Check for
updates

R DIGITAL Assaciaionfoe
acvyel® 155 Ry T @m open)
¢ Latest updates: https://dl.acm.org/doi/10.1145/3709026.3709040

RESEARCH-ARTICLE
Stochastic Variance-Reduced Iterative Hard Thresholding in Graph

Sparsity Optimization
DEREK FOX, The University of North Carolina at Greensboro, Greensboro, NC, United States
SAMUEL HERNANDEZ, Texas A&M University, College Station, TX, United States

QIANQIAN TONG, The University of North Carolina at Greensboro, Greensboro, NC, United
States

Open Access Support provided by:
The University of North Carolina at Greensboro

Texas A&M University

I PDF Download
};3 3709026.3709040.pdf
< 20 December 2025
Total Citations: 0
Total Downloads: 151

Published: 06 December 2024
Citation in BibTeX format

CSAI 2024: 2024 8th International
Conference on Computer Science and
Artificial Intelligence (CSAI)
December 6 - 8, 2024

Beijing, China

CSAI '24: Proceedings of the 2024 8th International Conference on Computer Science and Artificial Intelligence (December 2024)

https://doi.org/10.1145/3709026.3709040
ISBN: 9798400718182

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3709026.3709040
https://dl.acm.org/doi/10.1145/3709026.3709040
https://dl.acm.org/doi/10.1145/contrib-99661516013
https://dl.acm.org/doi/10.1145/institution-60018474
https://dl.acm.org/doi/10.1145/contrib-99661516726
https://dl.acm.org/doi/10.1145/institution-60020547
https://dl.acm.org/doi/10.1145/contrib-99661519750
https://dl.acm.org/doi/10.1145/institution-60018474
https://dl.acm.org/doi/10.1145/institution-60018474
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60018474
https://dl.acm.org/doi/10.1145/institution-60020547
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3709026.3709040&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/csai
https://dl.acm.org/conference/csai
https://dl.acm.org/conference/csai
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3709026.3709040&domain=pdf&date_stamp=2025-02-15

Stochastic Variance-Reduced Iterative Hard Thresholding in
Graph Sparsity Optimization

Derek Fox Samuel Hernandez Qiangian Tong
UNCG Texas A&M University UNCG
Greensboro, North Carolina, USA College Station, Texas, USA Greensboro, North Carolina, USA
defox@uncg.edu samuelhqll@tamu.edu q_tong@uncg.edu

Abstract

Stochastic optimization algorithms are widely used for large-scale
data analysis due to their low per-iteration costs, but they often suf-
fer from slow asymptotic convergence caused by inherent variance.
Variance-reduced techniques have been therefore used to address
this issue in structured sparse models utilizing sparsity-inducing
norms or £p-norms. However, these techniques are not directly ap-
plicable to complex (non-convex) graph sparsity models, which
are essential in applications like disease outbreak monitoring and
social network analysis. In this paper, we introduce two stochastic
variance-reduced gradient-based methods to solve graph sparsity
optimization: GRAPHSVRG-IHT and GRAPHSCSG-IHT. We provide
a general framework for theoretical analysis, demonstrating that
our methods enjoy a linear convergence speed. Extensive exper-
iments validate the efficiency and effectiveness of our proposed
algorithms.

CCS Concepts

« Computing methodologies — Machine learning algorithms.

Keywords

graph sparsification, iterative hard thresholding, stochastic algo-
rithms, variance reduction

ACM Reference Format:

Derek Fox, Samuel Hernandez, and Qiangian Tong. 2024. Stochastic Variance-
Reduced Iterative Hard Thresholding in Graph Sparsity Optimization. In
2024 8th International Conference on Computer Science and Artificial Intelli-
gence (CSAI) (CSAI 2024), December 06—08, 2024, Beijing, China. ACM, New
York, NY, USA, 8 pages. https://doi.org/10.1145/3709026.3709040

1 Introduction

Graph structures enable the imposition of intricate sparsity con-
straints on the model, allowing them to better reflect relationships
present in the data. For instance, graph-structured sparsity models
are well-suited for predicting the spread of diseases or identify-
ing social groups in networks. The search of connected subgraphs
or clusters has a significant impact on identifying disease-related
genes [1, 2, 22, 23]. Graph sparsification, which aims to reduce

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CSAI 2024, Beijing, China

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1818-2/24/12

https://doi.org/10.1145/3709026.3709040

75

the complexity of large-scale graphs while preserving their essen-
tial structural properties, has garnered increasing attention as a
crucial technique in modern data analysis and machine learning
[6, 11-13, 30].

Graph sparsification can be formulated as the following opti-
mization problem:

min F(), F(x) = ;fz«x), 1)

which is known as the empirical risk minimization problem. Each
fi(x) (i € [n]) is convex and differentiable, and the graph structured
sparsity is reflected by the constraint set R? on x. The input vector x
denotes the parameter of the model, and the output f;(x) is defined
as the loss associated with sample i. By minimizing the loss F(x),
we guide the model towards the optimal solution. Typically, sparsity
can be encoded by adding sparsity-inducing norms or penalties such
as £y norm, £; norm and mixed norms [7, 8, 10, 16, 24-26, 28, 29].
These models often involve convex penalties and can be solved
using convex optimization algorithms [3-5]. However, dealing with
more complex sparse settings, such as graph-structured models, is
more challenging.

In stochastic optimization, iterative hard thresholding (IHT)
methods include gradient descent IHT (GD-IHT) [16], stochastic
gradient descent IHT (SGD-IHT) [21], hybrid stochastic gradient
IHT (HSG-IHT) [31], and variance-reduced methods such as sto-
chastic variance reduced gradient IHT (SVRG-IHT) [19], stochas-
tically controlled stochastic gradient IHT (SCSG-IHT) [20]. These
methods update the parameter iterate x via gradient descent or its
variants, and then apply a hard thresholding (HT) operator to en-
force sparsity of x, preserving the top s elements in x while setting
other elements to zero. In the context of graph-structured sparse
optimization, the SGD based IHT method, named GrRapPHSTO-IHT,
achieves HT through the use of Head and Tail Projections, first
described by [30]. Head and Tail Projections map arbitrary vectors
from the data onto the graph while simultaneously enforcing model
sparsity [12—14]. Specifically, Head Projection identifies and pre-
serves the largest entries in x, while Tail Projection identifies the
smallest entries and sets them to zero. By ignoring the small magni-
tude entries in the vector, these projections help prevent overfitting
and ensure sparse solutions. Meanwhile, stochastic sampling of the
data is used to speed up gradient calculations. A single data point or
small batch of the data is selected and a gradient is calculated only
with respect to that batch. This greatly decreases the computational
costs associated with the gradient calculations. However, if the
selected batch does not represent the whole dataset, the gradient
may not accurately point towards a local minimum of the function,
introducing variance into the gradient descent process.

https://orcid.org/0009-0001-5837-3112
https://orcid.org/0009-0009-9123-2045
https://orcid.org/0000-0003-0215-8488
https://doi.org/10.1145/3709026.3709040
https://doi.org/10.1145/3709026.3709040

CSAI 2024, December 06-08, 2024, Beijing, China

To reduce the randomness inherent in SGD, variance reduction
techniques may be used such as SVRG [17], SAGA [9], or SCSG [18].
During each iteration, the history of the stochastic process is consid-
ered to regulate the newly calculated gradient and minimize large
changes in direction. This improvement on SGD is our main inter-
est; both proposed algorithms utilize this technique to leverage fast
gradient calculations while still enjoying quick convergence. In this
paper we leverage the recent success of stochastic variance-reduced
algorithms for non-convex problems and propose a series of efficient
stochastic optimization algorithms for graph-structured sparsity
constraint problems. Specifically, we introduce two new stochastic
variance-reduced gradient based methods, GRAPHSVRG-IHT and
GraPHSCSG-IHT, designed to solve graph sparsity optimization
problems. By incorporating stochastic variance-reduced techniques
and graph approximated projections (head and tail), our algorithms
are specifically tailored for non-convex graph-structured sparsity
constraints, leading to faster convergence and improved perfor-
mance. We provide a comprehensive theoretical framework and
conduct extensive experiments to validate the efficiency and effec-
tiveness of our proposed methods. Our main contributions are
summarized as follows.

o This work is the first to explore the application of stochas-
tic variance-reduced methods to graph-structured sparsity
problems. By using batch gradients to approximate computa-
tionally expensive full gradients, we enhance the efficiency of
variance reduction. We further propose GRapHSCSG-IHT by
parameterizing the variance reduction technique for greater
control. It employs two different batch sizes for gradient cal-
culations and randomly selects the update rate of the current
position from a geometric distribution.

o We theoretically prove GRAPHSCSG-IHT enjoys linear con-
vergence rate with a constant learning rate. This analysis
provides a robust theoretical framework for analyzing graph
sparsification optimization.

e We conduct extensive experiments to validate our proposed
algorithms. In addition to simulation tests, we also evalu-
ate our methods on a real-world breast cancer dataset. Our
experiments empirically demonstrate the efficiency and ef-
fectiveness of our methods compared to GRapHSTO-IHT and
other deterministic methods.

2 Preliminaries
Notations. We use lowercase letters, e.g. x, to denote a vector
and use || - || to denote the I;-norm of a vector. The operator E
represents taking expectation over all random variables, [n] denotes
the integer set {1, ..., n}. The notation supp(x) means the support
of x or the index set of non-zero elements in x.

DEFINITION 1. (Subspace model) [14] Given the space RP, a sub-
space model M is defined as a family of linear subspaces of RP:

M ={S51,82...,Sk...}

where each Sy, is a subspace of RP. The set of corresponding vectors
in these subspaces is denoted as

M(M) ={x:x €V forsomeV € M}.

DEFINITION 2. (Weighted graph model) [13] Given an underlying
graph G = (V,E) defined on the coefficients of the unknown vector

76

Fox et al.

x, where V = [p] and E C V XV, then the weighted graph model
(G, s,9,C)- WGM can be defined as the following set of supports

M={S:|S| <s,3IF CV withVp =S,y(F) =g, and w(F) < C},
where C is the budget on weight of edges w, g is the number of con-

nected components of F, and s is the sparsity.

DEFINITION 3. (Projection Operator) [14] We define a projection
operator onto M(M), i.e, P(, M(M)) : R? — RP defined as

P(x, M(M)) = i — %
(x, M(M)) argyer/al(nM)llx yll

With this projection, we introduce Head Projection to retain
large magnitudes and Tail Projection to zero out small magnitudes.

AssuMPTION 1. (Head Projection)[14] Let M and My be the prede-
fined subspace models. Given any vector x, there exists a (cgy, M, Mpy)-
Head-Projection which is to find a subspace H € My such that

1)

P(x,H)l|l2 > cy - max ||P(x, S)||2,
1PGe D2 > e - ax [P,)2
where 0 < cgy < 1. We denote P(x, H) as P(x, M, My).

AssuMPTION 2. (Tail Projection)[14] Let M and Mt be the prede-
fined subspace models. Given any vector x, there exists a (¢, M, Mr)-
Tail-Projection which is to find a subspace T € Mt such that

@)

P(x,T) - < - mi —P(x,5)||2,
IP(x,T) = xll2 < cr Snélj{}[”x (%912
where cr > 1. We denote P(x,T) as P(x, M, Mt).

We introduce the widely used RSC/RSS definition, along with
an additional assumption, to characterize the properties of the
objective function.

DEFINITION 4. ((@, f, M(M))-RSC/RSS Properties)[14] We say a
differentiable function f (-) satisfies the (a, , M(M))-Restricted Strong
Convexity (RSC)/Smoothness (RSS) property if there exist positive con-
stants a and f such that

®)

for allx,y € M(M), where B¢ (x,y) is the Bregman divergence of f,
ie.,

@ p
2l =yl < By(xy) < Slix -yl

Br(x,y) = f(x) = f(y) = (Vf(y).x —y).
a and f are the strong convexity parameter and strong smoothness
parameter, respectively.

AsSUMPTION 3. [14] Given the objective function F(x) in (1), we
assume that F(x) satisfies a-RSC in subspace model M(M & My &
Mr). Each function fi(x) satisfies f-RSS in M(M & My & Mr),
where @ of two models My and My is defined as M; & My :=
{S1US2:51 € My,S52 € My}.

3 Methods

In this section, we introduce two proposed algorithms: GRAPHSVRG-
THT and GraPHSCSG-IHT. Both algorithms employ the variance-
reduced techniques derived from SVRG [17] and SCSG [18] respec-
tively, while also utilizing the graph projection operators found
in GRAPHSTO-IHT([30]. This results in methods that are applicable
to graph-structured sparsity problems and effectively reduce the
stochastic variance. Therefore, our algorithms converge faster and
more accurately than their predecessors.

Stochastic Variance-Reduced Iterative Hard Thresholding in Graph Sparsity Optimization

3.1 GrRAPHSVRG-IHT

Our proposed GRAPHSVRG-THT (Algorithm 1) utilizes variance
reduction by periodically computing the full gradient, significantly
reducing the inherent variance in stochastic gradient methods. By
incorporating graph projection operators, our GRAPHSVRG-IHT
adapts to non-convex graph sparsity constraints, enhancing its
applicability and efficiency. The key steps are outlined below:
(1) Calculate the full gradient, 3/, with the position at the start
of each outer loop, ¥/ (Line 4).
(2) In the inner loop, compute two gradients from a single sam-
pled data point: one at the copied position xf(and the other at
%/, Then calculate the stochastic variance reduced gradient,
vi (Line 7-8).
(3) Pass vi through the Head Projection operator (Line 9); and

use the resulting gradient to update the next iterate x7,
through the Tail Projection operator (Line 10).

(4) After a fixed number (%) of inner loop iterations, update the
outer loop position #/ and re-calculate the new full gradient.

Algorithm 1 GRAPHSVRG-THT

1: Input: n, ﬁ', M, M'H’ M, T, K

2: Initialize: #' such that supp(%') e M
3 for j=1to J do

¢ =13 VAR

5: xé =%/

6 fork=1to K do

7: Randomly pick iy € [n]

8: vizVﬁk(xi_l)—Vﬁk(fcj)+5j
o 7 = P(v], M & My, My))

10: xi = P(xi_1 — 17 M, M)

11: end for

122 I =x

13: end for

Our proposed GRAPHSVRG-IHT algorithm differs from GrRaPHSTO-
IHT in that GRAPHSVRG-IHT uses nested loops, allowing it to
account for the history of the stochastic process, whereas GrRaPH-
Sto-THT only considers a stochastic gradient. Both methods imple-
ment Head and Tail Projections for hard thresholding, making them
applicable to graph-structured sparsity optimization problems. The
inclusion of stochastic variance in GRAPHSVRG-IHT makes the
theoretical analysis more complex and challenging.

3.2 GrarpHSCSG-IHT

To better understand the calculation of variance-reduced gradients
and stochastically control the outer batch size, we propose the
GraPHSCSG-IHT (Algorithm 2). While similar to Algorithm 1 in
its use of variance-reduced gradients, GRAPHSCSG-IHT has the
following key characteristics:
(1) In the outer loop, the gradient is calculated using a batch of
data of size B, whereas Algorithm 1 calculates a full gradient
at this step (Line 4-5).
(2) In the inner loop, when calculating the stochastic variance
reduced gradient, a mini-batch is used instead of a single
data point (Line 10-11).

77

CSAI 2024, December 06-08, 2024, Beijing, China

(3) The number of inner loops, %/, is not fixed. Instead, K7 is
chosen from a geometric distribution (Line 7) or can be set
as % (Line 8).

Algorithm 2 GrRapuSCSG-IHT
1: Input: n, f;, M, Mgy, M7, B, b, T
2. Initialize: #! such that supp(¥!) e M
3. for j=1to J do A A
4 Uniformly sample a batch I c[n],st. || =B
s = V(&)
J
6: xO
7. (Option I) Generate XV ~ Geom (%)
s (OptionI) K/ = &
9. fork=1to%’ do

=5/

10: Uniformly sample a mini-batch II{ C [n], s.t. |I£| =b
11: pi =Vf1£(x£_1)—vfl.é(fj)+ﬁj

12: T = P(yi, M & Mg, Mgy)

13: xi = P(x,](_1 — 17k, M, M)

14 end for

. ~j+1 _ J
15 X =xg,
16: end for

In contrast to GRAPHSTO-IHT, the inner loop of GRAPHSCSG-IHT
computes the gradient over a random set of functions rather than
a randomly selected function. GRAPHSCSG-IHT also employs two
loops with different batch sizes for gradient calculation, making
it more flexible than GrRaPHSTO-IHTand GRAPHSVRG-IHT. This
flexibility allows GRAPHSCSG-IHT to serve as a general framework
for graph constrained optimization.

In summary, compared with traditional IHT and StolHT meth-
ods, graph-structured hard thresholding steps mainly differ in their
use of Head and Tail Projections. Both proposed new algorithms are
much more complex than GRAPHSTO-IHT, introducing distinct vari-
ance reduction techniques while maintaining the same sparsifica-
tion enforcement. It is also important to note that GRAPHSVRG-IHT
is a specific scenario of GRAPHSCSG-IHT, hence, we provide theo-
retical analysis of GRAPHSCSG-IHT, which can be easily extended
to GRAPHSVRG-IHT case.

4 Theoretical Analysis

In this section, we present our main theoretical results character-
izing the estimation error of parameters x. The proof provides a
general framework based on the gradients from GRapPHSCSG-IHT.
We demonstrate the convergence of our algorithms by bounding the
final error using the £2 norm of the initial and the optimal distance.
Additionally, we consider the history of the stochastic process up
to iteration j + K with the notation I7... Due to the limited space, all
of our formal proofs are provided in the Supplementary Material.

Lemma 1. [30] If each fi, (-) and F(x) satisfy Assumption 3, and
given head projection model (cry, M & Mr, Myr) and tail projection
model (¢, M, MT), then we have the following inequality

Eg 1" = x)all < V1= aoBg lIx = x| + o1,

CSAI 2024, December 06-08, 2024, Beijing, China

where o1 =

(Qig + \/%) B, IV1fz, (<) H = supp(P(Vfz, (x),
Me My, My)), ap = CHO(T—\/(ZﬂTz —2ar+1, fo=(l+cy)r,I=
arg maxse MoMroMy Be, | Vsfe, (x™) |, and 7 € (0,2/B).

With the prepared lemmas and appropriate assumptions, we can

now present our main result.

THEOREM 2. Assume that Definition 4 and Assumption 3 hold. Un-
der the same setting of Lemma 1, let x be the start point. If we choose a
20-V402-3.75af 2a+\/4a®-3.750f

2ap i 2ap
then the solution ¥/*1 of GrapHSCSG-IHT satisfies

. s\ 1-2
T o SR v jl_-—- 0 _ *
EI;(Hx XHS[(I—A) +A (1—&—5)]”36 x|

Ep IVifp (),
K

constant learning raten withinn € (

y
12055

where § = (1+ cq) (\/aﬁryz —2an+1++1- ao) ,
A:(1+wqeda&ﬂ—2aq+1ly:(1+ch§g+;ﬁiﬁ

Theorem 2 shows that our algorithm achieves linear convergence
using stochastic variance-reduced gradients, with error decreasing
as iterations increase. This aligns with our experiments, where
more iterations reduce errors. We further derive a corollary that
supports the convergence and specifies the range for 7.

afo

+n).

CoroLLARY 2.1. To ensure convergence of our algorithm, the learn-
ing rate nj, which is a constant, should be chosen within the range
(20(7\/40(273‘750% 20+\4a2-3.75af

2af > 2af
following inequality must hold: % <1.

). For this range to be valid, the

Corollary 2.1 is the cornerstone of Theorem 2. It ensures that the
upper bound for the estimation error does not blow up to infinity,
and provides a constant value for the finite series. Similarly, it also
ensures that the upper bound will decay more after performing
more iterations. Corollary 2.1 also provides a range of 5, which is
smaller than the one given by GrapuSTO-IHT. This way we can
find 5 such that the algorithm will always converge.

5 Experiments

5.1 Experimental setup

We perform multiple experiments to compare our proposed algo-
rithms with baseline methods. For our experiments, we consider
the residual norm of the loss function, ||Ax**! — y|| as the number
of epochs increases. Due to the non-convex nature of the problem,
there are several local minima and the algorithm may not approach
the global minimum, x*. Additionally, in real-world applications,
x* is often unknown. Therefore, we use the residual norm as a
measurement of convergence as opposed to the distance from the
final iterate to the target vector, [|x‘*1 — x*||. All experiments are
tested on a Ubuntu 22.04.4 server with 256 AMD EPYC 9554 64-core
processors and with 1.6 TB RAM. All codes are written in Python!.

LAll code is available at https://github.com/Derek-Fox/graph-scsg-iht

|

78

Fox et al.

5.2 Synthetic Dataset

We first tested our methods on synthetic datasets to determine the
optimal parameters. For a fair comparison, we followed the exact
settings used in GRAPHSTO-IHT, conducting multiple experiments
using a grid graph with a dimension of 256 and unit-weight edges.
Choice of 7. To study the effect of the learning rate on the perfor-
mance of our algorithms, we varied 1 across {0.1, 0.01, 0.001} and
tested these rates in various sparsity cases, with sparsity values
chosen from {256, 128, 64, 32}. By varying the learning rate, we
aimed to understand the convergence behaviour of our algorithms.
As shown in Figure 1, our experiments reveal that, as expected, with
a larger learning rate, all methods converge quickly, while with a
smaller learning rate, the steps take longer to achieve zero residual
loss. Additionally, both our proposed methods and the baseline
method converge stably, and regardless of the learning rate setting,
GRrAPHSVRG-IHT consistently performs the best.

Choice of sparsity. Studying the setting of sparsity, s, is crucial for
understanding the performance of our algorithms in graph sparsifi-
cation optimization. To examine the effect of sparsity, we compared
our methods, GRAPHSVRG-IHT and GRAPHSCSG-IHT against the
baseline algorithm GraPuSTO-IHT. Using the experimental settings
from GrRaPHSTO-IHT we employed a grid graph of dimension 256,
fixed the learning rate n = 0.01 and set the batch size equal to
the sparsity parameter B = s. We varied the sparsity parameter
s to observe the behavior of all algorithms, as shown in Figure 2.
Figure 2 demonstrates that as the sparsity parameter s decreases,
GRAPHSVRG-IHT outperforms the other algorithms in minimizing
the residual norm ||Ax**! — y|| over epochs. Another interesting
finding is that we observed that GRAPHSTO-IHT and GRAPHSCSG-
IHT display almost identical behavior in this parameter setting.
Choice of batch size. After exploring the choice of 5 and s, we
varied the batch size B on a grid graph with a dimension of 256 to
demonstrate the advantages of GRAPHSCSG-IHT. Here we fixed
n = 0.01, s = 32. For fair comparison, we considered the number
of data points instead of the number of epochs to estimate the run
time of the algorithms, which is a common practice in optimization.

Since gradient calculations are computationally expensive, using
fewer data points would result in faster run times. Figure 3 shows
three different scenarios with varying batch sizes B. When B equals
to the dimension, GRAPHSCSG-IHT degrades to GRAPHSVRG-IHT
resulting in similar performance. With smaller B (meaning fewer
data points are used in the full gradient calculation), GRAPHSCSG-
IHT consistently outperforms GRAPHSVRG-IHT. However, as B con-
tinues to decrease, GRAPHSCSG-IHT method initially outperforms
GrAPHSVRG-THT but was eventually surpassed by GRAPHSVRG-
IHT slightly. This occurs because smaller batch size increase gradi-
ent variance, making it harder for GRAPHSCSG-THT to maintain its
initial advantage. Furthermore, the interaction between batch size
and mini-batch size becomes more complex, ultimately affecting
the final performance.

Therefore, we also conducted numerous experiments to study
the effects of mini-batch size in conjunction with batch size. Ad-
ditionally, to better understand the graph-structure patterns, we
have explored how varying the number of connected components
in subgraphs impacts final convergence performance. Additional
results are provided in the Appendix.

Stochastic Variance-Reduced Iterative Hard Thresholding in Graph Sparsity Optimization

Residual Norm (Loss)

Residual Nerm (Loss)

E

@

-

Dim: 256, Sparsity: 128, Eta: 1.00e-01, Batch: 128

—— GraphSto-IHT
—— GraphSVRG-IHT
+ GraphSCSG-HT

50 100 150 200 250
Epoch Number

Residual Norm (Loss)

Dim: 256, Sparsity: 128, Eta: 1.00e-02, Batch: 128

—— GraphSto-IHT
—— GraphSVRG-IHT
— GraphSCSGHIHT

[50 100 150 200 250
Epoch Number

Residual Nerm (Loss)

CSAI 2024, December 06-08, 2024, Beijing, China

Dim: 256, Sparsity: 128, Eta: 1.00e-03, Batch: 128

—— GraphSto-IHT
—+— GraphSVRG-IHT
+ GraphSCSG-HT

o 50 100 150 200 250
Epoch Number

Figure 1: Comparison of methods with different learning rate.

Dim: 256, Sparsity: 256, Eta: 1.00e-02, Batch: 256

—— GraphSto-IHT
—— GraphSVRG-IHT
~ GraphSCSG-HT

50 100 150 200 250
Epoch Number

Residual Norm (Loss)

Dim: 256, Sparsity: 128, Eta: 1.00e-02, Batch: 128

—— GraphSto-IHT
—— GraphSVRG-IHT
— GraphSCSGAHT

[50 100 150 200 250
Epoch Number

Residual Norm (Loss)

Dim: 256, Sparsity: 64, Eta: 1.00e-02, Batch: 64

—— GraphSto-IHT
—+— GraphSVRG-IHT
~ GraphSCSG-HT

o 50 100 150 200 250
Epoch Number

Figure 2: Comparison of methods with different sparsities.

Sparsity: 32, Batch Size: 256

Sparsity: 32, Batch Size: 246

Sparsity: 32, Batch Size: 236

—+— GraphSVRG-IHT
+ GraphSCSGIHT

—— GraphSVRG-IHT
+— GraphSCSG-HT

Residual Norm (Loss)

4.0
5 A\ —=— GraphSVRG-IHT
\ +— GraphSCSG-IHT
\ as
\
4 \ 30
w \ 7
& \ 8
e \ 2as
E \ E
53 \ 5
z \ Z20
Fl0\
<2 AN &
\\ 10
-~
~——
1 ——— 05
—
500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500

Num Observations

2000
Num Observations

2500 3000 3500 4000 500 1000 1500 2000 2500

Num Observations

3000 3500 4000

Figure 3: Number of data points vs. residual loss value with different batch size.

5.3 Real-world Dataset

To test our algorithms on a real-world dataset, we use a large breast
cancer dataset [27]. This dataset contains 295 training samples
with 8,141 genes dimensions, including 78 positive (metastatic) and
217 negative (non-metastatic) samples. Following the experimental
setting in [30], we use a Protein-Protein Interaction network with
637 pathways from [15], the dataset is folded into 5 subfolds, and
20 trials are conducted.

Table 1 shows the results from the gene identification task on
the breast cancer dataset. GRAPHSCSG-IHT identifies 40% of the
25 genes highly correlated with breast cancer, as gathered by [30].
GrAPHSTO-IHT and GRAPHSVRG-IHT both identify 24% of these
genes, consistent with the findings in [30]. All the graph-structured
methods greatly outperform the IHT and SToIHT methods which

79

only identify 8% of the cancer-related genes. These results demon-
strate the promise of variance-reduction techniques for stochastic
gradient descent in the setting of graph sparsity optimization.

In summary, GRAPHSVRG-IHT is more stable while GRAPHSCSG-
THT shows excellent performance under appropriate settings due
to the introduction of two additional batch size. This allows for
greater flexibility and control in the gradient estimation process.
Overall, our two new algorithms demonstrate both efficiency and
effectiveness by incorporating variance reduction techniques in
graph sparsity problems, making them suitable for a wide range of
applications. However, our empirical evaluation has some limita-
tions, as it mainly focused on synthetic and medical datasets, which
may not represent the full diversity of real-world scenarios. Future
work will explore the performance of our algorithms on a wider
range of data types and application contexts.

CSAI 2024, December 06-08, 2024, Beijing, China

Fox et al.

Table 1: Identified genes from breast cancer dataset

Method Number Genes

IHT 2 NAT1 TOP2A

STOIHT 2 NAT1 TOP2A

GrAPHSTO-IHT 6 AR ATM BRCA2 CCND2 CDKN1A TOP2A

GrRAaPHSVRG-IHT 6
GRAPHSCSG-IHT 10

AR ATM BRCA2 CCND2 CDKN1A TOP2A
AR ATM BRCA1 BRCA2 CCND2 CCND3 CDKN1A CHEK2 FBP1 TOP2A

6 Conclusion

We have proposed two algorithms to utilize variance reduction tech-
niques in the setting of graph sparse optimization. The proposed
algorithms can significantly improve the stability and efficiency in
machine learning and other applications. Theoretically, we present
a proof framework demonstrating linear convergence, though the
analysis assumes certain conditions, such as the sparsity and struc-
ture of the underlying graph, which may not always be present in
practice. Empirically, our algorithms are competitive in minimizing
the objective loss function compared to their predecessors in var-
ious experimental settings with a synthetic dataset. Additionally,
testing on a large-scale medical dataset demonstrated superior per-
formance in identifying cancer-related genes. Future work should
include testing our algorithms on more larger real-world datasets.
By employing graph-structured hard thresholding, we can uncover
more underlying subgraphs and related patterns, with significant
implications in fields such as medical research and social network
analysis. This approach can enhance our understanding of complex
data structures and lead to more effective solutions.

Acknowledgments

This work was completed at the University of North Carolina at
Greensboro, funded by NSF REU program 2349369.

References

[1] Cem Aksoylar, Lorenzo Orecchia, and Venkatesh Saligrama. 2017. Connected
subgraph detection with mirror descent on SDPs. In International Conference on
Machine Learning. PMLR, 51-59.

Ery Arias-Castro, Emmanuel] Candes, and Arnaud Durand. 2011. Detection of
an anomalous cluster in a network. The Annals of Statistics (2011), 278-304.
Francis Bach, Rodolphe Jenatton, Julien Mairal, and Guillaume Obozinski. 2012.
Structured sparsity through convex optimization. Statist. Sci. 27, 4 (2012), 450~
468.

Francis Bach, Rodolphe Jenatton, Julien Mairal, Guillaume Obozinski, et al. 2012.
Optimization with sparsity-inducing penalties. Foundations and Trends® in
Machine Learning 4, 1 (2012), 1-106.

Sohail Bahmani, Bhiksha Raj, and Petros T Boufounos. 2013. Greedy sparsity-
constrained optimization. Journal of Machine Learning Research 14, Mar (2013),
807-841.

Richard G Baraniuk, Volkan Cevher, Marco F Duarte, and Chinmay Hegde. 2010.
Model-based compressive sensing. IEEE Transactions on information theory 56, 4
(2010), 1982-2001.

Thomas Blumensath and Mike E Davies. 2009. Iterative hard thresholding for
compressed sensing. Applied and computational harmonic analysis 27, 3 (2009),
265-274.

Scott Shaobing Chen, David L Donoho, and Michael A Saunders. 2001. Atomic
decomposition by basis pursuit. SIAM review 43, 1 (2001), 129-159.

[9] Aaron Defazio, Francis Bach, and Simon Lacoste-Julien. 2014. SAGA: A fast
incremental gradient method with support for non-strongly convex composite
objectives. In Advances in neural information processing systems. 1646-1654.
Simon Foucart. 2011. Hard thresholding pursuit: an algorithm for compressive
sensing. SIAM J. Numer. Anal. 49, 6 (2011), 2543-2563.

=

80

(1]

[12

(13

[14

[15

[16

(17]

(18]

[19

[20

~
5,

S
=)

(28]

[29

[30

)
=

Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. 2014. A fast approximation
algorithm for tree-sparse recovery. In 2014 IEEE International Symposium on
Information Theory. IEEE, 1842-1846.

Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. 2015. Approximation algo-
rithms for model-based compressive sensing. IEEE Transactions on Information
Theory 61, 9 (2015), 5129-5147.

Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. 2015. A nearly-linear time
framework for graph-structured sparsity. In International Conference on Machine
Learning. PMLR, 928-937.

Chinmay Hegde, Piotr Indyk, and Ludwig Schmidt. 2016. Fast recovery from a
union of subspaces. Advances in Neural Information Processing Systems 29 (2016).
Laurent Jacob, Guillaume Obozinski, and Jean-Philippe Vert. 2009. Group lasso
with overlap and graph lasso. In Proceedings of the 26th annual international
conference on machine learning. 433-440.

Prateek Jain, Ambuj Tewari, and Purushottam Kar. 2014. On iterative hard
thresholding methods for high-dimensional m-estimation. In Advances in Neural
Information Processing Systems. 685-693.

Rie Johnson and Tong Zhang. 2013. Accelerating stochastic gradient descent
using predictive variance reduction. In Advances in neural information processing
systems. 315-323.

Lihua Lei and Michael Jordan. 2017. Less than a single pass: Stochastically
controlled stochastic gradient. In Artificial Intelligence and Statistics. 148-156.
Xingguo Li, Tuo Zhao, Raman Arora, Han Liu, and Jarvis Haupt. 2016. Stochastic
variance reduced optimization for nonconvex sparse learning. In International
Conference on Machine Learning. 917-925.

Guannan Liang, Qiangian Tong, Chunjiang Zhu, and Jinbo Bi. 2020. An effective
hard thresholding method based on stochastic variance reduction for nonconvex
sparse learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 34(02). 1585-1592.

Nam Nguyen, Deanna Needell, and Tina Woolf. 2017. Linear convergence of
stochastic iterative greedy algorithms with sparse constraints. IEEE Transactions
on Information Theory 63, 11 (2017), 6869-6895.

Jing Qian, Venkatesh Saligrama, and Yuting Chen. 2014. Connected sub-graph
detection. In Artificial Intelligence and Statistics. PMLR, 796-804.

Polina Rozenshtein, Aris Anagnostopoulos, Aristides Gionis, and Nikolaj Tatti.
2014. Event detection in activity networks. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 1176-1185.
Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal
of the Royal Statistical Society: Series B (Methodological) 58, 1 (1996), 267-288.
Berwin A Turlach, William N Venables, and Stephen] Wright. 2005. Simultaneous
variable selection. Technometrics 47, 3 (2005), 349-363.

Sara A Van de Geer et al. 2008. High-dimensional generalized linear models and
the lasso. The Annals of Statistics 36, 2 (2008), 614-645.

Marc J Van De Vijver, Yudong D He, Laura J Van’t Veer, Hongyue Dai, Augusti-
nus AM Hart, Dorien W Voskuil, George J Schreiber, Johannes L Peterse, Chris
Roberts, Matthew] Marton, et al. 2002. A gene-expression signature as a predic-
tor of survival in breast cancer. New England Journal of Medicine 347, 25 (2002),
1999-2009.

Ming Yuan and Yi Lin. 2006. Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society Series B: Statistical
Methodology 68, 1 (2006), 49-67.

Xiaotong Yuan, Ping Li, and Tong Zhang. 2014. Gradient hard thresholding
pursuit for sparsity-constrained optimization. In International Conference on
Machine Learning. 127-135.

Baojian Zhou, Feng Chen, and Yiming Ying. 2019. Stochastic iterative hard thresh-
olding for graph-structured sparsity optimization. In International Conference on
Machine Learning. PMLR, 7563-7573.

Pan Zhou, Xiaotong Yuan, and Jiashi Feng. 2018. Efficient stochastic gradient hard
thresholding. In Advances in Neural Information Processing Systems. 1988-1997.

Stochastic Variance-Reduced Iterative Hard Thresholding in Graph Sparsity Optimization

A Parameters Table

Table: Constraints for Parameters

CSAI 2024, December 06-08, 2024, Beijing, China

Dim: 256, Sparsity: 64, Eta: 1.00e-03, Batch: 128, Mini-Batch: 2, g: 256

Dim: 256, Sparsity: 64, Eta: 1.00e-03, Batch: 128, Mini-Batch: 16, g: 256
8

—— GraphSto-HT
—— GraphSVRG-HT

—— Graphsto-IHT
—— GraphSVRG-HT
GraphSCSGIHT

GraphSCSG-HT

Residual Norm (Loss)
Residual Norm (Loss)

10¢ 50 200 250
Epoch Number

Dim: 256, Sparsity: 64, Eta: 1.00e-03, Batch: 64, Mini-Batch: 16, g: 256 Dim: 256, Sparsity: 64, Eta: 1.00e-03, Batch: 64, Mini-Batch: 2, g: 256

—— GraphSto-HT
—— GraphSVRG-HT
GraphSCSGIHT

GraphSCSGHT N

Residual Norm (Loss)

10¢ 150 200 250
Epoch Number

Figure 4: Various choices for B and b

Notation Name Constraint '
n Step size Fixed T B
F() Function Minimized
M Set of Supports N e
Mgy Set of Supports R '
Mg Set of Supports ;6
B Big batch
I Big batch sample I/ c [n] and |[I/| =B
b Small batch Subset of B :
Iljc Small batch sample Ili C [n] and |I]]c| =b T 5w =
J Number of outer loops e
j Outer loop index
K Number of inner loops
k Inner loop index
x! Starting Position supp(x') e M
s Number of non-zero entries Sparsity Constraint Dim: 256, Sparsty: 64, Eta 1.006.03, Batch: 126, Miniatch: 4, : 256
P(x, M, Mg) Head Projection 17 = e
P(x, M, Mq) Tail Projection e '
Y SVRG Gradient
i SCSG Gradient
%/ Current Position S
v{c Reduced Variance Gradient l
,ui Reduced Variance Gradient o
Tk Sparsified Gradient
g Number of Connected Components

B More Results
B.1 Simulation

As pointed out in our main paper, we also explored the effects of mini-batch
size in conjunction with batch size. Figure 4 demonstrates the generality
of GRAPHSCSG-IHT. With different settings of B and b GRAPHSCSG-IHT
can range in behavior between GRaAPHSTO-IHT and GRAPHSVRG-IHT. Not
included in the figure is the case when B equals the dimension of the data
and b = 1, in which case GRaPHSCSG-IHT and GRAPHSVRG-IHT are only
distinguished by the number of inner loops (which could be parameterized
itself to make the two algorithms identical).

We vary the number of connected components, controlled by parameter
g, in Figure 5. We observe that when g is low (in this case g = 1), the
loss function curve does not smoothly decrease but frequently levels off
before stepping downward. This is due to the algorithm intermittently
finding a more suitable support set, which allows it to more rapidly decrease
the objective loss. The restriction of the algorithm to only one connected
component makes this phenomenon much more apparent.

We vary the number of connected components, controlled by parameter
g, in Figure 5. We observe that when g is low (in this case g = 1), the
loss function curve does not smoothly decrease but frequently levels off
before stepping downward. This is due to the algorithm intermittently
finding a more suitable support set, which allows it to more rapidly decrease
the objective loss. The restriction of the algorithm to only one connected
component makes this phenomenon much more apparent.

81

Dim: 256, Sparsity: 64, Eta: 1.00e-03, Batch: 128, Mini-Batch: 4, g: 1
1

—— GraphSVRGHT

—— Graphsto- T
GraphSCSGIHT

o55)

Residual Norm (L

2
8

Figure 5: Different number of Connected Components

B.2 Breast cancer dataset

All parameters are tuned using 5-fold cross validation, following the ex-
perimental settings of [30]. The sparsity s is tuned from [10, 20, ...100] and
the block size is tuned from [n, n/2], where n is the number of samples.
The task is to find a single connected component, so g is set to 1 for the
head and tail projections. The learning rate is tuned using backtracking line
search. We record the Balanced Classification Error and Area Under Curve
(AUC) scores for each method over the 20 trials.

CSAI 2024, December 06-08, 2024, Beijing, China

Table 2: Balanced Classification Error + Std. Dev. on Breast Cancer Dataset

HT SToIHT GRAPHSTO-IHT GrRAPHSVRG-THT GrapPHSCSG-IHT
Trial 1 0.352+0.079 0.355£0.083 0.367£0.091 0.335+0.048 0.474%0.048
Trial 2 0.350+0.047 0.346+0.045 0.395+0.074 0.340+0.077 0.496+0.015
Trial 3 0.354£0.060 0.370£0.061 0.365£0.107 0.318+0.061 0.478%0.061
Trial 4 0.351£0.046 0.350+0.066 0.365+0.032 0.365+0.032 0.459+0.050
Trial 5 0.357+0.064 0.365%0.063 0.366£0.065 0.368+0.082 0.418%0.076
Trial 6 0.334£0.050 0.327+0.046 0.330+£0.078 0.352+0.090 0.447+0.071
Trial 7 0.343+0.050 0.402+0.085 0.321+0.027 0.321+0.027 0.499+0.004
Trial 8 0.352+£0.059 0.402+0.103 0.338+0.021 0.349+0.030 0.489+0.013
Trial 9 0.340+0.082 0.357+0.058 0.335+0.110 0.343+0.040 0.452+0.053
Trial 10 0.344+0.068 0.351£0.065 0.349+0.050 0.331+0.061 0.502+0.005
Trial 11 0.339£0.056 0.318+0.061 0.353+0.076 0.357£0.054 0.473+0.054
Trial 12 0.355%0.061 0.394£0.053 0.349+0.088 0.329+0.082 0.463+0.072
Trial 13 0.327+0.053 0.317+£0.040 0.312+0.065 0.323+0.060 0.457+0.051
Trial 14 0.362+0.058 0.340+0.071 0.348+0.019 0.330+0.054 0.453+0.045
Trial 15 0.381£0.048 0.346+0.051 0.297+0.059 0.297+0.059 0.416+0.069
Trial 16 0.330£0.094 0.320+0.089 0.330+0.074 0.339+0.064 0.488+0.055
Trial 17 0.349£0.074 0.332+0.067 0.353+0.078 0.330+0.056 0.437+0.055
Trial 18 0.331£0.096 0.331+0.096 0.292+0.067 0.290+0.069 0.462+0.053
Trial 19 0.327£0.052 0.333+£0.054 0.311£0.021 0.306+0.023 0.476+0.017
Trial 20 0.333+0.038 0.338+0.026 0.352+0.064 0.376+0.036 0.427+0.052
Averaged 0.345£0.065 0.350£0.072 0.341£0.073 0.335+0.062 0.463%0.057
Table 3: AUC score * Std. Dev. on Breast Cancer Dataset
IHT SToIHT GRrRAPHSTO-IHT GrRAPHSVRG-IHT GraPHSCSG-IHT
Trial 1 0.726£0.067 0.736+0.054 0.720£0.030 0.729+0.039 0.713£0.023
Trial 2 0.683+0.067 0.692+0.064 0.697+0.044 0.712+0.062 0.696+0.101
Trial 3 0.716+£0.062 0.726+0.077 0.726+0.064 0.715£0.065 0.703+0.027
Trial 4 0.695£0.059 0.701+0.061 0.687+0.041 0.687+0.041 0.693+0.033
Trial 5 0.699+0.042 0.700+0.067 0.707+0.040 0.701£0.028 0.701+£0.045
Trial 6 0.677+0.071 0.673+£0.074 0.704+0.051 0.669+0.071 0.640+0.101
Trial 7 0.712£0.069 0.719+0.066 0.741+0.055 0.741+0.055 0.701+0.069
Trial 8 0.711£0.081 0.707+0.055 0.721+0.062 0.717+0.055 0.657%0.075
Trial 9 0.717+0.066 0.718+0.068 0.723+0.044 0.718+0.026 0.719+0.058
Trial 10 0.710£0.060 0.711+0.060 0.691+0.052 0.702+0.062 0.655+0.103
Trial 11 0.708+0.082 0.719+0.086 0.722+0.085 0.711£0.074 0.693+0.142
Trial 12 0.713+0.025 0.711£0.045 0.736+0.055 0.730+0.060 0.664+0.057
Trial 13 0.714£0.058 0.719+0.058 0.718+0.073 0.703+0.071 0.704£0.074
Trial 14 0.700£0.058 0.705+0.067 0.711+0.064 0.712+0.046 0.665+0.061
Trial 15 0.696+0.033 0.687+0.040 0.721+0.058 0.721+0.058 0.715+0.040
Trial 16 0.729+0.081 0.725%0.083 0.723+0.072 0.725+0.073 0.734+0.049
Trial 17 0.720+£0.055 0.722+0.062 0.718+0.037 0.717+0.037 0.681+0.061
Trial 18 0.712£0.039 0.712+0.039 0.733+0.036 0.730£0.034 0.679+0.056
Trial 19 0.721+0.067 0.724+0.068 0.736£0.056 0.738+0.054 0.701%£0.057
Trial 20 0.720+0.031 0.706+0.027 0.717+0.045 0.705+0.033 0.703£0.056
Averaged 0.709+0.062 0.711+£0.064 0.717+0.057 0.714+0.057 0.691+0.074

82

Fox et al.

	Abstract
	1 Introduction
	2 Preliminaries
	3 Methods
	3.1 GraphSVRG-IHT
	3.2 GraphSCSG-IHT

	4 Theoretical Analysis
	5 Experiments
	5.1 Experimental setup
	5.2 Synthetic Dataset
	5.3 Real-world Dataset

	6 Conclusion
	Acknowledgments
	References
	A Parameters Table
	B More Results
	B.1 Simulation
	B.2 Breast cancer dataset

