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Energy partitioning in the cell cortex

Sheng Chen    1,2, Daniel S. Seara    2,3,4, Ani Michaud    5,6, Songeun Kim    5,6, 
William M. Bement    5,6,7,8   & Michael P. Murrell    1,2,3,8 

Living systems are driven far from thermodynamic equilibrium through the 
continuous consumption of ambient energy. In the cell cortex, this energy 
is invested in the formation of diverse patterns in chemical and mechanical 
activities, whose spatial and temporal dynamics determine the cell 
phenotypes and behaviours. How cells partition internal energy between 
these activities is unknown. Here we measured the entropy production 
rate of both chemical and mechanical subsystems of the cell cortex across 
a variety of patterns as the system is driven further from equilibrium. 
We do this by manipulating the Rho GTPase pathway, which controls the 
cortical actin filaments and myosin-II. At lower levels of GTPase-activating 
protein expression, which produce pulses or choppy Rho and actin filament 
waves, energy is proportionally partitioned between the two subsystems 
and is subject to the constraint of Onsager reciprocity. Within the range of 
reciprocity, the entropy production rate is maximized in choppy waves. As 
the cortex is driven into labyrinthine or spiral travelling waves, reciprocity 
is broken, marking an increasingly differential partitioning of energy and an 
uncoupling of chemical and mechanical activities. We further demonstrate 
that energy partitioning and reciprocity are determined by the competing 
timescales between chemical reaction and mechanical relaxation.

Living cells harness energy from the environment to drive out-of- 
equilibrium processes that promote and sustain life1–6. As non- 
equilibrium systems, cells extend classic thermodynamic principles, 
such as the second law (entropy production, ΔS ≥ 0)7,8. Further, the 
complexity of subcellular processes poses a serious challenge in deter-
mining the rules that govern cellular metabolic energy expenditure 
in vivo1,2. For example, although recent studies measure cellular/organ-
ismal energy metabolism via calorimetry9–12, adenosine triphosphate 
(ATP) fluorescence13 and metabolic or respiratory fluxes14–17, these 
techniques measure the total energy, and cannot isolate the energy 
dissipated by concurrent internal processes that ultimately share the 
same source of energy. Consequently, how metabolic energy is used 
by and partitioned between non-equilibrium subsystems and how this 
relates to biological outcomes remain enigmatic.

The eukaryotic cell cortex is a key driver of cell migration18–22, 
morphogenesis23–28 and cell division29–32, providing an ideal system to 
study energetic partitioning strategies at the intracellular level in vivo. 
The cell cortex comprises the plasma membrane and the underlying 
cytoskeleton, and the cell cortex itself can be considered to be com-
posed of two subsystems. The first is a mechanical subsystem based 
on actin filaments (F-actin), the motor protein myosin-II and other 
actin-binding proteins that perform mechanical work via the consump-
tion of ATP33,34. The second is a chemical signalling subsystem based 
on the G-protein Rho, which regulates F-actin and myosin-II by cycling 
between an active guanosine triphosphate (GTP)-bound form and an 
inactive guanosine-diphosphate-bound form and thus directs cortical 
patterns based on the consumption of GTP. The interaction of these 
two systems makes the cell cortex a mechanochemical, dissipative and 
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plateauing—underwent a progressive decline back to the level obtained 
in the absence of RGA-3/4 (Fig. 1d).

To independently assess the consequences of the experimental 
elevation of energy consumption by chemical and mechanical subsys-
tems, a computational model that combines signalling and mechanics 
via reaction–diffusion–advection equations with a coupled viscoelastic 
cortex material was developed (Supplementary Note III). In this model, 
the increasing [RGA-3/4] was represented by increasing kRGA, which 
defines the hydrolysis rate of Rho-GTP promoted by the expression of 
RGA-3/4. This model faithfully captures the RGA-3/4-induced changes 
in two-dimensional cortical patterns seen in experiments (Supplemen-
tary Fig. 1 and Supplementary Video 3).

RGA-3/4 expression determines energy 
partitioning in the cell cortex
These visible biochemical oscillatory waves are the consequence of 
multiple molecular-level irreversible cycles that consume energy. We 
measured the entropy production rates ((EPR) denoted as ̇S) associated 
with progressively elevated [RGA-3/4]. EPR reflects the irreversibility 
of system dynamics41,42 and is related to the dissipated energy. At steady 
state, the input energy is balanced by the energy output. The EPR rep-
resents a measure of the minimum energy required to sustain the 
observed process. Consequently, it offers a lower-bound quantification 
to the input of energy, or the energetic cost, to sustain the periodic 
cortical patterns. The total EPR ( ̇Stotal) can be split into two non-negative 
groups43,44: EPRs produced by each of the signals individually (Rho, 
F-actin and granules’ deformation, giving ̇SR, ̇SF and ̇Sc, respectively) 
and EPRs produced by two interacting signals ( ̇SRF, ̇SFd and ̇SRd).  
We take ̇Stotal = ( ̇SR + ̇SF + ̇Sc) + ( ̇SRF + ̇SFd + ̇SRd). By investigating the 
EPR generated by different chemical and mechanical dynamics, we are 
able to understand the energy partitioning among different subsystems 
(that is, Esub/Etotal) inside the cell cortex with the assumption that 
Esub/Etotal ≈ ̇Ssub/ ̇Stotal.

First, we quantified ̇S of each individual signal in the cell cortex 
by independently measuring the temporal autocorrelation for R, F 
and vc. Autocorrelation functions of noisy oscillatory dynamics are 
typically given by sinusoidal functions oscillating with frequency f, 
measuring the average rate of oscillation, with an amplitude that 
decays exponentially with a timescale defined by the coherence time 
τ, measuring the regularity of oscillations45–47. The energy required 
to run a noisy oscillator increases when the signal oscillates faster 
(increasing f) or more reliably (increasing τ). ̇S  was estimated as 
̇S = f 2τ  (Supplementary Note II (wave coherence method)). Here f 

(Fig. 2a) and τ (Fig. 2b) were extracted from the corresponding auto-
correlation function (Supplementary Note II and Supplementary 
Fig. 5). We measured the ̇S  value produced by chemical signalling 
from the Rho and F-actin dynamics ( ̇SR and ̇SF), as well as by mechani-
cal activities from the cortex deformation rate vc, dilation rate ̇εd and 
shear rate ̇εs  ( ̇Sc, ̇Sdil and ̇Sshr, respectively). We find that the positive 
monotonicity of both f and τ at low [RGA-3/4] makes ̇S  for all the 
signals grow with [RGA-3/4]. At high [RGA-3/4], the positive monoto-
nicity of f and the negative monotonicity of τ compensate, making ̇SR 
and ̇SF plateau, whereas ̇Sc, ̇Sdil and ̇Sshr peak and decrease (Fig. 2c and 
Supplementary Fig. 7). Overall, ̇S  measured in simulation through 
autocorrelations and two other alternative methods align with the 
observed trends in experimental data (Fig. 2f, Supplementary Fig. 9 
and Supplementary Note II).

Comparing the quantifications (Fig. 2) to the patterns (Fig. 1) 
shows that as [RGA-3/4] increases, ̇S for the chemical subsystems grows 
as pulses give way to choppy travelling waves and then plateaus as 
choppy waves give way to labyrinthine and spiral travelling waves. In 
contrast, although ̇S  for the mechanical subsystem also initially 
increases in response to increasing [RGA-3/4], it drops at higher levels, 
corresponding to the point where choppy waves transition to labyrin-
thine travelling waves. Thus, interactions between the different 

excitable medium that can exhibit a variety of self-organized, periodic 
signalling, and mechanical patterns16,28,31,35–38, each associated with 
different phenotypic outcomes. For example, Rho and actomyosin 
pulses drive polarization in C. elegans23 and morphogenesis in Dros-
ophila embryos26, and travelling waves of Rho and actomyosin drive 
cytokinesis in starfish and Xenopus embryos31. Here we have exploited 
the periodic, quasi-two-dimensional nature of cortical pulses and trav-
elling waves to study how energy is partitioned between the chemical 
and mechanical subsystems of the cell cortex under conditions where 
patterns are induced and systematically varied.

Increased RGA-3/4 expression drives the cell 
cortex from quiescence through diverse excitable 
patterns
To systematically investigate how the cortex partitions energy between 
the chemical and mechanical subsystems, we expressed two cytokinetic 
regulators in immature Xenopus oocytes: Ect2, a protein that promotes 
the exchange of guanosine diphosphate for GTP by Rho; and RGA-
3/4 (also known as ArhGAP11A or MP-GAP), a protein that promotes 
the hydrolysis of GTP by Rho. The assembly of F-actin is stimulated by 
Rho, whereas Rho itself is inactivated by RGA-3/4, which associates 
with F-actin. F-actin collaborates with myosin-II to transmit contractile 
force, triggering cortical deformation. Cortical deformation, in turn, 
impacts the chemical dynamics through advection. (Fig. 1a,b shows 
the schematic). The combined expression of Ect2 and RGA-3/4 con-
verts the normally quiescent oocyte cortex into an excitable medium 
in which waves of Rho activity and ‘chasing waves’ of F-actin, RGA-3/4 
and myosin-II develop39. Although these waves mimic those observed 
in the cytokinetic furrow of dividing Xenopus and starfish embryos31, 
they are visible for many minutes (in contrast to furrow waves that 
rapidly ingress out of reach of the microscopy objective), rendering 
them amenable to quantitative analysis. Further, when the concen-
tration of RGA-3/4 is varied against a background of constant Ect2 
expression to modulate the consumption of GTP by Rho, a variety of 
periodic patterns are produced, ranging from pulses to short-wavefront 
choppy travelling waves, labyrinthine travelling waves and spiral waves 
(Fig. 1c, Supplementary Video 1 and ref. 39). The expected outcome 
of the increased RGA-3/4 expression is not only an increase in the 
amount of energy consumed by the chemical subsystem of the cor-
tex (via increased GTP hydrolysis by Rho) but also increased energy 
consumption by the mechanical subsystem. That is, although actin 
assembly and myosin-II consume ATP, actin assembly and myosin-II 
activation are gated by active Rho via formins and Rho-dependent 
kinase, respectively. Further, because RGA-3/4 expression increases 
the cortical energy consumption, it is also expected to drive the cor-
tex further from equilibrium, as will be established formally in the  
section below.

The periodic cortical patterns were quantified by the measure-
ment of three signals, which relate to the chemical and mechanical 
aspects of the periodic patterns: Rho (R, chemical) and F-actin (F, 
chemical/mechanical) concentration oscillations were measured via 
fluorescence intensity (Supplementary Note I). As shown in Supple-
mentary Fig. 4, both can be formulated as a noisy periodic oscillation, 
with the deterministic part expressed by a periodic sinusoidal function, 
plus a noise part following the Gaussian distribution. The mechanical 
signal was quantified via local cell cortex deformation rate (vc, mechani-
cal) and strain rates (dilation rate, ̇εd; shear rate, ̇εs; mechanical), based 
on the contraction-induced displacement of cortical pigment granules, 
which was previously shown to report myosin-powered bulk flow (Sup-
plementary Note II, Supplementary Fig. 3 and Supplementary Video 
2)40. As previously described39, Rho wave amplitude initially increases 
sharply with increasing RGA-3/4 concentration ([RGA-3/4]), but then 
reaches a plateau (Supplementary Fig. 2). F-actin wave amplitude fol-
lows a similar pattern (Supplementary Fig. 2). Curiously, however, after 
initially rising with increasing [RGA-3/4], the dilation rate—rather than 
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components of the cell cortex qualitatively and quantitatively change 
as the energy consumed by Rho is progressively elevated.

Decoupling of the chemical and mechanical 
subsystems at high RGA-3/4
The above results suggest that differential energy partitioning at high 
RGA-3/4 results in the decoupling of chemical and mechanical subsys-
tems of the cell cortex. As an alternative way to test this inference, we 
used cross-correlation between each pair of R, F and cortex dilation 
rate ̇εd (Supplementary Note II, Fig. 2d and Supplementary Fig. 6). The 
̇S value arising from R and F interactions, namely, ̇SRF, shows a similar 

trend as seen in the individual chemical signals, namely, a monotonic 
growth that leads to a plateau (Fig. 2g). In contrast, the ̇S value arising 
from both R and ̇εd interactions ( ̇SRd) and F and ̇εd interactions ( ̇SFd) 
prominently peak and drop (Fig. 2h,i). These trends were replicated 
via a third method, namely, estimating the ̇S value from interactions 
based on making a diffusive approximation for the dynamics42 (Sup-
plementary Note II and Supplementary Fig. 8), as well as in simulations 
(Supplementary Fig. 9). Increased variance in EPR is observed at high 
levels of [RGA-3/4] due to an increase in phenotypic variability and 
heterogeneity of the cortical waves (Supplementary Fig. 10d). 

Furthermore, the phase portrait analysis performed on the model 
corroborates the decoupling process (Supplementary Note III). As 
shown in Fig. 3a, with low kRGA, a limit cycle forms (which suggests peri-
odic oscillations) only when the reaction–diffusion equation is coupled 
with the mechanical response. As a comparison (Fig. 3c), with high kRGA, 
a pure reaction–diffusion system can produce spontaneous Rho/F-actin 
oscillations that are marginally affected by the mechanical advective 
transport.

Collectively, these results demonstrate that the energy input into 
the excitable cell cortex, controllable via [RGA-3/4], gets repartitioned 
to the chemical and mechanical subsystems of the cell cortex. At low 
[RGA-3/4], an energy input leads to an increase in the ̇S values of Rho, 
F-actin and mechanical deformations. However, at high [RGA-3/4], the 
̇S  values of Rho, F-actin dynamics and their interactions plateau, 

whereas the mechanical ̇S decreases, indicating that the mechanical 
activities become decoupled from chemical signalling.

Onsager reciprocity suggests energy partitioning 
in a fixed proportion at modest RGA-3/4
Modestly elevating [RGA-3/4] makes mechanical ̇S  ( ̇Sc, ̇Sdil and ̇Sshr) 
increase linearly with chemical ̇S ( ̇SR and ̇SF), suggesting that ̇Stotal is 
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Fig. 1 | RGA-3/4 expression drives diverse mechanochemical patterns in the 
cell cortex. a, Schematic of the plot of the Rho/F-actin wave in the cell cortex. 
The spiral wave is an example from the simulation results with kRGA = 0.60 s–1. kRGA 
defines the hydrolysis rate of Rho-GTP promoted by the expression of RGA-3/4.  
b, Schematic of the plot of the Rho/F-actin activator–inhibitor feedback loops 
and the coupling with the viscoelastic cell cortex. The red lines indicate the 
chemical reactions, and the blue lines indicate the coupled mechanical dynamics. 
The dashed lines indicate the interaction between two chemical subsystems (Rho 
and F-actin, red dashed lines), or between the chemical and mechanical 
subsystems through advection (blue dashed lines). The arrow lines indicate 
promotion, and the T-shaped line indicates inhibition. Ect2 promotes the 
exchange of inactive Rho for active Rho, and RGA-3/4 promotes the consumption 
of active Rho. c, Experiment. Prototypical examples of pulsatile, choppy, 
labyrinthine and spiral wave phenotypes with [RGA-3/4] = 33, 166, 333 and 
1,000 ng µl–1, respectively. From top to bottom, the rows show [Rho], [F-actin],  

a merged image with [Rho] and [F-actin] (shown in cyan and red, respectively), 
and a kymograph of the merged image (chemical signals). The kymograph is 
taken along a horizontal slice indicated by the open triangular symbol at the left 
of the merged image. Time is increasing downwards. Scale bars, 25 µm (space); 
2 min (time). Right inset: zoomed-in portions from the blue box in c, showing the 
pigment granules’ positions and their instantaneous velocities (blue arrows, the 
mechanical signal). d, Absolute value of the dilation rate (⌈ ̇εd⌉) of the cortex 
deformation as a function of [RGA-3/4] with [RGA-3/4] = 0 (n = 3), 33 (n = 5), 66 
(n = 5), 166 (n = 16), 333 (n = 4), 500 (n = 4) and 1,000 ng µl–1 (n = 6). P values are 
2.4 × 10–4, 5.1 × 10−6 and 1.5 × 10−3 between [RGA-3/4] = 0 and 333 ng µl–1, 
[RGA-3/4] = 333 and 1,000 ng µl–1, and [RGA-3/4] = 500 and 1,000 ng µl–1, 
respectively. Data are presented as mean ± standard deviation (s.d.). All the 
statistical comparisons between two distributions were done with a two-sided 
t-test. We use the symbols **, *** and ***** for P values of 0.01, 0.001 and 0.00001, 
respectively.

http://www.nature.com/naturephysics


Nature Physics | Volume 20 | November 2024 | 1824–1832 1827

Article https://doi.org/10.1038/s41567-024-02626-6

0 200 400

–1

0

1

0

     1

     2

     3

0 0.40.2 0.6

Rho & F-actin F-actin & dilation Rho & dilation

EP
R 

(×
10

–2
 s

–1
)

g ih

*

*

*

*
**

ns

ns

ns***

0 500 1,000

0

1

2

3

0

5

10
 f 

(×
10

–2
 s

–1
)

τ c (
×1

0–2
 s

)

EP
R 

(×
10

–2
 s

–1
)

ns
ns

**

Rho
F-actin

[RGA-3/4] (ng µl–1) [RGA-3/4] (ng µl–1) [RGA-3/4] (ng µl–1)

[RGA-3/4] (ng µl–1) [RGA-3/4] (ng µl–1) [RGA-3/4] (ng µl–1)

Granule

*****
**

**
***

**
***

*
ns

Mitosis

EP
R 

(×
10

–2
 s

–1
)

EP
R 

(×
10

–2
 s

–1
)

d fe

a cb

N
or

m
al

iz
ed

 w
av

e

F-actin
Rho Dilation

Shear

Time (s)

EP
R 

(×
10

–2
 s

–1
)

***
*****

ns
ns

kRGA (s–1)

Sim
ulation

EPR (×10
–3 s

–1)

Rho

F-actin Granule

Energy

RGA-3/4

0 500 1,000
0

1

2

3

0 500 1,000
0

  1

2

*

0 500 1,000

0

2

4

0 500 1,000

0

2

4

0 500 1,000
0

2

4

6

**

Fig. 2 | Energy partitioning between chemical and mechanical subsystems 
depends on RGA-3/4. a, Autocorrelation frequency (f) as a function of RGA-3/4. 
The dashed line indicates a frequency of 0.01 s–1 that is measured from the 
cortical waves during mitosis57. For Rho, P = 9.2 × 10–4 and 9.8 × 10–2 between 
[RGA-3/4] = 0 and 333 ng µl–1 and [RGA-3/4] = 333 and 1,000 ng µl–1, respectively. 
For F-actin, P = 2.5 × 10–3 and 4.4 × 10–1 between [RGA-3/4] = 0 and 333 ng µl–1 and 
[RGA-3/4] = 333 and 1,000 ng µl–1, respectively. b, Autocorrelation coherence 
time (τ) as a function of RGA-3/4. For Rho, P = 9.3 × 10–4 and 3.6 × 10–3 between 
[RGA-3/4] = 0 and 333 ng µl–1 and [RGA-3/4] = 333 and 1,000 ng µl–1, respectively. 
For F-actin, P = 1.3 × 10−2 and 1.5 × 10−3 between [RGA-3/4] = 0 and 333 ng µl–1 and 
[RGA-3/4] = 333 and 1,000 ng µl–1, respectively. c, EPR ̇S = f 2τ, for Rho (cyan), 
F-actin (red) and granule motions (black). For Rho, P = 8.1 × 10−3 and 6.4 × 10−1 
between [RGA-3/4] = 33 and 333 ng µl–1 and [RGA-3/4] = 333 and 1,000 ng µl–1, 
respectively. For F-actin, P = 6.1 × 10−3 and 8.7 × 10−1 between [RGA-3/4] = 33 and 
333 ng µl–1 and [RGA-3/4] = 333 and 1,000 ng µl–1, respectively. For granule 
motions, P = 2.6 × 10–3 and 9.9 × 10–2 between [RGA-3/4] = 33 and 333 ng µl–1 and 
[RGA-3/4] = 333 and 1,000 ng µl–1, respectively. d, Schematic of the plot of ̇S 
produced by autocorrelated (black solid arrows) and cross-correlated signals 
(coloured dashed arrows). e,f, Typical waveforms of Rho (orange), F-actin (red), 
dilation rates (blue) and shear rates (green) in simulations (e) and the 
corresponding ̇S measured from the autocorrelations (f). kRGA defines the 
hydrolysis rate of Rho-GTP promoted by the expression of RGA-3/4. For each kRGA, 
there are n = 5 independent simulations. Between kRGA = 0.40 and 0.60 s–1,  

P = 2.8 × 10–1 (Rho), 2.5 × 10–1 (F-actin), 7.8 × 10–6 (dilation) and 8.0 × 10–4 (shear). 
g–i, ̇S produced by interacting Rho and F-actin ( ̇SRF) (g), F-actin and dilation rates 
( ̇SFd) (h), and Rho and dilation rates ( ̇SRd) (i). The dashed lines in g indicate the 
linear fitting for data with [RGA-3/4] ≥ 166 ng µl–1 with 95% confidence bounds. 
The dashed lines in h and i indicate the linear fitting for data with [RGA-
3/4] ≥ 333 ng µl–1 with 95% confidence bounds. For experiments, [RGA-3/4] = 0 
(n = 3), 33 (n = 5), 66 (n = 5), 166 (n = 16), 333 (n = 4), 500 (n = 4) and 1,000 ng µl–1 
(n = 6). For each kRGA in simulations, n = 5. For a–c, data are presented as 
mean ± standard error. For f–i, data are presented as mean ± s.d. In g, P = 5.4 × 
10–4, 5.2 × 10–1 and 6.5 × 10–1 between [RGA-3/4] = 0 and 66 ng µl–1, [RGA-3/4] = 166 
and 1,000 ng µl–1, and [RGA-3/4] = 500 and 1,000 ng µl–1, respectively. For the 
linear fitting of data within [RGA-3/4] = 166 and 1,000 ng µl–1, P = 4.9 × 10–1. In h, 
P = 2.8 × 10–3 and 2.5 × 10–2 between [RGA-3/4] = 0 and 333 ng µl–1 and [RGA-
3/4] = 333 and 1,000 ng µl–1, respectively. For the linear fitting of data within 
[RGA-3/4] = 333 and 1,000 ng µl–1, P = 4.9 × 10–2. In i, P = 5.1 × 10–3 and 2.2 × 10–2 
between [RGA-3/4] = 0 and 333 ng µl–1 and [RGA-3/4] = 333 and 1,000 ng µl–1, 
respectively. For the linear fitting of data within [RGA-3/4] = 333 and 1,000 ng µl–1, 
P = 4.4 × 10–2. All the statistical comparisons between the two distributions were 
done with a two-sided t-test. We use the symbols *, **, *** and ***** for P values of 
<0.1, 0.01, 0.001 and 0.00001, respectively. ns, not significant. When fitting lines 
to data, we quote the P value as significance values to the rejections of null 
hypothesis.
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partitioned among each subsystem in a fixed proportion. To test this 
inference and gain a deeper understanding of the inherent 
cross-interactions amongst chemical and mechanical subsystems, we 
applied Onsager’s form of ̇S in the linear force–flux regime and Onsager 
reciprocal relations—a theory that describes interactions between 
different pairs of fluxes (𝒥𝒥) and forces (ℱ) in subsystems48 (Fig. 4a).

We established the so-called Onsager matrix L (refs. 48,49)  
(Supplementary Note III). In Onsager’s theory, when the system is near 
equilibrium, there is a linear force–flux relationship50–52, based on which 
the Onsager matrix is constructed via 𝒥𝒥= L•ℱ  with equal off-diagonal 
coefficients, that is, LAB = LBA (A ≠ B), making L symmetric. In our case, 
we have three signals (R, F and vc); therefore, L is a 3 × 3 matrix. To 
quantify Onsager reciprocity between each pair of subsystems, we 
measured the absolute difference |L12 – L21|, |L23 – L32| and |L13 – L31|, which 
reflect the Rho/F-actin, F-actin/cortex motion and Rho/cortex motion 
interactions, respectively (Fig. 4a(iii) and Supplementary Fig. 14). 
Measurements from both experiments (Supplementary Figs. 10 and 
14) and simulations (Fig. 4d and Supplementary Figs. 11 and 14) dem-
onstrate that with modest [RGA-3/4] (modest kRGA), |LAB – LBA| ≈ 0, the 
pulsatile waves have a linear force–flux relationship (experiment, 
Supplementary Fig. 12; simulation, Supplementary Fig. 13) and the 
Onsager reciprocal relations are obeyed, as has been recently found 
for active systems in the linear-response regime53–55. Strikingly, how-
ever, with large RGA-3/4 (or large kRGA), |LAB – LBA| ≫ 0, the corresponding 
spiral waves have nonlinear force–flux relations (Supplementary 
Figs. 12 and 13) and broken Onsager reciprocal relations, as has been 
found with chiral active matter56. Interestingly, choppy travelling waves 
occur within but at the far end of the Onsager reciprocity (Supplemen-
tary Figs. 10d and 14) with linear force–flux relation (Supplementary 
Figs. 12 and 13).

To elucidate why energy partitioning among each subsystem  
is present in a fixed proportion at regimes with linear force– 
flux relation, we express ̇S  in Onsager’s form48 (Fig. 4a(i)). Here 
̇Stotal = ∑i (𝒥𝒥i • ℱi) = ∑A (LAAℱ2

A ) +∑(A≠B) (LABℱBℱA) , which decom-
poses the total EPR into contributions from individual subsystems 
(with label A), and interactions between pairs of subsystems (with labels 
A and B). 𝒥𝒥Rho and 𝒥𝒥Act are the net reactional fluxes of Rho and F-actin, 
respectively. 𝒥𝒥𝒥𝒥𝒥𝒥M is the mass flow of the cortex. ℱRho and ℱAct are the 
chemical affinities, and ℱℱℱC is the contractile force (Supplementary 
Note III). As evident from the simulation (Fig. 4b–d) by the ratio of the 
Onsager’s rate of entropy ( ̇S) produced by F-actin dynamics (ℱAct•𝒥𝒥Act) 
to that from Rho dynamics (ℱRho•𝒥𝒥Rho) (Fig. 4b) and mechanical dynam-
ics (ℱℱℱC•𝒥𝒥𝒥𝒥𝒥𝒥M) to F-actin dynamics (Fig. 4c), the broken reciprocal rela-
tions initiate from where the differential energy partitioning occurs, 
suggesting that energy is partitioned among chemical and mechanical 

subsystems in a fixed proportion for wave dynamics with Onsager 
reciprocity. Theoretical derivation under the constraint of linear force–
flux assumption verifies this observation (Fig. 4b,c (dashed lines) and 
Supplementary Note III). Thus, we conclude that dynamic patterns in 
the cell cortex with Onsager reciprocity ([RGA-3/4] ≤ 166 ng µl–1 and 
kRGA < 0.30 s–1) cause the partitioning of energy between the chemical 
and mechanical subsystems in a fixed proportion. In particular, we 
found an EPR ‘maximal’ state at the far end of the Onsager-reciprocity 
regime, represented by choppy wave dynamics where (1) the EPR is 
maximized within the reciprocal regime with (2) strong coupling 
between the chemical and mechanical subsystems (as suggested  
by the coherence time measurement in Fig. 2b and phase portrait 
analysis in Fig. 3).

Competing timescales determine the repartition 
of energy
Next, we investigated the energy partitioning between the chemical 
and mechanical subsystems beyond the range of Onsager reciprocity 
by taking advantage of the computational model. Here we define two 
timescales: the chemical reaction rate kChem = kRGA and the characteristic 
mechanical relaxation rate kMech = As/GτME (Supplementary Table 1).

In the computational model (Model; Supplementary Information), 
the chemical and mechanical subsystems are fully coupled by (1) 
actomyosin-induced contractile flow; (2) mechanical properties of the 
cell cortex affected by the F-actin concentration; (3) the advective 
transport of chemical species. Point (2) makes kChem a function of kMech 
(Fig. 5a,b, diamond symbols). To investigate the contribution of kChem 
and kMech to the energy partitioning independently, we decoupled kChem 
and kMech by making the shear modulus of the cortex (G) independent 
of the F-actin concentration. A phase diagram of decoupled kChem and 
kMech is shown in Fig. 5a, which captures all the wave phenotypes 
observed in the above sections. In Fig. 5b, we calculated the ratio of ̇SR 
to ̇Sdil, quantifying the proportion of chemical dissipation over mechan-
ical dissipation. The results indicate that with fixed kMech, increasing 
kChem leads to more energy partitioned to the chemical subsystems, 
and vice versa. Moreover, it predicts a regime where the mechanical 
dynamics gain more energy, in contrast to our findings in the above 
sections. This implies that the chemical and mechanical timescales 
compete in a manner that determines the partitioning of energy 
beyond the range of Onsager reciprocity.

To experimentally verify this prediction, we performed experi-
mental perturbations in which cofilin—an F-actin-severing protein—was 
overexpressed in vivo to increase the F-actin turnover (Supplementary 
Note I). As a result, the mechanical subsystem can operate on a faster 
timescale to keep up with chemical subsystems, reminiscent of an 
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increased kMech with roughly constant kChem in the model. Consequently, 
in cofilin experiments, the restoration of reciprocal relationship 
between F-actin dynamics and cortical motion (caused by their more 
coordinated interactions) is observed, compared with the control 
experiments (Fig. 5c). In Fig. 5d,e, we measured the ̇S value produced 
by the chemical and mechanical subsystems, respectively. This indi-
cated that there is less chemical dissipation but more mechanical 
dissipation in the wave dynamics in cofilin experiments compared with 
the control experiments, verifying our theoretical predictions.

Outlook
We manipulated energy consumption by the cell cortex via a graded 
expression of the Rho GAP RGA-3/4 and measured the EPR ̇S  during 
steady-state wave behaviours. This measure reflects the minimum 
energy required to sustain the observed processes, not the actual 
energy, which also includes dissipation that takes place below the opti-
cal resolution (due to ATP hydrolysis by actin and myosin and so on). 
By elevating GAP expression to drive the cell farther from equilibrium, 
we observed three sequential regimes: (1) pulsatile wave with Onsager 
reciprocity, characterized by energy partition in a fixed proportion; 
(2) choppy waves at the furthest extent of reciprocity also character-
ized by fixed energy partitioning; and (3) labyrinthine or spiral travel-
ling waves with broken Onsager reciprocity and characterized by 
differential energy partitioning between two subsystems. In particular, 
the wave frequency (f) monotonically increases with increased driving. 
In contrast, however, only within the Onsager-reciprocity regime, dis-
placing the system further from equilibrium increases ̇S of both chem-
ical and mechanical subsystems in the cell cortex and maintains strong 

coupling between them. This relationship between the overall energy 
consumption and cortical dynamics culminates at the far end of this 
regime, where ̇S is maximized for both subsystems and is characterized 
by choppy waves with intermediate f. Intriguingly, this state of maximal 
̇S bears a striking resemblance, both qualitatively and quantitatively 

(with a frequency of approximately 0.01 s–1 (ref. 57)), to the cortical 
waves associated with cell division31,39,57. We speculate that this EPR 
maximal state within the reciprocity regime is particularly advanta-
geous for cell division, as it ensures both high level of chemical/mechan-
ical activities and chemical–mechanical coupling, potentially 
facilitating the robust functioning of cell division. A similar observation 
was also identified in crawling Dictyostelium cells58, where actin oscil-
lations associated with cell motility and chemotaxis were induced by 
a signalling stimulus. The most excitable state occurs neither with the 
most rapid nor the slowest stimulus, but at an intermediate state near 
the instability border where the signalling pathway and actin responses 
are well coordinated. In stark contrast, a departure from this state at 
high levels of GAP expression with broken Onsager reciprocity results 
in a differential energy partitioning among the now-uncoupled sub-
systems, where the mechanical activities struggle to keep pace with 
the excessively rapid chemical oscillations. It is essential to emphasize 
that such an uncoupled state can pose severe threats to the cell’s viabil-
ity and function59. For instance, impaired excitation–contraction cou-
pling in the cardiac muscle, leading to a loss of synchronization between 
electrical and mechanical activities, is known to be a potentially 
life-threatening condition that culminates in sudden cardiac death60.

Our results reveal fundamental principles in cellular energetics 
and non-equilibrium physics governing the intricate interplay between 
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that from Rho dynamics (ℱRho•𝒥𝒥Rho) (b) and mechanical dynamics (ℱℱℱC • 𝒥𝒥𝒥𝒥𝒥𝒥M) to 
F-actin dynamics (c). Data are presented as mean ± s.d. d, Absolute difference of 
the off-diagonal Onsager’s coefficients (|LAB – LBA|) manifesting the F-actin/
mechanics interactions (A = 2, B = 3). Data are normalized by L22 + L33. Open-
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LAB is the scaling factor that ℱB has on 𝒥𝒥A, calculated from the Onsager matrix L 
that is constructed via 𝒥𝒥= L•ℱ . 𝒥𝒥Rho and 𝒥𝒥Act are the net reactional fluxes of Rho 
and F-actin, respectively. 𝒥𝒥𝒥𝒥𝒥𝒥M is the mass flow of the cortex. ℱRho and ℱAct are the 
chemical affinities, and ℱℱℱC is the contractile force. kRGA defines the hydrolysis 
rate of Rho-GTP promoted by the expression of RGA-3/4. L12 and L21, L23 and L32, 
and L13 and L31 reflect the phenomenological coefficients that are associated with 
Rho/F-actin, F-actin/cortex motion and Rho/cortex motion interactions, 
respectively. For each kRGA, there are n = 5 independent simulations. For each 
simulation, a pair of forces (ℱRho, ℱAct and ℱℱℱC) and fluxes (𝒥𝒥Rho, 𝒥𝒥Act and 𝒥𝒥𝒥𝒥𝒥𝒥M), 
and their corresponding Onsager matrix L are calculated from 2,040 uniformly 
distributed grid points in space, with each grid containing 64 data points in time 
with equal time intervals. For demonstration, there are 1,000 randomly selected 
data points from datasets for each kRGA in d.
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energy partitioning and subsystem coupling in cellular dynamics. 
Furthermore, the underlying physics of cortical excitability clearly 
extends beyond embryonic cells38, suggesting that our results and their 
implications will be relevant across diverse cell types.
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Methods
The acquisition of Xenopus oocytes was performed in accordance  
with relevant animal ethical guidelines and regulations under ani-
mal care protocol G005386-R01, administered by the University of  
Wisconsin–Madison Institutional Animal Care and Use Committee. 
Methods and any associated references are available in the Supplemen-
tary Information. Sample sizes were chosen based on previous studies 
of cortical wave dynamics39. The oocytes were randomly assigned to 
injection groups after isolation. Data collection and analysis were per-
formed automatically by codes, without prior knowledge of the experi-
mental conditions. Data were collected using PrairieView software. 
Dead cells or cells with invisible pigment granules were excluded. Data 
distribution was assumed to be normal, but this was not formally tested.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
Data supporting the findings of this study are available from the cor-
responding authors upon reasonable request. Source data are provided 
with this paper.

Code availability
Custom codes that were used for the data analysis in this manu-
script are available via GitHub at http://github.com/shengchen-yale/
mech-chem-wave.
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Reporting Summary
Nature Portfolio wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Portfolio policies, see our Editorial Policies and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection Prairie View software

Data analysis Custom written MATLAB (R) version 2022a script was used for data analysis. 
ImageJ version 1.53k was used for basic image processing 
COMSOL Multiphysics version 5.2a-classkit was used for computational simulation 
Custom codes that were used for data analysis within this manuscript can be found at http://github.com/shengchen-yale/mech-chem-wave.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A description of any restrictions on data availability 
- For clinical datasets or third party data, please ensure that the statement adheres to our policy 

 

Data supporting the finding of this manuscript are available from the corresponding author upon reasonable request. The data generated in this study are provided 
in the Source Data file. We used the open source ImageJ/Fiji available at https://imagej.net/ij/index.html

Human research participants
Policy information about studies involving human research participants and Sex and Gender in Research. 

Reporting on sex and gender N/A

Population characteristics N/A

Recruitment N/A

Ethics oversight N/A

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were chosen based on previous studies of cortical wave dynamics (Michaud et al., 2022. pubmed id: 35708547)

Data exclusions Dead cells or cells with invisible pigment granules were excluded.

Replication Experiments were replicated on multiple cells from multiple experiments; the sample sizes are indicated in the figures or figure legends.

Randomization The oocytes were randomly assigned to injection groups after isolation. 

Blinding Data collection and analysis were performed automatically by codes, without prior knowledge of the experimental conditions.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Animals and other research organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research, and Sex and Gender in 
Research

Laboratory animals Xenopus laevis

Wild animals N/A

Reporting on sex N/A

Field-collected samples N/A

Ethics oversight The acquisition of Xenopus oocytes was performed in accordance with relevant animal ethical guidelines and regulations under 
animal care protocol G005386-R01, administered by the University of Wisconsin-Madison Institutional Animal Care and Use 
Committee.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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