than with a 0.5°
diffuser. Moreover, as patch size decreases, the tracking per-
formance drops significantly. Table 4 reports the numerical
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Patch Size | Average PSNR (dB) for 0.5° diffuser
1 point-source 2 point-sources

40 x 40 12.5426 8.7801
60 x 60 14.7461 12.3891
80 x 80 18.5604 12.1819

100 x 100 27.8344 12.8457

120 x 120 32.7449 14.3579

140 x 140 33.3271 19.1651

TABLE 4. Average PSNR (in dB) for lateral tracking of point-sources with
a 30° diffuser.

values of the average PSNRs plotted in Fig. 12.

The observations of Fig. 12, combined with the fact that the
point-source needs to be placed much closer to a 30° diffuser
compared to a 0.5° diffuser, prompted us to the conclusion
that for tracking purposes, a low scattering diffuser is a better
choice for point-source tracking. This is why our experiments
were performed with a 0.5° diffuser.

To understand why the tracking performance degrades with
a higher scattering diffuser despite it producing finer speck-
les, we need to remember that for the PHD filtering algorithm
to function properly, it is crucial that the PSF of the SRPE
system be linear shift invariant (see (32)). This requires that
the propagation of optical fields from the diffuser to the image
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FIGURE 12. Average PSNR performance for tracking with a 30° diffuser for (a) one point source and (b) two point-sources.

sensor can be accurately described with Fresnel Diffraction.
As [24] shows us, Fresnel Diffraction is only applicable when
all the plane waves emanating from a source are paraxial, i.e.,
very close to the optical axis of the system. This is true for
low scattering diffusers (such as a 0.5° scattering diffuser)
but not quite for high scattering diffusers, such as the 30°
diffuser used for the experiments in this section, making high
scattering diffusers suboptimal for such tracking operations.

In Section II-A, Fig. 2b, the extent of deviation from lin-
ear shift-invariance has been shown in terms of a paraxial-
deviation noise for 30° diffusers. When such noises become
stronger with increased variance, the cross-correlation algo-
rithm requires more pixels to subdue this noise and produce
a clear peak around the location of the point-sources. This
is the reason why the tracking performance in Fig. 12 of
30° scattering diffusers suffers when the patch sizes of the

12

captured speckles are reduced.

IV. CONCLUSION

In this paper, we have introduced and demonstrated multiple
point-source tracking with lensless SRPE systems and PHD
filtering algorithm. To the best of our knowledge, this is
the first report on lensless SRPE system for object tracking.
The resulting tracking system is computationally efficient and
can perform lateral tracking of point-sources moving in free
space. We show tracking results with both single and double
point-sources. The performance of lateral motion tracking,
due to the reliance of corresponding PHDs on autocorrelation
between the speckle pattern PSF of the initial location of
the point source and incoming PSFs due to moving point
sources, depends on the size of the patches extracted from
individual PSFs. Also, with the growing number of point-
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sources, one should use patches of larger sizes from PSFs.
Lastly, we show the impact on tracking performance when
a high scattering diffuser is used in the SRPE systems. Our
results show that, due to deviation of diffuser scatter from
paraxiality, high scattering diffusers seem to perform poorly
than low-scattering diffusers. All the tracking experiments
performed in this work assume a known number of targets
which are also fixed in time. In future works, we shall deal
with more challenging scenarios such as disappearing and
reappearing targets. Although this work serves as proof of
concept to show that it is possible to track luminous point-
source like objects with lensless SRPE systems, there are
still some challenges, such as gathering enough photons for
insufficiently illuminated objects, which need to be addressed
to make our approach suitable for real-world applications. In
future works, we shall investigate various hardware upgrades
and more sophisticated algorithms to address such challenges.
The findings in this work can improve the computational
efficiency of tracking in fields such as astronomy, satellite
monitoring and aircraft surveillance.

APPENDIX A

CHOOSING APPROPRIATE VALUES OF THE COVARIANCE
MATRICES

3, and 3J;, as mentioned in (41) and (33) respectively, are
the covariance matrices that govern the resolution and sensi-
tivity of our tracking system. Given a predicted location of a
point-source, X, captures our uncertainty of the prediction
by distributing probabilities around the predicted location.
Similarly, given a maximum likelihood estimate of a point-
source location, 3J; helps us to codify our uncertainty of the
estimation by distributing probabilities around the estimated
locations. Since the PHDs are defined on the two-dimensional
(x,y) grid, both 33, and 3, are R2 x R? matrices. That is,

_ | Opx 0 _ |0k 0
e I BT R B

Furthermore, since x and y location of point-sources are
assumed to be independent random variables, both matrices
are diagonal.

3, has been treated as a hyperparameter and depends
mainly on whether the motion prediction model of (36)-(40)
adequately captures the motion of the point-source. If 6., 0},
are kept too small, a misalignment between the predicted
location of the point-source and the corresponding maximum
likelihood estimate will cause the algorithm to produce er-
roneous results (note the multiplication of PHDsin (28)). On
the other hand, if they are made too large, they will ascribe
so much uncertainty to the prediction model as to make it
practically ineffective. Since our prediction model updates the
velocity (see (39)) and acceleration (see (40)) at every time-
step, we found that keeping o,, = 0,, = 50 pixels works
reasonably well.

The choice of ¥; dictates the resolution of our tracking
system. If oy, oy, are kept two large, any two point-sources
have to located far apart in order to be detected separately.
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On the other hand, if they are kept very small, it ascribes
so much confidence in the maximum likelihood estimate as
to make the motion prediction model ineffective. This effect
becomes especially problematic when we use smaller patch
sizes of the observed intensity patterns. In our experiments,
keeping o, = o, = 10 pixels hits a good trade-off between
the two effects across all patch sizes. As a general rule of
thumb, assuming the point-sources to be of equal strength,
the diagonal entries of 3J; can be made equal to the full width
half maximum of the speckle autocorrelation.

APPENDIX B

OBTAINING Dy« (Zx |Xx) FROM Ryu(c, 5)

To obtain the likelihood PHD Dy (Zi|Xk) from Rzn(cv, 3),
we simply fit N number of Gaussian curves to Rz, («, 3), N
being the known number of point-sources. There are many
algorithms in the literature to perform such a task. However,
to make the computation quick, we have used the following
algorithm.

We start with finding out the global maximum of Rz, («, )
and its corresponding location («f,37). Once it is found,
we eliminate (replace with 0) all the values in a (20, +
1) x (204 + 1) neighborhood centered around (max, Bimax )-
Afterward, the next global maximum (a3, 83 ) is detected and
the same process is performed. The entire process is repeated
until all N global maxima are detected.

After all N maxima of Ry, are detected, an empty grid of
size similar to Rz, is created and Dy (Z|X; ) is computed on
the grid as follows:

1
2o IxOly
- L (a—ar\*, (B-5\
e () (50)
—1 Olx Oly

where (af,3f) is the location of the i-th maximum of
RZh (OZ, ﬁ ) .

Itis worthwhile to note here that the derivation of Rzx (v, )
involved linear convolution with fast fourier transform (FFT)
with no windowing or detrending operation. Since the peaks
in Rzn(a, B) for narrow scattering diffuser are smooth and
wide (due to large speckle size), no subpixel interpolations
were used either. Also, the noisy sidelobes were far less
prominent than the actual peaks, eliminating the need for

near-peak separation. In future works, we shall investigate
these matters further.

Dy (Zi | X)) =
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