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Spin excitations andflat electronic bands in a
Cr-based kagome superconductor

Zehao Wang 1,20, Yucheng Guo 1,20, Hsiao-Yu Huang 2,20, Fang Xie1,20,
Yuefei Huang3, Bin Gao 1, Ji Seop Oh1,4,5,6, Han Wu 1, Jun Okamoto 2,
Ganesha Channagowdra2, Chien-Te Chen 2, Feng Ye 7, Xingye Lu 8,
Zhaoyu Liu 9, Zheng Ren 1, Yuan Fang 1, Yiming Wang1, Ananya Biswas1,
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In the quest for topology- and correlation-driven quantum states, kagome
lattice materials have garnered significant interest for their band structures,
featuring flat bands (FBs) from the quantum destructive interference of the
electronic wavefunction. Tuning an FB to the chemical potential could induce
electronic instabilities and emergent orders. Despite extensive studies, direct
evidence of FBs tuned to the chemical potential and their role in emergent
orders in bulk materials remains lacking. Using angle-resolved photoemission
spectroscopy, resonant inelastic X-ray scattering, and density functional the-
ory, we show that the low-energy structure of the Cr-based kagome metal
superconductor CsCr3Sb5 is dominated by FBs at the Fermi level. We also
observe low-energymagnetic excitations evolving across the low-temperature
transition, largely consistent with the FB shift. Our results suggest that the low-
temperature order contains a magnetic origin and that the kagome FBs may
play a role in the emergence of this order.

Quantummaterials with a large density of states, such as associatedwith
flat bands (FBs), can display exotic quantum states. The FBs, when tuned
to near the chemical potential, can provide a large amount of degen-
erate electronic states across the Brillouin zone (BZ) that are available to
respond to interactions, hence leading to electronic instabilities and
potential emergent electronic orders, such as magnetic order, charge-
density-wave, and unconventional superconductivity1–7. While FBs near
the Fermi level can be achieved through moire superlattices of magic-
angle twisted bilayer graphene8–10, geometrically frustrated lattices such
as the kagome and pyrochlore systems can also exhibit FBs from
quantum interference of the electronic wavefunctions11–15. However,
stabilizing a kagome lattice to bring these FBs into close proximity to

the EF has been challenging, and establishing a relationship between FBs
and the electronic/magnetic order has been particularly difficult.

For example, extensive experimental studies on the kagome
lattice materials, including the binary 11 systems ((Fe,Co)Sn16–20 and
FeGe21–23), the 135 systems (AV3Sb5

24–31 and ATi3Bi5 (A = K, Rb, Cs)32–35),
and the 166 systems (RMn6Sn6 and RV6Sn6 (R = rare earth)36–44), have
revealed emergent orders, from quantum magnetism and uncon-
ventional superconductivity to nematicity and charge orders. How-
ever, these phases are often discussed in connection to characteristic
features in the electronic structure, such as the Van Hove Singula-
rities (VHSs) or Dirac fermions, attributed to the inherent topology of
the kagome lattice, and not to the kagome FBs45–52. A noteworthy
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development in this context is the discovery of Ni3In, which is
reported to host a partial FB at the EF by density functional theory
(DFT) predictions and simultaneously exhibit non-Fermi liquid
transport behaviors53. This finding bolsters the hypothesis that a FB
at the EF extending throughout the momentum space could be a
promising avenue to realize exotic quantum orders in bulk quantum
materials. Theoretically, models of d-electron systems on kagome
and related lattices have beenmapped to a Kondo lattice description
through the notion of compact molecular orbitals, through which a
phase diagram with emergent flat bands and strange metallicity has
been identified54–56.

The chromium-based kagome metal CsCr3Sb5 has recently been
discovered and identified as a promising candidate57. Notably, this
material exhibits phase transitions characterized by the appearance of
superlattice peaks observed by X-ray diffraction (XRD) below
TCDW = 54 K, suggested to be a unidirectional charge density wave
(CDW) order. Magnetic susceptibility and nuclearmagnetic resonance
measurements indicate the simultaneous onset of a magnetic order57.
First principle calculations reveal multiple competing density wave
phases58,59. Under the application of hydrostatic pressure, the two
orders are separated in temperature and suppressed, and a super-
conducting dome appears with a Tc peaking at 6.4 K57. Although the
phase diagram is reminiscent of that of other known unconventional
superconducting families such as the iron-based superconductors and
cuprates, where superconductivity competes with static magnetic
order6,60, there has not yet been an understanding of the nature of the
competing order, nor evidence of FBs and their association with
magnetism across the 54 K phase transition.

By combining polarization-dependent angle-resolved photo-
emission spectroscopy (ARPES) measurements and DFT calculations,
we unveil the presence of FBs near EF extending through a large por-
tion of the BZ. As the temperature is lowered across TCDW, this FB
exhibits a downward shift of approximately 20 meV away from the EF.
From resonant inelastic X-ray scattering (RIXS) experiments, we find
clear non-dispersive magnetic excitations above the density wave
transition temperature near the BZ center. The overall energy spread
as well as the center energy position of the magnetic excitations show
an increase below TCDW, consistent with the observed shift in FBs from
the ARPES measurements. Therefore, our combined ARPES and RIXS
measurements signal that the low-temperature order contains a
component that is magnetic in origin and that the associated excita-
tions include electron-hole excitations of FBs, implying that FBs in the
vicinity of the Fermi level play a role in the magnetic excitations in
proximity to unconventional superconductivity6,61–63.

Results
CsCr3Sb5 crystallizes in a layered hexagonal lattice consisting of
alternatingly stackedCr-Sb sheets andCs layers (space groupP6/mmm
No. 191) with lattice parameters a = 5.4956(1) Å and c = 9.2602(2) Å at
293K, where the Cr atoms form a kagome lattice (Fig. 1A)57. The
characterization of CsCr3Sb5 can be found in Supplementary Fig. S1.
The corresponding 3DBZ is plotted in Fig. 1B. Figure 1C shows amapof
the reciprocal space in the (H, K, 0) plane where superlattice peaks
associated with the density wave order below TCDW are marked. Our
X-ray diffraction maps at 110 K (Fig. 1D) and 35 K (Fig. 1F) confirm the
appearance of the superlattice peaks at (1/4, 0, 0) and (0, 1/4, 0) in the
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Fig. 1 | Crystal structure, X-ray diffraction, Schematic of ARPES and RIXS
results. A Unit cell of CsCr3Sb5. The Cr forms a kagome lattice. B, C Reciprocal
space of CsCr3Sb5. CDW observed by XRD are shown as red arrows or red points.
The green arrow marks the q of temperature-dependent RIXS, where q∥ is the
projection of q onto the sample surface.D, F XRD in the (H, K, 0) plane at 110 K and

35K. E, G Corresponding cuts of (F) and (G), respectively.H Cartoon illustration of
the ARPES observed shift of the kagome flat band away from EF below TCDW.
I Cartoon illustration of the observed shift of themagnetic excitations observed by
RIXS across TCDW. The light orange and light blue shaded areas indicate the spectral
weight that is coupled to particle-hole excitations across EF illustrated in (H).
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(H, K, 0) plane below TCDW57, as can be directly observed along the line
cuts (Fig. 1E, G). We summarize our key findings in Fig. 1H, I. From
ARPESmeasurements, we find FBs just ~ 60meV below the Fermi level
that exhibit a ~ 20meV downward shift below TCDW (Fig. 1H). Our RIXS
measurements conclusively identify magnetic excitations near the BZ
center with a spectral width of ~ 100meV. These excitations broaden
and shift in energy below TCDW (Fig. 1I), corresponding to a broadening

of the magnetic electron-hole excitations due to the temperature-
dependent shift of the FBs away from the Fermi level. In the following,
we present our detailed ARPES and RIXS experimental results.

As CsCr3Sb5 is isostructural to the well-studied CsV3Sb5, we first
compare the DFT calculated band structure of the two systems. As
Cr has one additional valence electron, CsCr3Sb5 has more electron
filling than CsV3Sb5. This is reflected in the calculated band structure
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(Fig. 2A, B), where the main features in the two systems are qualita-
tively similar except an overall raised chemical potential in CsCr3Sb5
compared to that of CsV3Sb5. Inparticular, the kagomeFBs in CsCr3Sb5
are much closer to EF, positioned approximately 200meV above the
EF, in contrast to around 1 eV for CsV3Sb5. Also, the VHSs lie well below
EF for CsCr3Sb5, while CsV3Sb5 hosts multiple VHSs near EF. The dif-
ference in the predicted FB position is also pronounced in the density
of states (DOS) calculations, highlighted by red arrows in Fig. 2C. To
visualize the electronic structure of CsCr3Sb5, we present ARPES
results measured at 10 K on a kagome termination dominant surface
(see core level measurement in the SM and Supplementary Fig. S2).
The Fermi surface map corresponding to the kz =0 plane is shown in
comparison to that calculated from DFT (Fig. 2D). Noticeably, the
Fermi surfaces contain a large pocket around the Γ point and small
pockets around the M points, in good alignment with the DFT calcu-
lations for the phase without the density wave order. To note, no
remarkable band folding was observed on the Fermi surface. Mean-
while, the VHSs at theMpoints are observed at0.5 eVbelow EF, evident
in the characteristic triangular pockets around the K points with their
corners touching at theMpoints, giving a goodoverall agreementwith
the DFT calculations (Fig. 2E).

To further visualize the electronic structure of CsCr3Sb5 and
understand its orbital textures, we present a detailed comparison
between band dispersions along high symmetry directions and the
orbital-projected DFT in Fig. 2. The low-energy electronic states are
mostly populated by the five Cr-3d orbitals and Sb-5p orbitals illu-
strated in Fig. 2F.We adopt the site-dependent local coordinates as the
basis shownby the colored arrows to fully respect the lattice symmetry
(see SM Supplementary Fig. S3). Orbital-projected DFT calculations of
the band structure along the high symmetry directions suggest that
the topological flat bands associated with the kagome lattice are pre-
dominantly of dxz and dyz orbital character, immediately above EF
(see SM Supplementary Fig. S3). Experimentally, we can utilize the
polarization-dependent photoemission matrix elements to gain
information on the dominant orbital character of the observed dis-
persions. Based on a detailed analysis of suchmatrix elements for all of
our measurement geometries (see SM Supplementary Fig. S3), we can
overlay the orbital-projected calculated bands from symmetry-allowed
orbitals along two high symmetry directions in the BZ under two
polarization directions (Fig. 2), while raw data without DFT is provided
in the SM Supplementary Fig. S6). While most features exhibit rea-
sonable overall agreements, we notice that there is a portion of a flat
dispersion between �K- �M near −1 eV (dotted white arrow in Fig. 2I)
connected to an electron band towards �Γ. The orbital selection rules
suggest these features can be attributed to dyz or dxy orbital characters
(see SM Supplementary Fig. S3). However, no bands in the DFT cal-
culations match this flat portion. To capture this feature, we note that
if a renormalization factor of 1.4 is applied to the dyz character band
marked by the solid white arrow, the agreement can be better estab-
lished (see SM Supplementary Fig. S4). Another possibility that we
cannot rule out is that theflat portionofdxy character near −2 eVbeing
strongly renormalized. In either scenario, orbital-dependent correla-
tion effects would need to be invoked in CsCr3Sb5, which is not

uncommonly found in multi-orbital systems, including the iron-based
superconductors64–67, a recently reported Mn-based kagome system68,
as well as Ca1−xSrxRuO4

69.
Having discussed the overall electronic structure, we next focus

on the FB near EF. First, from the orbital-projected band structure
calculated by DFT, we see that the kagome topological flat band
appears at 0.25 eV above EF. In Fig. 2K-M, we present the measured
band dispersions within 1 eV of EF along Γ-Mmeasured under different
polarizations together with the energy distribution curves (EDC).
Interestingly, for both polarizations, a flat band feature close to EF can
beobserved. This canbeseen in theubiquitouspeak in the EDCswithin
100 meV of EF, and is especially clear at the �Γ point marked by the red
arrows, where according to the DFT calculations, should only have an
electron band near EF (Fig. 2A). The location of the electron band
bottomcanbe seen in the EDCs at �Γ in the formof a humpnear−0.7 eV.
The only feature above the electron band in the DFT calculation is the
kagome flat band, situated slightly above EF. Hence, if we assume that
the DFT results are reasonably accurate, the peak we observe in all the
EDCs at Γ, located between the electron band bottom and EF, must be
the kagome flat band that has been brought down from above EF.

Furthermore, considering that the FB is observable under all of
the polarization geometries (see SM and Supplementary Fig. S9 for the
complete set of measurements), including those that only allow either
even or odd parity orbitals to be observed, this suggests that both dxz
and dyz orbitals are participating in forming the observed FB. An
additional confirmation for the observation of the FB below EF can be
noted from the electron band at Γ. This Sb pz-dominated band is also
seen inCsV3Sb5, albeitwith a shallower bandbottomdue to the smaller
electron filling70. However, distinct from the CsV3Sb5 case, we observe
a bending of the electron dispersion near −70meV in CsCr3Sb5
(Fig. 2K). From the DFT calculations, it is clear that this electron band
hybridizes with the kagome flat band where they cross (see SM and
Supplementary Fig. S9). Since the energy position of this slope change
matcheswith the observedpeak in the EDCs, this is an indication of the
hybridizationof the FBwith the electrondispersion.Wenote thatwhile
electron-boson coupling generically could also result in dispersion
kinks, in such situations, a broadening of the imaginary part of the self-
energy beyond the mode energy must also accompany the modifica-
tion of the real part of the self-energy. Since we do not observe such
broadening, we can definitively exclude electron-boson coupling as a
potential cause of such dispersion bending (see Supplementary
information S9 for detailed analysis). The observed hybridization of
the flat band with the electron band further confirms that the FB we
observe is intrinsic, not due to disorder-induced localized states that
do not interact with the intrinsic band structure. The observation of
this hybridization kink also confirms that the peak we observe in the
EDC is not due to spectral weight leaking from an FB located above EF,
but rather an FB that is located below EF.

Having identified the kagome flat bands, we next present our RIXS
results to reveal the low-energy excitations. While ARPES measures the
single-particle spectral function in momentum space (k), RIXS mea-
sures two-particle excitations in momentum transfer q =Δk, such as
magnetic excitations, phonons, crystal-field excitations and plasmons71.

Fig. 2 | Electronic structure of CsCr3Sb5. A DFT-calculated band structure of
CsCr3Sb5. B DFT-calculated band structure of CsV3Sb5. In (A) and (B), red arrows
mark the energy position of the flat bands (FB) while red circles mark the
positions of the VHSs in both CsCr3Sb5 and CsV3Sb5. C Comparison of the DOS of
CsCr3Sb5 (cyan) and CsV3Sb5 (orange), whose FB energy positions are indicated
by the red arrows, respectively. D Fermi surface of CsCr3Sb5 measured with
102 eV photons on the left and DFT calculation on the right. Red solid lines mark
the 2D projected BZ. Blue arrows denote the light polarization. E Same as (D) but
at EB = 0.5 eV. The black dashed circles mark the position of the VHS at the M
point. F The definition and illustration of the orbitals in CsCr3Sb5. G–J band
dispersion taken with 114 eV (G)(H) LV and (I)(J) LH polarization along the

�Γ-�K- �M-�K and �Γ- �M-�Γ directions. The DFT calculations projected onto the orbitals
observable in each measurement geometry, according to the selection rules, are
overlapped on the band dispersions for comparison. Blue arrows denote the
polarization direction. The white solid arrow denotes the dyz character band
position, while the white dashed arrow denotes its position in the observation,
suggesting a possible orbital-selective band renormalization for dyz orbitals.
K Band dispersions measured with 100 eV photons (kz = 0) along �Γ- �M. The
measurement geometry and polarization are as marked. L EDCs stacking in band
dispersions taken with LH polarization at in (K).M Same as (L) but taken with LV
polarization. Lines of the same colors in (K–M) denote high symmetry point
positions.
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The nature of the excitations can be determined by polarization ana-
lysis. Specifically, magnetic excitations can be conclusively determined
when the scattered photons have rotated polarization from the inci-
dent beam72. Such excitations have been observed in cuprates via cross
polarization RIXSmeasurements73–76. Figure 3A illustrates the scattering
geometry of our RIXS experiments. To conclusively determine spin
excitations of the system and exclude other excitations, we used π-
polarized light with 90° scattering angle between the incident and
scattered X-rays of wave vectors kin and kout, respectively. As the
dominant low-energy electronic states of CsCr3Sb5 are derived from Cr
3d orbitals, we carried out Cr L3-edge RIXS to unravel its low-energy
excitations. Figure 3B plots the X-ray absorption spectra across the Cr
L3-edge and shows X-ray energies at which RIXS measurements were

taken. Figure 3C plots the RIXS spectra of CsCr3Sb5 taken at these
different incident photon energies. The 90°-scattering geometry with
π-polarized X-rays ensures themeasurement of spin excitations. A clear
spectral feature of spin excitation appears around 70meV as a shoulder
of elastic scattering. This energy is smaller than the spin excitation
energy scales of the iron61 and copper-oxide superconductors62,77.

To quantitatively determine the energy scale of the spin excita-
tions in CsCr3Sb5, we used a general damped harmonic oscillator
model to generate the spectral profile of the spin excitations78,79
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where E0 is the undamped energy, γ the damping factor, β = 1
kBT

(kB is
the Boltzmann constant) and A is a constant. The elastic peak was
modeled using a Voigt function, with its spectral width determined by
the instrumental resolution. The contribution from the fluorescence
tailwasdescribedwith apolynomial function. Since the spectral profile
around zero energy was wider than the instrumental resolution, a low-
energy component of spin excitation was required to fit the data.
Therefore, themeasured RIXS spectrumwas fitted to a spectral profile
comprising three components: one elastic peak, two electronic
excitations and one polynomial background, as shown in Fig. 3D. We
note that we cannot describe the finite energy electronic excitations
with a single peak because the overall fit would then require elastic
scattering much larger than the instrumental resolution (see Supple-
mentary Information S10).

We also measured momentum-dependent RIXS with q∥ along
Γ − K (Fig. 3E) to further verify that the observed electronic excita-
tions arise from transitions involving FBs. Figure 3F summarizes the

q∥ dependence of the magnetic excitations within the available
momentum transfer range along the [H, H, 0] direction. The fitted
undamped energy E0 of the two spin components in our RIXS data
shows no dispersion for all q∥within the available range, as plotted in
Fig. 3G. This is consistent with the FB results concluded from ARPES
measurements.

Finally, we present the temperature dependence of the FBs and
spin excitations across TCDW. In Fig. 4A we compare the band dis-
persion along �Γ- �M taken with linear vertical (LV) polarization at 10 K
(left) and 140K (right). This experimental setup selects the FB of dyz
orbital (See SM Supplementary Fig. S7). The FBs are visible at both
temperatures, as seen in the spectral image, the peak in the EDC, as
well as from the bend in the fitted electron dispersion (marked by a
white and red arrow, respectively). From the spectral image, the FB
location appears to be closer to EF at 140 K compared to 10 K. This
canbe seenbetter from thedirect comparisonof the EDC taken at the
location marked by the black arrow: the peak is shifted towards EF at
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140 K by about 20meV, and is recovered after thermally cycling back
to 10 K. The direction of the shift is opposite to that expected purely
from the thermal broadening effect of the Fermi-Dirac distribution
and hence indicates a real shift of the FB. Similarly, the comparison of
band dispersion along �Γ- �M taken with linear horizontal (LH) polar-
ization and horizontal slit at 10 K (T < TCDW) and 140 K (T > TCDW)
shows that FB of dxz orbital also shift towards EF (Fig. 4E). We provide
the continuous temperature evolution of this shift and the fitting
result in Fig. 4F with the detailed temperature evolution presented in
Fig. 4E. Additional temperature dependencemeasurements and data
analysis are given in the Supplementary Information and Supple-
mentary Fig. S6.

We also conducted temperature-dependent RIXS measurements
at temperatures across TCDW. Figure 4G presents the measured RIXS
spectra within an energy range of 0.3 eV. All spectra were analyzed
using the same curve-fitting scheme as shown in Fig. 3D. To highlight
the spectral changes, Fig. 4H compares RIXS spectra above and below
TCDW after removing elastic scattering, revealing a subtle yet distinct
broadening and shift towards higher energy as the temperature is
cooled across TCDW. For quantitative analysis, Fig. 4I, J show the evo-
lution of the fitted bare energy E0 and damping factor γ of both spin
excitations, which align with ARPES results shown in Fig. 4F. The
observed excitations are coupled to the electron-hole excitations
across the Fermi level. As such, the broadening and shifting of the spin
excitations likely reflect the shifting of the FBs away from EF, both
below and above EF.

Discussions
First, from our systematic polarization dependence ARPES measure-
ments, we clearly resolve the presenceof the kagomeflat bands near EF
in CsCr3Sb5. In comparison to the isostructural CsV3Sb5, the Cr system
is effectively electron-doped to an extent that, at the DFT level, the
kagome flat bands are brought much closer to EF. However, our
observations indicate that bareDFTdoes not accurately reproduce the
flat bands below EF. When the necessary correlation corrections are
applied, the discrepancies in theflatbandposition canbe reconciled at
a qualitative level, although improved sample quality and refined
theoretical approaches are encouraged to further resolve this
matter80,81. This is reminiscent of the flat band observed in the 3D
pyrochlore material CuV2S4, where the destructive interference and
orbital-selective correlation effects work in tandem to pin the
flat bands to EF82. It is also in line with the theoretical notion of
emergent flat bands, the anticipated quantum phase transitions
and strange metallicity54–56 and, by extension, unconventional
superconductivity.

Second, since the temperature-dependent shift of the FBs away
from the Fermi level observed by ARPES across TCDW is largely con-
sistent with the increase in both the spin excitation energy and
bandwidth observed by RIXS near the Γ point, our results taken toge-
ther provide compelling evidence that spin excitations probed byRIXS
are coupled to the quasiparticle excitations of the FBs near the Fermi
level. From previous X-ray diffraction experiments, it is clear that a
structural phase transition occurs below TCDW in CsCr3Sb5

57. Our RIXS
results indicate that this transition is also associated with changes in
spin excitations. Hence, this transition is likely a composite order that
involves both structural andmagnetic degrees of freedom, potentially
analogous to the structural and spin density wave order in the iron-
pnictide superconductors61, which calls for future neutron scattering
experiments to elucidate.

Third, we discuss the potential mechanism for the involvement of
the kagome FBs in the formation of this electronic order. Since the
chemical potential of CsCr3Sb5 happens to be near the kagome FBs, it
is conceivable that their presence drives an electronic order that
pushes the FBs away from the Fermi level, as we have observed. With

hydrostatic pressure, this electronic order is suppressed, which would
leave residual density of states from the FBs near EF to experience the
quantum fluctuations expected near a quantum critical point and
potentially enable superconductivity. Moreover, unlike the pinning of
the largeDOS to theMpoints of the BZ for theVHSs in a kagomemetal,
the kagome FB provides a high density of states across a much larger
portion of the BZ. Therefore, they could be susceptible to multiple
types of electronic instabilities of similar energy scales and different
q’s, which may be a cause for the involvement of both the lattice and
spin degrees of freedom. It remains interesting to theoretically map
out the competing orders promoted by the FBs that develop near-EF
region in CsCr3Sb5.

Finally, it is interesting to compare CsCr3Sb5 to the other known
kagome metal systems that have been extensively studied. First,
AV3Sb5 and FeGe are both kagome metals that exhibit charge orders
with an in-plane periodicity of 2 × 2. Both these systems exhibit the
VHSs at the M points of the BZ in the proximity of EF. While nesting is
unlikely to be the dominant drivingmechanism for the charge order as
theoretically predicted, it may still be a necessary but insufficient
condition for selecting the q for the 2 × 2 charge order in these sys-
tems. In particular, AV3Sb5 has no magnetism from 3d electrons but
has coexisting superconductivity and charge order, while FeGe has a
strong coupling of a charge density wave and magnetic order but no
superconductivity83,84. CsCr3Sb5 appears to be special as suppression
of the density wave by hydrostatic pressure drives strange metallicity
and induces superconductivity57.

For kagome metals where the flat bands are in the vicinity of the
Fermi level, there are two regimes where materials have been studied.
Ni3In represents a regime where the flat band is in proximity to EF yet
not readily observed by photoemission. In this regime, no electronic
orders are formed yet, but the system exhibits non-Fermi liquid trans-
port behavior, indicating proximity to a potential quantum critical
point53. Arguably in the opposite limit is the category of compounds
that exhibit strong ordered magnetism. Kagome magnets, including
FeSn, FeGe, and the Mn- and Fe-based 166 systems all exhibit magnet-
ism with ordering temperatures well above room temperature16,21,37,85,86.
The electronic structure of these compounds, when calculated for
the paramagnetic state, all show kagome flat bands that live in the
vicinity of the Fermi level, which in the magnetically ordered state split
via the exchange splitting, often with an energy scale of 1 ~ 2 eV21.
However, recent work on FeSn thin film that measures its electronic
structure through its magnetic ordering temperature reveals that the
exchange splitting of the bands remains largely intact above the mag-
netic ordering temperature, demonstrating that the origin of the mag-
netism in this system is local in nature87, which is likely common for
these Fe- and Mn-based system with exceptionally high ordering
temperatures.

CsCr3Sb5 is clearly different. Cr-based systems are typically mag-
netic, butmore itinerant thanFe- andMn-based systems. The similarity
of the measured dispersions in the low-temperature density wave
ordered phase to the DFT calculated band structure of the non-
ordered phase indicates that the modification of the electronic struc-
ture through this order is subtle. This is not uncommon for systems
with electronically driven orders with a similar ordering temperature,
such as some of the underdoped iron-based superconductors where
band folding due to the spin density wave is often hard to observe
when close to the optimal doping88,89. Yet, the flat band in CsCr3Sb5 is
clearly participating in the low-temperature order, evident in its shift
away from EF and its coupling with spin excitations. Hence, CsCr3Sb5
appears to exist in a regime that is also close to the potential quantum
critical point of the phase diagram but on the ordered side54–56, a place
that is between the strong magnetically ordered kagome metals and
Ni3In. Recent theoretical studies have revealed that the flat bands in
close proximity to EF in CsCr3Sb5 give rise to antiferromagnetic
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spin fluctuations, suggesting the important role that these FBs play in
this emergent order59. Interestingly, under the tuning knob of hydro-
static pressure, the competing phase in CsCr3Sb5 is suppressed and
superconductivity emerges. This drastic response to pressure, toge-
ther with the observed FB near EF, and its potential association with
spin excitations, suggests that CsCr3Sb5 opens up access to a pre-
viously experimentally unexplored regime in the overarching phase
diagram of kagome metals that offers intriguing insights into novel
phases associated with the topological flat band physics.

Methods
Crystal growth and characterization
The CsCr3Sb5 single crystals were grown using the self-flux method.
Cs (Solid, Alfa 99.8%), Cr (Powder, Alfa 99.95%), and Sb (Powder, Alfa
99.5%) in amolar ratio of 12:3:30weremixed. Themixture was loaded
into an alumina crucible, and sealed in a Ta/Nb tube by arc welding
under an argon atmosphere with one atmospheric pressure. The
tube was sealed in an evacuated quartz tube to protect Ta/Nb from
O2. The Ta/Nb tube was used to prevent the reaction between Cs
vapor and the quartz tube, but Cs can still react slightly with Ta/Nb.
The sample was heated to 850–905 °C within 12 h, kept for 50 h,
cooled to 580–600 °C at a rate of 1.5–3 °C /h, and cooled to room
temperature naturally. Thin crystalline flakes can be found in the
melts, and the crystals are stable to water and the air. The sample size
for this experiment is about 1 × 1mm2.

ARPES measurements
ARPES experimentswereperformed at theMAESTRObeamline of the
Advanced Light Source andbeamline 5-2 of the Stanford Synchrotron
Radiation Lightsource. The MAESTRO beamline is equipped with a
Scienta electron analyzer in a home-designed deflector mode and
uses a beamspot of 10 × 10 μm2. SSRL beamline 5-2 employs a DA30
electron analyzer with a 10 × 30 μm2 beamspot. The angular resolu-
tion was set to 0.1° and the total energy resolution to ≤ 20meV. All
samples were cleaved in situ at 10 K, and measurements were con-
ducted in ultra-high vacuum (base pressure < 5 × 10−11 Torr). In fig-
ures, the error bars denote the standard errors 1σ in the fitted
parameters, calculated as the square root of the diagonal elements of
the covariance matrix returned by the least-squares fitting
procedure.

RIXS measurements
We conducted Cr L3-edge RIXS measurements using the AGM-AGS
spectrometer at beamline 41A90 of the Taiwan Photon Source, National
SynchrotronRadiation ResearchCenter, Taiwan. The total RIXS energy
resolution was 26 meV, determined by the spectral full width at half
maximum of the elastic scattering with σ polarization. The angle
between the incident and scattered X-rays was fixed at 90° for both
incident-energy-dependent and temperature-dependent RIXS mea-
surements, with unresolved polarization of scattered X-rays. Prior to
XAS and RIXSmeasurements, crystallographic axes were aligned using
hard X-ray diffraction with a specially designed tilting adjustment
holder. Subsequently, samples were cleaved in air to expose a (001)
surface. X-ray absorption spectra were acquired using a photodiode in
fluorescence yield mode. The error bars of fitting constants represent
the 1σ standard errors on the fit parameters.

DFT calculations
All DFT calculations were performed with the Vienna ab initio simu-
lation package (VASP) code91,92, with Perdew-Burke-Ernzerhof
exchange-correlation functional93. The energy cutoff of the plane
wave basis is 450eV, and the 3D Brillouin zone is sampled with a
k-point mesh of 11 × 11 × 5. All atoms are relaxed until residual force is
under 0.01 eV/Å. A tight-bindingmodel of 31 orbitals is fitted fromDFT

results with Wannier functions, as implemented in the Wannier90
package94.

XRD measurements
The structure information of the crystal was investigated at ORNL
using a Rigaku XtaLAB PRO diffractometer equipped with a HyPix-
6000HE detector on single crystals with a dimension of
0.1 × 0.1 × 0.01mm3. Amolybdenumanodewas used to generate x-rays
with wavelength λ =0.7107 Å. The samples were cooled by a Helium
gas flow provided by an Oxford N-Helix cryosystem.

SEM and EDS measurements
The chemical composition is measured in the FEI Quanta 400 is a
high-resolution field emission scanning electron microscope. It is
equippedwith SE, backscatter, and EDS detectors, and can operate in
high vac, low vac, and Wet modes. It is also equipped with a
cooling stage.

Data availability
All data needed to evaluate the conclusions are present in the paper
and supplementary materials. Additional data are available from the
corresponding authors on request.

Code availability
The band structure calculations and RIXS used in this study are avail-
able from the corresponding authors upon request.
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