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ABSTRACT

This paper argues that congestion control protocols in ma-
chine learning datacenters sit at a sweet spot between central-
ized and distributed flow scheduling solutions. We present
MLTCP, a technique to augment today’s congestion con-
trol algorithms to approximate an interleaved centralized
flow schedule. At the heart of MLTCP lies a straight-forward
principle based on a key conceptual insight: by scaling the
congestion window size (or sending rate) based on the num-
ber of bytes sent at each iteration, MLTCP flows eventually
converge into a schedule that reduces network contention.
We demonstrate that MLTCP uses a gradient descent trend
with a step taken at every training (or fine-tuning) iteration
towards reducing network congestion among competing
jobs.
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1 INTRODUCTION

Efficient flow scheduling is an important and well-studied
problem in the networking community [3, 5, 7, 12, 13, 23,
24, 27]. There is a vast body of work on scheduling flows
using heuristics, load-balancing mechanisms, and deadlines
for network flows.

Traditionally, there have been two broad approaches to
implementing flow scheduling. First is the centralized ap-
proach, where a central controller collects the network de-
mands from all the flows and computes the desired flow
schedule [3, 12, 13, 27, 49]. The second is to approximate
heuristics, such as Shortest Remaining Processing Time first
(SRPT), in a distributed manner with the help of packet pri-
orities or switch support [5, 7, 23, 44].

Most flow scheduling approaches focus on conventional
datacenter traffic, which is bursty and short [9]. Moreover,
legacy datacenter flows’ arrivals are often independent and
unpredictable. Today, with increasing demand for Al-based
services, Deep Neural Network (DNN) training and fine-
tuning traffic in datacenters has exponentially increased.
Unlike traditional datacenter workloads, DNN training and
fine-tuning jobs have a periodic traffic pattern where the start
time of each training iteration depends on the completion of
the preceding iteration, creating a dependency on the flow
arrival times [53, 59, 64].

We demonstrate that scheduling techniques that favor
jobs based on the shortest remaining processing times (i.e.,
pFabric [5], PDQ [23], and PIAS [7]) are not always optimal
for scheduling DNN jobs. Intuitively, this is because such
techniques make local scheduling decisions based on the
status of current flows in the network without considering
the flow arrival patterns of periodic jobs. This effect becomes
adverse in DNN workloads where finishing the flows in
one iteration impacts the completion time of subsequent
iterations.

Recent studies, such as Muri [64] and Cassini [52, 53],
have demonstrated that for DNN workloads, schedules that
promote interleaving of communication demands achieve op-
timal network schedule. They define the idea of interleaving
as overlapping the communication phase (high network de-
mand) of one DNN job with the compute phase (low network
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Figure 1: The traffic pattern of jobs ], J2, J5, and Jy.

demand) of other jobs sharing the link. However, both ap-
proaches require a centralized controller to find the optimal
schedule.

Although the periodic nature of DNN jobs poses a chal-
lenge to traditional schedulers to achieve the optimal, we
argue that the same traffic pattern also creates an unprece-
dented opportunity to approximate a centralized optimal
schedule using a distributed approach. In this paper, we in-
troduce MLTCP, a novel approach to leverage congestion
control algorithms to approximate interleaved flow sched-
ules for DNN flows in a distributed manner. Importantly,
MLTCP does not need any hardware changes or priority
queues. Hence, unlike centralized scheduling algorithms,
MLTCP is easily deployable and scalable.

MLTCP adjusts the congestion window size based on a lin-
early increasing function ¥ (bytes_ratio), where bytes_ratio
is the ratio of bytes successfully sent during the current
training (or fine-tuning) iteration normalized by the total
number of bytes sent every iteration (§3). Consequently,
F (bytes_ratio) enables MLTCP to create unequal bandwidth
sharing between competing jobs, which forces the jobs to
iteratively converge towards an approximately interleaved
state. Our theoretical analysis of MLTCP shows that this
iteration-by-iteration convergence is equivalent to perform-
ing gradient descent on a loss function that promotes inter-
leaving (§4).

2 MOTIVATION

Distributed DNN Training and Fine-tuning Distributed
DNN training and fine-tuning jobs are flooding today’s dat-
acenters. These jobs have highly regular, periodic commu-
nication demands [46, 52, 53, 59, 64]. Unlike classical work
on periodic traffic [36, 54, 55], the arrival of the next flow
from a DNN job depends on the completion of the previous.
Recent work has shown that interleaving, or overlapping the
communication phase of one job with the computation of
the others, is optimal for this type of traffic [52, 64].
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Example. We illustrate the impact of different scheduling
techniques on DNN jobs with a testbed experiment. Con-
sider a cluster with eight A100 GPU servers connected in a
dumbbell topology with a single bottleneck link of capacity
50 Gbps. We train four DNN jobs, J1, )2, J3, and Jy on this clus-
ter. Each job uses 2 GPUs installed on the opposite sides of the
bottleneck link. J; trains a GPT-3 [11] model using two GPU
servers and has a communication traffic pattern represented
by Figure 1(a). Jobs J;, J5, and J; are identical GPT-2 [51]
training instances, each using two GPU servers and having
a traffic pattern shown in Figures 1(b), 1(c), and 1(d). For
simplicity, consider the scenario when all four jobs start the
communication phase of their first iteration at the same time.

Centralized approaches. In these approaches, a central
entity that is aware of the communication demands of all
the jobs, computes the optimal schedule using an Integer
Linear Problem (ILP) solver. For instance, Cassini [52] uses a
network-aware centralized scheduler to achieve interleaving.
Figure 2(a) represents Cassini’s optimal interleaved schedule
for the four jobs. The average iteration time of job J; is 1.2
seconds, and that of jobs J;, J5, and J; are 1.8 seconds. Cen-
tralized approaches achieve optimal scheduling at the cost of
being computationally expensive, making it challenging to
scale to a large cluster. They also rely on accurate profiling
of the network demands to compute the optimal schedule.

Distributed approaches. To the best of our knowledge,
there is no prior work that achieves distributed flow sched-
uling for DNN jobs. Hence, we analyze conventional dis-
tributed flow schedulers like pFabric [5], PDQ [23], and
PIAS [7] that employ heuristics to approximate SRPT sched-
ule [54, 55] using switch hardware to minimize average flow
completion times. However, these approaches are not always
optimal for periodic traffic, even for a single link.! Figure 2(b)
represents flow scheduling according to pFabric. pFabric pri-
oritizes jobs Jp, J5, Js which have a smaller communication

The problem of scheduling periodic flows with variable bandwidth de-
mands and having dependencies between flow arrivals and flow completion
is NP-hard. The proof involves reduction from 1-D bin packing problem.
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(c) MLTCP Schedule after convergence

Figure 2: Comparison of different scheduling approaches on the iteration times of four DNN training jobs. MLTCP
achieves the same schedule as the optimal (Cassini), while SRPT (pFabric) does not.

demand and delay the communication of J; every iteration.
With pFabric, the average iteration times of all four jobs is 1.8
seconds. The iteration times of jobs J», J3 and J; remain close
to ideal, but job J; incurs a slowdown of 1.5X in its iteration
time. The core reason for this is that SRPT blindly prioritizes
the shortest flows without considering the inter-dependence
between flow arrivals in case of DNN jobs. In this case, SRPT
causes head-of-line blocking for J; by prioritizing the jobs
with smaller flow sizes.

Surprising impact of congestion control on resource
interleaving. In this paper, we demonstrate a surprising
feature of congestion control protocols that enables service
providers to have the best of both centralized and distributed
worlds. To do so, we propose MLTCP, a straightforward tech-
nique to augment a family of congestion control algorithms.
MLTCP-enabled congestion control protocols automatically
achieve near-optimal interleaving in a distributed manner
without the need for a centralized entity or priority queues
or switch hardware support. For our scenario of four jobs,
Figure 2(c) shows MLTCP’s final interleaved state. Every
iteration, MLTCP gradually shifts the communication pat-
terns, akin to a gradient descent approach (§4), to ultimately
converge to the optimal interleaved schedule when it stops
shifting them further.

Approximation error. In the above experiment, MLTCP
converges to an interleaved state within 20 iterations. In par-
ticular, the average iteration times of the four jobs converge
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to within 5% of the optimal centralized schedule, and the
interleaving remains stable in subsequent iterations. We pro-
vide an upper bound on the approximation error of MLTCP
in Section 4.

3 FUNDAMENTALS OF MLTCP

This section describes how MLTCP modifies distributed con-
gestion control protocol TCP-Reno to approximate interleav-
ing of communication demands of DNN jobs.

3.1 Augmenting TCP Reno with MLTCP

MLTCP’s goal is to stabilize flows belonging to different
DNN training and fine-tuning jobs into an interleaved state
without using a centralized controller, regardless of job start
times, DNN model size, parallelization strategy, or number
of flows competing for bandwidth. To serve this purpose,
MLTCP exploits a key conceptual insight: DNN flows should
dynamically adjust their aggressiveness for link bandwidth
based on the number of bytes sent in that iteration. This
allows the flow closest to completing its iteration to receive
alarger share of available bandwidth than the others, thereby
finishing faster.

MLTCP’s sliding effect. MLTCP’s unequal bandwidth al-
location creates a “shift” in the start times of the communica-
tion phases of different jobs. Such a shift in time causes a slid-
ing effect, where the communication phase of one job slides
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Figure 3: Performance of different ¥ (bytes_ratio) func-
tions.

into the compute phase of other jobs (details in section §4)
after a few iterations. Following this insight, MLTCP adjusts
the congestion window (cwnd) or sending rate of flows based
on a bandwidth aggressiveness function, ¥ (bytes_ratio), of

the number of bytes sent normalized by the total bytes to be

bytes_sent )
total_bytes’*
Following Linux’s implementation, throughout this paper,
we assume that the congestion window (cwnd) is expressed
in packets (not bytes).

MLTCP-Reno. The TCP Reno algorithm uses a cumula-
tive ack mechanism to acknowledge multiple in-flight pack-
ets with a single ack. In the additive increase step, the Reno
algorithm increases the cwnd by % upon receiving
a packet having #num_acks acks. MLTCP scales this incre-
ment by the bandwidth aggressive function, ¥ (bytes_ratio),
as follows:

sent in one iteration of each flow (bytes_ratio =

cwnd < cwnd + F (bytes_ratio) X #num—_acks (1)
cwnd

Bandwidth aggressiveness function. MLTCP uses the
aggressiveness function ¥ as a scaling factor for the cwnd
increment made during the window (or rate) increase step.
Many aggressiveness functions achieve MLTCP’s interleav-
ing goals as long as they satisfy the following three require-
ments: (i) the range is large enough to absorb the noise
(e.g., slight variations in round-trip time (RTT) or iteration
times) in the network; (ii) the derivative of the function is
non-negative; (iii) all flows employ the same bandwidth ag-
gressiveness function.

Figure 3 compares the performance of six different band-
width aggressiveness functions 7. In this experiment, three
GPT-2 [51] training jobs compete for bandwidth using MLTCP-
Reno. We run six experiments each with a different function,
as follows:

o F1 = 1.75(bytes_ratio) + 0.25
e 7, = 1.75(bytes_ratio)? + 0.25
o F3 =1/(-3.5(bytes_ratio) + 4)

Rajasekaran et al.

Algorithm 1 MLTCP-RENO ALGORITHM

1: procedure INITIALIZE(TOTAL_BYTES, COMP_TIME)
> Input Parameter TOTAL_BYTES: Total bytes per iteration
> Input Parameter COMP_TIME: Gap in communication for detecting iteration
boundary
bytes_ratio = 0> Current fraction of bytes sent in this iteration
bytes_sent = 0> Number of successfully sent bytes
prev_ack_tstamp = 0> Timestamp of the previous ack
MTU = 1500 > Maximum packet size used by the system

BN AR

: procedure CONGESTION_AVOIDANCE(num_acks)
> Input Parameter num_acks
7: bytes_sent += num_acks x MTU
8: curr_ack_tstamp = GET_REAL_TIME()
9: curr_gap = curr_ack_tstamp — prev_ack_tstamp
10: if curr_gap > COMP_TIME then
11: > Start of new training iteration

12: > State reset

13: bytes_ratio = 0; bytes_sent = 0;

14: else

15: > Middle of training iteration

16: bytes_ratio = min (1, %)

17: prev_ack_tstamp = curr_ack_tstamp

18: cwnd = cwnd + F(bytes_ratio) * ( ""‘:"’;;;ks )
19: return

o 7y = —1.75(bytes_ratio)? + 3.5(bytes_ratio) + 0.25
o 5 = —1.75(bytes_ratio) + 2

o Fs = —1.75(bytes_ratio)* + 2

All these functions have the same range (0.25 - 2) but
F1, ..., Fa are increasing and #5 and ¥ are decreasing. Fig-
ure 3 shows the average training iteration time of different
iterations as the jobs start their training process. As shown,
the iteration time of MLTCP-Reno with ¥, ..., F4 starts to
decrease, as the communication demands interleave after
~20 iterations. On the other hand, the iteration times of
MLTCP-Reno with #5 and ¥ do not improve. Even though
different increasing functions take slightly different numbers
of iterations to interleave the jobs, they eventually achieve
the interleaved state.

We select the bandwidth aggressiveness function used
in MLTCP to be linear in bytes_ratio, to simplify MLTCP’s
implementation in the linux kernel and to minimize compu-
tational overhead. We define 7 (bytes_ratio) as:

F (bytes_ratio) = Slope X bytes_ratio + Intercept  (2)

where Slope and Intercept represent the linear function’s
slope and intercept, respectively. These are constant parame-
ters tuned based on the link rate and the noise in the system.
In this paper we use Slope = 1.75 and Intercept = 0.25.

3.2 MLTCP-Reno Congestion Avoidance

MLTCP-Reno algorithm. We implement MLTCP-Reno
in the Linux kernel using the pluggable congestion mod-
ule [2, 22] to insert the MLTCP-RENO procedure, shown in
Algorithm 1, as a hook into the TCP stack. This function
has two essential goals: the first is to update the number
of successfully sent bytes, and the second is to adjust the
congestion window. MLTCP-RENo is called by the TCP stack
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Figure 4: Bandwidth allocation when six jobs share the bottleneck link.

whenever an ack packet is received. This information is read-
ily available from the socket data structure (line 7). If the time
since the last received ack is greater than the computation
time (line 10), then it resets MLTCP’s parameters (line 13).
Otherwise, it computes bytes_ratio based on the current
bytes_sent (line 16). Finally, we record the current time to
compare against the next time an ack is received and update
the congestion window (line 18).

Obtaining TOTAL_BYTES and COMP_TIME. The total
bytes in each iteration (TOTAL_BYTES) and computation
time (COMP_TIME) are constant for each job and depend
on the size of the DNN model, the parallelization strategy,
and the communication collective. In our implementation,
we automatically learn these values by measuring the total
amount of data and computation time during the first few
iterations. We measure the computation time by detecting
gaps in the ack arrivals that exceed several round-trip times
(RTTs).

Figure 4(a) shows the bandwidth allocation of six identical
GPT-2 [51] jobs competing on a network link using TCP
Reno. The figure shows heavy network congestion, where
all jobs take longer to finish. In contrast, Figure 4(b) shows
the same setup with MLTCP-Reno, where all jobs achieve
a near-optimal interleaved state. Figure 4(c) highlights the
tail iteration time speedup of 1.59% achieved using MLTCP
compared to standard TCP-Reno over the lifetime of the jobs.

4 ANALYSIS OF MLTCP

In this section, we provide a theoretical analysis of MLTCP
and its iteration-by-iteration progress toward an interleaved
state for DNN jobs.

Compatibility and network demand assumptions.
We limit the scope of our analysis to scenarios in which an
interleaved schedule exists [52], and the network demand
phase of each job is continuous and constant within an itera-
tion. Under these two assumptions, MLTCP is guaranteed to
converge to the optimal resource interleaving with an error
linearly bounded by the noise in the system.

We show that the process of convergence is essentially
a gradient descent over a loss function that hits minimum
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when the communication demands of different jobs are in-
terleaved. Unlike centralized approaches that solve for an
optimum in one shot, MLTCP explores the solution space to
find a minima at a rate governed by the bandwidth aggres-
siveness function.

The key idea behind MLTCP is to adjust the cwnd based on
the bytes sent in an iteration (§3). As a result, MLTCP divides
the link capacity between the flows unequally when they
compete for the network. This difference in the bandwidth
leads to unequal progress of the current iteration of the jobs,
causing shifts in the start times of the communication phase
of their subsequent iterations. In this section, we formally
define the “shift” created by MLTCP’s unequal bandwidth
sharing and use it to construct the loss function for gradient
descent. To understand the principle, let us consider a sim-
ple example of two identical DNN training jobs. The same
analysis applies to any combination of jobs that satisfy the
compatibility and network demand assumptions.

Figure 5 illustrates two identical DNN training jobs shar-
ing a network link with capacity C and ideal iteration time
T. This ideal iteration time is achieved when each job is ex-
ecuted in isolation, as shown in Figure 5(a). Each iteration
of training has a duration of T seconds. The communication
phase lasts a X T seconds, where a < 1 is a constant depend-
ing upon the DNN job. The difference in the start times of
the i*" iterations of the two jobs is given by A;. Figure 5(b)
shows the i*" and (i + 1)*" iterations of the two jobs using
MLTCP. In this scenario, MLTCP allocates more than half of
the bandwidth to the first job, allowing it to complete its cur-
rent iteration early, and delays the second job by assigning it
a lower bandwidth. This phenomenon causes the difference
in the start times of the next iteration of the two jobs to
increase to Aj; where Aj; = A;j+Shift(A;). We refer to the
increase in the start times of the next iteration relative to the
previous one as the Shift introduced by MLTCP. This Shift
caused in the communication pattern induces a sliding effect,
which, over multiple iterations, aids in separating the com-
munication demands of the jobs. Figure 6 illustrates the shift
and sliding behavior of MLTCP-Reno when two GPT-2 [51]
training jobs share a bottleneck link in our testbed.
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Given the bandwidth aggressiveness function in Equa-
tion 2, we mathematically compute the shift, Shift, as a
function of the start time difference A;, between the jobs in
the i'" iteration as:

Slope X A\; X (a X T — A;
Shift(ay) = —ope X Ai X ( )

ax T x Intercept + A; X Slope

®)

MLTCP generates a shift in the communication pattern
which accumulates over multiple iterations to gradually slide
them to a configuration that is close to optimal interleaving.
To understand the final state it converges to, we define a
loss function as the negative integral of the shift function,
as given by:

A;

Loss(A;) = /A " _Shift(A) dA (4)
=0

Given the compatibility and network demand assumptions,
the loss function obtained by MLTCP is guaranteed to have
only global optima. Hence, our approach converges to a
global optimum, i.e., a fully interleaved state. Different ag-
gressiveness functions give rise to different shift functions
and, eventually, to different loss functions.

To visualize the loss function in the example of two jobs,
we take a = 1/2 (i.e. 50% communication phase) in Figure 5(c)
for simplicity. For this choice of g, the loss function is mini-
mum at value A; = T/2, when network contention is mini-
mum, and the communication demands are interleaved. Even
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for the case of many different jobs, the loss function has the
same characteristics as that of this simple example. Note that
changing the configuration based on the shift function adds
a negative derivative of the loss function to the configura-
tion. In other words, MLTCP performs a gradient descent on
the loss function, shifting the communication patterns after
every iteration. Given any starting configuration, MLTCP
using gradient descent gradually converges to the minimum
of the loss function.

As MLTCP is essentially a gradient descent, it converges
to a stable optimum. However, small perturbations arising
due to slight variations in compute durations, network laten-
cies, and clock synchronization in a practical environment
disturb the system state. We model all these perturbations
as zero mean Gaussian noise in the iteration time of each
job. Under this model, we quantify the approximation error
of MLTCP based on how far is the steady state from the
optimal interleaved schedule. Assuming that the noise dis-
tribution has a standard deviation o, MLTCP’s convergence

error also follows a normal distribution with mean zero and
Intercept
Slope

mation error is linearly bounded by the intensity of noise in
the iteration times of the jobs.

standard deviation 20 X (1 + . Hence, the approxi-
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5 DISCUSSION

Generalization to multi-resource scheduling. MLTCP’s
scope is not limited to network scheduling. The aggressive-
ness function ¥ (bytes_ratio) is generalizable to other re-
source scheduling problems by replacing bytes_ratio with
the progress of the job. For example, in the case of CPU cores,
the operating system’s scheduler tracks the progress of each
task, and assigns a number of CPU cores based on the desired
aggressiveness function. The dimension of gradient descent
space increases with the number of jobs. For allocating mul-
tiple resources among multiple jobs periodically, the loss
becomes a function of the overlap across all resources. The
relative shifts for each job, calculated from the gradient of
this function, thus takes into account each resource type.

Fairness between MLTCP and TCP flows. TCP’s through-

put is inversely proportional to the square root of loss of prob-
ability [41]. Our analysis shows that the throughput of our
MLTCP-Reno flows is inversely proportional to the loss prob-
ability. Intuitively, this implies that given the same packet
loss probability, an MLTCP-Reno flow claims more band-
width share than a standard Reno flow. However, MLTCP-
Reno flows would not starve the other legacy flows because
MLTCP allocates non-zero bandwidth to all the competing
flows. To safeguard high-priority legacy TCP traffic, we mod-
ify NCCL’s FAST socket plugin [1] to support selecting a
desired congestion control algorithm. This allows for choos-
ing different aggressiveness functions for different classes
of traffic. For latency-sensitive traffic, in order to acquire
most of the bandwidth, we recommend using a bandwidth
aggressiveness function with larger values.

6 RELATED WORK

Congestion control. There is a vast literature on congestion
control. Many rely on feedback signals indicating congestion
in the network and reduce their sending rate [4, 8, 10, 16, 19,
26, 32, 34, 37, 42, 62, 66]. Others are deadline-aware [58, 60],
router-assisted [5, 15, 31], and receiver-based [20]. We chose
to augment TCP-Reno because it is a classic congestion con-
trol algorithm. Other congestion control schemes are aug-
mented in a similar way to induce shifts in communication
start times.

Flow scheduling. There are two broad directions for im-
plementing flow scheduling: centralized flow scheduling and
heuristic-based distributed flow scheduling. In the central-
ized approaches, the network demands of different flows are
sent to a central entity, which computes the optimal schedule
for all the flows [3, 12, 13, 27, 49]. The distributed approaches
often implement heuristics like SRPT [54, 55], Shortest Re-
maining Job first (SJF), Least Attained Service first (LAS),
Earliest Deadline First (EDF), with the help of the switch and
priority queues [5, 7, 23, 44].
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Periodic resource scheduling. Beyond networks, there
have been efforts to schedule periodic tasks across limited re-
sources, including real-time and embedded systems [17, 33].
However, these have explicit deadlines, and inter-arrival
times have no dependency on completion times. Cyclic sched-
uling is a well-studied problem in mathematics [14, 56]. The
most general form of this problem, from Serafini et al. [56],
expresses our scenario but is shown to be NP-hard.

Accelerating DNN Training. Prior work demonstrated
that generic flow schedulers are not optimal for DNN training
jobs [40, 46]. DNN-specific flow schedulers have been devel-
oped to meet this demand [21, 29, 39, 48, 57]. Alternatively,
intra-job pipelining overlaps the compute and communica-
tion phases of the same training job [25, 30, 35, 35, 43, 45, 48].
These approaches only optimize a single job’s performance,
while we share resources across multiple jobs. Job placement
schedulers try to minimize multi-job contention. Many fo-
cused on compute-optimization in how they assign workers
to jobs, and only considered the network so far as to try and
schedule workers for a job close together [18, 28, 38, 47, 50,
61, 65]. Our work complements these schedulers.

Resource Interleaving Muri [64] introduced the idea of
multi-resource interleaving for DNN training, but required
all jobs to share the same GPUs. Cassini [52] exploited the
opportunity to overlap the computation and communica-
tion of different jobs using an ILP. Both of these works are
centralized schedulers that would struggle to scale in a real
system. In contrast, our implementation of MLTCP performs
a distributed live optimization.

Unfairness in the network. Recently, there have been
calls to introduce bandwidth unfairness to optimize flow com-
pletion times, energy efficiency, and DNN iteration time [6,
53, 63]. MLTCP automatically configures congestion control
parameters to leverage unfairness to achieve these goals.

7 CONCLUSION

This paper introduces a technique to augment a family of
congestion control algorithms to approximate optimal inter-
leaving for DNN training jobs. The key idea is to dynamically
adjust the flow congestion window (or sending rate) to in-
duce a sliding effect so that the DNN jobs automatically
converge to approximately optimal interleaving. We formal-
ize our approach and show that the sliding effect iteration
after iteration is equivalent to gradient descent, with the goal
of improving communication interleaving,.
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