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We study the classical motion of a charged particle in presence of an inductively increasing time-
dependent magnetic field as the one created inside a resistor-inductor series circuit driven by a
voltage source. The inductor is treated as an infinite solenoid. In such a scenario, the expres-
sion for the time-dependent magnetic field generated when the circuit is turned on can be easily
derived. We consider the case study of two-dimensional motion since the generalization to three-
dimensions is elementary. The resulting differential equations for the two-dimensional motion of
the charged particle are solved by using a particular method which relies in deployment of complex
variables. The ensuing motion has interesting features that highlight the challenges faced in studies
of charged particles in a time-dependent magnetic field. This study has applications in magnetic
plasma confinement, where understanding charged particle dynamics in time-varying magnetic fields
helps optimize stability and energy retention in fusion devices.
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I. INTRODUCTION

Circular motion in a magnetic field is a phenomenon
that occurs when charged particles, such as electrons
or ions, move with velocity perpendicular to a uniform
constant magnetic field. For such a situation, the mo-
tion results in a circular trajectory confined to a two-
dimensional (2D) plane [1]. This behavior is a conse-
quence of the Lorentz force, which describes the force
experienced by a charged particle moving in an electro-
magnetic field. The radius of the circular trajectory de-
pends on the mass, velocity, charge of the particle, and
the strength of the magnetic field. This principle has
numerous applications in physics and engineering and is
well described in the literature [2-11]. Its quantum coun-
terpart is the backbone of many important phenomena
in condensed matter physics [12-26]. Any different situ-
ation, for instance, a magnetic field that is non-uniform
but constant with time will lead to a mathematical prob-
lem that is very difficult to solve [27]. Same difficulties
are encountered when the magnetic field is uniform but
varies as a function of time. A time-dependent magnetic
field might be seen as a minor inconvenience, but its pres-
ence drastically modifies the equation of motion in such
a way as making it impossible to solve analytically. As
a result, one must use special numerical methods of inte-
gration in order to understand the resulting motion.

A realistic example in which a time-dependent mag-
netic field can be generated is that of a resistor (R) and
an inductor (L) connected in series with a direct current
(DC) voltage source. This type of circuit is commonly
studied as it exhibits a simple transient and steady-state
behavior. When the circuit is first connected to the DC
voltage source, the current does not immediately reach
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its maximum value. Instead, it increases gradually over
time. The current, I(¢) at any time, ¢ can be expressed
ast I(t) = Ipae [1—exp(—1)] , where Iyae = % is
the maximum current value, V is the DC voltage of the
source and 7 = % is known as the time constant. This
means that only after a long time (theoretically, in the
t — oo limit), the current reaches a steady state maxi-
mum value, I,,4,. Within the framework of this study,
we treat the inductor as an infinite solenoid. An infi-
nite solenoid is a theoretical model of a solenoid that
is considered to be infinitely long and uniformly wound
with wire. In an infinite solenoid, the magnetic field in-
side the solenoid is uniform and parallel to the axis of
the solenoid. The field outside the solenoid is consid-
ered to be negligible (effectively zero). This is a result
of the symmetry of the solenoid and the assumption of
infinite length. The magnetic field strength inside an
infinite solenoid is directly proportional to the current.
Thus, a time-dependent current, I(¢) will create a time-
dependent magnetic field, B(t) which can be expressed
as: B(t) = pon I(t) where po is the permeability of free
space and n is the number of turns per unit length. The
key feature of the infinite solenoid is that the magnetic
field inside does not depend on the length of the solenoid.
In this special case the magnetic field inside the infinite
solenoid is uniform but time-dependent. While treating
an inductor as an infinitely long solenoid is a valid ideal-
ization for theoretical analysis, practical implementations
involve solenoids of finite length. To justify the ”infi-
nite” approximation, it is common to consider solenoids
where the length is much greater than the radius, typ-
ically with a ratio length/radius > 10. This ensures
the magnetic field inside remains approximately uniform
and axial, minimizing edge effects that deviate from the
ideal model [28]. Such an approximate dimensional esti-
mate for this ratio is a useful practical benchmark for the
physical relevance of the model and helps clarify the con-
ditions under which the infinite solenoid approximation



holds [29].

The objective of this work is to study the effect of this
inductive time-dependent magnetic field on the motion
of a charged particle. We consider a scenario in which
the charged particle is injected or happens to be inside
an infinite solenoid when magnetic field is turned on. We
assume that the charged particle is initially either at rest
or has a nonzero initial velocity that is perpendicular
to the magnetic field. This guarantees that the charged
particle will move in a 2D path. The solution to this
problem is challenging since one must not forget that a
time-dependent magnetic field induces an electric field
which in turn generates an electric force acting on the
charged particle. This means that equation of motion of
the charged particle is governed by magnetic and electric
forces acting simultaneously. Our solution method re-
lies on a particular mathematical approach that employs
complex variables. This approach is elegant and consid-
erably simplifies the final form of the resulting differential
equations of motion.

Furthermore, in addition to its physical applications,
the approach used in this study offers significant ped-
agogical value, as it provides a clear and exact exam-
ple of charged particle motion in a non-uniform, time-
dependent magnetic field. Such an example can greatly
aid students in visualizing and understanding complex
electromagnetic phenomena beyond static or uniform
cases typically covered in textbooks. The numerical and
analytical treatment presented here bridges the gap be-
tween abstract theory and practical computation, en-
hancing conceptual clarity. This makes the work a
valuable resource for undergraduate electromagnetism
courses or computational physics modules. Highlighting
this educational benefit would further demonstrate the
broader impact and versatility of the study.

The article is organized as follows. In Section II we
introduce the relevant theory, model and describe the
key results obtained. In Section IIT we present the main
conclusions.

II. THEORY AND RESULTS

An inductive increasing magnetic field refers to a
magnetic field that is increasing in strength over time,
typically generated by a changing electric current in a
solenoid. This concept is fundamental in electromag-
netism and is related to Faraday’s law leading to the
creation of an induced electric field, too. The motion of
a charged particle in a magnetic and electric field can be
modeled using the principles of electromagnetism, partic-
ularly the Lorentz force law. In a Cartesian coordinate
system, unit vectors are typically denoted by ;, ; and k
for the x, y and z axes, respectively. These unit vec-
tors have a magnitude of 1 and point in the direction of
their respective axes: For the present case scenario, we
assume that the uniform time-dependent magnetic field
points along the positive z-direction and can be written
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FIG. 1. Plot of B(t)/Bmas as a function of t/7 for 0 <
t/T7 < 6. The uniform time-dependent magnetic field is ap-
plied along the z-direction.

B(t)=B@{)k . (1)

The expression for B(t) can be represented in the follow-
ing way:

B(0) = B 1o (1] @)

where Bpar = pfon Imaz. The relationship between
B(t)/Bmasz and t/7 is illustrated in Fig. 1, demonstrat-
ing how the inductive increasing magnetic field changes
as a function of time.

In electromagnetism, electric and magnetic fields can
be expressed in terms of scalar (V) and vector potentials

(A). This formulation is particularly useful because it
simplifies the analysis of electromagnetic fields and helps
in solving problems involving potentials. In this partic-
ular case, there is no scalar potential (V' = 0). By fol-
lowing the same procedure as for the case of a uniform
time-dependent magnetic field that is linearly increasing
with time [30], one eventually obtains:

B(t) - B(t) -
By B0, g, 3)

where we use a concise notation for the derivative, B (t) =
dB(t)/dt.

The classical motion of a charged particle with charge,
g > 0 and mass, m > 0 can be described using Newton’s
second law of motion, modified to include the effects of
electric and magnetic forces. The equation of motion for
a charged particle in an electric and magnetic field is
derived from the Lorentz force law:

m S = B 0) +avx B) (4)

E(7,t) =



where ¥ is the velocity, E(,t) is the induced electric
field given from Eq.(3) and B(t) is the time-dependent
magnetic field given from Eq.(1) and Eq.(2). In classical
mechanics, the initial conditions for Newtonian motion
are crucial for determining the future behavior of a par-
ticle or object under the influence of forces. These initial
conditions include the initial position and initial velocity.
For this model, we assume that the initial position vector
and the initial velocity vector lie in the & — y plane (per-
pendicular to the magnetic field). One can verify that,
for such initial conditions, there is no dynamics in the
z-direction. Thus, the resulting motion is 2D and only
the z and y components of the initial position and initial
velocity matter:

x(t=0)=z¢ ; y({t=0)=y (5)
and
vp(t=0) =voy ; vyt =0)=n0py . (6)

We now equate the components of the vectors on both
sides of Eq.(4) to form a system of scalar equations:

b = + 240y w(t) vy

by:—#x—w(t)vm,

where

w(t) = = B(t) , (8)

can be viewed as a time-dependent angular frequency.
Note that the definition of w(t) in Eq.(8) mirrors that
of the familiar cyclotron angular frequency for the case
of a uniform constant magnetic field. Obviously, w(t) =
- B(t) is the time derivative of w(t).

Solving coupled differential equations of this nature is
very difficult by using conventional techniques [31]. The
mathematical solution method that we introduce has sig-
nificant advantages because it allows one to simplify con-
siderably the final differential equation to solve. At the
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core of the method is the idea of using complex variables
to rewrite Eq.(7) in a more compact and convenient form.
The uncoupling of the two differential equations in
Eq.(7) cannot be accomplished by differentiating (with
respect to time) one of the two equations. The most ele-
gant and effective approach that we have found to achieve
this goal relies on using complex variables. To start with,
we can combine the two sides of Eq.(7) to obtain:
z'Jerii)y:@(y—iz)er(t)(vyfivm) , (9
where i = \/—1 represents the imaginary unit. At this
juncture, we introduce complex variables which are a
fundamental concept in mathematics, particularly in the
field of complex analysis. Complex numbers are num-
bers that have both a real part and an imaginary part.
In this particular case, the 2D position can be written
as a complex variable of the form, z = x + iy. This ap-
proach leads to 2 = v, +iv, and Z = v, + i 9,. By using
these results, one obtains a complex second-order linear
homogeneous ordinary differential equation with variable
coeflicients for the complex 2D position:

2+iw(t)2+%ob(t)z=0. (10)
Based on Eq.(2) and Eq.(8), one can rewrite w(t) as:
4
w(t) = Wimag [1 — exp (—Tﬂ ) (11)

where

quax
m .

Wmaz = (12)
The value, wy,q, represents the value the cyclotron fre-
quency for a uniform constant magnetic field, B,,q.. By
substituting w(t) from Eq.(8) into Eq.(10) one obtains:

&_’_' 1— _E %.ﬂwmw _E =0
dt? ¢ Wmaz eXPp T dt 2 T eXPp T ==

(13)
The two linearly independent solutions of this differential
equation are:

- — T . 1 . . — T
f1(t) = exp[—iwmaz T € t/ | exp[—iwmaat] U (2, 1+ 1Wmae T, I Wmaz T € t/ > , (14)
[
and
|
fa(t) = exp[—iwWmaa T e*t/T] exp[—i wWmaz t] Lgf/’g‘” ) (z Wmaz Te*t/T) . (15)

In the above expressions, U(a, b, z) is a confluent hyper-

(

geometric function of the second kind and Lﬁf‘)(z) is a



generalized Laguerre polynomial. Obviously, a, b, a and
n are parameters while z is just a dummy complex ar-
gument of the function. We are sure that our educated
readers will not confuse the argument of these two special
functions with the 2D complex position.

For practical purposes, it is convenient to rewrite
Eq.(13) in terms of dimensionless variables:

i exp (—7)

d2z 4ili—e t dz n
—+t [l —exp | —— = z =
d(@Wmas )2 P AT7 )] d@mant) "2 wmae
(16)

At this juncture, one can define a dimensionless time vari-
able of the form:

t
/

t —wmmt—27TT, (17)
where T would represent the period of the cyclotron mo-
tion should the magnetic field had been a uniform con-
stant magnetic field with value, B,,q,. An important
quantity that determines the 2D trajectory of the charged
particle is:

t Wmax t t’
- = = — 18
T Wmazx T T’ ( )
where
T’:wmaxT:27r%. (19)

Thus, one can write Eq.(16) in terms of dimensionless
variables as:

+/

d2 t/ d 7 €XDpD 7
zﬂ[l_exp(_)yw()z:o.

dt'? T/ dt’ 2 T/
(20)

The idea is to solve Eq.(20) for different values for pa-
rameter, 7’. For example, 7/ = 27 corresponds to 7 =T
while 7/ = 207 corresponds to 7 = 10T which would
be quite a large value of the time constant. The most
general situation to study would involve arbitrary initial
conditions of the form z(t = 0) = zp = a9+ iyo # 0
and v(t = 0) = vg = vog + iVoy # 0 where the trajec-
tory would be determined in parametric form from the
knowledge of z(t) = Re[z] and y(t) = Im[z].

For simplicity, we choose two values for parameter,
7' = Wmae T = 277 /T to study in detail:

!/
T =21

=T (21)
and

=20 ; T=10T. (22)
In order to understand the motion of the charged particle
as the magnetic field is increasing from zero towards its
maximum value, we solve Eq.(20) for values of param-
eter 7/ = w7 that were chosen and different initial
positions and velocities.
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FIG. 2. Trajectory of the particle for 7/ = wWmaee T = 27 and
a relatively short time range, 0 < t' = wmazt < 10. The
initial position is taken at the origin, (z¢o = 0,y0 = 0) and is
represented by a solid circle. The initial velocity is along the
y-direction, (vo; = 0,v0y = 1). The uniform inductive time-
dependent magnetic field is applied along the z-direction.

The first choice considered, 7/ = 27 corresponds to
a time constant 7 = T. This means that should the
charged particle had been exposed to a uniform constant
magnetic field with value, By,q., the particle should have
been able to complete only one revolution on a circu-
lar path for a time t = T. Instead, for the current in-
ductively increasing time-dependent magnetic field, the
charged particle experiences a magnetic field far from
the saturation value of B, 4, value for a time interval of
t =T (since 7 = T). For simplicity, we may consider
Wmaz = 1 wherever necessary when calculating velocities
(& = wiaz dz — wjaz ). For the first scenario that we
consider, we assume that motion starts at zg = 0 and
the initial velocity is taken along the y-direction, vg = 4
which means (vo; = 0,v9, = 1). The result found for
the 2D trajectory of the charged particle during a rela-
tively short time interval, 0 < t’ = wyqz t < 10 is shown
in Fig. 2. One can see that the charged particle is not
able to come close to completing a full loop. The 2D
trajectory followed by the charged particle for a longer
time range, 0 < t' = Wyt < 100 is shown in Fig. 3.
Note that the particle’s motion has quickly stabilized to
a circular trajectory. The effect of changing the initial
position to zo = 1+ (g = 1,50 = 1) and changing the
initial velocity to vg = 2431 (vog = 2, vy = 3) is shown
in Fig. 4 where one can see that the trajectory is more
far-reaching.

Let us now consider a much larger value of 7/ =
Wmaz T = 207 which is ten times larger than the pre-
viously considered one. This means that the inductively
increasing time-dependent magnetic field with need much
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FIG. 3. Same as in Fig. 2 but for a longer time range, 0 <
t' = Wmae t < 100.
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FIG. 4. Trajectory of the particle for 7/ = Wmae 7 = 27 and a
long time range, 0 < t’ = wWmazt < 100. The initial position
is taken at (zo = l,y0 = 1) and is represented by a solid
circle. The initial velocity is (voz = 2,voy = 3). The uniform
inductive time-dependent magnetic field is applied along the
z-direction.

more time to stabilize close to its maximum value of
B,paz. For this second scenario, we assume that motion
starts at zo = 0 and the initial velocity is taken along
the y-direction, vg = 4. The result found for the 2D
trajectory of the charged particle for the same relatively
short time interval as before, 0 < t' = Wyt < 10 is
shown in Fig. 2. One can see that the charged particle
is not able to come close at all to completing a full loop
since the magnetic field during this short time interval is
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FIG. 5. Trajectory of the particle for 7/ = wmaee 7™ = 207
and a time range, 0 < t’ = Wmast < 10. The initial position
is taken at the origin, (zo = 0,yo = 0) and is represented
by a solid circle. The initial velocity is along the y-direction,
(voz = 0,v0y = 1). The uniform inductive time-dependent
magnetic field is applied along the z-direction.
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FIG. 6. Same as in Fig. 5 but for a longer time range, 0 <
t' = Wmas t < 100.

very weak give the large value of the time constant. The
path followed by the charged particle for a longer time
range as studied earlier, 0 < t' = wyqe, ¢ < 100 is shown
in Fig. 6. Changing the initial position to zp = 1+ ¢
(xg = 1,50 = 1) and changing the initial velocity to
vo = 2+ 3i (vor = 2,v0y = 3) has an important ef-
fect by expanding further away the traveling paths as
shown in Fig. 7. Overall, the path patterns observed are
not as elaborate as those for the case of a uniform time-
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FIG. 7. Trajectory of the particle for 7/ = wmee ™ = 207
and a long time range, 0 < t’ = Wmart < 100. The initial
position is taken at (xo = 1,yo = 1) and is represented by a
solid circle. The initial velocity is (voz = 2,v0y = 3). The
uniform inductive time-dependent magnetic field is applied
along the z-direction.

dependent magnetic field that is linearly increasing with
time.

III. CONCLUSIONS

Current research on plasma confinement indicates the
need for additional studies on edge effects in order to
limit container wall damage. A plasma is typically a sys-
tem at high temperature containing high energy charged
particles. Confinement of charged particles is achieved
by using a sufficient magnetic field, or magnetic field
combinations. To support such investigations, various
magnetic field arrangements may be employed. In many
instances, a charged particle experiences a varying mag-
netic field, thus exact theoretical solutions to the path of
a charged particle are essential parts of theoretical inves-
tigations. In this paper, we furnish an exact solution from
Maxwell’s equations for a charged particle in an induc-
tively increasing magnetic field, because when a current
is turned on to produce a magnetic field, the current com-
monly experiences induction in the circuitry. For the cur-
rent study we assume that the inductive magnetic field
is applied perpendicular to the plane of motion of the
charged particle. Initially, the magnetic field is zero and
gradually increases as the inductor allows more current
to pass, reaching a steady-state value (B4, ) after long
time (much longer than the time constand, 7). The great
difficulty on understanding the motion of a charged par-
ticle in a time-varying magnetic field of this nature stems
from the fact that a changing magnetic field produces an

induced electric field which alters the commonly expected
circular path of the particle.

The differential equation resulting from the Lorentz
force acting on the charged particle is highly non-trivial
giving rise to coupled differential equations for respec-
tive « and y components. Instead of using standard
conventional methods, we solve this problem by using
a method that relies on complex variables for the 2D
position and counterpart velocity. Complex variables are
known to simplify problems by providing a unified frame-
work for handling oscillatory and exponential behaviors,
especially in engineering and physics. They make easier
to solve integrals and differential equations that are oth-
erwise cumbersome in purely real-number form. In this
particular case, the formalism of complex variables allows
us to obtain a single second-order complex linear homoge-
neous differential equation with variable coefficients for
the complex 2D position instead of the two uncoupled
original equations. We solve this resulting differential
equation via specialized software [32]. This allows us to
obtain the position coordinates as a function of time and,
thus, we can identify the path followed by the charged
particle.

We observe interesting features in the 2D trajectory of
the charged particle as a function of the chosen initial
conditions. Non-trivial combinations of initial position
and initial velocity (when they are both nonzero) lead to
complicated paths. Overall, the ensuing paths are very
sensitive to the initial conditons. While we illustrated our
findings only for simple choices, a brief summary of most
pertinent patterns observed for more elaborate choices
of the initial conditions is provided in the following: (i)
For right-of-center nonzero initial positions, circular con-
vergence occurs sooner to the right of the origin with
a converging circle center in a right quadrant. (ii) For
a nonzero initial position, all curving motion is clock-
wise such that the positively charged particle’s path is
perpendicular to an outward B field and the orbital mo-
tion moves closer to the origin and away from its initial
position. (iii) The size of the convergent curved path
varies with the initial position of the particle, initial ve-
locity direction, as well as initial velocity magnitude of
the charged particle. (iv) For a nonzero initial posotion,
a charged particle apparently has greater difficulty in es-
tablishing final circular motion when the initial position
is above and to the right of the axis origin while its veloc-
ity vector is pointing nearly westward (left.) The particle
has opposing propensities to turn clockwise while at the
same time seeking to move toward the origin southwest of
its initial position. The resulting velocity is smaller and
the circular path diameter is subsequently smaller than
in other formations. (v) From its nonzero initial position,
a charged particle follows a path that curves and drifts
toward the origin until circular motion is established.

Because of our choice of initial conditions for the ve-
locity (being perpendicular to the magnetic field), the
resulting motion is confined to a 2D plane. If the initial
velocity of the charged particle has a component par-



allel to the solenoid’s axial magnetic field, the parallel
component results in a uniform motion along the axis
of the solenoid. In a constant, uniform magnetic field
the trajectory would have been helical. When the mag-
netic field is time-dependent, the standard picture of he-
lical motion must be reconsidered since the trajectory be-
comes a much more complicated three-dimensional (3D)
one. In particular, if the particle’s initial velocity has
a component parallel to the axial (solenoidal) magnetic
field, the motion still consists of a helical-like path, but
both the transverse and longitudinal components evolve
with time due to the changing field strength. In a time-
dependent increasing magnetic field, the charged particle
tends to spiral along the magnetic field lines, but with
time-varying characteristics, resulting in a non-uniform
helical-like trajectory that reflects both the magnetic and
the induced electric field influences. Overall, the 3D mo-
tion is still helical-like in character but becomes more
elaborate and must be described numerically or analyti-
cally with care.

As already hinted, the insights gained from this work
may be useful to plasma confinement studies [33-39]. By
adjusting the strength of the magnetic field in different
regions of the confinement device, researchers can study
how it affects plasma stability and particle loss mecha-
nisms. This can be of interest to investigating the use of
rapidly changing magnetic fields (pulses) to actively con-
trol plasma instabilities and optimize confinement. By
carefully tailoring the magnetic field, researchers can po-
tentially achieve better plasma confinement, leading to
longer fusion reaction times and higher energy output.
Furthermore, time-dependent magnetic fields like the in-
ductively increasing one that we studied in this work can
help suppress certain types of plasma instabilities that
can lead to energy loss. This is also important to numer-
ical modeling studies which are used to predict plasma
behavior under different magnetic field configurations,
helping to optimize designs before building physical ex-

periments.

At this juncture, we would like to clarify that the pri-
mary goal of this study is not to provide a direct quanti-
tative tool for controlling plasma physics in experimen-
tal fusion devices, but rather to offer a basic theoreti-
cal framework that captures essential qualitative features
of charged particle motion in time-dependent magnetic
fields. The model presented is deliberately simplified to
allow for exact or numerically precise solutions, which
can serve as benchmarks or reference cases for more com-
plex numerical studies. While the model does not include
full plasma self-consistency, collisions, or boundary ef-
fects, which are features essential in realistic plasma sim-
ulations or experimental studies, it does highlight fun-
damental mechanisms, such as the role of inductive elec-
tric fields and evolving magnetic fields, which are present
in real confinement systems. By analyzing particle be-
havior in a controlled, idealized setting, the study helps
build intuition and provides conceptual insight into how
time-varying magnetic fields affect particle dynamics, in-
sight that can inform more advanced modeling efforts.
Moreover, such theoretical approaches are valuable for in-
terpreting trends, testing computational algorithms, and
even guiding diagnostic expectations in experimental se-
tups. Future work could benefit from comparison with
more complete models or experimental data. However,
from this point of view, we see this study as a step-
ping stone that captures essential qualitative features to-
ward those directions rather than a replacement for them.
Therefore, the results of this work should be welcomed
by a broad audience of both researchers and students
working in various scientific disciplines.
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