
MLTCP: A Distributed Technique to Approximate
Centralized Flow Scheduling For Machine Learning

Sudarsanan Rajasekaran, Sanjoli Narang∗, Anton A. Zabreyko∗, Manya Ghobadi
Massachusetts Institute of Technology

ABSTRACT

This paper argues that congestion control protocols in ma-
chine learning datacenters sit at a sweet spot between central-
ized and distributed �ow scheduling solutions. We present
MLTCP, a technique to augment today’s congestion con-
trol algorithms to approximate an interleaved centralized
�ow schedule. At the heart ofMLTCP lies a straight-forward
principle based on a key conceptual insight: by scaling the
congestion window size (or sending rate) based on the num-
ber of bytes sent at each iteration, MLTCP �ows eventually
converge into a schedule that reduces network contention.
We demonstrate thatMLTCP uses a gradient descent trend
with a step taken at every training (or �ne-tuning) iteration
towards reducing network congestion among competing
jobs.

CCS CONCEPTS

•Networks→Data center networks;Network resources

allocation; Transport protocols;Networkmanagement; •Com-

puting methodologies→ Neural networks.

KEYWORDS

Congestion control, Networks for ML, Resource allocation,
Datacenters for ML, Transport layer, DNN training

ACM Reference Format:

Sudarsanan Rajasekaran, Sanjoli Narang∗, Anton A. Zabreyko∗,

Manya Ghobadi, Massachusetts Institute of Technology . 2024.

MLTCP: A Distributed Technique to Approximate Centralized Flow

Scheduling For Machine Learning. In The 23rd ACM Workshop on

Hot Topics in Networks (HOTNETS ’24), November 18–19, 2024, Irvine,

CA, USA. ACM, New York, NY, USA, 10 pages. https://doi.org/10.

1145/3696348.3696878

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for pro�t or commercial advantage and that copies

bear this notice and the full citation on the �rst page. Copyrights for third-

party components of this work must be honored. For all other uses, contact

the owner/author(s).

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1272-2/24/11

https://doi.org/10.1145/3696348.3696878

1 INTRODUCTION

E�cient �ow scheduling is an important and well-studied
problem in the networking community [3, 5, 7, 12, 13, 23,
24, 27]. There is a vast body of work on scheduling �ows
using heuristics, load-balancing mechanisms, and deadlines
for network �ows.
Traditionally, there have been two broad approaches to

implementing �ow scheduling. First is the centralized ap-
proach, where a central controller collects the network de-
mands from all the �ows and computes the desired �ow
schedule [3, 12, 13, 27, 49]. The second is to approximate
heuristics, such as Shortest Remaining Processing Time �rst
(SRPT), in a distributed manner with the help of packet pri-
orities or switch support [5, 7, 23, 44].
Most �ow scheduling approaches focus on conventional

datacenter tra�c, which is bursty and short [9]. Moreover,
legacy datacenter �ows’ arrivals are often independent and
unpredictable. Today, with increasing demand for AI-based
services, Deep Neural Network (DNN) training and �ne-
tuning tra�c in datacenters has exponentially increased.
Unlike traditional datacenter workloads, DNN training and
�ne-tuning jobs have a periodic tra�c patternwhere the start
time of each training iteration depends on the completion of
the preceding iteration, creating a dependency on the �ow
arrival times [53, 59, 64].
We demonstrate that scheduling techniques that favor

jobs based on the shortest remaining processing times (i.e.,
pFabric [5], PDQ [23], and PIAS [7]) are not always optimal
for scheduling DNN jobs. Intuitively, this is because such
techniques make local scheduling decisions based on the
status of current �ows in the network without considering
the �ow arrival patterns of periodic jobs. This e�ect becomes
adverse in DNN workloads where �nishing the �ows in
one iteration impacts the completion time of subsequent
iterations.
Recent studies, such as Muri [64] and Cassini [52, 53],

have demonstrated that for DNN workloads, schedules that
promote interleaving of communication demands achieve op-
timal network schedule. They de�ne the idea of interleaving
as overlapping the communication phase (high network de-
mand) of one DNN job with the compute phase (low network

167

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Rajasekaran et al.

Figure 1: The tra�c pattern of jobs �1, �2, �3, and �4.

demand) of other jobs sharing the link. However, both ap-
proaches require a centralized controller to �nd the optimal
schedule.
Although the periodic nature of DNN jobs poses a chal-

lenge to traditional schedulers to achieve the optimal, we
argue that the same tra�c pattern also creates an unprece-
dented opportunity to approximate a centralized optimal
schedule using a distributed approach. In this paper, we in-
troduce MLTCP, a novel approach to leverage congestion
control algorithms to approximate interleaved �ow sched-
ules for DNN �ows in a distributed manner. Importantly,
MLTCP does not need any hardware changes or priority
queues. Hence, unlike centralized scheduling algorithms,
MLTCP is easily deployable and scalable.

MLTCP adjusts the congestion window size based on a lin-
early increasing functionF (1~C4B_A0C8>), where1~C4B_A0C8>
is the ratio of bytes successfully sent during the current
training (or �ne-tuning) iteration normalized by the total
number of bytes sent every iteration (§3). Consequently,
F (1~C4B_A0C8>) enablesMLTCP to create unequal bandwidth
sharing between competing jobs, which forces the jobs to
iteratively converge towards an approximately interleaved
state. Our theoretical analysis of MLTCP shows that this
iteration-by-iteration convergence is equivalent to perform-
ing gradient descent on a loss function that promotes inter-
leaving (§4).

2 MOTIVATION

Distributed DNN Training and Fine-tuning Distributed
DNN training and �ne-tuning jobs are �ooding today’s dat-
acenters. These jobs have highly regular, periodic commu-
nication demands [46, 52, 53, 59, 64]. Unlike classical work
on periodic tra�c [36, 54, 55], the arrival of the next �ow
from a DNN job depends on the completion of the previous.
Recent work has shown that interleaving, or overlapping the
communication phase of one job with the computation of
the others, is optimal for this type of tra�c [52, 64].

Example.We illustrate the impact of di�erent scheduling
techniques on DNN jobs with a testbed experiment. Con-
sider a cluster with eight A100 GPU servers connected in a
dumbbell topology with a single bottleneck link of capacity
50Gbps. We train four DNN jobs, �1, �2, �3, and �4 on this clus-
ter. Each job uses 2 GPUs installed on the opposite sides of the
bottleneck link. �1 trains a GPT-3 [11] model using two GPU
servers and has a communication tra�c pattern represented
by Figure 1(a). Jobs �2, �3, and �4 are identical GPT-2 [51]
training instances, each using two GPU servers and having
a tra�c pattern shown in Figures 1(b), 1(c), and 1(d). For
simplicity, consider the scenario when all four jobs start the
communication phase of their �rst iteration at the same time.

Centralized approaches. In these approaches, a central
entity that is aware of the communication demands of all
the jobs, computes the optimal schedule using an Integer
Linear Problem (ILP) solver. For instance, Cassini [52] uses a
network-aware centralized scheduler to achieve interleaving.
Figure 2(a) represents Cassini’s optimal interleaved schedule
for the four jobs. The average iteration time of job �1 is 1.2
seconds, and that of jobs �2, �3, and �4 are 1.8 seconds. Cen-
tralized approaches achieve optimal scheduling at the cost of
being computationally expensive, making it challenging to
scale to a large cluster. They also rely on accurate pro�ling
of the network demands to compute the optimal schedule.
Distributed approaches. To the best of our knowledge,

there is no prior work that achieves distributed �ow sched-
uling for DNN jobs. Hence, we analyze conventional dis-
tributed �ow schedulers like pFabric [5], PDQ [23], and
PIAS [7] that employ heuristics to approximate SRPT sched-
ule [54, 55] using switch hardware to minimize average �ow
completion times. However, these approaches are not always
optimal for periodic tra�c, even for a single link.1 Figure 2(b)
represents �ow scheduling according to pFabric. pFabric pri-
oritizes jobs �2, �3, �4 which have a smaller communication

1The problem of scheduling periodic �ows with variable bandwidth de-

mands and having dependencies between �ow arrivals and �ow completion

is NP-hard. The proof involves reduction from 1-D bin packing problem.

168

MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine LearningHOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

Figure 2: Comparison of di�erent scheduling approaches on the iteration times of four DNN training jobs. MLTCP

achieves the same schedule as the optimal (Cassini), while SRPT (pFabric) does not.

demand and delay the communication of �1 every iteration.
With pFabric, the average iteration times of all four jobs is 1.8
seconds. The iteration times of jobs �2, �3 and �4 remain close
to ideal, but job �1 incurs a slowdown of 1.5× in its iteration
time. The core reason for this is that SRPT blindly prioritizes
the shortest �ows without considering the inter-dependence
between �ow arrivals in case of DNN jobs. In this case, SRPT
causes head-of-line blocking for �1 by prioritizing the jobs
with smaller �ow sizes.

Surprising impact of congestion control on resource

interleaving. In this paper, we demonstrate a surprising
feature of congestion control protocols that enables service
providers to have the best of both centralized and distributed
worlds. To do so, we proposeMLTCP, a straightforward tech-
nique to augment a family of congestion control algorithms.
MLTCP-enabled congestion control protocols automatically
achieve near-optimal interleaving in a distributed manner
without the need for a centralized entity or priority queues
or switch hardware support. For our scenario of four jobs,
Figure 2(c) shows MLTCP’s �nal interleaved state. Every
iteration, MLTCP gradually shifts the communication pat-
terns, akin to a gradient descent approach (§4), to ultimately
converge to the optimal interleaved schedule when it stops
shifting them further.

Approximation error. In the above experiment, MLTCP

converges to an interleaved state within 20 iterations. In par-
ticular, the average iteration times of the four jobs converge

to within 5% of the optimal centralized schedule, and the
interleaving remains stable in subsequent iterations. We pro-
vide an upper bound on the approximation error of MLTCP

in Section 4.

3 FUNDAMENTALS OFMLTCP

This section describes howMLTCP modi�es distributed con-
gestion control protocol TCP-Reno to approximate interleav-
ing of communication demands of DNN jobs.

3.1 Augmenting TCP Reno withMLTCP

MLTCP’s goal is to stabilize �ows belonging to di�erent
DNN training and �ne-tuning jobs into an interleaved state
without using a centralized controller, regardless of job start
times, DNN model size, parallelization strategy, or number
of �ows competing for bandwidth. To serve this purpose,
MLTCP exploits a key conceptual insight: DNN �ows should
dynamically adjust their aggressiveness for link bandwidth
based on the number of bytes sent in that iteration. This
allows the �ow closest to completing its iteration to receive
a larger share of available bandwidth than the others, thereby
�nishing faster.

MLTCP’s sliding e�ect.MLTCP’s unequal bandwidth al-
location creates a “shift” in the start times of the communica-
tion phases of di�erent jobs. Such a shift in time causes a slid-
ing e�ect, where the communication phase of one job slides

169

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Rajasekaran et al.

ℱ1ℱ2 ℱ3 ℱ4 ℱ5ℱ6

Figure 3: Performance of di�erent F (1~C4B_A0C8>) func-

tions.

into the compute phase of other jobs (details in section §4)
after a few iterations. Following this insight,MLTCP adjusts
the congestion window (cwnd) or sending rate of �ows based
on a bandwidth aggressiveness function, F (1~C4B_A0C8>), of
the number of bytes sent normalized by the total bytes to be

sent in one iteration of each �ow (1~C4B_A0C8> =

1~C4B_B4=C
C>C0;_1~C4B).

Following Linux’s implementation, throughout this paper,
we assume that the congestion window (cwnd) is expressed
in packets (not bytes).
MLTCP-Reno. The TCP Reno algorithm uses a cumula-

tive ack mechanism to acknowledge multiple in-�ight pack-
ets with a single ack. In the additive increase step, the Reno

algorithm increases the cwnd by #=D<_02:B
2F=3

upon receiving
a packet having #=D<_02:B acks.MLTCP scales this incre-
ment by the bandwidth aggressive function, F (1~C4B_A0C8>),
as follows:

2F=3 ← 2F=3 + F (1~C4B_A0C8>) ×
#=D<_02:B

2F=3
(1)

Bandwidth aggressiveness function.MLTCP uses the
aggressiveness function F as a scaling factor for the cwnd
increment made during the window (or rate) increase step.
Many aggressiveness functions achieveMLTCP’s interleav-
ing goals as long as they satisfy the following three require-
ments: (8) the range is large enough to absorb the noise
(e.g., slight variations in round-trip time (RTT) or iteration
times) in the network; (88) the derivative of the function is
non-negative; (888) all �ows employ the same bandwidth ag-
gressiveness function.
Figure 3 compares the performance of six di�erent band-

width aggressiveness functions F . In this experiment, three
GPT-2 [51] training jobs compete for bandwidth usingMLTCP-
Reno. We run six experiments each with a di�erent function,
as follows:

• F1 = 1.75(1~C4B_A0C8>) + 0.25
• F2 = 1.75(1~C4B_A0C8>)2 + 0.25
• F3 = 1/(−3.5(1~C4B_A0C8>) + 4)

Algorithm 1MLTCP-Reno Algorithm

1: procedure Initialize:()$)�!_�.)�(,�$"%_) �"�)
⊲ Input Parameter)$)�!_�.)�(: Total bytes per iteration
⊲ Input Parameter�$"%_) �"�: Gap in communication for detecting iteration
boundary

2: 1~C4B_A0C8> = 0 ⊲ Current fraction of bytes sent in this iteration
3: 1~C4B_B4=C = 0 ⊲ Number of successfully sent bytes
4: ?A4E_02:_CBC0<? = 0 ⊲ Timestamp of the previous ack
5: ")* = 1500 ⊲ Maximum packet size used by the system

6: procedure Congestion_avoidance(=D<_02:B)
⊲ Input Parameter =D<_02:B

7: 1~C4B_B4=C += =D<_02:B ×")*
8: 2DAA_02:_CBC0<? = get_real_time()
9: 2DAA_60? = 2DAA_02:_CBC0<? − ?A4E_02:_CBC0<?
10: if 2DAA_60? >�$"%_) �"� then
11: ⊲ Start of new training iteration
12: ⊲ State reset
13: 1~C4B_A0C8> = 0; 1~C4B_B4=C = 0;
14: else
15: ⊲ Middle of training iteration

16: 1~C4B_A0C8> =<8=
(

1,
1~C4B_B4=C

)$)�!_�.)�(

)

17: ?A4E_02:_CBC0<? = 2DAA_02:_CBC0<?

18: 2F=3 = 2F=3 + � (1~C4B_A0C8>) ∗ (=D<_02:B
2F=3)

19: return

• F4 = −1.75(1~C4B_A0C8>)
2 + 3.5(1~C4B_A0C8>) + 0.25

• F5 = −1.75(1~C4B_A0C8>) + 2
• F6 = −1.75(1~C4B_A0C8>)

2 + 2

All these functions have the same range (0.25 – 2) but
F1, ..., F4 are increasing and F5 and F6 are decreasing. Fig-
ure 3 shows the average training iteration time of di�erent
iterations as the jobs start their training process. As shown,
the iteration time of MLTCP-Reno with F1, ..., F4 starts to
decrease, as the communication demands interleave after
≈20 iterations. On the other hand, the iteration times of
MLTCP-Reno with F5 and F6 do not improve. Even though
di�erent increasing functions take slightly di�erent numbers
of iterations to interleave the jobs, they eventually achieve
the interleaved state.
We select the bandwidth aggressiveness function used

inMLTCP to be linear in 1~C4B_A0C8> , to simplifyMLTCP’s
implementation in the linux kernel and to minimize compu-
tational overhead. We de�ne F (1~C4B_A0C8>) as:
F (1~C4B_A0C8>) = (;>?4 × 1~C4B_A0C8> + �=C4A24?C (2)

where (;>?4 and �=C4A24?C represent the linear function’s
slope and intercept, respectively. These are constant parame-
ters tuned based on the link rate and the noise in the system.
In this paper we use (;>?4 = 1.75 and �=C4A24?C = 0.25.

3.2 MLTCP-Reno Congestion Avoidance

MLTCP-Reno algorithm. We implement MLTCP-Reno
in the Linux kernel using the pluggable congestion mod-
ule [2, 22] to insert theMLTCP-Reno procedure, shown in
Algorithm 1, as a hook into the TCP stack. This function
has two essential goals: the �rst is to update the number
of successfully sent bytes, and the second is to adjust the
congestion window.MLTCP-Reno is called by the TCP stack

170

MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine LearningHOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

Figure 4: Bandwidth allocation when six jobs share the bottleneck link.

whenever an ack packet is received. This information is read-
ily available from the socket data structure (line 7). If the time
since the last received ack is greater than the computation
time (line 10), then it resets MLTCP’s parameters (line 13).
Otherwise, it computes 1~C4B_A0C8> based on the current
1~C4B_B4=C (line 16). Finally, we record the current time to
compare against the next time an ack is received and update
the congestion window (line 18).

Obtaining TOTAL_BYTES and COMP_TIME. The total
bytes in each iteration ()$)�!_�.)�() and computation
time (�$"%_) �"�) are constant for each job and depend
on the size of the DNN model, the parallelization strategy,
and the communication collective. In our implementation,
we automatically learn these values by measuring the total
amount of data and computation time during the �rst few
iterations. We measure the computation time by detecting
gaps in the ack arrivals that exceed several round-trip times
(RTTs).

Figure 4(a) shows the bandwidth allocation of six identical
GPT-2 [51] jobs competing on a network link using TCP
Reno. The �gure shows heavy network congestion, where
all jobs take longer to �nish. In contrast, Figure 4(b) shows
the same setup with MLTCP-Reno, where all jobs achieve
a near-optimal interleaved state. Figure 4(c) highlights the
tail iteration time speedup of 1.59× achieved usingMLTCP

compared to standard TCP-Reno over the lifetime of the jobs.

4 ANALYSIS OF MLTCP

In this section, we provide a theoretical analysis ofMLTCP

and its iteration-by-iteration progress toward an interleaved
state for DNN jobs.
Compatibility and network demand assumptions.

We limit the scope of our analysis to scenarios in which an
interleaved schedule exists [52], and the network demand
phase of each job is continuous and constant within an itera-
tion. Under these two assumptions,MLTCP is guaranteed to
converge to the optimal resource interleaving with an error
linearly bounded by the noise in the system.
We show that the process of convergence is essentially

a gradient descent over a loss function that hits minimum

when the communication demands of di�erent jobs are in-
terleaved. Unlike centralized approaches that solve for an
optimum in one shot, MLTCP explores the solution space to
�nd a minima at a rate governed by the bandwidth aggres-
siveness function.

The key idea behindMLTCP is to adjust the cwnd based on
the bytes sent in an iteration (§3). As a result,MLTCP divides
the link capacity between the �ows unequally when they
compete for the network. This di�erence in the bandwidth
leads to unequal progress of the current iteration of the jobs,
causing shifts in the start times of the communication phase
of their subsequent iterations. In this section, we formally
de�ne the “shift” created by MLTCP’s unequal bandwidth
sharing and use it to construct the loss function for gradient
descent. To understand the principle, let us consider a sim-
ple example of two identical DNN training jobs. The same
analysis applies to any combination of jobs that satisfy the
compatibility and network demand assumptions.
Figure 5 illustrates two identical DNN training jobs shar-

ing a network link with capacity � and ideal iteration time

) . This ideal iteration time is achieved when each job is ex-
ecuted in isolation, as shown in Figure 5(a). Each iteration
of training has a duration of) seconds. The communication
phase lasts 0 ×) seconds, where 0 < 1 is a constant depend-
ing upon the DNN job. The di�erence in the start times of
the 8Cℎ iterations of the two jobs is given by Δ8 . Figure 5(b)
shows the 8Cℎ and (8 + 1)Cℎ iterations of the two jobs using
MLTCP. In this scenario,MLTCP allocates more than half of
the bandwidth to the �rst job, allowing it to complete its cur-
rent iteration early, and delays the second job by assigning it
a lower bandwidth. This phenomenon causes the di�erence
in the start times of the next iteration of the two jobs to
increase to Δ8+1 where Δ8+1 = Δ8 +(ℎ8 5 C (Δ8). We refer to the
increase in the start times of the next iteration relative to the
previous one as the (ℎ8 5 C introduced byMLTCP. This (ℎ8 5 C
caused in the communication pattern induces a sliding e�ect,
which, over multiple iterations, aids in separating the com-
munication demands of the jobs. Figure 6 illustrates the shift
and sliding behavior of MLTCP-Reno when two GPT-2 [51]
training jobs share a bottleneck link in our testbed.

171

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Rajasekaran et al.

𝑎𝑇
1 − 𝑎 𝑇

ܥ

𝑎𝑇
ܥ

ܥ

ܥ
Δ Δi

𝑎1ܥ

𝑎2ܥ

1 − 𝑎 𝑇

1 − 𝑎 𝑇

1 − 𝑎 𝑇

1 − 𝑎 𝑇

1 − 𝑎 𝑇

Δ Δi+1
Figure 5:MLTCP shifts the communication pattern

Figure 6:MLTCP interleaves the communication demands of two GPT-2 jobs over few iterations.

Given the bandwidth aggressiveness function in Equa-
tion 2, we mathematically compute the shift, (ℎ8 5 C , as a
function of the start time di�erence Δ8 , between the jobs in
the 8Cℎ iteration as:

(ℎ8 5 C (Δ8) =
(;>?4 × Δ8 × (0 ×) − Δ8)

0 ×) × �=C4A24?C + Δ8 × (;>?4
(3)

MLTCP generates a shift in the communication pattern
which accumulates over multiple iterations to gradually slide
them to a con�guration that is close to optimal interleaving.
To understand the �nal state it converges to, we de�ne a
loss function as the negative integral of the shift function,
as given by:

!>BB (Δ8) =

∫

Δ8

Δ=0

−(ℎ8 5 C (Δ) 3Δ (4)

Given the compatibility and network demand assumptions,
the loss function obtained by MLTCP is guaranteed to have
only global optima. Hence, our approach converges to a
global optimum, i.e., a fully interleaved state. Di�erent ag-
gressiveness functions give rise to di�erent shift functions
and, eventually, to di�erent loss functions.
To visualize the loss function in the example of two jobs,

we take 0 = 1/2 (i.e. 50% communication phase) in Figure 5(c)
for simplicity. For this choice of 0, the loss function is mini-
mum at value Δ8 =) /2, when network contention is mini-
mum, and the communication demands are interleaved. Even

for the case of many di�erent jobs, the loss function has the
same characteristics as that of this simple example. Note that
changing the con�guration based on the shift function adds
a negative derivative of the loss function to the con�gura-
tion. In other words,MLTCP performs a gradient descent on
the loss function, shifting the communication patterns after
every iteration. Given any starting con�guration, MLTCP

using gradient descent gradually converges to the minimum
of the loss function.
AsMLTCP is essentially a gradient descent, it converges

to a stable optimum. However, small perturbations arising
due to slight variations in compute durations, network laten-
cies, and clock synchronization in a practical environment
disturb the system state. We model all these perturbations
as zero mean Gaussian noise in the iteration time of each
job. Under this model, we quantify the approximation error
of MLTCP based on how far is the steady state from the
optimal interleaved schedule. Assuming that the noise dis-
tribution has a standard deviation f , MLTCP’s convergence
error also follows a normal distribution with mean zero and

standard deviation 2f ×
(

1 +
�=C4A24?C

(;>?4

)

. Hence, the approxi-

mation error is linearly bounded by the intensity of noise in
the iteration times of the jobs.

172

MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine LearningHOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

5 DISCUSSION

Generalization to multi-resource scheduling. MLTCP’s
scope is not limited to network scheduling. The aggressive-
ness function F (1~C4B_A0C8>) is generalizable to other re-
source scheduling problems by replacing bytes_ratio with
the progress of the job. For example, in the case of CPU cores,
the operating system’s scheduler tracks the progress of each
task, and assigns a number of CPU cores based on the desired
aggressiveness function. The dimension of gradient descent
space increases with the number of jobs. For allocating mul-
tiple resources among multiple jobs periodically, the loss
becomes a function of the overlap across all resources. The
relative shifts for each job, calculated from the gradient of
this function, thus takes into account each resource type.

Fairness betweenMLTCP andTCP�ows.TCP’s through-
put is inversely proportional to the square root of loss of prob-
ability [41]. Our analysis shows that the throughput of our
MLTCP-Reno �ows is inversely proportional to the loss prob-
ability. Intuitively, this implies that given the same packet
loss probability, an MLTCP-Reno �ow claims more band-
width share than a standard Reno �ow. However, MLTCP-
Reno �ows would not starve the other legacy �ows because
MLTCP allocates non-zero bandwidth to all the competing
�ows. To safeguard high-priority legacy TCP tra�c, we mod-
ify NCCL’s FAST socket plugin [1] to support selecting a
desired congestion control algorithm. This allows for choos-
ing di�erent aggressiveness functions for di�erent classes
of tra�c. For latency-sensitive tra�c, in order to acquire
most of the bandwidth, we recommend using a bandwidth
aggressiveness function with larger values.

6 RELATED WORK

Congestion control. There is a vast literature on congestion
control. Many rely on feedback signals indicating congestion
in the network and reduce their sending rate [4, 8, 10, 16, 19,
26, 32, 34, 37, 42, 62, 66]. Others are deadline-aware [58, 60],
router-assisted [5, 15, 31], and receiver-based [20]. We chose
to augment TCP-Reno because it is a classic congestion con-
trol algorithm. Other congestion control schemes are aug-
mented in a similar way to induce shifts in communication
start times.

Flow scheduling. There are two broad directions for im-
plementing �ow scheduling: centralized �ow scheduling and
heuristic-based distributed �ow scheduling. In the central-
ized approaches, the network demands of di�erent �ows are
sent to a central entity, which computes the optimal schedule
for all the �ows [3, 12, 13, 27, 49]. The distributed approaches
often implement heuristics like SRPT [54, 55], Shortest Re-
maining Job �rst (SJF), Least Attained Service �rst (LAS),
Earliest Deadline First (EDF), with the help of the switch and
priority queues [5, 7, 23, 44].

Periodic resource scheduling. Beyond networks, there
have been e�orts to schedule periodic tasks across limited re-
sources, including real-time and embedded systems [17, 33].
However, these have explicit deadlines, and inter-arrival
times have no dependency on completion times. Cyclic sched-
uling is a well-studied problem in mathematics [14, 56]. The
most general form of this problem, from Sera�ni et al. [56],
expresses our scenario but is shown to be NP-hard.

Accelerating DNN Training. Prior work demonstrated
that generic �ow schedulers are not optimal for DNN training
jobs [40, 46]. DNN-speci�c �ow schedulers have been devel-
oped to meet this demand [21, 29, 39, 48, 57]. Alternatively,
intra-job pipelining overlaps the compute and communica-
tion phases of the same training job [25, 30, 35, 35, 43, 45, 48].
These approaches only optimize a single job’s performance,
while we share resources across multiple jobs. Job placement
schedulers try to minimize multi-job contention. Many fo-
cused on compute-optimization in how they assign workers
to jobs, and only considered the network so far as to try and
schedule workers for a job close together [18, 28, 38, 47, 50,
61, 65]. Our work complements these schedulers.

Resource Interleaving Muri [64] introduced the idea of
multi-resource interleaving for DNN training, but required
all jobs to share the same GPUs. Cassini [52] exploited the
opportunity to overlap the computation and communica-
tion of di�erent jobs using an ILP. Both of these works are
centralized schedulers that would struggle to scale in a real
system. In contrast, our implementation ofMLTCP performs
a distributed live optimization.
Unfairness in the network. Recently, there have been

calls to introduce bandwidth unfairness to optimize �ow com-
pletion times, energy e�ciency, and DNN iteration time [6,
53, 63]. MLTCP automatically con�gures congestion control
parameters to leverage unfairness to achieve these goals.

7 CONCLUSION

This paper introduces a technique to augment a family of
congestion control algorithms to approximate optimal inter-
leaving for DNN training jobs. The key idea is to dynamically
adjust the �ow congestion window (or sending rate) to in-
duce a sliding e�ect so that the DNN jobs automatically
converge to approximately optimal interleaving. We formal-
ize our approach and show that the sliding e�ect iteration
after iteration is equivalent to gradient descent, with the goal
of improving communication interleaving.
Acknowledgements.We thank HotNets’s anonymous

reviewers for their valuable feedback. Thanks to Hari Balakr-
ishnan for helpful suggestions and discussions. The authors
are supported by DARPA FastNICs 4202290027, NSF SHF-
2107244, NSF CAREER-2144766, NSF PPoSS-2217099, NSF
CNS-2211382, and Sloan fellowship FG-2022-18504.

173

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Rajasekaran et al.

REFERENCES
[1] [n. d.]. NCCL Fast Socket. https://github.com/google/nccl-fastsocket.

[2] 2005. Pluggable congestion avoidance modules. https://lwn.net/

Articles/128681/

[3] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan,

Nelson Huang, and Amin Vahdat. 2010. Hedera: dynamic �ow sched-

uling for data center networks. In Proceedings of the 7th USENIX Con-

ference on Networked Systems Design and Implementation (San Jose,

California) (NSDI’10). USENIX Association, USA, 19.

[4] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra

Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari

Sridharan. 2010. Data center TCP (DCTCP). In Proceedings of the

ACM SIGCOMM 2010 Conference (New Delhi, India) (SIGCOMM ’10).

Association for Computing Machinery, New York, NY, USA, 63–74.

https://doi.org/10.1145/1851182.1851192

[5] Mohammad Alizadeh, Shuang Yang, Milad Sharif, Sachin Katti, Nick

McKeown, Balaji Prabhakar, and Scott Shenker. 2013. pFabric: min-

imal near-optimal datacenter transport. In Proceedings of the ACM

SIGCOMM 2013 Conference on SIGCOMM (Hong Kong, China) (SIG-

COMM ’13). Association for Computing Machinery, New York, NY,

USA, 435–446. https://doi.org/10.1145/2486001.2486031

[6] Serhat Arslan, Sundarajan Reneganathan, and Bruce Spang. 2023.

Green With Envy: Unfair Congestion Control Algorithms Can Be

More Energy E�cient. In Proceedings of the 22nd ACMWorkshop on Hot

Topics in Networks (Cambridge, Massachusetts) (HotNets ’23). 8 pages.

[7] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao Wang.

2017. PIAS: Practical Information-Agnostic Flow Scheduling for

Commodity Data Centers. IEEE/ACM Trans. Netw. 25, 4 (aug 2017),

1954–1967. https://doi.org/10.1109/TNET.2017.2669216

[8] Andrea Baiocchi, Angelo Castellani, and Francesco Vacirca. [n. d.].

YeAH-TCP: Yet another highspeed TCP. ([n. d.]).

[9] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network

tra�c characteristics of data centers in the wild. In Proceedings of the

10th ACM SIGCOMM Conference on Internet Measurement (Melbourne,

Australia) (IMC ’10). Association for Computing Machinery, New York,

NY, USA, 267–280. https://doi.org/10.1145/1879141.1879175

[10] L.S. Brakmo and L.L. Peterson. 1995. TCP Vegas: end to end congestion

avoidance on a global Internet. IEEE Journal on Selected Areas in

Communications 13, 8 (1995), 1465–1480. https://doi.org/10.1109/49.

464716

[11] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared

Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,

Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,

Daniel M. Ziegler, Je�rey Wu, Clemens Winter, Christopher Hesse,

Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess,

Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya

Sutskever, and Dario Amodei. 2020. Language Models are Few-Shot

Learners. CoRR abs/2005.14165 (2020). arXiv:2005.14165 https:

//arxiv.org/abs/2005.14165

[12] Mosharaf Chowdhury and Ion Stoica. 2015. E�cient Co�ow Schedul-

ing Without Prior Knowledge. SIGCOMM Comput. Commun. Rev. 45,

4 (aug 2015), 393–406. https://doi.org/10.1145/2829988.2787480

[13] Mosharaf Chowdhury, Yuan Zhong, and Ion Stoica. 2014. E�cient

co�ow scheduling with Varys. SIGCOMM Comput. Commun. Rev. 44, 4

(aug 2014), 443–454. https://doi.org/10.1145/2740070.2626315

[14] Wolfgang Dauscha, Heinz D. Modrow, and Alexander Neumann. 1985.

On cyclic sequence types for constructing cyclic schedules. Zeitschrift

für Operations Research 29 (1985), 1–30. https://api.semanticscholar.

org/CorpusID:12356541

[15] Nandita Dukkipati, Masayoshi Kobayashi, Rui Zhang-Shen, and Nick

McKeown. 2005. Processor Sharing Flows in the Internet. In Quality

of Service – IWQoS 2005, Hermann de Meer and Nina Bhatti (Eds.).

Springer Berlin Heidelberg, Berlin, Heidelberg, 271–285.

[16] M. Gerla, M.Y. Sanadidi, Ren Wang, A. Zanella, C. Casetti, and S.

Mascolo. 2001. TCP Westwood: congestion window control using

bandwidth estimation. In GLOBECOM’01. IEEE Global Telecommu-

nications Conference (Cat. No.01CH37270), Vol. 3. 1698–1702 vol.3.

https://doi.org/10.1109/GLOCOM.2001.965869

[17] Joël Goossens. 2003. Scheduling of O�set Free Systems. Real-Time Sys-

tems 24 (03 2003), 239–258. https://doi.org/10.1023/A:1021782503695

[18] Juncheng Gu, Mosharaf Chowdhury, Kang G. Shin, Yibo Zhu, Myeong-

jae Jeon, Junjie Qian, Hongqiang Liu, and Chuanxiong Guo. 2019.

Tiresias: A GPU Cluster Manager for Distributed Deep Learning.

In 16th USENIX Symposium on Networked Systems Design and Im-

plementation (NSDI 19). USENIX Association, Boston, MA, 485–500.

https://www.usenix.org/conference/nsdi19/presentation/gu

[19] Sangtae Ha, Injong Rhee, and Lisong Xu. 2008. CUBIC: a new TCP-

friendly high-speed TCP variant. SIGOPS Oper. Syst. Rev. 42, 5 (jul

2008), 64–74. https://doi.org/10.1145/1400097.1400105

[20] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu,

Andrew W. Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-

architecting datacenter networks and stacks for low latency and high

performance. In Proceedings of the Conference of the ACM Special Inter-

est Group on Data Communication (Los Angeles, CA, USA) (SIGCOMM

’17). Association for Computing Machinery, New York, NY, USA, 29–42.

https://doi.org/10.1145/3098822.3098825

[21] Sayed Hadi Hashemi, Sangeetha Abdu Jyothi, and Roy Camp-

bell. 2019. TicTac: Accelerating Distributed Deep Learning

with Communication Scheduling. In Proceedings of Machine Learn-

ing and Systems, A. Talwalkar, V. Smith, and M. Zaharia (Eds.),

Vol. 1. 418–430. https://proceedings.mlsys.org/paper/2019/�le/

84d9ee44e457ddef7f2c4f25dc8fa865-Paper.pdf

[22] Stephen Hemminger. 2005. TCP infrastructure split out. http://lwn.

net/Articles/128626/

[23] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Fin-

ishing �ows quickly with preemptive scheduling. SIGCOMM Comput.

Commun. Rev. 42, 4 (aug 2012), 127–138. https://doi.org/10.1145/

2377677.2377710

[24] Chi-Yao Hong, Matthew Caesar, and P. Brighten Godfrey. 2012. Fin-

ishing �ows quickly with preemptive scheduling. In Proceedings of the

ACM SIGCOMM 2012 Conference on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communication (Helsinki, Finland)

(SIGCOMM ’12). Association for Computing Machinery, New York, NY,

USA, 127–138. https://doi.org/10.1145/2342356.2342389

[25] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao

Chen, Mia Chen, HyoukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui

Wu, and zhifeng Chen. 2019. GPipe: E�cient Training of Giant Neural

Networks using Pipeline Parallelism. In Advances in Neural Informa-

tion Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,

F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Curran Asso-

ciates, Inc. https://proceedings.neurips.cc/paper_�les/paper/2019/�le/

093f65e080a295f8076b1c5722a46aa2-Paper.pdf

[26] V. Jacobson. 1988. Congestion avoidance and control. SIGCOMM

Comput. Commun. Rev. 18, 4 (aug 1988), 314–329. https://doi.org/10.

1145/52325.52356

[27] Akshay Jajoo, Y. Charlie Hu, and Xiaojun Lin. 2019. Your Co�ow has

Many Flows: Sampling them for Fun and Speed. In 2019 USENIX Annual

Technical Conference (USENIX ATC 19). USENIX Association, Renton,

WA, 833–848. https://www.usenix.org/conference/atc19/presentation/

jajoo

174

MLTCP: A Distributed Technique to Approximate Centralized Flow Scheduling For Machine LearningHOTNETS ’24, November 18–19, 2024, Irvine, CA, USA

[28] Suhas Jayaram Subramanya, Daiyaan Arfeen, Shouxu Lin, Aurick

Qiao, Zhihao Jia, and Gregory R. Ganger. 2023. Sia: Heterogeneity-

aware, goodput-optimized ML-cluster scheduling. In Proceedings of the

29th Symposium on Operating Systems Principles (Koblenz, Germany)

(SOSP ’23). Association for Computing Machinery, New York, NY, USA,

642–657. https://doi.org/10.1145/3600006.3613175

[29] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-

iong Guo. 2020. A Uni�ed Architecture for Accelerating Distributed

DNN Training in Heterogeneous GPU/CPU Clusters. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 20).

USENIX Association, 463–479. https://www.usenix.org/conference/

osdi20/presentation/jiang

[30] Yimin Jiang, Yibo Zhu, Chang Lan, Bairen Yi, Yong Cui, and Chuanx-

iong Guo. 2020. A uni�ed architecture for accelerating distributed

DNN training in heterogeneous GPU/CPU clusters. In Proceedings of

the 14th USENIX Conference on Operating Systems Design and Imple-

mentation (OSDI’20). USENIX Association, USA, Article 26, 17 pages.

[31] Dina Katabi, Mark Handley, and Charlie Rohrs. 2002. Congestion con-

trol for high bandwidth-delay product networks. SIGCOMM Comput.

Commun. Rev. 32, 4 (aug 2002), 89–102. https://doi.org/10.1145/964725.

633035

[32] Gautam Kumar, Nandita Dukkipati, Keon Jang, Hassan M. G. Was-

sel, Xian Wu, Behnam Montazeri, Yaogong Wang, Kevin Springborn,

Christopher Alfeld, Michael Ryan, David Wetherall, and Amin Vahdat.

2020. Swift: Delay is Simple and E�ective for Congestion Control in the

Datacenter. In Proceedings of the Annual Conference of the ACM Special

Interest Group on Data Communication on the Applications, Technolo-

gies, Architectures, and Protocols for Computer Communication (Virtual

Event, USA) (SIGCOMM ’20). Association for Computing Machinery,

New York, NY, USA, 514–528. https://doi.org/10.1145/3387514.3406591

[33] Matheus Ladeira, Emmanuel Grolleau, Fabien Bonneval, Gautier Hat-

tenberger, Yassine Ouhammou, and Yuri Hérouard. 2022. Scheduling

O�set-Free Systems Under FIFO Priority Protocol. In 34th Euromi-

cro Conference on Real-Time Systems (ECRTS 2022) (Dagstuhl Artifacts

Series, Vol. 231). Modena, Italy. https://doi.org/10.4230/DARTS.8.1.4

[34] Changhyun Lee, Chunjong Park, Keon Jang, Sue Moon, and Dongsu

Han. 2017. DX: Latency-Based Congestion Control for Datacenters.

IEEE/ACM Transactions on Networking 25, 1 (2017), 335–348. https:

//doi.org/10.1109/TNET.2016.2587286

[35] Zhuohan Li, Siyuan Zhuang, Shiyuan Guo, Danyang Zhuo, Hao

Zhang, Dawn Song, and Ion Stoica. 2021. TeraPipe: Token-Level

Pipeline Parallelism for Training Large-Scale Language Models.

arXiv:2102.07988 [cs.LG]

[36] C. L. Liu and James W. Layland. 1973. Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment. J. ACM 20, 1

(jan 1973), 46–61. https://doi.org/10.1145/321738.321743

[37] Shao Liu, Tamer Başar, and R. Srikant. 2008. TCP-Illinois: A loss- and

delay-based congestion control algorithm for high-speed networks.

Performance Evaluation 65, 6 (2008), 417–440. https://doi.org/10.1016/

j.peva.2007.12.007 Innovative Performance Evaluation Methodologies

and Tools: Selected Papers from ValueTools 2006.

[38] Kshiteej Mahajan, Arjun Balasubramanian, Arjun Singhvi, Shivaram

Venkataraman, Aditya Akella, Amar Phanishayee, and Shuchi Chawla.

2020. Themis: Fair and E�cient GPU Cluster Scheduling. In 17th

USENIX Symposium on Networked Systems Design and Implementation

(NSDI 20). USENIX Association, Santa Clara, CA, 289–304. https:

//www.usenix.org/conference/nsdi20/presentation/mahajan

[39] Kshiteej Mahajan, Ching-Hsiang Chu, Srinivas Sridharan, and Aditya

Akella. 2023. Better Together: Jointly Optimizing ML Collective Sched-

uling and Execution Planning using SYNDICATE. In 20th USENIX

Symposium on Networked Systems Design and Implementation (NSDI

23). USENIX Association, Boston, MA, 809–824. https://www.usenix.

org/conference/nsdi23/presentation/mahajan

[40] Luo Mai, Chuntao Hong, and Paolo Costa. 2015. Optimizing Net-

work Performance in Distributed Machine Learning. In 7th USENIX

Workshop on Hot Topics in Cloud Computing (HotCloud 15). USENIX

Association, Santa Clara, CA. https://www.usenix.org/conference/

hotcloud15/workshop-program/presentation/mai

[41] Matthew Mathis, Je�rey Semke, Jamshid Mahdavi, and Teunis Ott.

1997. The macroscopic behavior of the TCP congestion avoidance

algorithm. SIGCOMM Comput. Commun. Rev. 27, 3 (jul 1997), 67–82.

https://doi.org/10.1145/263932.264023

[42] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan

Wassel, Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wether-

all, and David Zats. 2015. TIMELY: RTT-based Congestion Control for

the Datacenter. SIGCOMM Comput. Commun. Rev. 45, 4 (aug 2015),

537–550. https://doi.org/10.1145/2829988.2787510

[43] Jayashree Mohan, Amar Phanishayee, Janardhan Kulkarni, and Vijay

Chidambaram. 2022. Looking Beyond GPUs for DNN Scheduling

on Multi-Tenant Clusters. In 16th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 22). USENIX Association,

Carlsbad, CA, 579–596. https://www.usenix.org/conference/osdi22/

presentation/mohan

[44] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-

hout. 2018. Homa: a receiver-driven low-latency transport protocol

using network priorities. In Proceedings of the 2018 Conference of the

ACM Special Interest Group on Data Communication (Budapest, Hun-

gary) (SIGCOMM ’18). Association for Computing Machinery, New

York, NY, USA, 221–235. https://doi.org/10.1145/3230543.3230564

[45] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri,

Nikhil R. Devanur, Gregory R. Ganger, Phillip B. Gibbons, and Matei

Zaharia. 2019. PipeDream: Generalized Pipeline Parallelism for DNN

Training. In Proceedings of the 27th ACM Symposium on Operating

Systems Principles (Huntsville, Ontario, Canada) (SOSP’19). Association

for Computing Machinery, New York, NY, USA, 1–15. https://doi.org/

10.1145/3341301.3359646

[46] Rui Pan, Yiming Lei, Jialong Li, Zhiqiang Xie, Binhang Yuan, and

Yiting Xia. 2022. E�cient �ow scheduling in distributed deep learn-

ing training with echelon formation. In Proceedings of the 21st ACM

Workshop on Hot Topics in Networks (Austin, Texas) (HotNets ’22). As-

sociation for Computing Machinery, New York, NY, USA, 93–100.

https://doi.org/10.1145/3563766.3564096

[47] Yanghua Peng, Yixin Bao, Yangrui Chen, Chuan Wu, and Chuanx-

iong Guo. 2018. Optimus: An E�cient Dynamic Resource Sched-

uler for Deep Learning Clusters. In Proceedings of the Thirteenth

EuroSys Conference (Porto, Portugal) (EuroSys ’18). Association for

Computing Machinery, New York, NY, USA, Article 3, 14 pages.

https://doi.org/10.1145/3190508.3190517

[48] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang

Lan, Chuan Wu, and Chuanxiong Guo. 2019. A Generic Communi-

cation Scheduler for Distributed DNN Training Acceleration. In Pro-

ceedings of the 27th ACM Symposium on Operating Systems Principles

(Huntsville, Ontario, Canada) (SOSP ’19). Association for Comput-

ing Machinery, New York, NY, USA, 16–29. https://doi.org/10.1145/

3341301.3359642

[49] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah,

and Hans Fugal. 2014. Fastpass: a centralized "zero-queue" datacenter

network. In Proceedings of the 2014 ACM Conference on SIGCOMM

(Chicago, Illinois, USA) (SIGCOMM ’14). Association for Computing

Machinery, New York, NY, USA, 307–318. https://doi.org/10.1145/

2619239.2626309

[50] Aurick Qiao, Sang Keun Choe, Suhas Jayaram Subramanya, Willie

Neiswanger, Qirong Ho, Hao Zhang, Gregory R. Ganger, and Eric P.

175

HOTNETS ’24, November 18–19, 2024, Irvine, CA, USA Rajasekaran et al.

Xing. 2021. Pollux: Co-adaptive Cluster Scheduling for Goodput-

Optimized Deep Learning. In 15th USENIX Symposium on Operating

Systems Design and Implementation (OSDI 21). USENIX Association,

1–18. https://www.usenix.org/conference/osdi21/presentation/qiao

[51] Alec Radford, Je�rey Wu, Rewon Child, David Luan, Dario Amodei,

and Ilya Sutskever. 2018. Language Models are Unsupervised Multi-

task Learners. (2018). https://d4mucfpksywv.cloudfront.net/better-

language-models/language-models.pdf.

[52] Sudarsanan Rajasekaran, Manya Ghobadi, and Aditya Akella. 2024.

CASSINI: Network-Aware Job Scheduling in Machine Learning Clus-

ters. In 21st USENIX Symposium on Networked Systems Design and

Implementation (NSDI 24). USENIX Association, Santa Clara, CA,

1403–1420. https://www.usenix.org/conference/nsdi24/presentation/

rajasekaran

[53] Sudarsanan Rajasekaran, Manya Ghobadi, Gautam Kumar, and Aditya

Akella. 2022. Congestion Control in Machine Learning Clusters. In

Proceedings of the 21st ACMWorkshop on Hot Topics in Networks (Austin,

Texas) (HotNets ’22). 235–242.

[54] Linus Schrage. 1968. Letter to the Editor—A Proof of the Optimality

of the Shortest Remaining Processing Time Discipline. Operations

Research 16, 3 (1968), 687–690. https://doi.org/10.1287/opre.16.3.687

[55] Linus E. Schrage and Louis W. Miller. 1966. The Queue M/G/1 with the

Shortest Remaining Processing Time Discipline. Operations Research

14, 4 (1966), 670–684. https://doi.org/10.1287/opre.14.4.670

[56] Paolo Sera�ni and Walter Ukovich. 1989. A Mathematical Model

for Periodic Scheduling Problems. SIAM Journal on Discrete Math-

ematics 2, 4 (1989), 550–581. https://doi.org/10.1137/0402049

arXiv:https://doi.org/10.1137/0402049

[57] Aashaka Shah, Vijay Chidambaram, Meghan Cowan, Saeed Maleki,

Madan Musuvathi, Todd Mytkowicz, Jacob Nelson, Olli Saarikivi, and

Rachee Singh. 2023. TACCL: Guiding Collective Algorithm Synthe-

sis using Communication Sketches. In 20th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 23). USENIX As-

sociation, Boston, MA, 593–612. https://www.usenix.org/conference/

nsdi23/presentation/shah

[58] Balajee Vamanan, Jahangir Hasan, and T.N. Vijaykumar. 2012.

Deadline-aware datacenter tcp (D2TCP). In Proceedings of the ACM

SIGCOMM 2012 Conference on Applications, Technologies, Architectures,

and Protocols for Computer Communication (Helsinki, Finland) (SIG-

COMM ’12). Association for Computing Machinery, New York, NY,

USA, 115–126. https://doi.org/10.1145/2342356.2342388

[59] Weiyang Wang, Moein Khazraee, Zhizhen Zhong, Manya Ghobadi,

Zhihao Jia, Dheevatsa Mudigere, Ying Zhang, and Anthony Kewitsch.

2023. TopoOpt: Co-optimizing Network Topology and Parallelization

Strategy for Distributed Training Jobs. In 20th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 23). USENIX As-

sociation, Boston, MA, 739–767. https://www.usenix.org/conference/

nsdi23/presentation/wang-weiyang

[60] ChristoWilson, Hitesh Ballani, Thomas Karagiannis, and Ant Rowtron.

2011. Better never than late: meeting deadlines in datacenter networks.

In Proceedings of the ACM SIGCOMM2011 Conference (Toronto, Ontario,

Canada) (SIGCOMM ’11). Association for Computing Machinery, New

York, NY, USA, 50–61. https://doi.org/10.1145/2018436.2018443

[61] Wencong Xiao, Romil Bhardwaj, Ramachandran Ramjee, Muthian Si-

vathanu, Nipun Kwatra, Zhenhua Han, Pratyush Patel, Xuan Peng,

Hanyu Zhao, Quanlu Zhang, Fan Yang, and Lidong Zhou. 2018. Gan-

diva: Introspective Cluster Scheduling for Deep Learning. In 13th

USENIX Symposium on Operating Systems Design and Implementa-

tion (OSDI 18). USENIX Association, Carlsbad, CA, 595–610. https:

//www.usenix.org/conference/osdi18/presentation/xiao

[62] Lisong Xu, K. Harfoush, and Injong Rhee. 2004. Binary increase conges-

tion control (BIC) for fast long-distance networks. In IEEE INFOCOM

2004, Vol. 4. 2514–2524 vol.4. https://doi.org/10.1109/INFCOM.2004.

1354672

[63] Adrian Zaplatel and Fernando Kuipers. 2023. Slowdown as a Metric for

Congestion Control Fairness. In Proceedings of the 22nd ACMWorkshop

on Hot Topics in Networks (Cambridge, Massachusetts) (HotNets ’23).

8 pages.

[64] Yihao Zhao, Yuanqiang Liu, Yanghua Peng, Yibo Zhu, Xuanzhe Liu, and

Xin Jin. 2022. Multi-Resource Interleaving for Deep Learning Training.

In Proceedings of the ACM SIGCOMM 2022 Conference (Amsterdam,

Netherlands) (SIGCOMM ’22). Association for Computing Machinery,

New York, NY, USA, 428–440. https://doi.org/10.1145/3544216.3544224

[65] Pengfei Zheng, Rui Pan, Tarannum Khan, Shivaram Venkataraman,

and Aditya Akella. 2023. Shockwave: Fair and E�cient Cluster

Scheduling for Dynamic Adaptation in Machine Learning. In 20th

USENIX Symposium on Networked Systems Design and Implementa-

tion (NSDI 23). USENIX Association, Boston, MA, 703–723. https:

//www.usenix.org/conference/nsdi23/presentation/zheng

[66] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina

Lipshteyn, Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mo-

hamadHaj Yahia, andMing Zhang. 2015. Congestion Control for Large-

Scale RDMA Deployments. In Proceedings of the 2015 ACM Conference

on Special Interest Group on Data Communication (London, United King-

dom) (SIGCOMM ’15). Association for Computing Machinery, New

York, NY, USA, 523–536. https://doi.org/10.1145/2785956.2787484

176

	Abstract
	1 Introduction
	2 Motivation
	3 Fundamentals of MLTCP
	3.1 Augmenting TCP Reno with MLTCP
	3.2 MLTCP-Reno Congestion Avoidance

	4 Analysis of MLTCP
	5 Discussion
	6 Related Work
	7 Conclusion
	References

