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Abstract: In this paper, we propose a procedure to analyze lensless single random phase
encoding (SRPE) systems to assess their robustness to variations in image sensor pixel size
as the input signal frequency is varied. We use wave propagation to estimate the maximum
pixel size to capture lensless SRPE intensity patterns such that an input signal frequency can
be captured accurately. Lensless SRPE systems are contrived by placing a diffuser in front of
an image sensor such that the optical field coming from an object can be modulated before its
intensity signature is captured at the image sensor. Since diffuser surfaces contain very fine
features, the captured intensity patterns always contain high spatial frequencies regardless of
the input frequencies. Hence, a conventional Nyquist-criterion-based treatment of this problem
would not give us a meaningful characterization. We propose a theoretical estimate on the upper
limit of the image sensor pixel size such that the variations in the input signal are adequately
captured in the sensor pixels. A numerical simulation of lensless SRPE systems using angular
spectrum propagation and mutual information verifies our theoretical analysis. The simulation
estimate of the sampling criterion matches very closely with our proposed theoretical estimate.
We provide a closed-form estimate for the maximum sensor pixel size as a function of input
frequency and system parameters such that an input signal frequency can be captured accurately,
making it possible to optimize general-purpose SRPE systems. Our results show that lensless
SRPE systems have a much greater robustness to sensor pixel size compared with lens based
systems, which makes SRPE useful for exotic imagers when pixel size is large. To the best of our
knowledge, this is the first report to investigate sampling of lensless SRPE systems as a function
of input image frequency and physical parameters of the system to estimate the maximum image
sensor pixel size.

© 2025 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

When light emanating from an object of interest propagates through an optical imaging setup and
gets captured at an image sensor, a continuous field is rendered at discrete spatial locations. This
discretization, commonly known as sampling, inevitably causes a change between the incident
field and the recorded field. An optimal image sensor ensures that this change does not corrupt
the information content of the incident signal. Establishing such an optimality criterion for
sampling requires precise knowledge of the signal corruption that takes place at the critical
sampling rate. For linear shift invariant (LSI) systems (i.e., systems that do not redistribute the
frequency contents of a signal), this corruption happens to be aliasing, i.e., high frequencies in
the incident field appear as low frequencies in the captured field. For such devices, the famed
Nyquist criterion [1] guides the choice of an optimal sampling rate. In other words, aliasing and
Nyquist criterion go hand-in-hand.

There are, however, useful imaging systems successfully employed for imaging/sensing
purposes that cause a redistribution of the frequency content as the optical field travels from the
object to the image sensor. Lensless imaging systems [2–9] are a prime example of these. In
this paper, we focus on single diffuser-based lensless imaging systems, i.e., single random phase
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encoding (SRPE) systems [3–8]. The use of lenses in conventional imaging/sensing devices
makes the corresponding setups bulky and expensive. Moreover, increasing the lens numerical
aperture, which majorly influences the resolution of such devices, requires manufacturing of
a large lens with precise specifications, making the process time-consuming and expensive.
Replacing the lens with a diffuser makes the devices much more compact, field-portable and less
expensive. Diffuser-based lensless systems also offer enhanced field-of-view and depth-of-field
[10]. Recent studies with SRPE systems have shown that the intensity patterns captured with
these systems can directly be used (without computational reconstruction) to successfully classify
between diseased and healthy biological cells [3–6]. The classification performance of such
systems has also been shown to be robust to noise [5] and dimensionality reduction [6] of the
intensity patterns. Other diffuser-based lensless systems [9,11] have been able to reconstruct a
complete three-dimensional field and even video from only a handful samples collected from the
intensity pattern captured at the image sensor.

Given the benefits and the expanding applicability of diffuser-based lensless imaging systems,
it is important to formulate a sampling criterion for such systems to optimize their usability
in information-critical tasks. It is beneficial to investigate the nature of data corruption that
manifests itself in the intensity pattern due to sampling. Typical diffusers used in SRPE systems
have extremely fine surface features [7,8]. When an input signal is incident on the diffuser, the
diffuser modulates the input frequency contents with the high frequency of its surface features.
Since these features are often much smaller than the pixel size, aliasing becomes inescapable
for the captured patterns. Hence, a naïve application of the Nyquist criterion will prescribe
infeasibly small pixels to accurately sample the output intensity pattern. However, the successful
employment of such systems in the aforementioned previous works with standard cameras lead
us to believe that directly using Nyquist criterion on the intensity patterns is not accurate. In the
investigation of a sampling criterion for such systems, the aliasing of high frequency diffuser
surface variations should be immaterial as long as the underlying object frequencies do not get
corrupted.

In this work, we consider a typical lensless SRPE system with a diffuser placed along the
path of an object field traveling towards the image sensor. We use wave propagation to derive a
critical maximum image sensor pixel size which would accurately capture the contribution of an
input frequency. We also predict what corruption the intensity pattern will undergo once the
sensor pixel size exceeds this maximum sensor pixel size value. We then perform numerical
simulation to investigate how the lensless SRPE system performs in the neighborhood of this
maximum pixel size. If the simulations show the predicted corruption occurring at the predicted
maximum pixel size, it verifies our reasoning and establishes our method as a valid sampling
criterion. We provide a closed-form expression for the maximum sensor pixel size such that an
input signal frequency can be captured accurately, as a function of input object frequency and the
physical parameters of an SRPE system. Our analysis shows that lensless SRPE systems have a
much greater robustness to sensor pixel size compared with lens based systems which makes
lensless SRPE systems useful for exotic imagers which have large pixel size. This is the first
report to investigate sampling of lensless SRPE systems by using wave propagation as a function
of input image frequency and physical parameters of the system to estimate the maximum image
sensor pixel size.

The rest of this paper is organized as follows. In section 2, we briefly describe our lensless
SRPE system, sampling operation in cameras, sampling criterion for lens-based systems, our
proposed sampling criterion for lensless SRPE systems, and the statistical metrics used for
analysis in this study. In section 3, we report and discuss the results obtained through simulations
based on the theory discussed in section 2. Finally, we present the conclusions of our study in
section 4.



Research Article Vol. 33, No. 4 / 24 Feb 2025 / Optics Express 6989

2. Methodology

2.1. Wave propagation in lensless single random phase encoding systems

The propagation of complex optical field through lensless SRPE systems can be mathematically
modeled using the principles of wave optics [1]. As shown in Fig. 1, SRPE systems consist
of two key components: a high-scattering diffuser, and an image sensor. During its operation,
light of wavelength λ from an object first travels a distance z1 to reach the diffuser. The surface
roughness of the diffuser modulates the incoming signal with a spatially varying random phase.
This modulated field then further travels a distance z2 to reach the image sensor where the
intensity of the complex field is recorded.

Fig. 1. A schematic diagram of our lensless single random phase encoding system.

Following the modeling principles of [7,8], we used angular spectrum propagation [1] to
mathematically simulate a lensless SRPE system. As shown in Fig. 1, the co-ordinates on the
object plane are represented as (x, y), those on the diffuser plane are denoted as (ζ , η) and finally,
(α, β) describes points on the image sensor plane. For all numerical simulations in this work, we
begin with a sinusoidally varying amplitude on the object plane, i.e., our input u0(x, y) can be
written as:

u0(x, y) = cos(2πfxx) (1)
where fx denotes the spatial frequency of the sinusoid. This field propagates a distance z1 to end
up at the diffuser. The field right before the diffuser can be written as:

u1(ζ , η) = u0(ζ , η)∗hD(ζ , η)∗
1

2π
z1
r1

(︃
1
r1

− jk
)︃

exp(jkr1)

r1
(2)

where r1 =
√︂
ζ2 + η2 + z2

1, k = 2π/λ is the propagation constant of the light, and hD(ζ , η) is
a filter which eliminates the spatial frequencies that the diffuser would not capture due to its
finite dimensions [7,8]. The diffuser modulates this signal with a spatially varying random phase
ϕ(ζ , η) which is uniformly distributed within the range (−π, π]. For a thin diffuser, this operation
can be described by a multiplicative diffuser transmittance function tD(ζ , η) [5–8] such that:

tD(ζ , η) = exp(jϕ(ζ , η))Rect
(︃
ζ

Dζ
,
η

Dη

)︃
(3)

where (Dζ , Dη) is the spatial dimension of the diffuser. Hence, the modulated signal can be
written as:

u
′

1(ζ , η) = u1(ζ , η) × tD(ζ , η) (4)
This modulated signal further travels a distance z2 to end up at the sensor. The field u2(α, β) at

the sensor can be expressed as follows:

u2(α, β) = u1
′(α, β)∗hS(α, β)∗

1
2π
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exp(jkr2)
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where r2 =
√︂
α2 + β2 + z2

2 and hS(α, β) is a filter that eliminates frequencies which the sensor
would not be able to collect due to its finite size [7,8]. The sensor collects the intensity i(α, β) of
this field:

i(α, β) = |u2(α, β)|2 (6)

The next section describes how this continuous intensity distribution i(α, β) is collected at
image sensor pixels. It is worthwhile to note that we are not proposing a new modeling pipeline
for this system. The propagations have been performed using angular spectrum propagation and
the diffuser model used in Eq. (3) is an established model that has been used in several previous
studies [5–8]. We also note here that our analysis most closely pertains to holographic diffusers
that use pseudorandom structures to scatter light within a cone described by their scattering angle.
Such diffusers are different from Lambertian diffusers which evenly scatter light in all directions.
In this work, we aim to provide a general formulation that remains valid for any scattering angle
of holographic diffusers.

2.2. Sampling operation in cameras

From the source object to right before the intensity is recorded (see Fig. 1), the field is continuous.
However, sensors record intensities of this field at discrete pixel locations (mpα, npβ) where
(pα, pβ) are the pixel sampling rates of the image sensors along axes α and β. For the sake of
simplicity, we shall assume that (pα, pβ) are also the dimensions of each pixel.

Each pixel on an image sensor has a finite area over which the intensity of the incoming
field assumes a continuous spatial distribution. While sampling, the sensor collects the average
intensity value over each pixel. Mathematically, this operation can be described using two
steps. At first, a linear shift-invariant (LSI) filter with a finite averaging window-size computes a
sequence iΣ(α, β) of spatial averages over the entire sensor [12], i.e.,

iΣ(α, β) = u2(α, β)∗p(α, β) (7)

where ∗ denotes a linear convolution, and p(α, β) denotes the averaging operation by pixel. Since
it is essentially a low pass filtering, it removes all the frequencies above (1/pα, 1/pβ). Afterwards,
this averaged sequence iΣ(α, β) is sampled at discrete locations (mpα, npβ). Post-sampling, this
sampled intensity distribution is indexed with only [m, n]. Hence, the sampled distribution
iS[m, n] can be written as:

iS[m, n] = iΣ(α, β) ×
∑︂

(m,n)
δ(α − mpα, β − npβ) (8)

where δ(·, ·) denotes a dirac-delta function. Figure 2 shows a schematic diagram of the pixel
sampling operation.

This sampling operation has effects on the frequency content of the signal. Essentially, the
frequency spectrum of the intensity iΣ(α, β) gets uniformly repeated over the entire frequency
plane at a period of (1/pα, 1/pβ). If iΣ(α, β) contains frequencies above (1/2pα, 1/2pβ), sampling
process causes aliasing, i.e., high frequencies in the iΣ(α, β) show up as low frequencies in
iS[m, n]. The next section discusses the Nyquist criterion to avoid aliasing in images captured
with lens-based systems.

2.3. Nyquist sampling criterion for lens-based systems

In typical imaging applications, the lenses that are used are biconvex with positive focal lengths.
Reference [1] has shown that for such lenses, assuming the magnification is unity (to avoid
scaling between input and output frequencies), the relation between input complex object field
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Fig. 2. Pixel averaging and sampling operation on an image sensor.

u0(x, y) (Eq. (1)) and the output complex image field u2(α, β) (Eq. (5)) can be expressed as a
linear convolution:

u2(α, β) = u0(α, β)∗hl(α, β) (9)

where hl(α, β) is a filter that represents the effect of the lens. It is mathematically expressed as
follows [1]:

hl(α, β) =
1

λ2z1z2

∫∫ ∞

−∞

P(ζ , η) × exp
(︃
−j

2π
λz2

(αζ + βη)

)︃
dζ dη (10)

where P(ζ , η) is the pupil function of the lens, z1 is the distance from the object to the lens, and
z2 is the distance between the lens and the image plane. To avoid frequency scaling between
input and output, we shall assume z1 = z2.

For a single cosine input as in Eq. (1), the output field u2(α, β) will have the following form:

u2(α, β) = Al(fx) cos(2πfxα + ϕl(fx)) (11)

where Al(fx) and ϕl(fx) are the amplitude and the phase shift accumulated due to the LSI filtering
operation. The intensity i(α, β) of this field will be:

i(α, β) = |u2(α, β)|2 =
|Al(fx)|

2

2
(1 + cos(4πfxα + 2ϕl(fx))) (12)

Hence, for an input sinusoid of frequency fx, the output intensity has a maximum frequency
of 2fx. If we would like to sample this signal without aliasing, Nyquist criterion says that our
minimum sampling frequency fN should satisfy the following relation:

fN ≥ 2 × 2fx ↔
(︃

1
pα

,
1
pβ

)︃
≥ 4fx ↔ fx ≤

(︃
1

4pα
,

1
4pβ

)︃
(13)

which means that for pixels of size (pα, pβ), any frequency larger than (1/4pα, 1/4pβ) would
experience aliasing. Hence, to capture a frequency fx, the pixel size needs to be smaller than
1/4f̄x which for very high frequencies, is extremely small, causing the cost of the image sensor to
be very high.

Aliasing, in general, distorts the signal in complex ways. For sinusoidal signals, however,
aliasing produces a sinusoid of a different frequency. If one is capturing increasingly high
frequency sinusoids with a lens-based system, aliasing will make the same frequencies appear
more than once. We call this phenomenon frequency ambiguity. The next section discusses this
phenomenon.
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2.4. Frequency ambiguity in lens-based systems

One of the consequences of aliasing is that high frequencies appear similar to low frequencies.
In this paper, we call this behavior ambiguity in frequency. Figure 3 shows this behavior in the
context of a lens-based system. This is the form of signal corruption that Nyquist criterion aims
to avoid.

Fig. 3. Image and Fourier amplitude spectrum of two frequencies separated by the Nyquist
frequency for a lens-based system. Here, fN denotes the corresponding Nyquist frequency,
and fx is the input sinusoid frequency.

For a diffuser with low scattering angle (e.g. 0.25◦), similar frequency ambiguity, as mentioned
above, can be seen (see Fig. 4) to some extent. However, for a diffuser with high scattering
angle (e.g. 15◦), Fourier amplitude spectrum of the intensity patterns do not admit such visually
identifiable ambiguities (see Fig. 5).

Fig. 4. Image and Fourier amplitude spectrum of two frequencies separated by the Nyquist
frequency for a lensless SRPE system with 0.5◦ scattering diffuser. Here, fN denotes the
corresponding Nyquist frequency, and fx is the input sinusoid frequency.

Hence, to investigate frequency ambiguities in lensless systems with high scattering diffusers,
we employ a statistical measure of similarity, namely, normalized mutual information.

In order to probe the frequency ambiguity of a diffuser-based lensless SRPE system, we start
with an SRPE system equipped with a diffuser with a specified scattering angle, and an image
sensor with specified pixel size which defines the Nyquist frequency limit fN of the input as well.
Then we gradually increase the frequency of the input fx (see Eq. (1)) from 0 to 4fN . For each
such frequency fx, we obtain the intensity signature u2(α, β; fx) by using Eq. (1)–(8) and compute
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Fig. 5. Image and Fourier amplitude spectrum of two frequencies separated by the Nyquist
frequency for a lensless SRPE system with 15◦ scattering diffuser. Here, fN denotes the
corresponding Nyquist frequency, and fx is the input sinusoid frequency.

their Fourier spectrum U2(fα, fβ; fx):

U2(fα, fβ; fx) = F [u2(α, β; fx)] = A(fα, fβ; fx) exp(jϕ(fα, fβ; fx)) (14)

where F [·] denotes Fourier transform, (fα, fβ) denotes the spatial frequencies corresponding to
(α, β), A(·) denotes the amplitude spectrum, and ϕ(·) denotes phase spectrum of u2(·). Afterwards,
we compute an amplitude gram matrix GA and phase gram matrix Gφ such that its i-th row and
j-th column satisfies the following relations:

GA(i, j) = NMI(A(fα, fβ; fx[i]), A(fα, fβ; fx[j])) (15)

Gφ(i, j) = NMI(ϕ(fα, fβ; fx[i]), ϕ(fα, fβ; fx[j])) (16)

where fx[i] denotes the i-th input frequency, and NMI(·, ·) stands for the normalized mutual
information between the input sequences (see Section 2.6). Both GA and Gφ are symmetric
matrices and their entries are bounded within the range [0, 1] with diagonal entries equal to 1. If
any off-diagonal entry GA(i, j) and/or Gφ(i, j) appears to be close to 1 or significantly higher than
its neighboring region, we say that there is an ambiguity between frequencies fx[i] and fx[j], i.e.,
one of these frequencies can be mistaken as another.

Frequency ambiguity due to aliasing is a form of signal corruption that motivates Nyquist
sampling criterion. Figure 5 and the discussion in Section 3.1 show us that such frequency
ambiguities are absent in the case of lensless SRPE systems. Hence, we need to refer to the wave
propagation in the SRPE systems to analyze how input frequencies are getting distributed on the
image sensor, find limiting pixel sizes such that the signal variations are accurately captured,
and reason about a plausible signal corruption that might occur when pixels are larger than their
limiting size.

2.5. Proposed sampling criterion for diffuser-based lensless SRPE systems

In this paper, we aim to answer the following question: if a signal has maximum frequency
fm, what should be the largest pixel size (pα, pβ) such that the corresponding intensity pattern
iS[m, n] is able to capture the variation in the input signal? Since lens-based imaging produces
visually interpretable images, one can answer this question for such systems using the classical
Nyquist frequency criterion. Lensless SRPE systems, on the other hand, capture pseudorandom
intensity patterns with high frequency features. Applying Nyquist criterion naively would beget
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pixel sizes which are smaller than the diffuser features. This contradicts the success of recent
SRPE advances [5, 6] where standard image sensors were used to capture patterns corresponding
to diffusers with extremely fine features for purposes of disease classification. Hence, we look at
the wave propagation mechanism of SRPE systems to answer this question.

Suppose that a given signal has a maximum frequency fm. This maximum frequency component
appears as a pure sinusoid of frequency fm with a certain amplitude and phase. For the ease of
this analysis, we need to find the maximum interval over which the function can be assumed
not to be distorted. Nyquist criterion helps us in this regard. Nyquist criterion tells us that if a
sinusoid of frequency fm is sampled at a frequency fS that is at least 2fm, the original signal and
the sampled signal contain the same information. Hence, we can rewrite Eq. (4-5) by substituting
the field u1(ζ , η) right before the diffuser with its Nyquist sampled counterpart:

u
′

1N(ζ , η) = u1N(ζ , η) × tD(ζ , η) (17)

and,

u2N(α, β) = u
′

1N(α, β)∗hS(α, β)∗
1

2π
z2
r2

(︃
1
r2

− jk
)︃

exp(jkr2)

r2
(18)

where u1N(ζ , η) is derived from u1(ζ , η) in the following way:

u1N(ζ , η) =
(︃∑︂m,n=∞

m,n=−∞
u1(ζ , η)δ

(︃
ζ −

m
fS

, η −
n
fS

)︃)︃
∗Rect

(︃
fs
2
ζ ,

fS
2
η

)︃
(19)

and u2N(α, β) is the corresponding field that is incident on the image sensor. Note that, using a
rectangular filter Rect(·, ·) instead of a Sinc filter of the same cut-off frequency will only scale
the frequency spectrum of the cosine input without changing its overall profile (Fig. 6). The
convolution operation in Eq. (19) merely employs a sample and hold operation, maintaining
the sampled output at a constant level until the next sample appears. Figure 6 shows the effect
of this sample and hold mechanism on a sinusoid. Please note that we are not attempting to
sample the object field here. We merely want to be able to maintain the object field at a constant
level over a maximum interval without harming its frequency spectrum. Sample and hold at the
corresponding Nyquist frequency merely gives us a principled way to achieve this.

Fig. 6. Spatial and amplitude spectrum plot of a sinusoid before and after the operation of a
sample and hold mechanism. The repetition of frequency content in the amplitude spectrum
after sample and hold is due to the sampling operation. The phase spectrum is zero due to
both signals being even.

Interestingly, Fig. 6 shows that the frequency spectrum of a sinusoid after sample and hold
operation includes a number of replicas of the original frequency spectrum. They appear due to
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the sampling operation. It is reasonable to suspect at this point that these high frequency replicas
might interfere with this study. However, keep in mind that when we perform this analysis, we are
only concerned with the highest frequency content fm of a provided input signal, as mentioned in
the beginning of this section. Hence, any frequency higher than this, as long as they are well
separated and do not modify the main frequency component (central part of the spectrum) via
aliasing, are harmless to this analysis.

Since we are interested in finding the limiting pixel size, we obtain u1N(·, ·) from the perfect
sinusoid u1(·, ·) using its Nyquist sampling frequency, i.e., fS = 2fm [see Eqs. (17)–(19)]. Under
this condition, the u1N(·, ·) would produce two distinct values during each spatial period and all
the other values would be exact replicas of these two values. These two values get modulated by
the diffuser transmittance function tD(ζ , η) and show up at the image sensor. Figure 7 shows this
process visually. In Fig. 7, we call these two distinct values samples of u1N(ζ , η) for convenience.

Fig. 7. The scattering of the diffuser when a sinusoidal wave sampled and reconstructed at
Nyquist frequency using sample and hold operation is incident on a diffuser. Since we get
two distinct samples per period of a sinusoid at Nyquist sampling, we isolate two neighboring
samples and observe their effects on the sensor plane.

Say, a sinusoid u1N(ζ , η) has appeared just before the diffuser. We have two distinct samples
per spatial period of u1(ζ , η), i.e. 1/fm. We suppose that these two samples appear at co-ordinates
(ζ1, η1) and (ζ1 + 1/2fm, η1) (see Fig. 7). Now, we assume that the diffuser surface features have
frequencies higher than the frequency of the input sinusoid. This assumption comes from the
literature of Direct Sequence Spread Spectrum communication [13] where the modulating signal
needs to be of a frequency higher than that of the input signal. Under this assumption, the diffuser
features are of similar size or smaller than 1/fm, causing the input signal to be constant over
multiple diffuser features.

When the above assumption is satisfied, the diffuser will spread their corresponding fields
over a certain area of the image sensor. The input at (ζ1, η1) will be spread between
(ζ1 − (1/4fm) − z2 tan(θD), η1) and (ζ1 + (1/4fm) + z2 tan(θD), η1) (see Fig. 7). The input at
(ζ1 + 1/2fm, η1) will be spread between (ζ1 + (1/2fm) − (1/4fm) − z2 tan(θD), η1) and (ζ1 +
(1/2fm) + (1/4fm) + z2 tan(θD), η1) (see Fig. 7). When we sample this field at the sensor, we need
to collect information from both samples of u1N(ζ , η) at (ζ1, η1) and (ζ1 + 1/2fm, η1). In order to
derive the largest sampling rate for the sensor, we look at where the terminal rays from these
inputs are incident on the sensor. From Fig. 7, we see that the distance between these terminal
rays is (1/fm) + 2z2 tan(θD). If the pixel size is any larger than this, the two inputs get absorbed
within the same pixel, reducing the variability of the captured signal. Hence, meaningful complex
field variations happen on the sensor plane at a frequency of ((1/fm) + 2z2 tan(θD) )−1. The field,
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however, contains much finer variations due to fine diffuser features, but such variations do not
contain anything meaningful about the original signal.

The above discussion shows that variation in the sinusoidal field behind the diffuser is rendered
at a frequency ((1/fm) + 2z2 tan(θD) )−1 on the sensor plane. Since the sensor captures the
intensity of this field, and since intensity is correlation in the frequency domain, the same
information is rendered at a frequency 2 × ((1/fm) + 2z2 tan(θD) )−1. To decide an optimal
sampling rate for the image sensor, we need to ensure this information is optimally captured.
Nyquist criterion tells us that the minimum sampling frequency fSdiff would now be twice of this
frequency, i.e.,

fSdiff = 4 ×

(︃
1
fm
+ 2z2 tan(θD)

)︃−1
(20)

which causes the maximum pixel size pMaxdiff to be the following:

pMaxdiff =
1

fSdiff
=

1
4fm
+

z2 tan(θD)
2

(21)

When the pixels are made larger, both parts of the input get absorbed within the same pixel.
From the point-of-view of the pixels, it is as though the input signal has no variation. Hence, from
this point onwards, the output of the pixels begins to look as though the input has 0 frequency.
This means that, for a particular pixel size, if we increase the input frequency from 0, the
similarity between intensity pattern at input frequency and intensity pattern at 0 frequency will
gradually decrease. When the frequency crosses the sampling frequency limit for that pixel size,
this similarity should then start to increase. Section 3.2 verifies this hypothesis using numerical
simulations and by using normalized mutual information (NMI) as the similarity metric.

We note that, when a lens with focal length fl is used to image an object such that
z1 = z2 = 2fl, the sensor field and the object field become almost identical, i.e., there is
no spreading/redistributing of object information on the image plane. For these scenarios, since
there is no scattering from the lens, i.e., θD = 0, the maximum pixel size PMaxlens becomes:

PMaxlens =
1

4fm
+ z2 tan(0) =

1
4fm

(22)

which is the same as what was derived in Section 2.3 using the Nyquist criterion. Our method
generalizes this criterion for diffuser-based lensless SRPE systems. It is also worthwhile to note
that since lenses do not scatter light and have transmittance functions which are fundamentally
different from those of diffusers, the observation of Eq. (22) cannot be extended to situations
where z1 ≠ z2. In such cases, the optimal pixel size for lens-based system becomes |M |/4f where
M = −z2/z1 is the magnification of the lens-based system.

A quick look at Eq. (21) suggests that the optimal pixel size might increase indefinitely with z2.
It is important to remember that the intensity pattern captured at the sensor becomes of lower light
level as z2 increases. After a certain z2, the intensity pattern gets overcome by noise, leading to a
very low signal to noise ratio (SNR). Hence, the optimal pixel size for these scenarios becomes
limited by the SNR. Also, as the pixel size increases, collection of a reasonable number of pixels
requires the image sensor to be to be very large, making such pixel sizes to be infeasible. Hence,
while putting Eq. (21) to use, one must keep in mind the feasibility of the maximum pixel size.

2.6. Mutual information

Mutual information (MI) I(X; Y) [14] is a statistical measure of dependence between two random
variables X and Y. If X and Y are stationary continuous random variables with joint probability
density function (PDF) fX,Y (x, y) and marginal PDFs fX(x) and fY (y) respectively, the MI can be
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given as below:

I(X; Y) =
∫∫

fX,Y (x, y) log
(︃

fX,Y (x, y)
fX(x)fY (y)

)︃
dxdy (23)

Unlike correlation that measures linear dependence between X and Y, I(X; Y) is able to capture
non-linear dependencies between random variables as well. It measures how much entropy of X
is explained by Y. In other words, given knowledge of Y, it shows how much uncertainty remains
in the estimation of X i.e.,

I(X; Y) = H(X) − H(X |Y) (24)

where H(X) is the entropy of X and H(X |Y) is the entropy of X given Y.
Note that I(X; Y) is 0 if and only if X and Y are statistically independent and it increases

as they become more dependent. It can also be intuitively interpreted as the Kullback-Leibler
divergence between the joint PDF of (X, Y) and the product of their marginal PDFs. MI also has
the attractive property that it is invariant under homeomorphic transformations (e.g. translation,
rotation, scaling etc.) of the underlying random variables.

However, MI is not a normalized measure. That is, with increasing dependency between X
and Y, MI increases without an upper bound. Normalization is important since we are using
it to perform a comparative study. Hence, we obtain a normalized metric using the following
equation:

I(X; Y) =
I(X; Y)√︁

H(X)H(Y)
(25)

where H(X) and H(Y) are the entropies of X and Y respectively. For all our analyses, we have
assumed that the 1-dimensional (1D) histogram of a pattern X sufficiently approximates the PDF
of X.

3. Results

We use angular spectrum propagation to mathematically simulate an SRPE system. This is
an ideal choice because for some of the simulations, the propagation distances z1, z2 and the
diffuser scattering angle θD make the paraxial approximation invalid, precluding the use of
Fresnel diffraction model. The parameters common for all simulations have been reported in
Table 1. For both simulations performed in this study, we needed to gradually vary the input
frequency within an extremely large range. This is difficult to perform in a real-world experiment.
Since angular spectrum propagation is highly accurate, and the thin diffuser model can be easily
parameterized to mimic diffusers with different scattering angles [8], the simulation results can
be safely assumed to be close to reality given the lateral sampling rates for the object plane,
diffuser plane and the image sensor plane have been judiciously chosen. Keeping in mind that
for a light of wavelength λ, the angular spectrum propagation kernel has a cut-off frequency
1/λ, the lateral sampling rate of the object plane, diffuser plane, and the sensor plane have been
maintained at half the wavelength to avoid aliasing during simulation. This, however, causes
us to sample 94491 different locations on each of the planes. To keep the computation burden
within reasonable limits, we have performed our simulations on one dimension (1D). Note that
the aperture sizes for both the diffuser and the lens have been kept at 3 centimeters to avoid high
computational burden. Although this aperture seems small, care has been taken to ensure that the
input frequencies for all simulations are always below the limit dictated by the numerical aperture
of lenses/diffusers. We have exercised this caution to ensure high accuracy of the simulation
results. For real-world experiments where optical wave propagations and interaction between
wave and optical elements happen naturally, such concerns are absent and hence do not hinder
the applicability of this theory.
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Table 1. Simulation parameters used in this study (m denotes meters).
These parameters are common to both lensless and lens-based systems.

Parameters Values Parameters Values

Wavelength of light λ 6 × 10−7 m Lateral sampling rate τ 3 × 10−7 m

Diffuser/Lens aperture size 3 × 10−2 m Sensor dimension (size) 3 × 10−2 m

3.1. Frequency ambiguity in lensless and lens-based systems

As discussed in Section 2.4, we compute the amplitude gram matrix GA and the phase gram
matrix Gφ for a lensless system (Fig. 8) and a lens-based system (Fig. 9). Note that in Figs. 8 and
9, the horizontal and the vertical axes have the same label. This is because the x-axis and the
y-axis in Figs. 8 and 9 denote the columns and the rows of the corresponding gram matrices. In
Eqs. (15 and 16), we see that both the rows and columns of gram matrices are being indexed by
the same quantity namely, the input frequencies. The diagonal locations in Figs. 8 and 9 show
the NMI between intensity patterns of the same input frequencies and the off-diagonal locations
show NMI between patterns of dissimilar frequencies. Whenever there is a predictable pattern of
unusually high values at the off-diagonal locations, we can tell that there is a frequency ambiguity,
i.e., one input frequency can be misread as another. The goal of this study was to verify whether
there is an identifiable pattern of frequency ambiguity for lensless SRPE systems. If there is
such a pattern, it can be utilized to define a lower limit of sampling frequency (conversely, an
upper limit for the pixel size) for such systems. The parameters for this simulation are given in
Table 2 below. The parameter values have been chosen to mimic real-world experiments. Note
that the object to lens distance and the lens to sensor distance have been kept equal. This has
been done to avoid any frequency scaling due to magnification by lenses. Similar distances have
been used for diffusers to provide a fair comparison. Also note that the propagation distances
listed in Table 2 are small. This is not due to any physical limitation of the optical devices
under study. Once we choose a practical sensor pixel size, the maximum permissible frequency
for the input signal (referred to as Nyquist frequency) is decided. The studies in this section
require that the numerical aperture of the lens/diffuser be high enough such that input frequencies
which are many times higher than the Nyquist frequency can be captured by the lens/diffuser.
Since we have already kept the aperture size of the lens/diffuser small to ease the computational
burden for the simulations, we had to keep the object to lens/diffuser distances small to satisfy
the above requirement. Using a more realistic distance would increase the computational burden
for simulation but would not change the conclusions of this study.

Table 2. Simulation parameters for studying frequency ambiguity (m
denotes meters).

Parameters Values Parameters Values

Object to lens distance 6 × 10−2 m Object to diffuser distance 6 × 10−2 m

Lens to sensor distance 6 × 10−2 m Diffuser to sensor distance 6 × 10−2 m

Focal length of the lens 3 × 10−2 m Image sensor pixel size 3.6 × 10−6 m

Aperture size of lens 3 × 10−2 m Number of camera pixels 2001

As seen in Fig. 8, the amplitude gram matrix GA and the phase gram matrix Gφ for lensless
systems admit no such identifiable frequency ambiguity even when the input frequency has
been increased to 4 times the Nyquist frequency for the corresponding pixel size. There are
some sporadic high values on the off-diagonal places in GA due to the statistical nature of the
spatial variations in the intensity patterns but nothing is even close to the diagonal values which
denote the self-similarities at individual frequencies. A careful observation of the amplitude
gram matrix GA for lensless systems in Fig. 8 shows that frequencies higher than 3 times the
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Fig. 8. Visualization of the amplitude gram matrix GA (left) and the phase gram matrix Gφ

(right) for lensless SRPE systems. Yellow denotes a high similarity (close to 1) and blue
denotes a low similarity (close to 0).

Fig. 9. Visualization of the amplitude gram matrix GA and the phase gram matrix Gφ

for lens-based systems. The extra diagonal line going from top-left to bottom-right of the
amplitude and phase gram matrices denote frequency ambiguity due to aliasing.

Nyquist frequency exhibit a higher similarity amongst themselves. This is because in such cases,
the input frequencies are extremely close to the numerical aperture limit of the diffuser. The
input light has been diffracted so far off the optical axis that the spatial variations in the output
intensity pattern have become of much lower light level, making it difficult to render for an 8
bit image sensor. A 10 or 12-bit image sensor has better dynamic range, i.e., they can capture
finer changes in the intensity levels. This means that the off-diagonal regions in the top right
part of the amplitude Gram Matrix GA (as shown in Fig. 8 [left]) would have shown values
much lower than it is currently showing. As our objective is to show the absence of frequency
ambiguity in lensless systems (the diagonal region should have values significantly higher than
the off-diagonal regions), opting for a 10 or 12-bit image sensor would have been beneficial for
our study. However, as 8-bit sensors are the ones most commonly used for practical experiments
and since it demonstrates the absence of frequency ambiguity reasonably well, we have chosen
an 8-bit sensor for this study.

When we perform the same analysis on lens-based systems with a perfect lens, we observe
the classic phenomenon of aliasing. The amplitude gram matrix GA (left plot in Fig. 9) shows
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that when the input frequency goes above the Nyquist frequency corresponding to the pixel size
of the image sensor, the resulting intensity pattern exhibits a high similarity with the intensity
pattern of a lower frequency. Specifically, when the input frequency fx is higher than the Nyquist
frequency fN , it produces a pattern that looks similar to the intensity pattern corresponding to the
input frequency (2fN − fx).

The above results show that looking for frequency ambiguity or aliasing might not be a valid
sampling strategy for lensless systems. Due to the high frequency diffuser surface features,
lensless SRPE systems continue to produce unique patterns even when the input frequency has
increased far beyond the Nyquist frequency for the given pixel size. Hence, we need to look for a
different kind of signal corruption. Section 2.5 gives us a possible signal corruption in diffuser
intensity patterns. The next section verifies whether such signal corruptions actually manifest.

3.2. Assessing sampling criterion with normalized mutual information

In this section, we attempt to verify our proposed sampling criterion by applying statistical tools
on a mathematically simulated SRPE system. The distance z2 between the diffuser and the image
sensor is usually very large (of the order of a few centimeters) compared to the pixel size of a
typical camera (in microns). Also, in typical SRPE setups (e.g. [5,6]), the diffusers used have
very high scattering angle (40◦). Applying Eq. (21), we see that for such cases, the maximum
permissible pixel size PMaxDiff assumes a very high value. Hence, we need to keep z2 and θD
sufficiently small so the limiting pixel size is small enough. This will allow an image sensor of
practical size to contain a reasonable number of pixels in the limiting scenario. Using a smaller
θD also forces us to choose a smaller input frequency fx since the diffuser features need to be of
higher frequency than the input signal. Keeping all these constraints in mind, we maintain the
z2 at 0.5 centimeters. We sample 4 different scattering angle values, i.e. [5◦, 10◦, 15◦, 20◦],
for θD. For each θD, we decide a critical frequency fc equal to 0.3fD where fD is the diffuser
surface feature frequency (dependent on θD). According to this frequency, we calculate the
maximum pixel size according to Eq. (21). For diffusers of scattering angle [5◦, 10◦, 15◦, 20◦],
the maximum pixel sizes are [225µm, 443µm, 671µm, 911µm] and the number of pixels are
[133, 67, 45, 33]. Afterwards, we sample 1000 input frequencies in the range [0, 2fc]. For each
such input frequency fx, we compute Eq. (1)–(8) to compute their corresponding intensity pattern
iΣ(fx). Then, we compare each such pattern with the intensity pattern at 0 input frequency iΣ(0)
(i.e. spatially uniform input). We use normalized mutual information (NMI) by computing Eq.
(23-25) for this comparison.

If our theory (as given in Section 2.5) is correct, NMI(iΣ(fx), iΣ(0)) should decrease from 1 as
fx increases from 0, attain its lowest value at fx = fc and begin to increase again. This is due (also
discussed in Section 2.5) to the fact that for the decided pixel size, if the input frequency goes
beyond fc, one entire cycle of the input sinusoid gets absorbed by a single pixel. Since the sinusoid
is repeating every cycle, from the viewpoint of the sensor pixels, the input signal begins to appear
as though it is spatially uniform. In Fig. 10(a-d), we observe exactly this behavior. These plots
have been obtained with different values of the diffuser scattering angle θD. The vertical dashed
line in all the plots denote the theoretical limiting frequency (fc for this discussion) at which
the chosen pixel size begins to render erroneous sampling. Hence, for the input frequency fc,
the chosen pixel size becomes the limiting pixel size. The fact that the simulationally obtained
minima of all these plots coincide with fc corroborates our proposed theoretical analysis.

It is reasonable to ask at this point why the minimum NMI in all the plots in Fig. 10 have
values greater than zero. This is because even though the input signals are different, the diffuser
used for obtaining both patterns on which the NMIs are calculated is the same. Since the diffuser
surface roughness contributes heavily to the contrast in the intensity patterns, the presence of the
same diffuser for both patterns causes the mutual information to remain at a significant level even
when the frequencies are changing.
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Fig. 10. Lensless SRPE normalized mutual information (NMI) [see Eq. (23)–(25)] of
captured image sensor intensity patterns between intensity at 0 frequency and intensity
at various input frequencies for diffusers with different scattering angles. The minima of
these plots denote the frequency at which the chosen pixel sizes become the limiting pixel
sizes. The theoretically obtained estimate of this frequency (dashed line) coincides with the
simulation estimate. θD is the scattering angle of diffusers, pl is the maximum pixel size and
Np is the number of image sensor pixels.

Note that, for calculating the maximum pixel size corresponding to an input frequency for
a lens-based system, we can use the Nyquist criterion as discussed in Section 2.3. For a lens
of focal length fl, if the propagation distances are maintained such that z1 = z2 = 2fl, proper
sampling of the intensity pattern for an input frequency fx would require the maximum pixel
size for an image sensor to be 1/(4fx) (independent of focal length) [see Eq. (22)]. However, the
maximum pixel size for a lensless SRPE system for the same input and a diffuser with scattering
angle θD would be 1/(4fx) + z2tan(θD)/2 [see Eq. (21)]. As fx increase, the maximum pixel size
decreases quickly to approximately 0 for lens-based systems and approximately (z2tan(θD)/2) for
lensless systems. This is the behavior we see in Fig. 11(a). For a fixed frequency, the maximum
pixel size increases with the scattering angle of the diffuser. This happens because as the diffuser
scattering angle becomes higher, information about finer details in the input signal gets spread
out over a larger area of the sensor. The ratio of the maximum pixel size of a lensless SRPE
system to a lens-based system would be:

max pixel size of lensless system
max pixel size of lens − based systems

=
1/(4fx) + z2tan(θD)/2

1/(4fx)
= 1 + 2fxz2tan(θD) (26)

For a fixed z2 (the value of z2 used for this study has been mentioned previously in this
section), this ratio increases with fx. This is because as the input frequency increases, the Nyquist
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criterion-dictated maximum pixel size of the lens-based system keeps reducing but the maximum
pixel size of lensless SRPE systems converges to (z2tan(θD)/2) which is significantly larger than
0 for all θD considered in this study. Figure 11(b) shows the ratio derived in Eq. (26). We
observe that for the chosen z2, the ratio reaches above 100 for high frequencies. This shows
that lensless SRPE systems are especially beneficial for higher frequencies. Also, using lensless
SRPE systems, we can use pixel sizes which are orders of magnitude larger than those required
for lens-based systems.

Fig. 11. Comparison of maximum image sensor pixel-size requirements between lens-based
and lensless SRPE systems. Figure (a) shows the corresponding maximum pixel values.
Figure (b) shows the ratio between the maximum pixel sizes of lensless SRPE systems to
lens-based systems. The numerical aperture of the diffusers and the lens have been kept
equal.

In closing, we would like to note that although this study has been based on well-established
theories and mathematical models, an experimental confirmation would add immense practical
value to these findings. In order to achieve this, we shall have to observe the output of SRPE
systems for single frequency 1D input sinusoidal patterns. However, to get experimental results
corresponding to Fig. 10, we need an experimental method to vary the input frequency over
a large range. We are currently exploring some potential approaches to achieve this. Future
developments on this work shall include experimental confirmations of this study.

4. Conclusion

In conclusion, we have formulated a principle to estimate the sampling criterion for lensless
SRPE systems. Since lensless systems do not exhibit frequency ambiguities due to aliasing
like their lens-based counterparts, we have looked at the wave propagation through the system
to investigate what kind of signal corruption might occur when sampling goes awry. We have
proposed a pixel size limit for a given input signal frequency for lensless SRPE systems. We then
performed numerical simulations using angular spectrum propagation and mutual information
to verify that the anticipated data corruption was indeed happening, and it was happening at
the proposed sampling limit. When the input signal has frequencies lower than the frequency
of the diffuser surface features, the limiting pixel size for lensless SRPE systems increases
with scattering angle of the diffuser. It also increases with diffuser to sensor distance with a
caveat that the captured intensity also becomes dimmer, reducing the SNR. This work provides
a principled way to optimize SRPE systems in scenarios where acquisition of high frequency
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information is of critical importance. For such scenarios, using lensless SRPE systems rather
than lens-based systems allows us to accomplish imaging/sensing using cameras with much
bigger pixels which may be critical in exotic image sensors such as infrared imaging [15]. In
future, we shall investigate how the findings of this study change if the pseudorandom diffuser
is replaced with a diffraction grating with specified surface structures. As regular surfaces are
characterized by their own parameters, it might be possible to factor such parameters in this study.
Future works will also consider other statistical approaches [16–18] and various applications
[19–22] and the experimental confirmation of this study.
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