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Abstract
This paper presents for the first time an adaptive immersed approach for level-set topology optimization using higher-order 
truncated hierarchical B-spline discretizations for design and state variable fields. Boundaries and interfaces are represented 
implicitly by the iso-contour of one or multiple level-set functions. An immersed finite element method, the eXtended 
IsoGeometric Analysis, is used to predict the physical response. The proposed optimization framework affords different 
adaptively refined higher-order B-spline discretizations for individual design and state variable fields. The increased conti-
nuity of higher-order B-spline discretizations together with local refinement enables direct control over the accuracy of the 
representation of each field while simultaneously reducing computational cost compared to uniformly refined discretizations. 
A flexible mesh adaptation strategy enables local refinement based on geometric measures or physics-based error indicators. 
These adaptive discretization and analysis approaches are integrated into gradient-based optimization schemes, evaluating 
the design sensitivities using the adjoint method. Numerical studies illustrate the features of the proposed framework with 
static, linear elastic, multi-material, two- and three-dimensional problems. The examples provide insight into the effect of 
refining the design variable field on the optimization result and the convergence rate of the optimization process. Using 
coarse higher-order B-spline discretizations for level-set fields promotes the development of smooth designs and suppresses 
the emergence of small features. Moreover, adaptive mesh refinement for state variable fields results in a reduction of overall 
computational cost. Higher-order B-spline discretizations are especially interesting when evaluating gradients of state vari-
able fields due to their higher inter-element continuity.

Keywords Topology optimization · Level-set method · Extended isogeometric analysis · Adaptive mesh refinement

1 Introduction

In general, Topology Optimization (TO) minimizes an 
objective function while simultaneously satisfying a set 
of constraints. Both the objective and the constraints are 

calculated from a set of performance measures. In its early 
days, TO results were mainly considered conceptual design 
ideas due to rough geometric representations. In contrast, 
modern TO methods aim to produce optimization designs 
that are closer to the final manufacturable design, which 
includes an accurate description of the geometry and evalu-
ation of the physical response.

With an increased interest in TO, a variety of TO 
approaches have emerged. Most notable for continuum-
mechanical problems are density-based and level-set-based 
TO approaches. Density-based TO methods are popular due 
to their simplicity and easy implementation, see Bendsøe and 
Sigmund (2004). By introducing fictitious design densities 
to interpolate material properties, this approach allows for 
the efficient use of gradient-based optimization algorithms, 
while promoting close to material-void designs. Extensions 
of density-based TO to multi-material applications have 
been presented by Bendsøe and Sigmund (2004) and Hvejsel 
and Lund (2011). Since their initial development for linear 
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elastic problems, density-based methods have been applied 
to a variety of physics, see Eschenauer and Olhoff (2001); 
Sigmund and Maute (2013); Deaton and Grandhi (2014). A 
major drawback of density-based methods is the existence 
of areas with intermediate densities at the material interface, 
both during the optimization process and in the final design. 
These intermediate regions impede the crisp definition of 
the material interface and limit the accuracy of the physical 
response. While density projection methods, see Lazarov 
and Sigmund (2011), and fine discretizations improve the 
interface representation, the evaluation of interface phe-
nomena remains challenging. To address these shortcom-
ings of density-based TO approaches, level-set-based TO 
(LS-TO) approaches have been developed. The level-set 
method defines the geometric interfaces implicitly through 
the iso-contour of a level-set function (LSF) as introduced by 
Osher (1988), and provides a crisp description of the geom-
etry. The level-set method was successfully applied to TO, 
see Wang et al. (2003); Allaire et al. (2004); Van Dijk et al. 
(2013). This work focuses on LS-TO, where the parameters 
of the discretized LSFs are treated as design variables and 
advanced by a nonlinear programming method.

TO results rely on the accuracy of the evaluation of the 
physical response, as both the objective and the constraints 
are calculated from a set of physics-based performance 
measures. Many TO applications employ numerical analy-
sis methods to approximate the physical response. In this 
work, we focus on the finite element method. Considering 
geometry representation, three types of analysis models are 
typically used for LS-TO: (i) Models using conforming, 
body-fitted discretizations aligned with material interfaces, 
see Allaire et al. (2014); Christiansen et al. (2014); Schmidt 
et al. (2024). This approach requires repeated generation of 
high-quality conformal meshes as the geometry of the design 
changes throughout the optimization process. While a reduc-
tion in computational cost may be achieved by limiting these 
re-meshing operations to areas in the vicinity of the mov-
ing interfaces, the accuracy of the finite element prediction 
strongly depends on the mesh quality. (ii) Fictitious material 
approaches, also called Ersatz material methods, operate on 
fixed meshes and represent geometry via spatially varying 
material properties. These properties are defined in terms of 
the LSF, see Wang et al. (2003); Allaire et al. (2004). While 
there are different material interpolation schemes, all of 
them inevitably face the same challenge as density-based TO 
methods, namely that the fictitious material approach cre-
ates non-physical models at the material interface, lowering 
the accuracy of the finite element analysis. (iii) Immersed 
Finite Element Methods (IFEMs) embed the geometry of 
the physical domain into a computational domain with a 
much simpler geometry, see Babuška and Melenk (1997); 
Sethian and Wiegmann (2000); Peskin (2002); Mittal and 
Iaccarino (2005). Similar to methods using a conforming 

discretization, IFEMs preserve the geometric accuracy 
afforded by LSFs and facilitate a high-fidelity prediction of 
the physical response due to efficient enforcement of bound-
ary and interface conditions, see Moës et al. (2006). Moreo-
ver, immersed methods do not require the repeated genera-
tion of high-quality body-fitted meshes. IFEMs have been 
incorporated into LS-TO by, for example, Duysinx et al. 
(2006); Burman et al. (2019); Van Dijk et al. (2013). This 
paper utilizes an immersed analysis model, a modification 
of the eXtended Finite Element Method (XFEM).

Most IFEMs rely on Lagrange polynomials for the inter-
polation of the state variable fields due to their simplicity 
and easy implementation. However, higher-order Lagrange 
polynomials are limited to a C0 inter-element continuity. 
With the development of and advances in IsoGeometric 
Analysis (IGA) by Hughes et al. (2005), B-spline basis func-
tions have been presented as an advantageous alternative to 
Lagrange basis functions. Smooth, higher-order basis func-
tions in particular, such as quadratic and cubic B-splines, 
often result in a more accurate computation of the physi-
cal response per degree of freedom (DOF) than approaches 
relying on a C0-continuous basis, see Hughes et al. (2008); 
Evans et al. (2009); Hughes et al. (2014). B-spline basis 
functions have been used for density-based TO approaches 
to discretize both the design and state variable fields, see 
Qian (2013); Wang et al. (2018); Gao et al. (2020). Moreo-
ver, IGA has been successfully employed in LS-TO by Cai 
et al. (2014); Wang and Benson (2016); Jahangiry and 
Tavakkoli (2017) for the discretization of design and state 
variable fields. These works exclusively use fictitious mate-
rial approaches to interpolate the material properties. This 
paper proposes an LS-TO framework that builds upon the 
eXtended IsoGeometric Analysis (XIGA) approach, see 
Noël et al. (2022) and Schmidt et al. (2023). The XIGA is a 
modification of the XFEM and employs B-spline basis func-
tions, whereas the XFEM uses standard Lagrange polynomi-
als. This work highlights that integrating XIGA into LS-TO 
enables a crisp representation of geometry and an accurate 
and efficient prediction of the physical performance.

Both design and state variable fields typically benefit 
from a finer discretization, as this improves the resolution 
of geometry and the accuracy of the finite element predic-
tion. This gain in accuracy typically results in higher com-
putational costs as the number of design variables and finite 
element DOFs increases. Locally refined discretizations 
provide a compromise between accuracy and computa-
tional cost, as shown for TO applications first by Maute and 
Ramm (1995); Ramm et al. (1998). In the past two dec-
ades, adaptive TO has been studied extensively. Focusing 
on density-based TO problems, Costa and Alves (2003); 
Stainko (2006); Wang et al. (2010); Nana et al. (2016); 
Nguyen-Xuan (2017) presented various adaptive refine-
ment approaches where the material interface was chosen 
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as the refinement criteria. Adaptive refinement approaches 
were employed for LS-TO by Noël et al. (2020), also refin-
ing the discretization along the material interfaces. Bruggi 
and Verani (2011) and de Troya and Tortorelli (2020) used 
error estimators as refinement criteria to improve the accu-
racy of the finite element predictions. This paper introduces 
local mesh adaptation strategies for XIGA LS-TO to increase 
both the accuracy of the geometry representation and finite 
element analysis.

To improve the computational efficiency of TO, the idea 
of exploiting separate discretizations for state and design 
variables was first explored by Maute and Ramm (1995); 
Guest and Smith (2010). Using a coarser mesh for the design 
variable field discretization, the number of design variables 
is reduced and a faster convergence of the optimization prob-
lem has been observed. To further this idea, Wang et al. 
(2013, 2014) locally refined the state and design variable 
fields independently based on geometric and error estimator 
criteria. In a previous study, Noël et al. (2020) investigated 
adaptively refined B-spline bases to approximate the design 
and state variable fields. In their work, both fields were dis-
cretized on a mesh with the same adaptive refinement. While 
the state variable field was limited to linear interpolations, 
a comprehensive comparison of higher-order interpolations 
for the design variable field was performed. This comparison 
showed that the larger support of higher-order B-spline dis-
cretizations leads to slightly smoother designs. However, this 
previous work was limited to spatial discretizations where 
both design and state variable fields are refined equally. This 
restriction inherently couples the accuracy of the geometry 
representation and finite element prediction and prevents the 
independent refinement of design and state variable fields.

This paper presents a discretization framework that over-
comes the above restriction by allowing for different adap-
tive refinements of the design and state variable fields. Local 
refinement of the individual fields is achieved through hier-
archically refined B-splines and selecting field-specific poly-
nomial orders. The individual discretizations are adapted 
based on field-specific criteria to control the accuracy of 
each field and to reduce the computational cost. The numeri-
cal quadrature of the weak form of the governing equations 
is performed on a single XIGA integration mesh. This XIGA 
integration mesh is generated by tessellating the most refined 
background mesh in a given mesh region to accurately inte-
grate the governing equations for any of the discretizations 
employed. A more detailed construction of the approxima-
tion spaces can be found in Schmidt et al. (2023).

Many LS-TO approaches rely on an initial seeding of the 
design. This often results in a bias of the final design with 
respect to the initial seeding, as shown by Van Dijk et al. 
(2013). To mitigate this bias, we adopt the density seeding 
approach presented by Barrera et al. (2020). Moreover, we 
use the regularization approach from Geiss et al. (2019) to 

mitigate oscillations in the design variable field. Rigid body 
motions of topologically disconnected material sub-phases 
are prevented by adopting the concept of selective springs, 
introduced by Villanueva and Maute (2017). The optimi-
zation problem is solved with mathematical programming 
techniques, in particular, the Globally Convergent Method of 
Moving Asymptotes (GCMMA), see Svanberg (2002). The 
sensitivity analysis is performed with the adjoint method.

The features of the proposed LS-TO framework are 
investigated with numerical examples of static, linear elas-
tic structural problems. These studies provide insight into 
the interplay between uniform and adaptive refinement of 
design and state variable fields, considering both geometry 
and physics-based refinement indicators.

The remainder of this paper is organized as follows: 
Sect. 2 provides an overview of the adaptive optimization 
strategy and a definition of the different meshes used in the 
XIGA. Section 3 expands on the XIGA model. Section 4 
summarizes the fundamentals of hierarchical B-splines and 
their integration into the XIGA model. Section 5 focuses 
on the creation of hierarchical meshes and the re-meshing 
strategy. Sections 6 outline the variational forms of the gov-
erning equation and stabilization terms used in the XIGA 
formulation. Section 7 focuses on the formulation of optimi-
zation problems, level-set regularization techniques, and the 
hole-seeding approach. Numerical examples are presented 
in Sect. 8. Section 9 summarizes the work and presents 
conclusions.

2  Overview

This work presents an LS-TO framework with locally refined 
B-spline discretizations of design and state variable fields. 
The geometry and material composition are implicitly 
described by one or multiple LSFs. The discretized design 
variable field is utilized to parameterize a scalar-valued LSF 
where the discretization coefficients serve as design vari-
ables. Additionally, LSFs may be defined by analytical func-
tions. The response is predicted by an immersed analysis 
method, the XIGA, on a non-conforming mesh. Adaptive 
mesh refinement is utilized to meet accuracy requirements 
while simultaneously reducing computational cost, using 
different discretizations for design and state variable fields. 
This section provides an overview of the optimization strat-
egy and the featured mesh adaptation. Figure 1 illustrates 
the main steps in the optimization process: (1) Optimiza-
tion from an initial design until adaptation is required, (2) 
the mesh adaptation, and (3) the restart of the optimization 
from the previous design with the new adaptively refined 
design variable field.

The discretization and analysis approaches used in 
this study differentiate between three types of meshes: 
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Hierarchically refined B-spline meshes HI , a non-conformal 
background mesh HB , and an XIGA integration mesh HX . 
The design and state variable fields are discretized on hier-
archically refined B-spline meshes HI , where I = 1,… ,NI is 
the index of the NI B-spline meshes. Each field may be dis-
cretized by a different B-spline mesh that is unique in spatial 
refinement and interpolation order. The XIGA uses a single 
non-conformal background mesh HB to immerse the geom-
etry and to create the XIGA integration mesh HX . The XIGA 
integration mesh HX is used to integrate the weak form of 
the governing equations based on the B-spline discretiza-
tions HI of the state variable fields. The non-conformal 
background mesh HB must be of sufficient polynomial order 
and refinement to represent all B-spline discretizations used 
to interpolate the state variable fields. An additional refine-
ment of the non-conformal background mesh HB allows for 
a more precise representation of curved geometries on the 

XIGA integration mesh HX without increasing the number 
of design variables or finite element DOFs.

Detailed information on the construction of the non-
conformal background mesh HB and the XIGA integra-
tion mesh HX is provided in Sects. 3.3. The construction 
of the B-spline meshes HI is detailed in Sect. 4. We utilize 
Lagrange extraction, as presented in Sect. 4.3, to compute 
nodal field representations on the non-conforming mesh 
HB for all design and state variable fields discretized on the 
B-spline discretizations HI . Details on the construction of 
all differently refined meshes are given in Sect. 5. This novel 
capability of utilizing different individual B-spline discre-
tizations for LS-XIGA TO is a primary focus of this work.

The initial meshes can be uniformly or locally refined. 
Mesh adaptation is initiated either when the material inter-
face moves into a less refined region of the non-conformal 
background mesh HB , or after reaching a given number of 

1.) Optimize 2.) Adapt mesh

3.) Restart
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Fig. 1  Overview of the optimization strategy with mesh adaptation. 
The optimization strategy consists of three steps: perform optimiza-
tion for a given number of iterations, adapt meshes based on certain 
criteria, and restart the optimization using the adapted meshes. The 
illustrated optimization problem presents four meshes: the level-set 

and displacement B-spline meshes H1 and H2 , the non-conformal 
background mesh HB , and the XIGA integration mesh HX . The first 
and second row display the level-set and von Mises stress fields, 
respectively
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iterations following the previous mesh adaptation. Although 
not explored in this work, the proposed framework allows for 
other strategies for initiating mesh adaptation, such as the 
geometry- or physics-based error exceeding a threshold. In 
the adaptation step, all meshes are adapted based on individ-
ual refinement indicator fields, which determine the level of 
mesh refinement or coarsening. This work utilizes physics-
based and geometric refinement and coarsening indicators.

Meshes presented in Fig. 1 are individually adapted based 
on two refinement indicator fields, specifically the proxim-
ity to the zero iso-contour of the LSF and areas with large 
spatial gradients in the state variable field, here identified 
by large von Mises stresses. To demonstrate the ability to 
adapt meshes individually, the level-set B-spline mesh H1 is 
refined in a band around the zero iso-contour of the LSF. In 
contrast, the B-spline discretization H2 of the state variable 
field is only refined in areas of large von Mises stresses. The 
non-conforming background mesh HB utilizes both refine-
ment indicator fields to refine the mesh. The mesh adapta-
tion step concludes by mapping the design variable field to 
the new design variable field discretization. The adaptive 
refinement of the meshes HB and HI is based on a structured 
tensor grid, which allows for a simple implementation of this 
robust and high-performing analysis framework, especially 
when compared to methods that involve adaptive refinement 
of body-fitted meshes. Nevertheless, each optimization step 
necessitates rebuilding the XIGA integration mesh HX and 
the corresponding algebraic systems.

To continue the process, the optimization is restarted 
from the previous design. The adapted meshes are used for 
the construction of the new XIGA integration mesh HX and 
the B-spline meshes HI for design and state variable fields. 
It should be noted that the adaptation of the design variable 
field discretization may result in a change in the number of 
design variables.

3  Level-set XIGA

This section outlines the basic concepts of the LS-TO 
approach and the immersed finite element method, the 
XIGA, used in this work.

3.1  Geometry description

In this work, the geometry and the material composition 
are described by one or multiple level-set fields. The level-
set method was first introduced by Osher (1988) to implic-
itly track an evolving geometry. The level-set method uses 
the iso-contour of a LSF 𝜙(x) to represent the interface 𝛤 ± 
between two phases 𝛺+ and 𝛺  as follows:

where 𝜙t is the iso-contour threshold, with 𝜙t = 0.0 being 
the most common choice. For multi-material optimiza-
tion problems, this work employs multiple LSFs 𝜙i(x) with 
i = 1,… ,Nl , where Nl is the total number of LSFs. We 
define a phase 𝛺P as the set of all spatial points x which 
have the same combination of LSF signs. A unique phase 
index P(x) is calculated through

where Hi(x) is an indicator function operating on the LSF 
𝜙i(x) and is defined as follows:

This approach allows for the definition of 2Nl phases such 
that 𝛺1    𝛺(2Nl ) = 𝛺 . One or multiple phases can 
be assigned a unique material 𝛺m or can be void, with 
m = 1,… ,Nm, where Nm is the total number of materials.

3.2  Level-set design variables

The LSFs used in this work are defined by an analytic func-
tion or discretized on a mesh using B-spline basis functions 
Bk(x):

where 𝜙k
i
 are the coefficients associated with the discretized 

LSF 𝜙h
i
.

In this work, the coefficients 𝜙k
i
 are defined as 

explicit functions of the level-set design variables 
s  = {s ∈  Ns |𝜙low  sj  𝜙up, j = 1,… ,Ns} , where Ns is 
the total number of B-spline coefficients for this discretiza-
tion; see also Van Dijk et al. (2013); Sigmund and Maute 
(2013). The design variables are constrained by an upper 
and lower bound, 𝜙up and 𝜙low , respectively.

Many TO problems employ a convolutional or PDE-
based filter to improve the numerical stability and the con-
vergence of the optimization problem, see Bourdin (2001); 
Burger (2003); Gournay (2006) and Lazarov and Sigmund 
(2011). This work utilizes higher-order B-spline discre-
tizations. The increased smoothness and larger support of 
higher-order B-spline basis functions provide an equivalent 
effect to filtering and thus an additional filter is not required. 

(1)
 (x) >  t,  x ∈ "+

 (x) <  t,  x ∈ "−

 (x) =  t,  x ∈ # ±

,

(2)P(x) =

Nl∑
i=1

2i−1Hi(x),

(3)Hi(x) =

{
0,  i(x)   t

1,  i(x) >  t.

(4)𝜙h
i
(x) =

∑
k

Bk(x)𝜙
k
i
,
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Equally to convolutional and PDE-based filter approaches, 
a coarse, higher-order B-spline discretization does not nec-
essarily suppress small features, see Villanueva and Maute 
(2014) and Coffin and Maute (2016). However, it promotes 
smoother shapes and bulkier features, see Noël et al. (2020). 
We demonstrate the effect of higher-order B-spline basis 
functions in combination with a coarser mesh in detail in 
our first example, see Sect. 8.1.

Contrary to classical approaches wherein the LSF is 
updated by solving the Hamilton-Jacobi equation, here the 
coefficients of the level-set field are the design variables that 
are updated by mathematical programming techniques.

3.3  The extended isogeometric analysis

In this work, we use the XIGA to discretize the state variable 
fields on the non-conforming background mesh. The XIGA 
is a modification of the XFEM and utilizes the advantages of 
B-spline basis functions, whereas the XFEM uses standard 
Lagrange polynomials. The XFEM was first developed for 
crack modeling by Belytschko and Black (1999). Since then, 
its applications have been extended to material modeling, see 
Belytschko et al. (2009), and design optimization, see Van 
Dijk et al. (2013), among others. Basis functions are defined 
on a background mesh to construct a non-conforming finite 
element approximation space. We follow the basic concepts 
of a generalized Heaviside enrichment strategy, introduced 
by Terada et al. (2003) and later adopted for TO by Makh-
ija and Maute (2014). The non-conforming finite element 
approximation space with a total of Nb basis functions is 
locally enriched to avoid artificial coupling caused by the 
same basis function interpolating in topologically discon-
nected material domains 𝛺m , see Andreasen et al. (2020).

This enrichment strategy for a single basis function is 
illustrated in Fig. 2. The problem consists of two materials, 

𝛺1 and 𝛺2 . The support of the basis function is depicted by 
a dashed red line. The basis function is three times enriched 
as it interpolates into three topologically disconnected 
regions of the two materials. This approach has no limitation 
with regard to the number of materials or the spatial com-
plexity of the intersection configurations. For the definition 
of the enriched basis, an indicator function 𝜓 l

j
(x) , defined as 

the two-element set {0, 1} , is introduced. This function 𝜓 l
j
(x) 

is used to select the active enrichment level l for the basis 
function j at the spatial coordinate x . The component of a 
vector-valued state variable field uh(x) is approximated by 
the enriched finite element space as follows:

where Lj is the maximum number of enrichment levels for 
basis function j. The B-spline basis functions Bj are evalu-
ated at the spatial coordinate x , and cl

i,j
 are the enriched basis 

function coefficients for the basis function j, the enrichment 
level l, and the vector component i. The indicator function 
ensures satisfaction of the Partition of Unity (PU) principle, 
see Babuška and Melenk (1997), as only one set of enriched 
basis coefficients is used to interpolate the solution.

The XIGA is suited to model intra-element discontinui-
ties of state variables within a non-conforming background 
element. In this work, boundary or interface conditions are 
enforced weakly using Nitsche’s method, see Nitsche (1971) 
and Burman (2012). The accuracy of our analysis model 
has been demonstrated in Noël et al. (2022) and Schmidt 
et al. (2023), which suggest that the employed XIGA method 
achieves the same level of accuracy as traditional body-fitted 
FEM analysis.

(5)uh
i
(x) =

Nb 
j=1

⎛
⎜
⎜⎝

Lj 
l=1

𝜓 l
j
(x)Bj(x)c

l
i,j

⎞
⎟
⎟⎠
,

Ω1

Ω2

B

Ω1

Ω2l = 1

B
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l
=
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B

Fig. 2  Basis function enrichment for the two material problem, 𝛺1 and 𝛺2 . The support of the basis function B is delineated by a dashed red line. 
The basis function is three times enriched based on the three topologically disconnected regions of the two phases into which it is interpolating
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3.3.1  XIGA integration mesh

The XIGA decomposes background elements intersected 
by the zero iso-contour of the LSFs into material subdo-
mains and identifies the material interfaces between them. 
The weak form of the governing equations is integrated 
over these subdomains and interfaces. In this work, to 
initiate the decomposition process, the quadrilateral or 
hexahedral background elements of the mesh HB , which 
are intersected by geometric interfaces, are first subdivided 
into four triangular integration elements in 2D and inter-
sected hexahedral background elements are subdivided 
into 24 tetrahedral integration elements in 3D. Sequen-
tially processing all LSFs, the resulting triangles and tet-
rahedrons that are also intersected by an LSF are decom-
posed into smaller triangles and tetrahedrons with their 
edges and faces conforming to the geometric interfaces.

To increase the robustness of the geometry decomposi-
tion within an intersected background element, we assume 
that edges are only intersected once and only if the level-
set values of the endpoints [I, J] are on opposite sides of 
an interface, i.e., (  "h

i
(I)  "t)(  "h

i
(J)  "t) < 0.

The intersection location is computed by finding the 
root of the given LSF along the edge. For this, a multi-
linear interpolation  "h

i
 on the background element is used. 

Constructing vertices at these root points and connecting 
them with planar edges and faces forms the piecewise lin-
ear approximation of the interfaces.

For coarse meshes HB , the geometric approxima-
tion error for the interface can be significant, as is illus-
trated in Fig. 3. On the left, an LSF is discretized on a 
2  3 mesh utilizing a quadratic polynomial order. The 
iso-contour depicted in black represents the geometry. 
The figure in the middle illustrates the resulting XIGA 
integration mesh HX constructed based on a 2  3 non-
conformal background mesh HB . This XIGA integration 
mesh HX poorly describes the geometry defined by the 
level-set iso-contour. The geometric representation of the 

XIGA integration mesh HX is improved through additional 
refinement of the non-conforming background mesh HB , 
as illustrated by the picture on the right.

In this work, individual state variable fields may be 
discretized by their own, individual approximation space. 
Therefore, each approximation space must be enriched 
separately. The numerical integration of the governing 
equations, however, is performed on a single XIGA inte-
gration mesh HX . This XIGA integration mesh HX holds 
a set of enriched extraction operators for every enriched 
discretization available.

4  Hierarchical B-splines

In this work, we discretize the design and state variable fields 
by truncated hierarchical B-spline (THB) bases. In this sec-
tion, the basic concepts of B-spline basis functions in one and 
multiple dimensions are outlined first. Next, we summarize the 
concept of Lagrange extraction used to link the smooth spline 
basis functions to the Lagrange basis of the non-conformal 
background mesh HB . Additional details on the THB-spline 
implementation, Lagrange extraction, and various convergence 
studies can be found in Schmidt et al. (2023).

4.1  B-spline basis functions

Starting from a knot vector 𝛯 = {𝜉1, 𝜉2,… , 𝜉n+p+1} , for which 
𝜉    and 𝜉1  𝜉2    𝜉n+p+1 , univariate B-spline basis 
functions Ni,p(𝜉) of degree p are constructed recursively start-
ing from the piecewise constant basis function:

and using the Cox-de Boor recursion formula in de Boor 
(1972) for higher degrees, p > 0:

(6)Ni,0(𝜉) =

{
1, if 𝜉i  𝜉  𝜉i+1,
0, otherwise,

B-Spline mesh H1 and LSF Integration mesh HX Refined integration mesh HX

Fig. 3  Illustration of a quadratic level-set field discretized on a 2  3 mesh H1 (left). The resulting XIGA integration meshes HX for a 2  3 and 
4  6 non-conforming background mesh HB are presented in the middle and right picture, respectively
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The corresponding B-spline basis is Cp 1 continuous at every 
knot in the interior of the domain for  i <  i+1 , while it is 
C  continuous in between the knots. A knot span is defined 
as the half-open interval [𝜉i, 𝜉i+1) . Within this context, an 
element is defined as a non-empty knot span. Equivalently, 
elements are precisely the non-overlapping subdomains over 
which the basis is C .

Tensor-product B-spline basis functions Bp(𝝃) of spatial 
dimension d are obtained by applying the tensor product to 
univariate B-spline basis functions of each parametric direc-
tion m = 1,… , d . The d knot vectors are defined as 
𝛯m = {𝜉m

1
, 𝜉m

2
,… , 𝜉m

nm+p+1
} with nm being the number of basis 

functions in the parametric direction m:

where the position in the tensor-product structure is given 
by the index i = {i1,… , id} . A B-spline space V is defined 
as the span of B-spline basis functions.

4.2  Truncated hierarchical B-splines

This work utilizes THB-spline bases to discretize state and 
design variable fields due to their strong stability and PU prop-
erty, see Giannelli et al. (2012). The THB-spline bases are 
constructed based on a hierarchical mesh of depth n defined 
as a sequence of subdomains 𝛺l (see Fig. 4):

where each subdomain 𝛺l is a refined sub-region of 𝛺l 1 . 
Consequently, 𝛺 is equal to the union of all the subdomains 
𝛺l . Moreover, it relies on the hierarchical refinement prop-
erty of B-splines which enables the representation of a basis 
function Bl , part of Bl and defined on the domain 𝛺l in terms 
of the finer basis of level l + 1:

where cl+1
Bl+1 is the coefficient associated with a basis function 

Bl+1.
To build THB-spline bases, a sequence of tensor-product 

B-spline spaces is introduced where each B-spline space Vl 
has a corresponding basis Bl:

(7)
Ni,p(𝜉) =

𝜉  𝜉i
𝜉i+p  𝜉i

Ni,p 1(𝜉)

+
𝜉i+p+1  𝜉

𝜉i+p+1  𝜉i+1
Ni+1,p 1(𝜉).

(8)B
i,p(𝝃) =

d∏
m=1

Nm
im,p

(𝜉m),

(9) n 1 ⊆  n 2 ⊆ ⊆  0 =  ,

(10)Bl =
∑

Bl+1 B
l+1

cl+1
Bl+1

(
Bl
)
Bl+1,

(11)V
0  V

1  V
2  V

3    V
n.

The THB-spline basis T  is constructed recursively based 
on the sequence of truncated B-spline bases Bl that span the 
domains 𝛺l . In an initial step, the basis functions defined 
on the coarsest level, l = 0 , are collected and assigned to 
T
0 . The THB-spline basis Tl+1 is constructed by taking the 

union of the truncated basis functions trunc l+1(B) of Tl and 
all basis functions B in Bl+1 whose support lies in 𝛺l+1 . The 
recursive algorithm of Garau and Vázquez (2018) reads

where the truncation operation of basis function Bl is defined 
as follows (Giannelli et al. (2012); Garau and Vázquez 
(2018)):

(12)
⎧
⎪
⎨
⎪⎩

 0 = : 0
 l+1 = : { trunc l+1(B) | B in  l ∧ supp (B)}

∪ {B ∈ l+1 | supp (B) ⊆ 𝛺l+1},
for l = 0,… , n − 2,

(13)

trunc l+1(Bl) =
∑

Bl+1 ∈ l+1,
supp (Bl+1) ⊈ 𝛺l+1

cl+1Bl+1
(
Bl) Bl+1,

= Bl −
∑

supp (Bl+1)⊆𝛺l+1
cl+1Bl+1

(
Bl) Bl+1.

Fig. 4  Hierarchically refined mesh
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4.3  Lagrange extraction

This work allows for differently refined THB-spline dis-
cretizations for individual design and state variable fields. 
These discretizations do not conform with material inter-
faces or external boundaries. To simplify the formulation 
and evaluation of the weak form of the governing equations, 
numerical integration is performed on a unique XIGA inte-
gration mesh HX which, as discussed in Subsection 3.3.1, is 
generated by tessellation of the background mesh HB . The 
non-conforming background mesh HB may be more refined 
and may use basis functions of a different polynomial order 
than the B-spline discretizations HI . The extraction process 
of interpolating the B-spline basis associated with one of the 
meshes HI on the basis of the mesh HB is shown in Fig. 5.

Following the work of Schillinger et al. (2016); D’Angella 
et al. (2018) and Schmidt et al. (2023), “extraction” is used 
to link the B-spline bases to the C0 Lagrange bases1. This 
allows for the use of a standard Lagrange finite element 
implementation to compute the elemental contributions to 

Jacobian and residual, while a B-spline discretization HI is 
used to approximate the physical response. The THB-spline 
basis functions Bk defined on a background element of the 
mesh HI interpolated using the Lagrange basis functions 
defined on an equally or more refined element of the mesh 
HB:

The extraction operator Tik employed in this work takes the 
following form:

where TL , Th , and Tp are a Lagrange extraction operator, a 
h-refinement extraction operator, and a p-coarsening extrac-
tion operator, respectively. These operators are described in 
detail as follows.

The Lagrange extraction operator TL enables an element-
wise representation of THB-spline basis functions in terms 
of Lagrange shape functions as

where Bk is the kth THB-spline basis function, NL
j
 are the 

Lagrange shape functions over the element, 𝜉j are the loca-
tions at which the Lagrange shape functions NL

j
 are interpo-

latory, and TL
jk
= Bk(𝜉j).

Similarly, the h-refinement extraction operator Th allows 
for the representation of Lagrange shape functions over each 
element in terms of Lagrange shape functions over a more 
refined element as

where  NL
l
 are the Lagrange shape functions over the more 

refined element,  "l are the locations at which the Lagrange 
shape functions  NL

l
 are interpolatory, and Th

lj
= NL

j
(  "l).

Lastly, the p-coarsening extraction operator Tp enables 
the representation of Lagrange shape functions of order p 
over each element in terms of Lagrange shape functions of 
order lower than p as

where  NL
i
 are the lower-order Lagrange shape functions,  "i 

are the locations at which the Lagrange shape functions  NL
i
 

are interpolatory, and Tp

il
= NL

l
(  "i) . Note that in this case the 

Lagrange extraction operation is not exact, i.e., the space 
spanned by the Lagrange basis function is not the space 
spanned by the B-spline bases. When using this operator 

(14)Bk(𝝃) =
∑
i

Tik  NL
i
(𝝃).

(15)Tik =
∑
j

TL
jk

∑
l

Th
lj
T
p

il
,

(16)Bk(𝝃) =
∑
j

Bk(𝜉j)N
L
j
(𝝃) =

∑
j

TL
jk
NL
j
(𝝃),

(17)NL
j
(𝝃) =

∑
l

NL
j
(  "l)  NL

l
(  "l) =

∑
l

Th
lj

 NL
l
(  "l),

(18)NL
l
(𝝃) =

∑
i

NL
l
(  "i)  NL

i
(  "i)  

∑
i

T
p

il
 NL
i
(  "i),

−1 0 1 20

1

−1 0 1 2
0

1

−1 0 1 2
0

1

−1 0 1 20

1

TL

Th Th

Tp Tp

Bl

Nl

Nl+1

Nl+1

p = 2

p = 2

p = 2

p = 1

Fig. 5  Illustration of the extraction process of a coarse quadratic 
B-spline basis onto a more refined, linear Lagrange basis for a single 
highlighted B-spline element

1 The space spanned by the B-Spline basis of polinomial order 
pB-spline defined on a given mesh is a subspace of the space spanned 
by the Lagrange basis of order pLagrange  pB-spline on the same mesh. 
The Lagrange extraction is exact, i.e., the extracted field expressed in 
the Lagrange basis retains a Cp 1 continuity by construction.
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in a projection, one must guarantee a sufficiently refined 
Lagrange mesh compared to the B-spline discretization for 
the resulting linear system to be of full rank.

Our framework limits the background element refine-
ment to a factor of two, as presented in Subsection 5.2.1. 
This consequently limits the number of h-refinement 
extraction matrices to four in 2D and eight in 3D. These 
matrices can be precomputed and efficiently selected 
exploiting the polytree data structure presented in the 
following section.

5  Hierarchical mesh

TO problems often lead to small geometric features with 
large surface curvatures and areas with large spatial gradi-
ents of the state variables. To locally resolve the associated 
design and state variable fields while preventing a significant 
increase in computational cost, this work utilizes individual, 
locally refined B-spline discretizations HI . We adopt the 
adaptive mesh generation tool presented in Schmidt et al. 
(2023). In this section, we discuss local refinement strategies 
employed in this work.

5.1  Adaptively refined meshes

This work utilizes locally refined meshes for the construction 
of B-spline discretizations HI and the non-conformal back-
ground mesh HB . All refined meshes are based on the same, 
initial tensor grid with a refinement level of lm=0 . Higher 
refinement levels lm+1 > lm are created recursively by locally 
subdividing elements of refinement level lm into four equal-
sized rectangles in 2D and eight equal-sized hexahedrons 
in 3D, respectively. This subdivision can be expressed via 
a polytree data structure, that is a quadtree in two and an 
octree in three dimensions. More implementation details for 
a memory and computationally efficient data structure can 
be found in Schmidt et al. (2023). Considering an element 
of level lm , the next coarser element of level lm 1 is referred 
to as its parent, and the refined elements of level lm+1 as its 
children. The polytree data structure enables an efficient and 
unique identification of parents and children. This is particu-
larly useful when computing the extraction operators and for 
the adaptation of the meshes outlined below.

5.2  Local mesh adaptation strategies

Algorithm 1  Marking of elements for refinement

1: for Meshes HI do
2: for Elements He

B do
3: Get RO for element He

B
4: He

I = He
B

5: while He
I does not exist in HI do

6: He
I = parent of He

I
7: end while
8: if RO is refine and l = lHI

max then
9: Set RO to hold
10: end if
11: if RO is refine then
12: Mark He

I for refinement
13: else if RO is hold then
14: if l > l0 then
15: Mark parent of He

I for refinement
16: else
17: Do nothing
18: end if
19: else if RO is coarsen then
20: if l > l1 then
21: Mark parent of parent of He

I for refinement
22: else
23: Do nothing
24: end if
25: else if RO is drop then
26: Do nothing
27: end if
28: end for
29: for Max levels of refinement for HI do
30: Apply Algorithm 2
31: end for
32: end for

Algorithm 2  Perform mesh refinement

1: Collect marked He
I into queue for refinement

2: while Changes in refinement queue do
3: for All He

I in queue for refinement do
4: Apply Algorithm 3 Refinement buffer
5: Collect marked He

I in queue for refinement
6: end for
7: end while
8: Refine all marked elements

As the design evolves during the TO process, the discre-
tizations of state and design variable fields are repeatedly 
adapted, i.e., locally refined. Refinement criteria such as 
the proximity to material interfaces and physics-based 
error estimators are considered to determine regions where 
local refinement or coarsening is desired. Refinement is 
performed for the non-conforming background mesh HB 
and the B-spline meshes HI with a corresponding mesh 
adaptation strategy. The refinement criteria in this work 
are defined by either nodal or elemental, proximity to 
material interfaces and physics-based estimator fields. All 
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fields are represented on the non-conformal background 
mesh HB and are referred to as refinement indicator fields.

For each refinement indicator field, a Refinement Opera-
tion (RO) is assigned to each element He

B
 of the current non-

conformal background mesh HB based on the specific refine-
ment criteria. ROs are either refine, hold, coarsen, or drop 
and are used to adapt each mesh HB and HI individually. The 
mesh adaptation is then facilitated in a three-step process. i) 
Find the first existing parent element He

I
 with respect to the 

non-conformal background mesh element He
B
 , as the non-

conformal background mesh HB may be more refined than 
the B-spline mesh HI . The RO is then applied to this element 
H

e
I
 . This search is facilitated by the polytree data structure 

mentioned earlier. ii) Elements of the polytree of the cur-
rent mesh HI are marked for refinement based on the ROs 
of the elements He

I
 . This marking procedure is explained in 

detail below. iii) A new instantiation of mesh HI is created 
by refining all marked elements starting at the coarsest level 
lm=0 and recursively creating their children lm+1 > lm until all 
marked elements are refined. Note that this process generates 
a new mesh HI which may not include previous elements if 
they are not created by the new refinement information. This 
effectively results in a coarsening effect after the mesh adap-
tation. The mesh generation process is described in more 
detail in Schmidt et al. (2023).

The ROs are summarized in Algorithm 1. Based on the 
type of RO for element He

I
 , one of the following marking 

procedures is executed. A refine RO marks the element He
I
 

for refinement. A hold RO marks the parent of the element 
H

e
I
 for refinement, and a coarsen RO marks the parent’s par-

ent for refinement. In addition, all parents of marked ele-
ments are automatically marked for refinement. Examples of 
the refine and hold ROs are presented in Fig. 6. A drop RO 
does not trigger any marking for refinement. The presented 
framework does not allow for coarsening of elements on the 
coarsest refinement level l0 . Moreover, each mesh HI may 

have an assigned maximal lHI
max and minimal refinement level 

l
HI

min
 . These maximal and minimal refinement levels may be 

adjusted throughout the optimization process.

5.2.1  Mesh regularity requirements

Locally refined B-spline meshes HI are utilized to construct 
THB-spline bases, see Sect. 4. This requires the considera-
tion of additional mesh regularity requirements. The size 
difference between adjacent elements in a refined mesh is 
limited to a factor of four in 2D and eight in 3D. Further-
more, all neighbor elements inside a so-called buffer zone 
of an element on level l must be of level l  1 or higher. The 
buffer range d buffer for a particular element is calculated by 
multiplying the element size with a buffer parameter b buffer . 
When creating a B-spline basis, the width of the buffer zone 
must be greater than or equal to the support size of the inter-
polation functions. In this work, each state variable field 
is interpolated with an individual interpolation order p. To 
satisfy the mesh regularity requirement for all interpolation 
functions, the buffer parameter must be chosen such that 
b buffer  pmax , where pmax is the maximal polynomial degree 
of all used B-spline bases. The mesh refinement procedure 
for enforcing a buffer zone is summarized in Algorithm 3. 
The algorithm is applied to each element in HB and HI ini-
tially marked for refinement in Step 2 of Algorithm 2 and 
starts by determining its parent element. The refinement sta-
tus of the parent’s neighbors, i.e., elements within the buffer 
range of the considered parent, is checked. If these neighbors 
are not marked for refinement, the distance dmax between the 
considered parent element and its neighbors is calculated. If 
the distance dmax is smaller than the buffer range d buffer , the 
neighbor elements are marked for refinement. The algorithm 
is then applied recursively to all newly marked neighbor ele-
ments until no further elements are marked for refinement.

non-conformal mesh HB

H0
B

H1
B

H2
B

current B-spline mesh H1

H0
1

H1
1

H2
1

current B-spline mesh H1

H0
1

H1
1

H2
1

new B-spline mesh H1

H0
1

H1
1

H2
1

i) Transfer RO
to mesh H1

ii) Mark ele-
ments He

1 for
refinement

iii) Perform
refinement of
marked ele-
ments

Fig. 6  Illustration of the mesh adaptation strategy. Non-conformal 
background mesh HB with refine RO (red) and hold RO (blue). Trans-
fer of ROs to the current B-spline mesh H1 . Subsequently, elements 

of B-spline mesh H1 are marked for refinement based on the RO 
(green). A new B-spline mesh H1 is generated
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Algorithm 3  Applying mesh regularity requirements

1: He
I marked for refinement in Algorithm 2

2: Get parent
3: Get parent’s neighbors in half buffer range dbuffer/2
4: if Neighbor exists and not marked for refinement then
5: Calculate distance dmax between parent and neighbor
6: if dmax < dbuffer then
7: Mark neighbor for refinement
8: Apply refinement buffer algorithm 3 for neighbor
9: end if
10: end if

6  Structural analysis

The LS-TO approach presented in this work is applicable 
to a broad range of physical systems. We focus here on 
structural topology optimization problems. This section 
presents the variational form of the linear elastic govern-
ing equations. The state variable field, i.e., the displace-
ment field, is used to compute optimization performance 
measures such as total strain energy and maximal stress. 
This section presents the computation of the smooth 
stress field in this XIGA TO framework. We will recall 
the selective structural springs approach for material-void 
TO problems to suppress rigid body motion of topologi-
cally disconnected regions that may appear throughout the 
optimization process. Further, we outline the definition 
of the physics-based error estimator which is used for the 
adaptation of the hierarchical mesh.

6.1  Variational form of governing equations

Following a Galerkin approach, we define the solu-
tion spaces U = U

1  U
2  …  U

Nm and test spaces 
V = V

1  V
2  …  V

Nm where the spaces Um and Vm are 
Hilbert spaces over the domain 𝛺m:

where um is the displacement field and vm the test function 
for material domains m = 1,… ,Nm.

The weak form of the total residual with stabilization 
and boundary terms is decomposed into the following five 
contributions:

The weak form of the linear elastic governing equations RU 
is defined as 

(19)
U

m
h
= {um

h
 
(
H1(𝛺m)

)d
},

V
m
h
= {vm

h
 
(
H1(𝛺m)

)d
},

(20)R = R
U +R

N +R
G +R

S = 0.

The Cauchy stress tensor is denoted by 𝝈(um) = D
m𝜺m with 

D
m being the constitutive tensor, and 𝜺m the elastic strain 

tensor of material m. The elastic infinitesimal strain 𝜺m is 
computed by 𝜺m = 1

2

(
 (um) +  (um)T

)
 . Traction forces, tN , 

are applied on the Neumann boundary, 𝛤m
N

.
The residual is augmented with boundary and stabili-

zation terms. To weakly enforce Dirichlet boundary and 
interface conditions, the residual in Eq. (21) is augmented 
with Nitsche’s method, as introduced in Nitsche (1971) and 
Embar et al. (2010): 

where the jump operator is defined as [[ ]] = ( )m  ( )n and 
the averaging operator is defined as { } = 𝛾m( )m + 𝛾n( )n . 
The parameters 𝛾𝛤  , 𝛾m , and 𝛾n control the accuracy of 
enforcing the boundary and interface conditions.

For interface conditions, continuity of the displacement 
fields and balance of tractions must be satisfied at all inter-
faces 𝛤m,n = 𝛺m  𝛺n  ∅ . We follow the work of Anna-
varapu et al. (2012) and define these constants as 

where Em is the Young’s modulus of material m and the 
operator meas( ) measures the volume or area of the respec-
tive elemental subdomains or interface sections. The user-
defined penalty parameter c𝛤  determines how strongly the 
condition is enforced.

For Dirichlet boundary conditions, ( )n = ( )D is the value 
imposed on the Dirichlet boundary 𝛤m

D
 and the average stress 

simplifies to the stress in the material m, i.e., 𝛾m = 1 and 
𝛾n = 0 . We define 𝛾𝛤 = c𝛤Em h , where h is the edge length 
of the intersected elements. The weak enforcement of Dir-
ichlet and interface conditions with Nitsche’s method does 
not impact the optimal convergence rate of the analysis, see 
Noël et al. (2022) and Schmidt et al. (2023).

Face-oriented ghost stabilization is used to mitigate 
numerical instabilities caused by basis functions with 
small support. This may occur when an interface moves 
close to the boundary of the support of an interpolat-
ing basis function. While such behavior may result in 

(21)
R

U =
 
m

∫𝛺m

𝜺(vm)  𝝈(um) d𝛺

−
∑
m ∫𝛤m

N

v
m

 tN d𝛤 .

(22)

R
N =

∑
𝛤m,n

(
 ∫𝛤m,n

[[v]]  {𝝈(u)  n𝛤 }d𝛤

 ∫𝛤m,n

{𝝈(v)  n𝛤 }  [[u]] d𝛤

+𝛾𝛤 ∫𝛤m,n

[[v]]  [[u]] d𝛤

)
,

(23)
𝛾 = 2c 

meas ( m,n)

meas (Ωm)∕Em +meas (Ωn)∕En
,

𝛾m = meas (Ωm)∕Em

meas (Ωm)∕Em+meas (Ωn)∕En
,
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ill-conditioning of the linear system, it may also result in 
imprecise spatial gradients, see de Prenter et al. (2017, 
2019). We follow the work of Burman and Hansbo (2014) 
and augment the residual contribution of intersected ele-
ments with the following face-oriented ghost stabilization 
term, penalizing the jumps in spatial gradients across ele-
ment faces:

where F is an element face in the set Fm
cut

 , which collects all 
faces between any two adjacent B-spline elements where at 
least one of the two elements is intersected. The parameter 
 k is defined as  k = 2(p  1) + 1 . The outward normal of the 
face F is denoted by nF . The penalty parameter 𝛾G allows for 
control over the influence of the ghost penalty term. Due to 
the application of Cp 1 continuous THB-spline bases, only 
jumps in gradients of order p must be penalized. Further 
details on the penalty term can be found in Burman and 
Hansbo (2014) and Noël et al. (2022) where a detailed study 
on the choice of 𝛾G is conducted. Based on this work, we 
choose a penalty parameter 𝛾G = 0.001.

6.2  Suppression of rigid body modes

Solid-void LS-TO problems may create topologically detached 
material regions at any point throughout the optimization pro-
cess. Rigid body motions of such regions result in a singular 
linear system. These regions must be stabilized to prevent a 
rank deficient linear system. We adopt the selective structural 
springs approach presented by Villanueva and Maute (2014, 
2017). This approach attaches distributed springs only to topo-
logically detached material regions. These regions are iden-
tified by solving an auxiliary diffusion-convection problem 
for the indicator field 𝜃 , which is projected via a Heaviside 
function to zero or one, i.e.,  " = 0  in regions connected to the 
mechanical support and  " = 1 in detached material regions. 
The contribution of this rigid body mode suppression approach 
to the elastic residual in Eq. (20) reads

where rs is the spring stiffness and is chosen to be rs = 10 4 . 
The projected indicator field  " allows for the stabilization 
of detached material regions while effectively deactivating 
the residual contribution for non-detached material regions.

(24)
R

G =
∑
m

∑
F Fm

cut

∫F

 G Emhk̃ [[∇p
v
m

 nF]][[∇
p
u
m

 nF]]d# ,

(25)R
S =

∑
m

∫ m

v
m
u
m rs

Em

h2
#̄ d ,

6.3  XIGA-informed stress projection

Adaptively refined discretizations are of particular inter-
est in stress-based TO due to the accuracy requirements 
of the stress computation. Especially in areas with large 
displacement gradients, adaptive refinement leads to a 
more accurate prediction of the displacement gradients. 
The calculation of accurate gradient-based fields, such 
as stresses, is often challenging. A post-processing step, 
such as stress smoothing, is typically required for C0 con-
tinuous basis functions which include the linear B-spline 
basis functions studied in this work. Moreover, even 
Cp 1 continuous bases might result in inaccurate gradi-
ents along the material boundary and interface due to 
basis functions with a small support. To compute smooth 
stresses, we adopt the global stress projection approach 
presented by Sharma and Maute (2018). The fundamental 
idea is to project an elemental stress measure predicted 
by the displacement field via the constitutive equations 
onto a scalar stress field. The face-oriented ghost stabili-
zation approach outlined in the previous subsection pro-
vides additional stabilization for the stress field and pre-
vents overestimation of stresses due to the penalization 
of jumps in stresses across element faces, see Sharma and 
Maute (2018). The scalar stress field measure is denoted 
by 𝜏m and the corresponding test function by 𝜒m . The 
von Mises stress is an example of a frequently used stress 
measure. The weak form augmented by a face-oriented 
ghost stabilization reads 

where the scalar stress measure C is a function of the com-
ponents of the Cauchy stress tensor.

6.3.1  A priori error estimator

Error estimators are used to identify areas with inaccurate 
gradients which cause inaccurate stress predictions. For 
simplicity, we adopt an a priori error estimator approach 
inspired by Zienkiewicz and Zhu (1992) and compute an 
elemental error indicator field. This field identifies regions 
with large displacement curvatures by calculating the differ-
ence between the smoothed stress 𝜏m and the displacement-
based stresses C(um) . The elemental least squares error is 
calculated as follows:

(26)

0 = R
 +R

G  =
∑
m

(
∫"m

#m( m  C(um)) d" +

∑
F∈F cut

∫F

$ hk̃ [[∇p#m
 nF]][[∇

p m  nF]] d&

)
,
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We will use this error estimator as a refinement indicator to 
adaptively refine or coarsen a discretization. Without loss of 
generality, a variety of other error estimators may be used for 
the adaptation of the mesh, see for example Verfürth (1994).

7  Explicit level-set topology optimization

This section presents the utilized optimization formulation. 
Additionally, we recall the level-set regularization and hole-
seeding strategies employed in this work.

7.1  Optimization problem formulation

We study multi-objective optimization problems that include 
minimal compliance designs subject to a mass constraint 
and mass minimization subject to a stress constraint. These 
optimization problems are formulated as 

where Z(s,u(s)) is the weighted sum of the compliance S 
and mass M evaluated over the solid domain and defined as

The initial strain energy and mass are denoted by S0 and M0 , 
respectively. The compliance and mass objective contribu-
tions are weighted with the factors cS and cM . To reduce 
spatial oscillations of the material interface, we add a perim-
eter contribution Pp to the objective. Furthermore, the objec-
tive is augmented by a regularization term P𝜃 . The purpose 
of the latter term will be explained in Sect. 7.2. The latter 
two contributions to the objective are normalized by their 
respective reference values P0

p
 and P0

𝜃 . The weighting factors 
cPp

 and cP𝜃
 control the perimeter penalty and regularization 

contributions. In Makhija and Maute (2014) and Geiss et al. 
(2019), it was shown that choosing these weights in the 
range of 10 2 provides a good compromise, i.e., a well-posed 
optimization problem with a desired, smooth interface 
geometry and a well-regularized level-set field is obtained, 
while the influence on the mechanical objective remains 
minimal.

In this work, we consider constraints on the mass gM and 
on the stress g𝜏 . The mass constraint gM is formulated as

(27)Fele =
 
𝛺e(C(u

m)  𝜏m)2 d𝛺

 
𝛺e d𝛺

.

(28)min
s

Z(s,u(s)) + cPp

Pp(s)

P
0
p

+ cP𝜃

P𝜃 (s)

P
0
𝜃

s.t. g(s,u(s))  0,

(29)Z(s, u(s)) = cS
S(s,u(s))

S
0

+ cM
M(s)

M
0
.

The stress constraint g𝜏 is formulated as

where 𝜏ref is the allowed von Mises stress. We choose an 
exponent q = 2 as it provides a continuous smooth gradient. 
Note that we do not impose any restrictions on the feature 
size to allow for the formation of small geometric features.

The design sensitivities are computed by the adjoint 
approach, see Sharma et al. (2017) and Noël et al. (2020).

7.2  Level-set regularization

The LS-TO approach may suffer from spurious oscillations 
of the LSF, see Geiss et al. (2019). We adopt the regulari-
zation scheme presented by Geiss et al. (2019) to create a 
smooth LSF and to control the spatial gradients at the mate-
rial interface, improving the stability and convergence of 
the optimization problem. This regularization scheme aims 
to minimize the difference between the LSF and a globally 
defined target distance field  " . The spatial gradient of the 
target field, projected onto the interface normal, is uniform 
along the material interface, and the target field assumes an 
upper or lower bound value away from the material inter-
face. The target field,  " , is constructed from a distance field 
whose computation is based on the heat method of Crane 
et al. (2013) and truncated via a sigmoid function.

Convergence of the LSF to the target field is promoted 
by adding a regularization contribution P𝜃 to the objective, 
penalizing the squared difference between the LSF 𝜙 and the 
target field  " , as well as their gradients:

where 𝜙Bnd is the level-set bound value. Following the work 
of Barrera et al. (2020), the weights w𝜙 and w 𝜙 allow for 
a customized regularization in the vicinity and away from 
the interface.

7.3  Hole-seeding via the density method

Classic LS-TO relies exclusively on shape sensitivities along 
the material interfaces to evolve the design. This allows for 
material domains to merge, split, or vanish. However, nucle-
ation of new material or void regions within another material 
is not possible. As a result, the optimized designs are often 
highly dependent on the initial guess, see Van Dijk et al. 
(2013). Density-based TO approaches do not experience this 

(30)gM(s) =
 
𝛺 d𝛺

M
0
 1.

(31)g𝜏(s,u(s)) = ∫𝛺

max((
𝜏

𝜏ref
 1), 0)q d𝛺,

(32)P =
 
" w#

(
#  #̃

)2
d"

 
" #2

Bnd
d"

+
 
" w∇#|∇#  ∇#̃|2d"

 
" d"

,
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limitation but may produce results with intermediate, non-
physical densities.

In this work, we adopt the single-field hole-seeding 
approach presented by Barrera et al. (2020). This approach 
utilizes a level-set field to describe the material-void interface 
and a density field that defines the distribution of material 
properties within the material domain. The LSF and density 
fields are coupled such that the LSF creates holes if the density 
drops below a threshold.

The single-field approach defines a nodal volume fraction, 
or fictitious density field 𝜌(x) as an explicit function of the LSF 
𝜙(x) within the material domain, 𝛺+:

where 𝜙up is the upper bound of the LSF. Our physical model 
is only defined in the material domain, i.e., areas that are 
void are omitted in the analysis. Consequentially, we do not 
define the density for level-set values below the threshold 
𝜙t as these regions are omitted in the analysis. The material 
properties are interpolated as functions of 𝜌.

Starting from a design domain entirely filled with material, 
Barrera et al. (2020) show that this method creates holes in 
the first TO iterations. To eliminate intermediate densities in 
the final design, the fictitious density is gradually shifted to a 
value of 1.0. as follows:

where the shift parameter 𝜙sh = 𝜙sh(Dit) . This parameter is 
defined in terms of the optimization iteration Dit:

with

where 𝜙0
sh
= 10 3 is the initial lowest fictitious density value. 

The density shift is performed in the optimization iteration 
interval [DitStart

,DitEnd
] . As the shifted density increases to 1.0, 

the material properties in the entire material domain are the 
ones of the bulk material, and the optimization problem for-
mulation corresponds to the one of pure LS-TO.

In this work, we interpolate the material properties by the 
Solid Isotropic Material with Penalization (SIMP) method, 
see Bendsøe and Sigmund (2004). The material density 𝜌m(x) 
is interpolated by

(33)𝜌(x) =

{
𝜙(x) 𝜙t

𝜙up 𝜙t

, ∀ x ∈ 𝛺+

not def ined, ∀ x ∈ 𝛺 ,

(34) "(x) = #sh + (1  #sh)"(x),

(35) sh =

 
⎪
⎨
⎪⎩

0.0,  Dit < DitStart

 ̂,  DitStart
 Dit  DitEnd

1.0,  Dit > DitEnd
,

(36) " = "0
sh
+ (1  "0

sh
)(

Dit  DitStart

DitEnd
 DitStart

)2,

and the Young’s modulus Em(x) by

where the density and the Young’s modulus of the material 
m are denoted by 𝜌m

0
 and Em

0
 , respectively. The SIMP expo-

nent is denoted by 𝛽.

8  Numerical examples

In this section, we study the proposed TO framework with 
numerical problems that use multiple, different adaptively 
refined discretizations of design and state variable fields. 
Our examples include 2D and 3D compliance minimization 
problems with a mass constraint as well as mass minimi-
zation problems with a stress constraint. For all problems, 
a static linear elastic response is considered. All numeri-
cal examples require the solution of four linear systems 
per optimization iteration. More specifically, we solve the 
structural problem determining the physical response, two 
auxiliary diffusion problems for the regularization penaliza-
tion term in Eq. (32), and one auxiliary diffusion problem for 
the selective springs, see Eq. (25). Additionally, the second 
example utilizes a global stress projection as presented in 
Sect. 6.3.

The optimization problems are solved by GCMMA 
from Svanberg (2002) and the required sensitivity analysis 
is performed following the adjoint approach. The param-
eters for the initial, lower, and upper asymptote adaptation 
in GCMMA are set to 0.05, 0.7, and 1.2, respectively. The 
GCMMA maximal step size is set to 0.02. The optimization 
problem is considered converged if the absolute change of 
the objective function relative to the mean of the objective 
function in the five previous optimization steps drops below 
10 4 and the constraint is satisfied.

The systems of discretized governing equations are solved 
by a direct solver, PARDISO, for 2D problems, see Kour-
ounis et al. (2018). A GMRES algorithm is utilized for 3D 
problems preconditioned by an ILU(2), see Heroux (2007). 
A relative drop of 10 10 in the linear residual is used as the 
convergence criterion for the iterative solver.

We use the following simple strategy to adapt the dis-
cretization in the course of the optimization process. The 
mesh is initially adapted after the first 20 optimization itera-
tions and subsequently every 50 iterations after a previous 
mesh adaptation step. Additionally, mesh adaptation may 
be initiated to guarantee a uniform refinement level for all 
intersected elements of the non-conformal background mesh 
HB . Alternative strategies will be considered in future work. 
After each mesh adaptation step, the optimization algorithm 

(37) m(x) =  m
0
 ̃(x)

(38)Em(x) = Em
0

 "(x)# ,
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is restarted from the previous design. Furthermore, the 
GCMMA is restarted with uniform lower and upper asymp-
totes for all variables which may alter the evolution of the 
design.

In the first example, we study the influence of refin-
ing the design variable field discretization. This study is 
performed for uniformly and adaptively refined meshes. 
The second example demonstrates the capabilities of our 
framework to exploit differently refined discretizations for 
each field. This work does not enforce any form of feature 
size constraint as they may narrow the design space and 
distort the results.

To quantify the computational gain using adaptively 
refined discretizations, we define the following measures: 
The efficiency factor Exiga is defined as the ratio of the total 
number of displacement DOFs in the uniform XIGA model 
divided by the total number of displacement DOFs in the 
XIGA model for an adaptive discretization. This measure 
is indicative of the computational gains when adaptively 
refining the state variable field discretization and is defined 
as follows:

where #DOFs(u)k is the number of displacement DOFs in 
the linear system per optimization iteration k. The exponent 
ns is used to relate the number of DOFs to the computa-
tional effort in terms of floating-point operations or wall-
clock time, see Woźniak et al. (2014). We use ns = 1 for 
two-dimensional and ns = 4

3
 for three-dimensional problems.

The peak resource requirement Rxiga is defined as the 
ratio of the maximum number of displacement DOFs in a 
linear system for a uniform state variable field discretiza-
tion over the maximal number of displacement DOFs for 
the linear system of the adaptive discretization. This ratio 
quantifies the computational gain with respect to a given 
set of limited computational resources and is defined as

In addition, we monitor the ratio of the runtime of non-
adaptive over adaptive processes. We perform a simple 
wall-clock time comparison Txiga which takes into account 
the time spent in the forward and sensitivity analyses and 
which is defined as follows:

(39)Exiga =

 NOpt

k=1

(
#DOFs(u)k

uniform

)ns
 NOpt

k=1

(
#DOFs(u)k

adaptive

)ns ,

(40)Rxiga =
max

(
#DOFsuniform

)ns

max
(
#DOFsadaptive

)ns .

(41)Txiga =

 NOpt

k=1
tk
uniform

 NOpt

k=1
tk
adaptive

.

While the runtime depends to some extent on the implemen-
tation of the framework, the runtime measure in Eq. (41) 
allows for a comparison of the relative computational cost. 
To compute a meaningful runtime measure, all computations 
must be run on the same hardware, the same number of par-
allel processors, and using the same domain decomposition.

8.1  Design of support structure within prescribed 
frame

The first example considers the design of the internal struc-
ture within a prescribed outer frame, as illustrated in Fig. 7. 
We optimize the structure for minimum compliance with a 
mass constraint of 33% of the total mass, where total mass 
is computed as if the entire domain is material. Addition-
ally, regularization and perimeter penalties are added to 
the objective function. The initial problem parameters and 
weighting factors of the optimization formulation are sum-
marized in Table 1 in self-consistent units.

The outer frame has a length L = 3.0 and a height 
H = 1.0 . The frame is approximated using the signed-
distance function of a hyperellipse with a semi-major and 
semi-minor axis of ra = 1.45 and rb = 0.45 , respectively, 
and a hyperellipse exponent of 24.0. The entire left face is 
clamped, i.e., all displacement components are prescribed 
to zero. A distributed load of magnitude F =  1.0 ey is 
applied at the right surface for y < 0.2 . The frame and the 
solid material of the design domain are described by a linear 

Table 1  Parameter list for design optimization problem

Parameter Value

Initial strain energy S0 0.003
Allowable mass M0 1.0
Initial perimeter value P0

P
8.0

Initial regularization value P0
𝜃

4.0
Strain energy weighting factor cS 1.0
Mass weighting factor cM 0.0
Perimeter weighting factor cPP

0.01
Regularization weighting factor cP𝜃

0.03

F

L = 3.0

H
=

1
.0

design domain material non-design domain

Fig. 7  Support structure within the prescribed frame with applied 
boundary conditions and load
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elastic material model with Young’s modulus E = 104 and 
Poisson ratio 𝜈 = 0.3 . All values are given in consistent 
units.

A 60  20 mesh is chosen as the initial coarse mesh. The 
compliance problem is evaluated for uniformly and adap-
tively refined discretizations. The state variable field is eval-
uated on a three-times uniformly or adaptively refined linear 
B-spline discretization. We present optimization results for 
linear state variable field discretizations and for a linear, 
quadratic, and cubic design variable field, each refined up 
to three times. The upper and lower bounds of the design 
variable field are set to ±4h , where h is the edge length of 
the most refined elements of the mesh used for the design 
variable field.

The design domain is initially seeded with 13  4 holes 
of radius 0.1 such that the mass constraint is satisfied at the 
beginning of the optimization process, see Fig. 7.

8.1.1  Uniform refinement

In this section, we study the influence of the design variable 
field discretization with uniform refinement. The state vari-
able field is discretized on a three times refined mesh with 
480  160 elements. We present results for a zero-, one-, 
two-, and three-times uniformly refined design variable 
field. The designs generated for a linear, quadratic, and cubic 

design variable field discretization are presented in Fig. 8. 
The solid phase is depicted in black. The convergence plots 
of the objective function are presented in Fig. 9.

While all designs present a similar strain energy value, 
the results show that refining the design variable discretiza-
tion allows for a higher geometric complexity, including 
thinner structural members. In contrast, a coarser design var-
iable field discretization leads to a smoother design. While 
these results are expected because an increase in the number 
of design variables increases the overall design freedom, it 
also highlights the ability of our framework to directly tune 
and limit the design space. In addition, the convergence rate 
of the optimization problem directly depends on the design 
variable field discretization level. A coarse discretization 
converges faster to an optimized design than a fine discre-
tization. This increased convergence rate is a result of the 
smaller design space and the larger support of corresponding 
basis functions.

It should be noted that, while designs with a linear level-
set discretization show the same behavior with respect to 
mesh refinement, they present non-smooth trusses and wavy 
material surfaces. The non-smooth nature of the trusses is 
especially pronounced when exploiting coarser design vari-
able field discretizations. The LSFs of the final design for 
the non-refined linear and quadratic level-set discretizations 
are presented in Fig. 10. The C0 inter-element continuity of 
the linear B-spline discretization does not allow for a smooth 

Linear B-splines Quadratic B-splines Cubic B-splines

lrefine = 3
480× 160

S = 3.843 S = 3.885 S = 3.880

lrefine = 2
240× 80

S = 3.825 S = 3.861 S = 3.835

lrefine = 1
120× 40

S = 3.866 S = 3.899 S = 3.874

lrefine = 0
60× 20

S = 3.859 S = 4.017 S = 3.925

Fig. 8  Two-dimensional optimization results using uniformly refined meshes. Level-set field discretization: linear (left), quadratic (middle), and 
cubic (right)
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design. Higher-order B-spline discretizations, in contrast, 
allow for smooth first-order gradients which in turn result in 
smoother designs. Consequentially, we recommend using at 
least quadratic B-spline discretizations for the design vari-
able field.

8.1.2  Adaptive refinement

Next, we study the influence of using adaptive state and 
design variable field discretizations. We apply the re-
meshing algorithm presented in Sect. 5.2. The zero iso-
contour of the LSF is used as the refinement criterion, 
see Refinement Criterion Algorithm (RCA) 4. The state 
variable field discretization and the non-conformal back-
ground mesh are always adaptively refined to a maximal 
refinement level l = 3 around the interface. To widen the 
refined zone around the material interface, all direct neigh-
bor elements to the material interface are refined as well. 
This reduces the need for mesh adaptation triggered by the 
interface moving into a less refined region.

Algorithm 4  Isocontour of level-set-based RCA 

1: for All elements He
B do

2: if φmax > 0 and φmin < 0 then
3: RO is refine
4: else
5: RO is drop
6: end if
7: end for

The study is performed for design variable field discre-
tizations, which are up to three times adaptively refined. 
We perform this study for linear, quadratic, and cubic hier-
archical B-spline discretizations. The optimized designs 
are presented in Fig. 11, where the columns correspond 
to the polynomial order of the design variable field dis-
cretization and the rows correspond to the maximum 
allowed refinement level l refine . For each layout, the solid 
is depicted in black, highlighting the design, while the 
refined mesh is presented in the void. The convergence 
plots of the objective function are shown in Fig. 12. The 
gains in computational efficiency achieved with the adap-
tive strategy are summarized in Table 2.

The adaptive approach yields similar results compared 
to the ones obtained for a uniform discretization. There 
is no significant decrease in the level of detail or com-
plexity of the resultant geometries. Small differences can 
be explained through the restart of the optimization algo-
rithm after adapting the mesh. The objective converges to 
a similar value for the uniform and adaptive cases. The 
convergence rate of the optimization problem depends 
on the mesh refinement level as the rate increases with a 
coarser mesh.

When comparing the computational efficiency of the 
uniform to adaptively refined state variable field discre-
tizations, as shown in Table 2, a small reduction in com-
putational cost is observed. The efficiency factor Exiga 
shows that mesh adaptation leads to an overall reduction 
in computational cost. Bulkier designs, like those obtained 
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Fig. 9  Convergence of the objective for different uniform level-set refinement levels. Linear (left), quadratic (middle), and cubic (right) level-set 
interpolation

Fig. 10  Level-set field. Linear (top) and quadratic (bottom)
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with a coarse design variable field discretization, espe-
cially benefit from adaptive refinement. This is expected 
as the material interface serves as the refinement criteria, 
whereas the coarser state variable field discretization is 
found in the interior of the material domain. The initial 

design is discretized over a uniform discretization which 
also results in the largest linear system. Consequently, the 
peak resource requirement Rxiga is found to be 1.0 for all 
optimization designs. The runtime ratios present a com-
putational gain of up to 50% when using adaptively refined 
discretizations.

Linear B-splines Quadratic B-splines Cubic B-splines

lrefine = 3
S = 3.864 S = 3.877 S = 3.902

lrefine = 2
S = 3.821 S = 3.867 S = 3.841

lrefine = 1
S = 3.863 S = 3.878 S = 3.885

lrefine = 0
S = 4.111 S = 4.020 S = 4.011

Fig. 11  Two-dimensional optimization results using adaptively refined meshes. Level-set field discretization: linear (left), quadratic (middle), 
and cubic (right)
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Fig. 12  Convergence of the objective for different adaptively refined level-set refinement levels. Linear (left), quadratic (middle), and cubic 
(right) level-set field discretizations

Table 2  Performance in terms 
of computational cost for 
designs in Fig. 11

linear quadratic cubic
l refine zero one two three zero one two three zero one two three

Exiga 1.65 1.54 1.42 1.37 1.71 1.49 1.43 1.35 1.66 1.45 1.38 1.35
Rxiga 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Txiga 1.39 1.39 1.14 1.36 1.57 1.34 1.16 1.03 1.62 1.31 1.17 1.25
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8.2  Connector bracket with predefined features

This second example studies the ability of the presented 
optimization framework to independently and adaptively 
refine the discretizations of both design and state variable 
fields, each using different refinement criteria. This exam-
ple considers the multi-material connector bracket with 
predefined features as shown in Fig. 13 in two and three 
dimensions. The optimization problem considers mass and 
compliance minimization subject to a stress constraint. 
Additionally, level-set regularization and perimeter penal-
ties are added to the objective function. The initial two- 
and three-dimensional problem parameters and weighting 
factors of the optimization formulation are summarized in 
Table 3 in self-consistent units.

The size of the computational domain is 7  3  1.2 . 
The design domain is fully immersed into the computa-
tional domain and consists of two semi-cylinders of radius 
ra = 1.237 with their origin at coordinates (1.5, 1.5, 0.0) 
and (5.5, 1.5, 0.0), connected by two lines. Two non-design 
domains with prescribed material are defined by two hollow 
cylinders with an inner and outer radius of rb = 0.517 and 
rc = 0.7173 , respectively. The displacement along the inner 

surface of the left cylinder is prescribed to zero. A uniform 
distributed load F =  1.0 ey is applied to the right cylin-
der’s bottom half of the inner surface. The response of the 
cylinders and the connecting design is described by a linear 
elastic material model with a Young’s modulus E = 105 and 
a Poisson ratio 𝜈 = 0.3.

8.2.1  Two-dimensional setup

First, we consider a simplified two-dimensional config-
uration as it allows for a more detailed visualization of 
the results. The domain is discretized with 70  30 ele-
ments on the coarsest mesh level which results in an ele-
ment edge length of h = 0.1 . The upper and lower level-
set bounds are chosen to be ±3h . To nucleate holes, the 
density hole-seeding approach presented in Sect. 7.3 is 
employed. The initial LSF value is 𝜙(x) = 0.1 . A SIMP 
exponent of 𝛽 = 3.0 is used to calculate the material prop-
erty for the material in the design domain. The density 
shift is performed between optimization iterations 20 and 
70. The design variable field is approximated with quad-
ratic B-splines. We compare optimized designs and com-
putational performances for linear, quadratic, and cubic 
displacement and stress field discretizations. Additionally, 
we highlight the reduction in computational cost compared 
to uniformly refined discretizations.

This example utilizes B-spline mesh H1 for the dis-
placement and stress field discretizations and B-spline 
mesh H2 for the design variable and auxiliary diffusion 
field discretizations. B-spline mesh H2 is based on a quad-
ratic polynomial order.

At the start of the optimization process, the meshes HB 
and H1 are uniformly refined twice, while the mesh H2 
is uniformly refined once. The first adaptive re-meshing 
is initialized after 20 optimization iterations. The meshes 
HB , H1 , and H2 are adapted in every re-meshing step. 
In this example, we utilize two RCAs, 5 and 6, for the 

F

design domain

non-design domain

material non-design domain

Fig. 13  Connector bracket with applied boundary conditions and load

Table 3  Optimization parameters for the connector bracket problem

Parameter 2D setup 3D setup

Initial mass M0 1.0 1.0
Initial strain energy S0 9.0 4 9.0 4

Initial perimeter value P0
P

42.0 62.0
Initial regularization value P0

𝜃
40 20

Strain energy weighting factor cS 1.0 0.5
Mass weighting factor cM 1.0 1.0
Perimeter weighting factor cPP

0.3 0.1
Regularization weighting factor cP𝜃

0.2 0.05
Allowable stress 𝜏ref 8.0 10.0

Table 4  Parameter list for RCA Parameter Value

l
HB

max
3

l
H1
max

3

l
H2
max

2
𝜙 low
t

− 0.9
𝜙

up
t

1.1
F ref 0.1
v refine 1.0
v hold 0.3
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computation of the RO. RCA 5 is evaluated recursively 
for all geometries, e.g., domain boundary, circular non-
design domain, and the LSF. RCA 6 uses the elemental 
Zienkiewicz-Zhu inspired a priori error indicator field 
for refinement and coarsening. The non-conformal back-
ground mesh HB is adapted based on both RCA 5 and 6. 
B-spline mesh H1 is adapted solely utilizing RCA 6, while 
B-spline mesh H2 is adapted by evaluating RCA 5. The 
parameters for refinement are given in Table 4.

An optimized design is generated on a uniform B-spline 
and a Lagrange discretization to establish a reference solu-
tion. In both cases, we start with the same initial uniform 
discretization as in the adaptive case. After 20 optimiza-
tion iterations, one uniform level of refinement is added 
to all discretizations. This guarantees that the maximal 
refinement level of all discretizations for both the adaptive 
and the uniform case are identical.

Algorithm 5  Level-set-based RCA 

1: for All elements He
B do

2: for All geometries φ do
3: if φlow

t ≤ φ ≤ φup
t then

4: RO is refine
5: else
6: RO is drop
7: end if
8: end for
9: end for

Algorithm 6  Von Mises stress-based RCA 

1: for All elements He
B do

2: if Fele
Fref

≥ vrefine then
3: RO is refine
4: else if Fele

Fref
≥ vhold then

5: RO is hold
6: else
7: RO is coarsen
8: end if
9: end for

The optimized designs for a linear and a quadratic state 
variable field discretization are presented in Fig. 14, along 
with the design performance in terms of the mass M and 
the maximum von Mises stress 𝜏max . The final design for 
an adaptively refined discretization is presented on the left, 
while the uniform B-spline discretization is presented on 
the right. For both cases, a qualitatively similar design is 
obtained and the maximum observed stress as well as the 
final mass does not show a significant difference.

In Fig. 15, we highlight optimized designs for a linear 
and a quadratic discretization of the displacement and stress 
fields, as well as the final adapted meshes HB , H1 , and H2 . 
The non-conformal background mesh HB is refined at all 
material interfaces which allows for a precise representation 
of all geometries and is sufficiently refined to represent all 
approximating B-spline discretizations. The B-spline mesh 
H1 used for the discretization of the displacement and the 
global stress fields presents adaptive refinement in areas 
with large spatial gradients of the stress. This behavior is 

tnemenfieRmrofinUtnemenfieRevitpadA

Linear M = 2.980 τmax = 14.65 M = 2.999 τmax = 15.78

Quadratic M = 2.968 τmax = 14.31 M = 3.004 τmax = 14.67

Fig. 14  Optimization results for a linear (top) and a quadratic (bottom) state variable field discretization; adaptively refined THB-spline discre-
tization (left); uniform B-spline discretization (right)
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expected as the Zienkiewizc-Zhu inspired elemental error 
estimator from Eq. (27) presents the largest errors in areas 
where the second spatial derivatives of the displacements 
are large. Comparing the linear and quadratic state variable 
field discretizations, we find that the quadratic mesh H1 is 
less refined overall. This observation aligns with our expec-
tation due to the higher continuity of the quadratic B-spline 
discretization, which enables a more accurate calculation 
of stresses. In addition, we observe spots of locally refined 
regions at the material interface. This refinement results 
from a large elemental error caused by numerical instabili-
ties due to basis functions with small support, as outlined in 
Sect. 6.1. This indicates that the ghost stabilization may not 
be sufficient. Locally adjusting the magnitude of the ghost 
stabilization penalty might help to further mitigate this issue.

The level-set discretization presents an adaptive refine-
ment around the zero iso-contour of the LSF up to a maximal 

refinement level of lH2
max = 2 . This choice was made based on 

the results in Sect. 8.1.2, as this refinement level is consid-
ered to be a good compromise to allow for a large amount of 
structural detail while also improving the convergence rate 
of the optimization problem.

Table 5 presents a comparison of the adaptively refined 
state variable fields approximated by THB-spline against 
uniformly refined B-spline and Lagrange discretizations 
for linear, quadratic, and cubic polynomial orders. Using an 
adaptively refined linear THB-spline discretization results in 
a factor 2.9 reduction in computational cost expressed through 
the efficiency factor Exiga compared to a uniformly refined 
THB-spline or Lagrange discretization.2 The further reduction 
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Linear displacement and stress analysis Quadratic displacement and stress analysis

Fig. 15  Optimized designs and corresponding meshes HB , H1 , and H2 for a linear and a quadratic displacement discretization

Table 5  Performance in terms 
of computational cost for 
designs in Fig. 14

linear quadratic cubic
THB-splines Lagrange THB-splines Lagrange THB-splines Lagrange

Exiga 2.91 2.91 5.23 18.75 4.68 –
Rxiga 2.22 2.22 2.54 9.45 2.52 –
Txiga 1.35 1.35 1.47 1.81 1.45 –

2 The uniformly refined linear THB-spline and Lagrange bases are 
equivalent.
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in computational cost when using quadratic and cubic state 
variable discretizations confirms the expectation that higher 
inter-element continuity enables accurate calculation of 
stresses, which in turn, results in a coarser analysis discre-
tization. Moreover, a significant reduction in computational 
cost, i.e., Exiga larger than 10, is observed when comparing the 
higher-order B-Spline discretization to a uniform Lagrange 
discretization. This is expected as the higher-order B-spline 
space is a proper subspace of the Lagrange space of the same 
order defined over the same mesh, as B-spline basis func-
tions exhibit a higher continuity than Lagrange basis func-
tions. As a consequence, the higher-order B-spline space has 

fewer DOFs than the Lagrange space. Furthermore, we recall 
that the higher continuity only applies to regions inside of a 
material domain defined by the XIGA model as described in 
Sect. 3.3. In combination with the larger support of higher-
order B-spline basis functions, this leads to a diminishing 
reduction in computational cost for fine geometric features.

In contrast to the previous example, the peak resource 
requirement Rxiga also shows a significant reduction in com-
putational cost. In comparison to a classic Lagrange dis-
cretization, a factor of 9.0 is observed which may have a 
significant impact on the choice of solvers that may be used 
to solve the linear system.

8.2.2  Three-dimensional setup

This section extends the previous 2D configuration to 3D. 
The displacement field is approximated with a linear poly-
nomial order. The optimization is initialized with uniformly, 
once refined meshes HB and H1 . The parameters for RCAs 5 
and 6 are given in Table 6.

The optimization results generated with adaptively 
refined discretizations are presented in Fig. 16, along with 
vertical cross-sections of the design to visualize the internal 
material layout. The optimized design together with the non-
conformal background mesh HB and B-spline mesh H1 used 

Table 6  Parameter list for RCA Parameter Value

l
HB

max
2

l
H1
max

2

l
H2
max

1
𝜙low
t

 0.9
𝜙
up
t

1.1
Fref 1.0
vrefine 0.7
vhold 0.2

Fig. 16  Three-dimensional optimization result (left); final design and cross-sections (left)

Fig. 17  Optimized design with non-conformal background mesh HB (left) and structural analysis B-spline mesh H1 (right)
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for the evaluation of the displacement field are presented in 
Fig. 17. The optimized design exhibits a noticeable similar-
ity to the two-dimensional design except for the development 
of shear webs usually observed when solving optimization 
problems on fine, uniform meshes. The results show that 
the presented optimization strategy is applicable to three-
dimensional problems.

Given the limitation in hardware resources, a direct com-
parison of the computational cost of adaptive versus uniform 
discretizations was not possible in this case. To estimate the 
cost of using uniform discretizations, we assume an identical 
evolution of the design during the optimization process, irre-
spective of using adaptive or uniform discretizations. Based 
on this assumption, a lower estimate can be calculated for 
the size of the linear systems considering the volume in each 
optimization iteration. The efficiency factors comparing the 
adaptive results with a uniform estimate are given in Table 7. 
This example shows that, in the three-dimensional setting, a 
reduction of computation cost with respect to the size of the 
linear system for both the efficiency factor Exiga of 1.6 and 
peak resource requirement Rxiga of 2.8 is achieved.

9  Conclusion

This paper presents an adaptive discretization framework 
for level-set-based topology optimization. The geometry 
of the design is described implicitly by a level-set field. 
An immersed method, the XIGA, predicts the structural 
response and the design criteria. Design optimization prob-
lems often present different local resolution requirements 
for geometric and state variable fields. To address this 
problem, a hierarchical meshing strategy is presented that 
enables the construction of multiple, differently adaptively 
refined approximation spaces, utilizing truncated hierarchi-
cal B-spline discretizations. The numerical integration of 
the governing equation is performed on a single XIGA inte-
gration mesh of sufficient refinement and order to represent 
accurately all underlying approximation spaces. This XIGA 
integration mesh is constructed based on a non-conformal 
Lagrange background mesh. Lagrange extraction links the 
B-spline discretizations to the non-conformal background 
mesh.

The user-defined refinements considered in this work 
are performed based on geometric and physics-based error 

indicators. Adaptive re-meshing, including an increase of 
the maximum and a decrease of the minimum refinement 
level, is performed after a given number of iterations or 
when the material interface moves into a less refined region 
of the XIGA integration mesh. A simple mesh adaptation 
strategy is chosen to demonstrate the functionality of the 
presented framework but may need further research for 
practical applications. To allow for sufficient freedom in 
the design, the numerical examples either utilize an initial 
hole-seeding approach or nucleate holes based on a com-
bined level-set/density approach. The proposed optimiza-
tion strategy is applied to 2D and 3D structural problems. 
Differently adaptively refined meshes are constructed for the 
non-conformal background mesh, the level-set field discre-
tization, the evaluation of the structural response, and auxil-
iary diffusion fields used for regularization and stabilization. 
Optimization results are computed for uniformly and adap-
tively refined discretizations up to a cubic polynomial order. 
Comparing these results provides insight into the influence 
of the discretization on the final design and the associated 
computational cost.

Numerical results suggest that separating the level-set 
and state variable field discretizations enables direct con-
trol over the accuracy and cost of the individual approxi-
mations. A coarser level-set field discretization promotes 
smoother designs with larger features and overall bulkier 
designs. Moreover, a higher-order B-spline discretization 
promotes a smooth level-set field due to a higher inter-
element continuity. A coarser, higher-order level-set field 
discretization eliminates the need for a convolutional fil-
ter while providing similar functionality with respect to 
controlling the smoothness of the design. Similarly, the 
convergence rate of the optimization problem directly 
benefits from a coarser level-set field discretization due to 
the larger support of each design variable. Adapting the 
state variable field based on physics-based error estimators 
allows for a significant reduction in computational cost 
while meeting accuracy requirements on the prediction 
of the physical response, such as displacement and stress 
fields.

The adaptive discretization for design and state variable 
fields yields similar design performances when compared 
to a uniform, fine discretization. In addition, a reduction 
in computational cost is observed, achieved through a 
decreased size of the linear system in the response predic-
tion. This reduction in computational cost is especially 
apparent when comparing the adaptively refined higher-
order THB-spline discretization for state variable fields 
with a classic Lagrange discretization of the same poly-
nomial order.

Possible future work may focus on extending the adap-
tive optimization framework to goal-oriented refinement 
strategies, a more sophisticated approach to control the 

Table 7  Performance in terms 
of computational cost for 
designs in Fig. 16

linear 
THB-
splines

Exiga 1.61
Rxiga 2.88
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geometric error, and advanced strategies for triggering 
mesh adaptation. Furthermore, the proposed framework 
could be applied to optimization problems that require pre-
dicting different phenomena, such as fluid flow or conju-
gate heat transfer. These problems may benefit from mesh 
adaptivity to resolve boundary layers.
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