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Abstract

This paper presents for the first time an adaptive immersed approach for level-set topology optimization using higher-order
truncated hierarchical B-spline discretizations for design and state variable fields. Boundaries and interfaces are represented
implicitly by the iso-contour of one or multiple level-set functions. An immersed finite element method, the eXtended
IsoGeometric Analysis, is used to predict the physical response. The proposed optimization framework affords different
adaptively refined higher-order B-spline discretizations for individual design and state variable fields. The increased conti-
nuity of higher-order B-spline discretizations together with local refinement enables direct control over the accuracy of the
representation of each field while simultaneously reducing computational cost compared to uniformly refined discretizations.
A flexible mesh adaptation strategy enables local refinement based on geometric measures or physics-based error indicators.
These adaptive discretization and analysis approaches are integrated into gradient-based optimization schemes, evaluating
the design sensitivities using the adjoint method. Numerical studies illustrate the features of the proposed framework with
static, linear elastic, multi-material, two- and three-dimensional problems. The examples provide insight into the effect of
refining the design variable field on the optimization result and the convergence rate of the optimization process. Using
coarse higher-order B-spline discretizations for level-set fields promotes the development of smooth designs and suppresses
the emergence of small features. Moreover, adaptive mesh refinement for state variable fields results in a reduction of overall
computational cost. Higher-order B-spline discretizations are especially interesting when evaluating gradients of state vari-
able fields due to their higher inter-element continuity.

Keywords Topology optimization - Level-set method - Extended isogeometric analysis - Adaptive mesh refinement

1 Introduction

In general, Topology Optimization (TO) minimizes an
objective function while simultaneously satisfying a set
of constraints. Both the objective and the constraints are
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calculated from a set of performance measures. In its early
days, TO results were mainly considered conceptual design
ideas due to rough geometric representations. In contrast,
modern TO methods aim to produce optimization designs
that are closer to the final manufacturable design, which
includes an accurate description of the geometry and evalu-
ation of the physical response.

With an increased interest in TO, a variety of TO
approaches have emerged. Most notable for continuum-
mechanical problems are density-based and level-set-based
TO approaches. Density-based TO methods are popular due
to their simplicity and easy implementation, see Bendsge and
Sigmund (2004). By introducing fictitious design densities
to interpolate material properties, this approach allows for
the efficient use of gradient-based optimization algorithms,
while promoting close to material-void designs. Extensions
of density-based TO to multi-material applications have
been presented by Bendsge and Sigmund (2004) and Hvejsel
and Lund (2011). Since their initial development for linear
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elastic problems, density-based methods have been applied
to a variety of physics, see Eschenauer and Olhoff (2001);
Sigmund and Maute (2013); Deaton and Grandhi (2014). A
major drawback of density-based methods is the existence
of areas with intermediate densities at the material interface,
both during the optimization process and in the final design.
These intermediate regions impede the crisp definition of
the material interface and limit the accuracy of the physical
response. While density projection methods, see Lazarov
and Sigmund (2011), and fine discretizations improve the
interface representation, the evaluation of interface phe-
nomena remains challenging. To address these shortcom-
ings of density-based TO approaches, level-set-based TO
(LS-TO) approaches have been developed. The level-set
method defines the geometric interfaces implicitly through
the iso-contour of a level-set function (LSF) as introduced by
Osher (1988), and provides a crisp description of the geom-
etry. The level-set method was successfully applied to TO,
see Wang et al. (2003); Allaire et al. (2004); Van Dijk et al.
(2013). This work focuses on LS-TO, where the parameters
of the discretized LSFs are treated as design variables and
advanced by a nonlinear programming method.

TO results rely on the accuracy of the evaluation of the
physical response, as both the objective and the constraints
are calculated from a set of physics-based performance
measures. Many TO applications employ numerical analy-
sis methods to approximate the physical response. In this
work, we focus on the finite element method. Considering
geometry representation, three types of analysis models are
typically used for LS-TO: (i) Models using conforming,
body-fitted discretizations aligned with material interfaces,
see Allaire et al. (2014); Christiansen et al. (2014); Schmidt
et al. (2024). This approach requires repeated generation of
high-quality conformal meshes as the geometry of the design
changes throughout the optimization process. While a reduc-
tion in computational cost may be achieved by limiting these
re-meshing operations to areas in the vicinity of the mov-
ing interfaces, the accuracy of the finite element prediction
strongly depends on the mesh quality. (ii) Fictitious material
approaches, also called Ersatz material methods, operate on
fixed meshes and represent geometry via spatially varying
material properties. These properties are defined in terms of
the LSF, see Wang et al. (2003); Allaire et al. (2004). While
there are different material interpolation schemes, all of
them inevitably face the same challenge as density-based TO
methods, namely that the fictitious material approach cre-
ates non-physical models at the material interface, lowering
the accuracy of the finite element analysis. (iii) Immersed
Finite Element Methods (IFEMs) embed the geometry of
the physical domain into a computational domain with a
much simpler geometry, see BabuSka and Melenk (1997);
Sethian and Wiegmann (2000); Peskin (2002); Mittal and
Taccarino (2005). Similar to methods using a conforming
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discretization, IFEMs preserve the geometric accuracy
afforded by LSFs and facilitate a high-fidelity prediction of
the physical response due to efficient enforcement of bound-
ary and interface conditions, see Mogs et al. (2006). Moreo-
ver, immersed methods do not require the repeated genera-
tion of high-quality body-fitted meshes. IFEMs have been
incorporated into LS-TO by, for example, Duysinx et al.
(2006); Burman et al. (2019); Van Dijk et al. (2013). This
paper utilizes an immersed analysis model, a modification
of the eXtended Finite Element Method (XFEM).

Most IFEMs rely on Lagrange polynomials for the inter-
polation of the state variable fields due to their simplicity
and easy implementation. However, higher-order Lagrange
polynomials are limited to a C° inter-element continuity.
With the development of and advances in IsoGeometric
Analysis (IGA) by Hughes et al. (2005), B-spline basis func-
tions have been presented as an advantageous alternative to
Lagrange basis functions. Smooth, higher-order basis func-
tions in particular, such as quadratic and cubic B-splines,
often result in a more accurate computation of the physi-
cal response per degree of freedom (DOF) than approaches
relying on a C%-continuous basis, see Hughes et al. (2008);
Evans et al. (2009); Hughes et al. (2014). B-spline basis
functions have been used for density-based TO approaches
to discretize both the design and state variable fields, see
Qian (2013); Wang et al. (2018); Gao et al. (2020). Moreo-
ver, IGA has been successfully employed in LS-TO by Cai
et al. (2014); Wang and Benson (2016); Jahangiry and
Tavakkoli (2017) for the discretization of design and state
variable fields. These works exclusively use fictitious mate-
rial approaches to interpolate the material properties. This
paper proposes an LS-TO framework that builds upon the
eXtended IsoGeometric Analysis (XIGA) approach, see
Noél et al. (2022) and Schmidt et al. (2023). The XIGA is a
modification of the XFEM and employs B-spline basis func-
tions, whereas the XFEM uses standard Lagrange polynomi-
als. This work highlights that integrating XIGA into LS-TO
enables a crisp representation of geometry and an accurate
and efficient prediction of the physical performance.

Both design and state variable fields typically benefit
from a finer discretization, as this improves the resolution
of geometry and the accuracy of the finite element predic-
tion. This gain in accuracy typically results in higher com-
putational costs as the number of design variables and finite
element DOFs increases. Locally refined discretizations
provide a compromise between accuracy and computa-
tional cost, as shown for TO applications first by Maute and
Ramm (1995); Ramm et al. (1998). In the past two dec-
ades, adaptive TO has been studied extensively. Focusing
on density-based TO problems, Costa and Alves (2003);
Stainko (2006); Wang et al. (2010); Nana et al. (2016);
Nguyen-Xuan (2017) presented various adaptive refine-
ment approaches where the material interface was chosen



Adaptive immersed isogeometric level-set topology optimization

Page3of27 9

as the refinement criteria. Adaptive refinement approaches
were employed for LS-TO by Noél et al. (2020), also refin-
ing the discretization along the material interfaces. Bruggi
and Verani (2011) and de Troya and Tortorelli (2020) used
error estimators as refinement criteria to improve the accu-
racy of the finite element predictions. This paper introduces
local mesh adaptation strategies for XIGA LS-TO to increase
both the accuracy of the geometry representation and finite
element analysis.

To improve the computational efficiency of TO, the idea
of exploiting separate discretizations for state and design
variables was first explored by Maute and Ramm (1995);
Guest and Smith (2010). Using a coarser mesh for the design
variable field discretization, the number of design variables
is reduced and a faster convergence of the optimization prob-
lem has been observed. To further this idea, Wang et al.
(2013, 2014) locally refined the state and design variable
fields independently based on geometric and error estimator
criteria. In a previous study, Noél et al. (2020) investigated
adaptively refined B-spline bases to approximate the design
and state variable fields. In their work, both fields were dis-
cretized on a mesh with the same adaptive refinement. While
the state variable field was limited to linear interpolations,
a comprehensive comparison of higher-order interpolations
for the design variable field was performed. This comparison
showed that the larger support of higher-order B-spline dis-
cretizations leads to slightly smoother designs. However, this
previous work was limited to spatial discretizations where
both design and state variable fields are refined equally. This
restriction inherently couples the accuracy of the geometry
representation and finite element prediction and prevents the
independent refinement of design and state variable fields.

This paper presents a discretization framework that over-
comes the above restriction by allowing for different adap-
tive refinements of the design and state variable fields. Local
refinement of the individual fields is achieved through hier-
archically refined B-splines and selecting field-specific poly-
nomial orders. The individual discretizations are adapted
based on field-specific criteria to control the accuracy of
each field and to reduce the computational cost. The numeri-
cal quadrature of the weak form of the governing equations
is performed on a single XIGA integration mesh. This XIGA
integration mesh is generated by tessellating the most refined
background mesh in a given mesh region to accurately inte-
grate the governing equations for any of the discretizations
employed. A more detailed construction of the approxima-
tion spaces can be found in Schmidt et al. (2023).

Many LS-TO approaches rely on an initial seeding of the
design. This often results in a bias of the final design with
respect to the initial seeding, as shown by Van Dijk et al.
(2013). To mitigate this bias, we adopt the density seeding
approach presented by Barrera et al. (2020). Moreover, we
use the regularization approach from Geiss et al. (2019) to

mitigate oscillations in the design variable field. Rigid body
motions of topologically disconnected material sub-phases
are prevented by adopting the concept of selective springs,
introduced by Villanueva and Maute (2017). The optimi-
zation problem is solved with mathematical programming
techniques, in particular, the Globally Convergent Method of
Moving Asymptotes (GCMMA), see Svanberg (2002). The
sensitivity analysis is performed with the adjoint method.

The features of the proposed LS-TO framework are
investigated with numerical examples of static, linear elas-
tic structural problems. These studies provide insight into
the interplay between uniform and adaptive refinement of
design and state variable fields, considering both geometry
and physics-based refinement indicators.

The remainder of this paper is organized as follows:
Sect. 2 provides an overview of the adaptive optimization
strategy and a definition of the different meshes used in the
XIGA. Section 3 expands on the XIGA model. Section 4
summarizes the fundamentals of hierarchical B-splines and
their integration into the XIGA model. Section 5 focuses
on the creation of hierarchical meshes and the re-meshing
strategy. Sections 6 outline the variational forms of the gov-
erning equation and stabilization terms used in the XIGA
formulation. Section 7 focuses on the formulation of optimi-
zation problems, level-set regularization techniques, and the
hole-seeding approach. Numerical examples are presented
in Sect. 8. Section 9 summarizes the work and presents
conclusions.

2 Overview

This work presents an LS-TO framework with locally refined
B-spline discretizations of design and state variable fields.
The geometry and material composition are implicitly
described by one or multiple LSFs. The discretized design
variable field is utilized to parameterize a scalar-valued LSF
where the discretization coefficients serve as design vari-
ables. Additionally, LSFs may be defined by analytical func-
tions. The response is predicted by an immersed analysis
method, the XIGA, on a non-conforming mesh. Adaptive
mesh refinement is utilized to meet accuracy requirements
while simultaneously reducing computational cost, using
different discretizations for design and state variable fields.
This section provides an overview of the optimization strat-
egy and the featured mesh adaptation. Figure 1 illustrates
the main steps in the optimization process: (1) Optimiza-
tion from an initial design until adaptation is required, (2)
the mesh adaptation, and (3) the restart of the optimization
from the previous design with the new adaptively refined
design variable field.

The discretization and analysis approaches used in
this study differentiate between three types of meshes:
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Fig. 1 Overview of the optimization strategy with mesh adaptation.
The optimization strategy consists of three steps: perform optimiza-
tion for a given number of iterations, adapt meshes based on certain
criteria, and restart the optimization using the adapted meshes. The
illustrated optimization problem presents four meshes: the level-set

Hierarchically refined B-spline meshes H,;, a non-conformal
background mesh Hjy, and an XIGA integration mesh Hy.
The design and state variable fields are discretized on hier-
archically refined B-spline meshes H;, where I = 1, ..., Nyis
the index of the N| B-spline meshes. Each field may be dis-
cretized by a different B-spline mesh that is unique in spatial
refinement and interpolation order. The XIGA uses a single
non-conformal background mesh H to immerse the geom-
etry and to create the XIGA integration mesh Hy. The XIGA
integration mesh Hy is used to integrate the weak form of
the governing equations based on the B-spline discretiza-
tions H; of the state variable fields. The non-conformal
background mesh H; must be of sufficient polynomial order
and refinement to represent all B-spline discretizations used
to interpolate the state variable fields. An additional refine-
ment of the non-conformal background mesh H allows for
a more precise representation of curved geometries on the

@ Springer

and displacement B-spline meshes H; and H,, the non-conformal
background mesh Hj, and the XIGA integration mesh Hy. The first
and second row display the level-set and von Mises stress fields,
respectively

XIGA integration mesh Hy without increasing the number
of design variables or finite element DOFs.

Detailed information on the construction of the non-
conformal background mesh Hy and the XIGA integra-
tion mesh Hy is provided in Sects. 3.3. The construction
of the B-spline meshes H; is detailed in Sect. 4. We utilize
Lagrange extraction, as presented in Sect. 4.3, to compute
nodal field representations on the non-conforming mesh
"H for all design and state variable fields discretized on the
B-spline discretizations ;. Details on the construction of
all differently refined meshes are given in Sect. 5. This novel
capability of utilizing different individual B-spline discre-
tizations for LS-XIGA TO is a primary focus of this work.

The initial meshes can be uniformly or locally refined.
Mesh adaptation is initiated either when the material inter-
face moves into a less refined region of the non-conformal
background mesh Hj, or after reaching a given number of
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iterations following the previous mesh adaptation. Although
not explored in this work, the proposed framework allows for
other strategies for initiating mesh adaptation, such as the
geometry- or physics-based error exceeding a threshold. In
the adaptation step, all meshes are adapted based on individ-
ual refinement indicator fields, which determine the level of
mesh refinement or coarsening. This work utilizes physics-
based and geometric refinement and coarsening indicators.

Meshes presented in Fig. 1 are individually adapted based
on two refinement indicator fields, specifically the proxim-
ity to the zero iso-contour of the LSF and areas with large
spatial gradients in the state variable field, here identified
by large von Mises stresses. To demonstrate the ability to
adapt meshes individually, the level-set B-spline mesh H,, is
refined in a band around the zero iso-contour of the LSF. In
contrast, the B-spline discretization H, of the state variable
field is only refined in areas of large von Mises stresses. The
non-conforming background mesh Hj utilizes both refine-
ment indicator fields to refine the mesh. The mesh adapta-
tion step concludes by mapping the design variable field to
the new design variable field discretization. The adaptive
refinement of the meshes H and H; is based on a structured
tensor grid, which allows for a simple implementation of this
robust and high-performing analysis framework, especially
when compared to methods that involve adaptive refinement
of body-fitted meshes. Nevertheless, each optimization step
necessitates rebuilding the XIGA integration mesh Hy and
the corresponding algebraic systems.

To continue the process, the optimization is restarted
from the previous design. The adapted meshes are used for
the construction of the new XIGA integration mesh Hy and
the B-spline meshes H,; for design and state variable fields.
It should be noted that the adaptation of the design variable
field discretization may result in a change in the number of
design variables.

3 Level-set XIGA

This section outlines the basic concepts of the LS-TO
approach and the immersed finite element method, the
XIGA, used in this work.

3.1 Geometry description

In this work, the geometry and the material composition
are described by one or multiple level-set fields. The level-
set method was first introduced by Osher (1988) to implic-
itly track an evolving geometry. The level-set method uses
the iso-contour of a LSF ¢(x) to represent the interface I'*
between two phases Q% and Q as follows:

dx)> ¢, ¥V x € Q*
Px)< ¢, VxeN, (D
px)=¢, VxerI*

where ¢, is the iso-contour threshold, with ¢, = 0.0 being
the most common choice. For multi-material optimiza-
tion problems, this work employs multiple LSFs ¢;(x) with
i=1,...,N;,, where N, is the total number of LSFs. We
define a phase 27 as the set of all spatial points x which
have the same combination of LSF signs. A unique phase
index P(x) is calculated through

N,
P(x) = ) 27 Hy(x), @
i=1

where H;(X) is an indicator function operating on the LSF
¢;(x) and is defined as follows:

_J0, ¢ =<9,
Hix) = { 1, ¢,(x) > ¢, 3)

This approach allows for the definition of 2™ phases such
that Q' U - U Q@ = Q. One or multiple phases can
be assigned a unique material £2™ or can be void, with
m=1,...,N,,, where N is the total number of materials.

3.2 Level-set design variables

The LSFs used in this work are defined by an analytic func-
tion or discretized on a mesh using B-spline basis functions
B, (x):

‘l’?(x) = ;Bk(x)d)f, 4)

where d)f.‘ are the coefficients associated with the discretized
LSF ¢/.

In this work, the coefficients qﬁf are defined as
explicit functions of the level-set design variables
s = {s € RN |y <5; < dypoj = 1,..., N}, where N, is
the total number of B-spline coefficients for this discretiza-
tion; see also Van Dijk et al. (2013); Sigmund and Maute
(2013). The design variables are constrained by an upper
and lower bound, ¢,, and ¢, respectively.

Many TO problems employ a convolutional or PDE-
based filter to improve the numerical stability and the con-
vergence of the optimization problem, see Bourdin (2001);
Burger (2003); Gournay (2006) and Lazarov and Sigmund
(2011). This work utilizes higher-order B-spline discre-
tizations. The increased smoothness and larger support of
higher-order B-spline basis functions provide an equivalent
effect to filtering and thus an additional filter is not required.
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Equally to convolutional and PDE-based filter approaches,
a coarse, higher-order B-spline discretization does not nec-
essarily suppress small features, see Villanueva and Maute
(2014) and Coffin and Maute (2016). However, it promotes
smoother shapes and bulkier features, see Noél et al. (2020).
We demonstrate the effect of higher-order B-spline basis
functions in combination with a coarser mesh in detail in
our first example, see Sect. 8.1.

Contrary to classical approaches wherein the LSF is
updated by solving the Hamilton-Jacobi equation, here the
coefficients of the level-set field are the design variables that
are updated by mathematical programming techniques.

3.3 The extended isogeometric analysis

In this work, we use the XIGA to discretize the state variable
fields on the non-conforming background mesh. The XIGA
is a modification of the XFEM and utilizes the advantages of
B-spline basis functions, whereas the XFEM uses standard
Lagrange polynomials. The XFEM was first developed for
crack modeling by Belytschko and Black (1999). Since then,
its applications have been extended to material modeling, see
Belytschko et al. (2009), and design optimization, see Van
Dijk et al. (2013), among others. Basis functions are defined
on a background mesh to construct a non-conforming finite
element approximation space. We follow the basic concepts
of a generalized Heaviside enrichment strategy, introduced
by Terada et al. (2003) and later adopted for TO by Makh-
ija and Maute (2014). The non-conforming finite element
approximation space with a total of N, basis functions is
locally enriched to avoid artificial coupling caused by the
same basis function interpolating in topologically discon-
nected material domains £2™, see Andreasen et al. (2020).
This enrichment strategy for a single basis function is
illustrated in Fig. 2. The problem consists of two materials,

Q'and 92. The support of the basis function is depicted by
a dashed red line. The basis function is three times enriched
as it interpolates into three topologically disconnected
regions of the two materials. This approach has no limitation
with regard to the number of materials or the spatial com-
plexity of the intersection configurations. For the definition
of the enriched basis, an indicator function q/jl (x), defined as
the two-element set {0, 1}, is introduced. This function 1//j.l(x)
is used to select the active enrichment level / for the basis
function j at the spatial coordinate x. The component of a
vector-valued state variable field u”(x) is approximated by
the enriched finite element space as follows:

Ny Lj
o)=Y | Y wioB e, )
j=1\1=1

where L; is the maximum number of enrichment levels for
basis function j. The B-spline basis functions B; are evalu-
ated at the spatial coordinate x, and ci}. are the enriched basis
function coefficients for the basis function j, the enrichment
level [, and the vector component i. The indicator function
ensures satisfaction of the Partition of Unity (PU) principle,
see Babuska and Melenk (1997), as only one set of enriched
basis coefficients is used to interpolate the solution.

The XIGA is suited to model intra-element discontinui-
ties of state variables within a non-conforming background
element. In this work, boundary or interface conditions are
enforced weakly using Nitsche’s method, see Nitsche (1971)
and Burman (2012). The accuracy of our analysis model
has been demonstrated in Noél et al. (2022) and Schmidt
et al. (2023), which suggest that the employed XIGA method
achieves the same level of accuracy as traditional body-fitted
FEM analysis.

Fig.2 Basis function enrichment for the two material problem, £2! and £2. The support of the basis function B is delineated by a dashed red line.
The basis function is three times enriched based on the three topologically disconnected regions of the two phases into which it is interpolating

@ Springer
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3.3.1 XIGA integration mesh

The XIGA decomposes background elements intersected
by the zero iso-contour of the LSFs into material subdo-
mains and identifies the material interfaces between them.
The weak form of the governing equations is integrated
over these subdomains and interfaces. In this work, to
initiate the decomposition process, the quadrilateral or
hexahedral background elements of the mesh Hy, which
are intersected by geometric interfaces, are first subdivided
into four triangular integration elements in 2D and inter-
sected hexahedral background elements are subdivided
into 24 tetrahedral integration elements in 3D. Sequen-
tially processing all LSFs, the resulting triangles and tet-
rahedrons that are also intersected by an LSF are decom-
posed into smaller triangles and tetrahedrons with their
edges and faces conforming to the geometric interfaces.

To increase the robustness of the geometry decomposi-
tion within an intersected background element, we assume
that edges are only intersected once and only if the level-
set values of the endpoints [/, J] are on opposite sides of
an interface, i.e., (#"(1) — $) (! ()) — ¢,) < 0.

The intersection location is computed by finding the
root of the given LSF along the edge. For this, a multi-
linear interpolation ([)f‘ on the background element is used.
Constructing vertices at these root points and connecting
them with planar edges and faces forms the piecewise lin-
ear approximation of the interfaces.

For coarse meshes Hjy, the geometric approxima-
tion error for the interface can be significant, as is illus-
trated in Fig. 3. On the left, an LSF is discretized on a
2 x 3 mesh utilizing a quadratic polynomial order. The
iso-contour depicted in black represents the geometry.
The figure in the middle illustrates the resulting XIGA
integration mesh Hy constructed based on a 2 X 3 non-
conformal background mesh Hj. This XIGA integration
mesh Hy poorly describes the geometry defined by the
level-set iso-contour. The geometric representation of the

XIGA integration mesh Hy is improved through additional
refinement of the non-conforming background mesh H,,
as illustrated by the picture on the right.

In this work, individual state variable fields may be
discretized by their own, individual approximation space.
Therefore, each approximation space must be enriched
separately. The numerical integration of the governing
equations, however, is performed on a single XIGA inte-
gration mesh Hy. This XIGA integration mesh Hy holds
a set of enriched extraction operators for every enriched
discretization available.

4 Hierarchical B-splines

In this work, we discretize the design and state variable fields
by truncated hierarchical B-spline (THB) bases. In this sec-
tion, the basic concepts of B-spline basis functions in one and
multiple dimensions are outlined first. Next, we summarize the
concept of Lagrange extraction used to link the smooth spline
basis functions to the Lagrange basis of the non-conformal
background mesh H . Additional details on the THB-spline
implementation, Lagrange extraction, and various convergence
studies can be found in Schmidt et al. (2023).

4.1 B-spline basis functions

Starting from a knot vector = = {&, &, ..., &,,41 }, for which
eRand ¢ <§, <+ <§,, 4, univariate B-spline basis
functions N; ,(§) of degree p are constructed recursively start-
ing from the piecewise constant basis function:

Lif g <8 <&,
0, otherwise,

Nip(&) = { (6)

and using the Cox-de Boor recursion formula in de Boor
(1972) for higher degrees, p > 0:

B-Spline mesh H; and LSF

Integration mesh Hx

Refined integration mesh H x

Fig. 3 Illustration of a quadratic level-set field discretized on a 2 X 3 mesh H; (left). The resulting XIGA integration meshes Hy for a 2 x 3 and
4 x 6 non-conforming background mesh H are presented in the middle and right picture, respectively
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§—¢

N. =
ad Sitp — G

Nip1(8)

§i+p+l - 5 (7)
— N, .
i Sitptl ~ Sitl wipt©)

The corresponding B-spline basis is C?~! continuous at every
knot in the interior of the domain for &; < &;,, while it is
C* continuous in between the knots. A knot span is defined
as the half-open interval [&;, &, ;). Within this context, an
element is defined as a non-empty knot span. Equivalently,
elements are precisely the non-overlapping subdomains over
which the basis is C*.

Tensor-product B-spline basis functions B,(£) of spatial
dimension d are obtained by applying the tensor product to
univariate B-spline basis functions of each parametric direc-
tion m=1,...,d. The d knot vectors are defined as

Em=A{eney, ..., ”1’; ot } with n,,, being the number of basis
functions in the parametric direction m:
d
B, (&) = | | N (€™, (3)
m=1

where the position in the tensor-product structure is given
by the index i = {i,,...,i;}. A B-spline space V is defined
as the span of B-spline basis functions.

4.2 Truncated hierarchical B-splines

This work utilizes THB-spline bases to discretize state and
design variable fields due to their strong stability and PU prop-
erty, see Giannelli et al. (2012). The THB-spline bases are
constructed based on a hierarchical mesh of depth n defined
as a sequence of subdomains £ (see Fig. 4):

lcarc.cQ'=0, ©)

where each subdomain £/ is a refined sub-region of Q-1
Consequently, £2 is equal to the union of all the subdomains
Q!. Moreover, it relies on the hierarchical refinement prop-
erty of B-splines which enables the representation of a basis
function B, part of B’ and defined on the domain £/ in terms
of the finer basis of level [ + 1:
B = 2 cgﬁ] (B[) Bl+1,
Bi+le Bt

10)

I+1
where ¢,

Bl+1.

To build THB-spline bases, a sequence of tensor-product
B-spline spaces is introduced where each B-spline space V!
has a corresponding basis B':

is the coefficient associated with a basis function

VeV cVcV cocVh 11
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Fig.4 Hierarchically refined mesh

The THB-spline basis 7 is constructed recursively based
on the sequence of truncated B-spline bases /3 that span the
domains Q. In an initial step, the basis functions defined
on the coarsest level, [ = 0, are collected and assigned to
7°. The THB-spline basis 7! is constructed by taking the
union of the truncated basis functions trunc *!(B) of 7* and
all basis functions B in B! whose support lies in 2/+!. The
recursive algorithm of Garau and Vazquez (2018) reads

70 =:p8°

TH! = {trunc*'(B) | B in T'A supp(B)}
U {B € B"! | supp(B) C "1},
for [=0,...,n—2,

12)

where the truncation operation of basis function B’ is defined
as follows (Giannelli et al. (2012); Garau and Vazquez
(2018)):

trunc (B! = Z cj;,f] (B]) B!

Bl+1 I= B[+1
supp (B'!) ¢ @+ (13)
B'— Y (BB

supp (B+1)CQi+!
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Fig.5 Illustration of the extraction process of a coarse quadratic
B-spline basis onto a more refined, linear Lagrange basis for a single
highlighted B-spline element

[}

=

4.3 Lagrange extraction

This work allows for differently refined THB-spline dis-
cretizations for individual design and state variable fields.
These discretizations do not conform with material inter-
faces or external boundaries. To simplify the formulation
and evaluation of the weak form of the governing equations,
numerical integration is performed on a unique XIGA inte-
gration mesh Hy which, as discussed in Subsection 3.3.1, is
generated by tessellation of the background mesh H . The
non-conforming background mesh Hz may be more refined
and may use basis functions of a different polynomial order
than the B-spline discretizations H;. The extraction process
of interpolating the B-spline basis associated with one of the
meshes H; on the basis of the mesh Hj is shown in Fig. 5.
Following the work of Schillinger et al. (2016); D’Angella
et al. (2018) and Schmidt et al. (2023), “extraction” is used
to link the B-spline bases to the C° Lagrange bases'. This
allows for the use of a standard Lagrange finite element
implementation to compute the elemental contributions to

! The space spanned by the B-Spline basis of polinomial order
PBspline defined on a given mesh is a subspace of the space spanned
by the Lagrange basis of order py gunge = Pp-spline ON the same mesh.
The Lagrange extraction is exact, i.e., the extracted field expressed in
the Lagrange basis retains a CP~! continuity by construction.

Jacobian and residual, while a B-spline discretization H; is
used to approximate the physical response. The THB-spline
basis functions B, defined on a background element of the
mesh H, interpolated using the Lagrange basis functions
defined on an equally or more refined element of the mesh
Hp:

B (&) = 2 Tsz,L(g) (14)

The extraction operator T employed in this work takes the
following form:

— L h P
Ty = ZTijI:szTﬂ’ (15)
J

where T, T" , and T? are a Lagrange extraction operator, a
h-refinement extraction operator, and a p-coarsening extrac-
tion operator, respectively. These operators are described in
detail as follows.

The Lagrange extraction operator 7" enables an element-
wise representation of THB-spline basis functions in terms
of Lagrange shape functions as

By(&) = Y BuENHE) = ) TENH(&), (16)
J J

where B, is the Kkt THB-spline basis function, NjL are the
Lagrange shape functions over the element, &; are the loca-
tions at which the Lagrange shape functions NjL are interpo-
latory, and Tﬁ( = Bi(&).

Similarly, the h-refinement extraction operator 7" allows
for the representation of Lagrange shape functions over each
element in terms of Lagrange shape functions over a more
refined element as
W@=ZW@M@=;¢M®, (17
where NIL are theALagrange shape functions over the more
refined element, &; are the locations at which the Lagrange
shape functions N'* are interpolatory, and Tg = NjL(f,).

Lastly, the p-coarsening extraction operator 77 enables
the representation of Lagrange shape functions of order p

over each element in terms of Lagrange shape functions of
order lower than p as

NH© = Y NFENHE) ~ X TIN! ). (18)

where N[.L are the lower-order Lagrange shape functions, ¢,
are the locations at which the Lagrange shape functions NiL
are interpolatory, and 7/ = N*(€,). Note that in this case the
Lagrange extraction operation is not exact, i.e., the space
spanned by the Lagrange basis function is not the space
spanned by the B-spline bases. When using this operator

@ Springer
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in a projection, one must guarantee a sufficiently refined
Lagrange mesh compared to the B-spline discretization for
the resulting linear system to be of full rank.

Our framework limits the background element refine-
ment to a factor of two, as presented in Subsection 5.2.1.
This consequently limits the number of A-refinement
extraction matrices to four in 2D and eight in 3D. These
matrices can be precomputed and efficiently selected
exploiting the polytree data structure presented in the
following section.

5 Hierarchical mesh

TO problems often lead to small geometric features with
large surface curvatures and areas with large spatial gradi-
ents of the state variables. To locally resolve the associated
design and state variable fields while preventing a significant
increase in computational cost, this work utilizes individual,
locally refined B-spline discretizations ;. We adopt the
adaptive mesh generation tool presented in Schmidt et al.
(2023). In this section, we discuss local refinement strategies
employed in this work.

5.1 Adaptively refined meshes

This work utilizes locally refined meshes for the construction
of B-spline discretizations H; and the non-conformal back-
ground mesh H. All refined meshes are based on the same,
initial tensor grid with a refinement level of /=0, Higher
refinement levels /"*! > ['" are created recursively by locally
subdividing elements of refinement level /”* into four equal-
sized rectangles in 2D and eight equal-sized hexahedrons
in 3D, respectively. This subdivision can be expressed via
a polytree data structure, that is a quadtree in two and an
octree in three dimensions. More implementation details for
a memory and computationally efficient data structure can
be found in Schmidt et al. (2023). Considering an element
of level I, the next coarser element of level I"~! is referred
to as its parent, and the refined elements of level It ag its
children. The polytree data structure enables an efficient and
unique identification of parents and children. This is particu-
larly useful when computing the extraction operators and for
the adaptation of the meshes outlined below.

@ Springer

5.2 Local mesh adaptation strategies

Algorithm 1 Marking of elements for refinement

1: for Meshes H; do

2 for Elements H% do

3 Get RO for element H%

4: H =Hg

5: while H¢ does not exist in H; do
6: ‘H¢ = parent of H¢

7 end while

8: if RO is refine and I = 171 then
9: Set RO to hold

10: end if

11: if RO is refine then

12: Mark ‘H¢ for refinement

13: else if RO is hold then

14: if I > 19 then

15: Mark parent of H¢ for refinement
16: else

17: Do nothing

18: end if

19: else if RO is coarsen then
20: if [ > I' then
21: Mark parent of parent of H§ for refinement
22: else
23: Do nothing
24: end if
25: else if RO is drop then
26: Do nothing
27: end if
28: end for
29: for Max levels of refinement for H; do
30: Apply Algorithm 2
31: end for
32: end for

Algorithm 2 Perform mesh refinement

: Collect marked H¢ into queue for refinement
while Changes in refinement queue do
for All H¢ in queue for refinement do
Apply Algorithm 3 Refinement buffer
Collect marked H¢ in queue for refinement
end for
end while
: Refine all marked elements

QXD IR

As the design evolves during the TO process, the discre-
tizations of state and design variable fields are repeatedly
adapted, i.e., locally refined. Refinement criteria such as
the proximity to material interfaces and physics-based
error estimators are considered to determine regions where
local refinement or coarsening is desired. Refinement is
performed for the non-conforming background mesh H,
and the B-spline meshes H; with a corresponding mesh
adaptation strategy. The refinement criteria in this work
are defined by either nodal or elemental, proximity to
material interfaces and physics-based estimator fields. All
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i) Transfer RO Hi ii) Mark ele- H iii) Perform Hi
to mesh Hq ments HS for refinement of
refinement marked ele-
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) H) ) Y

non-conformal mesh Hp current B-spline mesh H;

Fig.6 Illustration of the mesh adaptation strategy. Non-conformal
background mesh H with refine RO (red) and hold RO (blue). Trans-
fer of ROs to the current B-spline mesh H,. Subsequently, elements

fields are represented on the non-conformal background
mesh Hy and are referred to as refinement indicator fields.

For each refinement indicator field, a Refinement Opera-
tion (RO) is assigned to each element 7}, of the current non-
conformal background mesh g based on the specific refine-
ment criteria. ROs are either refine, hold, coarsen, or drop
and are used to adapt each mesh H; and H; individually. The
mesh adaptation is then facilitated in a three-step process. i)
Find the first existing parent element H; with respect to the
non-conformal background mesh element H$, as the non-
conformal background mesh 7z may be more refined than
the B-spline mesh H;. The RO is then applied to this element
H;. This search is facilitated by the polytree data structure
mentioned earlier. ii) Elements of the polytree of the cur-
rent mesh H; are marked for refinement based on the ROs
of the elements 7;. This marking procedure is explained in
detail below. iii) A new instantiation of mesh H, is created
by refining all marked elements starting at the coarsest level
"= and recursively creating their children /"+! > [" until all
marked elements are refined. Note that this process generates
a new mesh H; which may not include previous elements if
they are not created by the new refinement information. This
effectively results in a coarsening effect after the mesh adap-
tation. The mesh generation process is described in more
detail in Schmidt et al. (2023).

The ROs are summarized in Algorithm 1. Based on the
type of RO for element H;, one of the following marking
procedures is executed. A refine RO marks the element 7]
for refinement. A hold RO marks the parent of the element
H; for refinement, and a coarsen RO marks the parent’s par-
ent for refinement. In addition, all parents of marked ele-
ments are automatically marked for refinement. Examples of
the refine and hold ROs are presented in Fig. 6. A drop RO
does not trigger any marking for refinement. The presented
framework does not allow for coarsening of elements on the
coarsest refinement level /. Moreover, each mesh H, may

current B-spline mesh H,; new B-spline mesh H;

of B-spline mesh 7, are marked for refinement based on the RO
(green). A new B-spline mesh H, is generated

. . H, .
have an assigned maximal /.., and minimal refinement level

lt‘n’m. These maximal and minimal refinement levels may be
adjusted throughout the optimization process.

5.2.1 Mesh regularity requirements

Locally refined B-spline meshes H, are utilized to construct
THB-spline bases, see Sect. 4. This requires the considera-
tion of additional mesh regularity requirements. The size
difference between adjacent elements in a refined mesh is
limited to a factor of four in 2D and eight in 3D. Further-
more, all neighbor elements inside a so-called buffer zone
of an element on level / must be of level / — 1 or higher. The
buffer range d ., for a particular element is calculated by
multiplying the element size with a buffer parameter b4,
When creating a B-spline basis, the width of the buffer zone
must be greater than or equal to the support size of the inter-
polation functions. In this work, each state variable field
is interpolated with an individual interpolation order p. To
satisfy the mesh regularity requirement for all interpolation
functions, the buffer parameter must be chosen such that
b puster = P max> Where p - is the maximal polynomial degree
of all used B-spline bases. The mesh refinement procedure
for enforcing a buffer zone is summarized in Algorithm 3.
The algorithm is applied to each element in Hy and H; ini-
tially marked for refinement in Step 2 of Algorithm 2 and
starts by determining its parent element. The refinement sta-
tus of the parent’s neighbors, i.e., elements within the buffer
range of the considered parent, is checked. If these neighbors
are not marked for refinement, the distance d,,, between the
considered parent element and its neighbors is calculated. If
the distance d ,,, is smaller than the buffer range d,.,, the
neighbor elements are marked for refinement. The algorithm
is then applied recursively to all newly marked neighbor ele-
ments until no further elements are marked for refinement.

@ Springer
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Algorithm 3 Applying mesh regularity requirements

: H$ marked for refinement in Algorithm 2
Get parent
Get parent’s neighbors in half buffer range dpufrer/2
: if Neighbor exists and not marked for refinement then
Calculate distance dpmax between parent and neighbor
if dmax < dbuffer then

Mark neighbor for refinement

Apply refinement buffer algorithm 3 for neighbor
end if
: end if

R BN A v

—_

6 Structural analysis

The LS-TO approach presented in this work is applicable
to a broad range of physical systems. We focus here on
structural topology optimization problems. This section
presents the variational form of the linear elastic govern-
ing equations. The state variable field, i.e., the displace-
ment field, is used to compute optimization performance
measures such as total strain energy and maximal stress.
This section presents the computation of the smooth
stress field in this XIGA TO framework. We will recall
the selective structural springs approach for material-void
TO problems to suppress rigid body motion of topologi-
cally disconnected regions that may appear throughout the
optimization process. Further, we outline the definition
of the physics-based error estimator which is used for the
adaptation of the hierarchical mesh.

6.1 Variational form of governing equations

Following a Galerkin approach, we define the solu-
tion spaces U=U"' XU x ... xU" and test spaces
V=V xV x... x VW where the spaces U" and V" are
Hilbert spaces over the domain £

Uy = (u) e (H'@)").

d (19)
Vi = (v e (H'@M)"},
where u™ is the displacement field and v” the test function
for material domainsm=1,...,N,,.

The weak form of the total residual with stabilization
and boundary terms is decomposed into the following five

contributions:
R=RV+RN+RE +RS =0. (20)

The weak form of the linear elastic governing equations R "
is defined as

@ Springer

RY = Z / ™) o™) dQ2

-y [ v"-tydrI.

m
m JIY

@1

The Cauchy stress tensor is denoted by o(u™) = D" e™ with
D™ being the constitutive tensor, and €™ the elastic strain
tensor of material m. The elastic infinitesimal strain £” is
computed by £” = % (V(u’") + V(u'”)T). Traction forces, ty,
are applied on the Neumann boundary, .

The residual is augmented with boundary and stabili-
zation terms. To weakly enforce Dirichlet boundary and
interface conditions, the residual in Eq. (21) is augmented
with Nitsche’s method, as introduced in Nitsche (1971) and
Embar et al. (2010):

RN = Z< - [ - {6@)-n;}dr
[‘m.n

Fm.n
- [ {o®) -n;}-[uldr (22)
]“m,n
+r" / l[v]]-[[uﬂdr>,
I"I71Jl

where the jump operator is defined as [-]] = ()" — (-)" and
the averaging operator is defined as {-} = y"(-)" + y"(-)".
The parameters y', y™ , and y" control the accuracy of
enforcing the boundary and interface conditions.

For interface conditions, continuity of the displacement
fields and balance of tractions must be satisfied at all inter-
faces I'"™" = Q" N Q" # @. We follow the work of Anna-
varapu et al. (2012) and define these constants as

r _ cr meas (I"")

Qm)/E™ + meas (Q1)/E"’
e e @/ (23)
re= meas (Q™)/E™+meas (Q*)/E’

where E™ is the Young’s modulus of material m and the
operator meas(-) measures the volume or area of the respec-
tive elemental subdomains or interface sections. The user-
defined penalty parameter ¢! determines how strongly the
condition is enforced.

For Dirichlet boundary conditions, ()" = (-), is the value
imposed on the Dirichlet boundary I7) and the average stress
simplifies to the stress in the material m, i.e., y™ = 1 and
y" = 0. We define ' = ¢! E" /h, where h is the edge length
of the intersected elements. The weak enforcement of Dir-
ichlet and interface conditions with Nitsche’s method does
not impact the optimal convergence rate of the analysis, see
Noél et al. (2022) and Schmidt et al. (2023).

Face-oriented ghost stabilization is used to mitigate
numerical instabilities caused by basis functions with
small support. This may occur when an interface moves
close to the boundary of the support of an interpolat-
ing basis function. While such behavior may result in
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ill-conditioning of the linear system, it may also result in
imprecise spatial gradients, see de Prenter et al. (2017,
2019). We follow the work of Burman and Hansbo (2014)
and augment the residual contribution of intersected ele-
ments with the following face-oriented ghost stabilization
term, penalizing the jumps in spatial gradients across ele-
ment faces:

RE =
>y / yC E"RE [vPy o VPR - ngldr, Y

m FeF:, F

where F is an element face in the set ]::’; " which collects all
faces between any two adjacent B-spline elements where at
least one of the two elements is intersected. The parameter
k is defined as k = 2(p — 1) + 1. The outward normal of the
face F is denoted by ny. The penalty parameter y ¢ allows for
control over the influence of the ghost penalty term. Due to
the application of CP~! continuous THB-spline bases, only
jumps in gradients of order p must be penalized. Further
details on the penalty term can be found in Burman and
Hansbo (2014) and Noél et al. (2022) where a detailed study
on the choice of y¢ is conducted. Based on this work, we
choose a penalty parameter y© = 0.001.

6.2 Suppression of rigid body modes

Solid-void LS-TO problems may create topologically detached
material regions at any point throughout the optimization pro-
cess. Rigid body motions of such regions result in a singular
linear system. These regions must be stabilized to prevent a
rank deficient linear system. We adopt the selective structural
springs approach presented by Villanueva and Maute (2014,
2017). This approach attaches distributed springs only to topo-
logically detached material regions. These regions are iden-
tified by solving an auxiliary diffusion-convection problem
for the indicator field 6, which is projected via a Heaviside
function to zero or one, i.e., & = 0 in regions connected to the
mechanical support and = 1in detached material regions.
The contribution of this rigid body mode suppression approach
to the elastic residual in Eq. (20) reads

RS:Z/ v r g ao (25)

m ' h2 ’

where r, is the spring stiffness and is chosen to be r, = 107
The projected indicator field 8 allows for the stabilization
of detached material regions while effectively deactivating
the residual contribution for non-detached material regions.

6.3 XIGA-informed stress projection

Adaptively refined discretizations are of particular inter-
est in stress-based TO due to the accuracy requirements
of the stress computation. Especially in areas with large
displacement gradients, adaptive refinement leads to a
more accurate prediction of the displacement gradients.
The calculation of accurate gradient-based fields, such
as stresses, is often challenging. A post-processing step,
such as stress smoothing, is typically required for C° con-
tinuous basis functions which include the linear B-spline
basis functions studied in this work. Moreover, even
CP~! continuous bases might result in inaccurate gradi-
ents along the material boundary and interface due to
basis functions with a small support. To compute smooth
stresses, we adopt the global stress projection approach
presented by Sharma and Maute (2018). The fundamental
idea is to project an elemental stress measure predicted
by the displacement field via the constitutive equations
onto a scalar stress field. The face-oriented ghost stabili-
zation approach outlined in the previous subsection pro-
vides additional stabilization for the stress field and pre-
vents overestimation of stresses due to the penalization
of jumps in stresses across element faces, see Sharma and
Maute (2018). The scalar stress field measure is denoted
by 7" and the corresponding test function by y™. The
von Mises stress is an example of a frequently used stress
measure. The weak form augmented by a face-oriented
ghost stabilization reads

0=R +RG =
D < / 2" = C™) dRQ +
' \Jar (26)
> /yf KEIV? 3 - ngIIVP 2" - g ]] dF),
FeF, 7 F

where the scalar stress measure C is a function of the com-
ponents of the Cauchy stress tensor.

6.3.1 A priori error estimator

Error estimators are used to identify areas with inaccurate
gradients which cause inaccurate stress predictions. For
simplicity, we adopt an a priori error estimator approach
inspired by Zienkiewicz and Zhu (1992) and compute an
elemental error indicator field. This field identifies regions
with large displacement curvatures by calculating the differ-
ence between the smoothed stress 7 and the displacement-
based stresses C(u™). The elemental least squares error is
calculated as follows:
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[ Cw™ — 7™ dQ
ele — /Qe 40 .

@7)

We will use this error estimator as a refinement indicator to
adaptively refine or coarsen a discretization. Without loss of
generality, a variety of other error estimators may be used for
the adaptation of the mesh, see for example Verfiirth (1994).

7 Explicit level-set topology optimization

This section presents the utilized optimization formulation.
Additionally, we recall the level-set regularization and hole-
seeding strategies employed in this work.

7.1 Optimization problem formulation

We study multi-objective optimization problems that include
minimal compliance designs subject to a mass constraint
and mass minimization subject to a stress constraint. These
optimization problems are formulated as

P,(5)
7

P@(S)
Po 7 (28)

+c

min Z(s,u(s)) + cp,
s.t. g(s,u(s)) <0,

where Z(s, u(s)) is the weighted sum of the compliance S
and mass M evaluated over the solid domain and defined as

Se.u@) M6

S MO
The initial strain energy and mass are denoted by S° and M°,
respectively. The compliance and mass objective contribu-
tions are weighted with the factors c5 and ¢ . To reduce
spatial oscillations of the material interface, we add a perim-
eter contribution P, to the objective. Furthermore, the objec-
tive is augmented by a regularization term P,. The purpose
of the latter term will be explained in Sect. 7.2. The latter
two contributions to the objective are normalized by their
respective reference values 732 and 732. The weighting factors
cp, and cp, control the perimeter penalty and regularization
contributions. In Makhija and Maute (2014) and Geiss et al.
(2019), it was shown that choosing these weights in the
range of 1072 provides a good compromise, i.e., a well-posed
optimization problem with a desired, smooth interface
geometry and a well-regularized level-set field is obtained,
while the influence on the mechanical objective remains
minimal.

In this work, we consider constraints on the mass g, and
on the stress g,.. The mass constraint g, is formulated as

Z(s,u(s)) = cg

29)
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gm@s) = O

-1 (30)
The stress constraint g_ is formulated as

g.(s,u(s)) = / max((i - 1), 0)?dQ, 31)
Q Tref

where 7, is the allowed von Mises stress. We choose an

exponent g = 2 as it provides a continuous smooth gradient.

Note that we do not impose any restrictions on the feature

size to allow for the formation of small geometric features.

The design sensitivities are computed by the adjoint
approach, see Sharma et al. (2017) and Noél et al. (2020).

7.2 Level-set regularization

The LS-TO approach may suffer from spurious oscillations
of the LSF, see Geiss et al. (2019). We adopt the regulari-
zation scheme presented by Geiss et al. (2019) to create a
smooth LSF and to control the spatial gradients at the mate-
rial interface, improving the stability and convergence of
the optimization problem. This regularization scheme aims
to minimize the difference between the LSF and a globally
defined target distance field ¢. The spatial gradient of the
target field, projected onto the interface normal, is uniform
along the material interface, and the target field assumes an
upper or lower bound value away from the material inter-
face. The target field, q§, is constructed from a distance field
whose computation is based on the heat method of Crane
et al. (2013) and truncated via a sigmoid function.

Convergence of the LSF to the target field is promoted
by adding a regularization contribution P, to the objective,
penalizing the squared difference between the LSF ¢ and the
target field ¢, as well as their gradients:

D - Ja W¢>(¢ - ‘i’)zdg Jawyel Vo - V$|2dR
’ Jo #7422 Jode

where ¢y, is the level-set bound value. Following the work
of Barrera et al. (2020), the weights Wy and Wyg allow for
a customized regularization in the vicinity and away from
the interface.

. (32

7.3 Hole-seeding via the density method

Classic LS-TO relies exclusively on shape sensitivities along
the material interfaces to evolve the design. This allows for
material domains to merge, split, or vanish. However, nucle-
ation of new material or void regions within another material
is not possible. As a result, the optimized designs are often
highly dependent on the initial guess, see Van Dijk et al.
(2013). Density-based TO approaches do not experience this
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limitation but may produce results with intermediate, non-
physical densities.

In this work, we adopt the single-field hole-seeding
approach presented by Barrera et al. (2020). This approach
utilizes a level-set field to describe the material-void interface
and a density field that defines the distribution of material
properties within the material domain. The LSF and density
fields are coupled such that the LSF creates holes if the density
drops below a threshold.

The single-field approach defines a nodal volume fraction,
or fictitious density field p(x) as an explicit function of the LSF
¢(x) within the material domain, Q%:

P(x)—¢, , V X c .Q+
px)=q Pu 33)

not defined, Vx € Q-

where ¢,, is the upper bound of the LSF. Our physical model
is only defined in the material domain, i.e., areas that are
void are omitted in the analysis. Consequentially, we do not
define the density for level-set values below the threshold
¢, as these regions are omitted in the analysis. The material
properties are interpolated as functions of p.

Starting from a design domain entirely filled with material,
Barrera et al. (2020) show that this method creates holes in
the first TO iterations. To eliminate intermediate densities in
the final design, the fictitious density is gradually shifted to a
value of 1.0. as follows:

P(X) = g, + (1 = ¢g)p(X), (34)

where the shift parameter ¢, = ¢, (D;,). This parameter is
defined in terms of the optimization iteration D,

0.0, VD <Dy
b =19 ¢ VDitSmn <Dy < DitEnd (35)
1.0, VD, > D; |,
End
with
2 0 0 Dy — Di’sw 2
b=+ (1 = g, (36)

Itgng LY

where ¢°, = 107 is the initial lowest fictitious density value.
The density shift is performed in the optimization iteration
interval [D; ., D;_ 1. As the shifted density increases to 1.0,
the material properties in the entire material domain are the
ones of the bulk material, and the optimization problem for-
mulation corresponds to the one of pure LS-TO.

In this work, we interpolate the material properties by the
Solid Isotropic Material with Penalization (SIMP) method,
see Bendsge and Sigmund (2004). The material density p™(x)
is interpolated by

p"(x) = py p(X) 37)
and the Young’s modulus E™(x) by
E"(x) = B} 5%, (38)

where the density and the Young’s modulus of the material
m are denoted by p' and Ef, respectively. The SIMP expo-
nent is denoted by f.

8 Numerical examples

In this section, we study the proposed TO framework with
numerical problems that use multiple, different adaptively
refined discretizations of design and state variable fields.
Our examples include 2D and 3D compliance minimization
problems with a mass constraint as well as mass minimi-
zation problems with a stress constraint. For all problems,
a static linear elastic response is considered. All numeri-
cal examples require the solution of four linear systems
per optimization iteration. More specifically, we solve the
structural problem determining the physical response, two
auxiliary diffusion problems for the regularization penaliza-
tion term in Eq. (32), and one auxiliary diffusion problem for
the selective springs, see Eq. (25). Additionally, the second
example utilizes a global stress projection as presented in
Sect. 6.3.

The optimization problems are solved by GCMMA
from Svanberg (2002) and the required sensitivity analysis
is performed following the adjoint approach. The param-
eters for the initial, lower, and upper asymptote adaptation
in GCMMA are set to 0.05, 0.7, and 1.2, respectively. The
GCMMA maximal step size is set to 0.02. The optimization
problem is considered converged if the absolute change of
the objective function relative to the mean of the objective
function in the five previous optimization steps drops below
10~* and the constraint is satisfied.

The systems of discretized governing equations are solved
by a direct solver, PARDISO, for 2D problems, see Kour-
ounis et al. (2018). A GMRES algorithm is utilized for 3D
problems preconditioned by an ILU(2), see Heroux (2007).
A relative drop of 107! in the linear residual is used as the
convergence criterion for the iterative solver.

We use the following simple strategy to adapt the dis-
cretization in the course of the optimization process. The
mesh is initially adapted after the first 20 optimization itera-
tions and subsequently every 50 iterations after a previous
mesh adaptation step. Additionally, mesh adaptation may
be initiated to guarantee a uniform refinement level for all
intersected elements of the non-conformal background mesh
‘Hp. Alternative strategies will be considered in future work.
After each mesh adaptation step, the optimization algorithm
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is restarted from the previous design. Furthermore, the
GCMMAA is restarted with uniform lower and upper asymp-
totes for all variables which may alter the evolution of the
design.

In the first example, we study the influence of refin-
ing the design variable field discretization. This study is
performed for uniformly and adaptively refined meshes.
The second example demonstrates the capabilities of our
framework to exploit differently refined discretizations for
each field. This work does not enforce any form of feature
size constraint as they may narrow the design space and
distort the results.

To quantify the computational gain using adaptively
refined discretizations, we define the following measures:
The efficiency factor E,;,, is defined as the ratio of the total
number of displacement DOFs in the uniform XIGA model
divided by the total number of displacement DOFs in the
XIGA model for an adaptive discretization. This measure
is indicative of the computational gains when adaptively
refining the state variable field discretization and is defined
as follows:

Nopt
k=1

E. =
xiga Nop
k=1

(#DOFS(u)ﬁniform ) "
)« ; (39)

<#DOFS(M)§daptive
where #DOFs(u)* is the number of displacement DOFs in
the linear system per optimization iteration k. The exponent
ng is used to relate the number of DOFs to the computa-
tional effort in terms of floating-point operations or wall-
clock time, see Wozniak et al. (2014). We use n, = 1 for
two-dimensional and n; = i;t for three-dimensional problems.
The peak resource requirement R, is defined as the
ratio of the maximum number of displacement DOFs in a
linear system for a uniform state variable field discretiza-
tion over the maximal number of displacement DOFs for
the linear system of the adaptive discretization. This ratio
quantifies the computational gain with respect to a given
set of limited computational resources and is defined as

max (#DOF Suniform ) "

inga = ng* (40)
max(#DOFsadapﬁve) *

In addition, we monitor the ratio of the runtime of non-
adaptive over adaptive processes. We perform a simple
wall-clock time comparison 7y;,, which takes into account
the time spent in the forward and sensitivity analyses and
which is defined as follows:

Nom

k=1 "uniform

Txiga = No,.r—' 41

k=1 "adaptive
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Table 1 Parameter list for design optimization problem

Parameter Value
Initial strain energy S 0.003
Allowable mass M° 1.0
Initial perimeter value 73?, 8.0
Initial regularization value Pg 4.0
Strain energy weighting factor cg 1.0
Mass weighting factor c 0.0
Perimeter weighting factor cp, 0.01
Regularization weighting factor cp, 0.03

F

material non-design domain

design doréain

Fig.7 Support structure within the prescribed frame with applied
boundary conditions and load

While the runtime depends to some extent on the implemen-
tation of the framework, the runtime measure in Eq. (41)
allows for a comparison of the relative computational cost.
To compute a meaningful runtime measure, all computations
must be run on the same hardware, the same number of par-
allel processors, and using the same domain decomposition.

8.1 Design of support structure within prescribed
frame

The first example considers the design of the internal struc-
ture within a prescribed outer frame, as illustrated in Fig. 7.
We optimize the structure for minimum compliance with a
mass constraint of 33% of the total mass, where total mass
is computed as if the entire domain is material. Addition-
ally, regularization and perimeter penalties are added to
the objective function. The initial problem parameters and
weighting factors of the optimization formulation are sum-
marized in Table 1 in self-consistent units.

The outer frame has a length L =3.0 and a height
H = 1.0. The frame is approximated using the signed-
distance function of a hyperellipse with a semi-major and
semi-minor axis of r, = 1.45 and r, = 0.45, respectively,
and a hyperellipse exponent of 24.0. The entire left face is
clamped, i.e., all displacement components are prescribed
to zero. A distributed load of magnitude F = —1.0e, is
applied at the right surface for y < 0.2. The frame and the
solid material of the design domain are described by a linear
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Linear B-splines

Quadratic B-splines

Cubic B-splines

lrefine = 3
480 x 160
e o
S = 3.825 S = 3.861 S = 3.835
", ‘ /
22N D2 22D
1200 S = 3.866 S = 3.899 S = 3.874
NN, / ‘ ‘
D=0 D
0020 S = 3.859 S =4.017 S = 3.925

Fig.8 Two-dimensional optimization results using uniformly refined meshes. Level-set field discretization: linear (left), quadratic (middle), and

cubic (right)

elastic material model with Young’s modulus E = 10* and
Poisson ratio v = 0.3. All values are given in consistent
units.

A 60 % 20 mesh is chosen as the initial coarse mesh. The
compliance problem is evaluated for uniformly and adap-
tively refined discretizations. The state variable field is eval-
uated on a three-times uniformly or adaptively refined linear
B-spline discretization. We present optimization results for
linear state variable field discretizations and for a linear,
quadratic, and cubic design variable field, each refined up
to three times. The upper and lower bounds of the design
variable field are set to +44, where 4 is the edge length of
the most refined elements of the mesh used for the design
variable field.

The design domain is initially seeded with 13 X 4 holes
of radius 0.1 such that the mass constraint is satisfied at the
beginning of the optimization process, see Fig. 7.

8.1.1 Uniform refinement

In this section, we study the influence of the design variable
field discretization with uniform refinement. The state vari-
able field is discretized on a three times refined mesh with
480 x 160 elements. We present results for a zero-, one-,
two-, and three-times uniformly refined design variable
field. The designs generated for a linear, quadratic, and cubic

design variable field discretization are presented in Fig. 8.
The solid phase is depicted in black. The convergence plots
of the objective function are presented in Fig. 9.

While all designs present a similar strain energy value,
the results show that refining the design variable discretiza-
tion allows for a higher geometric complexity, including
thinner structural members. In contrast, a coarser design var-
iable field discretization leads to a smoother design. While
these results are expected because an increase in the number
of design variables increases the overall design freedom, it
also highlights the ability of our framework to directly tune
and limit the design space. In addition, the convergence rate
of the optimization problem directly depends on the design
variable field discretization level. A coarse discretization
converges faster to an optimized design than a fine discre-
tization. This increased convergence rate is a result of the
smaller design space and the larger support of corresponding
basis functions.

It should be noted that, while designs with a linear level-
set discretization show the same behavior with respect to
mesh refinement, they present non-smooth trusses and wavy
material surfaces. The non-smooth nature of the trusses is
especially pronounced when exploiting coarser design vari-
able field discretizations. The LSFs of the final design for
the non-refined linear and quadratic level-set discretizations
are presented in Fig. 10. The C? inter-element continuity of
the linear B-spline discretization does not allow for a smooth
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Fig.9 Convergence of the objective for different uniform level-set refinement levels. Linear (left), quadratic (middle), and cubic (right) level-set

interpolation

Fig. 10 Level-set field. Linear (top) and quadratic (bottom)

design. Higher-order B-spline discretizations, in contrast,
allow for smooth first-order gradients which in turn result in
smoother designs. Consequentially, we recommend using at
least quadratic B-spline discretizations for the design vari-
able field.

8.1.2 Adaptive refinement

Next, we study the influence of using adaptive state and
design variable field discretizations. We apply the re-
meshing algorithm presented in Sect. 5.2. The zero iso-
contour of the LSF is used as the refinement criterion,
see Refinement Criterion Algorithm (RCA) 4. The state
variable field discretization and the non-conformal back-
ground mesh are always adaptively refined to a maximal
refinement level / = 3 around the interface. To widen the
refined zone around the material interface, all direct neigh-
bor elements to the material interface are refined as well.
This reduces the need for mesh adaptation triggered by the
interface moving into a less refined region.

@ Springer

Algorithm 4 TIsocontour of level-set-based RCA

for All elements H% do
if ¢max > 0 and ¢min < 0 then
RO is refine
else
RO is drop
end if

1:
2
3:
4:
5.
6
7: end for

The study is performed for design variable field discre-
tizations, which are up to three times adaptively refined.
We perform this study for linear, quadratic, and cubic hier-
archical B-spline discretizations. The optimized designs
are presented in Fig. 11, where the columns correspond
to the polynomial order of the design variable field dis-
cretization and the rows correspond to the maximum
allowed refinement level [ g,.. For each layout, the solid
is depicted in black, highlighting the design, while the
refined mesh is presented in the void. The convergence
plots of the objective function are shown in Fig. 12. The
gains in computational efficiency achieved with the adap-
tive strategy are summarized in Table 2.

The adaptive approach yields similar results compared
to the ones obtained for a uniform discretization. There
is no significant decrease in the level of detail or com-
plexity of the resultant geometries. Small differences can
be explained through the restart of the optimization algo-
rithm after adapting the mesh. The objective converges to
a similar value for the uniform and adaptive cases. The
convergence rate of the optimization problem depends
on the mesh refinement level as the rate increases with a
coarser mesh.

When comparing the computational efficiency of the
uniform to adaptively refined state variable field discre-
tizations, as shown in Table 2, a small reduction in com-
putational cost is observed. The efficiency factor E,;,,
shows that mesh adaptation leads to an overall reduction
in computational cost. Bulkier designs, like those obtained
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Linear B-splines
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Fig. 11 Two-dimensional optimization results using adaptively refined meshes. Level-set field discretization: linear (left), quadratic (middle),

and cubic (right)
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Fig. 12 Convergence of the objective for different adaptively refined level-set refinement levels. Linear (left), quadratic (middle), and cubic

(right) level-set field discretizations

Table 2 Performance in terms

. linear quadratic cubic
of computational cost for
designs in Fig. 11 liefine  Z€TO  one two three  zero  one two  three zero  one two  three
Ege 165 154 142 137 1.71 149 143 135 1.66 145 138 135
Riea 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
T, 139 139 114 136 157 134 116 1.03 1.62 131 117 125

xiga

with a coarse design variable field discretization, espe-
cially benefit from adaptive refinement. This is expected
as the material interface serves as the refinement criteria,
whereas the coarser state variable field discretization is
found in the interior of the material domain. The initial

design is discretized over a uniform discretization which
also results in the largest linear system. Consequently, the
peak resource requirement R,;,, is found to be 1.0 for all
optimization designs. The runtime ratios present a com-
putational gain of up to 50% when using adaptively refined
discretizations.
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Imaterial non-design domain‘
design domain

non-design domain

Fig. 13 Connector bracket with applied boundary conditions and load

8.2 Connector bracket with predefined features

This second example studies the ability of the presented
optimization framework to independently and adaptively
refine the discretizations of both design and state variable
fields, each using different refinement criteria. This exam-
ple considers the multi-material connector bracket with
predefined features as shown in Fig. 13 in two and three
dimensions. The optimization problem considers mass and
compliance minimization subject to a stress constraint.
Additionally, level-set regularization and perimeter penal-
ties are added to the objective function. The initial two-
and three-dimensional problem parameters and weighting
factors of the optimization formulation are summarized in
Table 3 in self-consistent units.

The size of the computational domain is 7 X 3 x 1.2.
The design domain is fully immersed into the computa-
tional domain and consists of two semi-cylinders of radius
r, = 1.237 with their origin at coordinates (1.5, 1.5, 0.0)
and (5.5, 1.5, 0.0), connected by two lines. Two non-design
domains with prescribed material are defined by two hollow
cylinders with an inner and outer radius of r, = 0.517 and
r. = 0.7173, respectively. The displacement along the inner

Table 3 Optimization parameters for the connector bracket problem

Parameter 2D setup 3D setup
Initial mass M 1.0 1.0
Initial strain energy S 9.0 9.07*
Initial perimeter value 732 42.0 62.0
Initial regularization value 732 40 20
Strain energy weighting factor cg 1.0 0.5
Mass weighting factor ¢ 1.0 1.0
Perimeter weighting factor cp, 0.3 0.1
Regularization weighting factor cp, 0.2 0.05
Allowable stress 7, 8.0 10.0
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surface of the left cylinder is prescribed to zero. A uniform
distributed load F = —1.0 e is applied to the right cylin-
der’s bottom half of the inner surface. The response of the
cylinders and the connecting design is described by a linear
elastic material model with a Young’s modulus E = 10° and
a Poisson ratio v = 0.3.

8.2.1 Two-dimensional setup

First, we consider a simplified two-dimensional config-
uration as it allows for a more detailed visualization of
the results. The domain is discretized with 70 x 30 ele-
ments on the coarsest mesh level which results in an ele-
ment edge length of 7 = 0.1. The upper and lower level-
set bounds are chosen to be +3/4. To nucleate holes, the
density hole-seeding approach presented in Sect. 7.3 is
employed. The initial LSF value is ¢(x) = 0.1. A SIMP
exponent of # = 3.0 is used to calculate the material prop-
erty for the material in the design domain. The density
shift is performed between optimization iterations 20 and
70. The design variable field is approximated with quad-
ratic B-splines. We compare optimized designs and com-
putational performances for linear, quadratic, and cubic
displacement and stress field discretizations. Additionally,
we highlight the reduction in computational cost compared
to uniformly refined discretizations.

This example utilizes B-spline mesh H,; for the dis-
placement and stress field discretizations and B-spline
mesh H, for the design variable and auxiliary diffusion
field discretizations. B-spline mesh H, is based on a quad-
ratic polynomial order.

At the start of the optimization process, the meshes Hy
and H, are uniformly refined twice, while the mesh H,
is uniformly refined once. The first adaptive re-meshing
is initialized after 20 optimization iterations. The meshes
Hg, H,, and H, are adapted in every re-meshing step.
In this example, we utilize two RCAs, 5 and 6, for the

Table 4 Parameter list for RCA

Parameter Value

I 3

ot 3

I 2

Bl -09
r“p 1.1

F ref 0.1

V refine 1.0

Viold 0.3
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Adaptive Refinement

Linear =2.980 Tmax = 14.65

Uniform Refinement

0 0

=2.999 Tmax = 15.78

F>o &0

Quadratic —2.068 Tmax = 14.31

=3.004 Tmax = 14.67

Fig. 14 Optimization results for a linear (top) and a quadratic (bottom) state variable field discretization; adaptively refined THB-spline discre-

tization (left); uniform B-spline discretization (right)

computation of the RO. RCA 5 is evaluated recursively
for all geometries, e.g., domain boundary, circular non-
design domain, and the LSF. RCA 6 uses the elemental
Zienkiewicz-Zhu inspired a priori error indicator field
for refinement and coarsening. The non-conformal back-
ground mesh Hj is adapted based on both RCA 5 and 6.
B-spline mesh H, is adapted solely utilizing RCA 6, while
B-spline mesh H, is adapted by evaluating RCA 5. The
parameters for refinement are given in Table 4.

An optimized design is generated on a uniform B-spline
and a Lagrange discretization to establish a reference solu-
tion. In both cases, we start with the same initial uniform
discretization as in the adaptive case. After 20 optimiza-
tion iterations, one uniform level of refinement is added
to all discretizations. This guarantees that the maximal
refinement level of all discretizations for both the adaptive
and the uniform case are identical.

Algorithm 5 Level-set-based RCA

1: for All elements H% do

2 for All geometries ¢ do

3 if Gl < ¢ < ¢IP then
4: RO is refine

5: else

6 RO is drop

7 end if

8 end for

9: end for

Algorithm 6 Von Mises stress-based RCA

: for All elements H% do
if ;}‘e > Vrefine then

RO is refine
else if Lee > Vnholda then

1
2
3
4
5: RO is hold
6
7
8
9

else
RO is coarsen
end if
: end for

The optimized designs for a linear and a quadratic state
variable field discretization are presented in Fig. 14, along
with the design performance in terms of the mass M and
the maximum von Mises stress 7,,,,. The final design for
an adaptively refined discretization is presented on the left,
while the uniform B-spline discretization is presented on
the right. For both cases, a qualitatively similar design is
obtained and the maximum observed stress as well as the
final mass does not show a significant difference.

In Fig. 15, we highlight optimized designs for a linear
and a quadratic discretization of the displacement and stress
fields, as well as the final adapted meshes H, H;, and H,.
The non-conformal background mesh H is refined at all
material interfaces which allows for a precise representation
of all geometries and is sufficiently refined to represent all
approximating B-spline discretizations. The B-spline mesh
'H, used for the discretization of the displacement and the
global stress fields presents adaptive refinement in areas
with large spatial gradients of the stress. This behavior is
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non-conformal back-
ground mesh Hp

B-spline mesh
H, stress field

B-spline mesh
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Fig. 15 Optimized designs and corresponding meshes H, H,, and H, for a linear and a quadratic displacement discretization

Table 5 Performance in terms

. linear quadratic cubic
of computational cost for
designs in Fig. 14 THB-splines Lagrange THB-splines Lagrange THB-splines Lagrange
Eyiga 291 291 5.23 18.75 4.68 -
Riiga 2.22 222 2.54 9.45 2.52 -
T, 1.35 1.35 1.47 1.81 1.45 -

Xiga

expected as the Zienkiewizc-Zhu inspired elemental error
estimator from Eq. (27) presents the largest errors in areas
where the second spatial derivatives of the displacements
are large. Comparing the linear and quadratic state variable
field discretizations, we find that the quadratic mesh H, is
less refined overall. This observation aligns with our expec-
tation due to the higher continuity of the quadratic B-spline
discretization, which enables a more accurate calculation
of stresses. In addition, we observe spots of locally refined
regions at the material interface. This refinement results
from a large elemental error caused by numerical instabili-
ties due to basis functions with small support, as outlined in
Sect. 6.1. This indicates that the ghost stabilization may not
be sufficient. Locally adjusting the magnitude of the ghost
stabilization penalty might help to further mitigate this issue.

The level-set discretization presents an adaptive refine-
ment around the zero iso-contour of the LSF up to a maximal

@ Springer

refinement level of lﬁ?&x = 2. This choice was made based on
the results in Sect. 8.1.2, as this refinement level is consid-
ered to be a good compromise to allow for a large amount of
structural detail while also improving the convergence rate
of the optimization problem.

Table 5 presents a comparison of the adaptively refined
state variable fields approximated by THB-spline against
uniformly refined B-spline and Lagrange discretizations
for linear, quadratic, and cubic polynomial orders. Using an
adaptively refined linear THB-spline discretization results in
a factor 2.9 reduction in computational cost expressed through
the efficiency factor E,;,, compared to a uniformly refined
THB-spline or Lagrange discretization.” The further reduction

2 The uniformly refined linear THB-spline and Lagrange bases are
equivalent.
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Table 6 Parameter list for RCA

Parameter Value
o 2
i 2
Imix !
v -0.9
F 1.1
Fo 1.0
Viefine 0.7
Vhold 0.2

in computational cost when using quadratic and cubic state
variable discretizations confirms the expectation that higher
inter-element continuity enables accurate calculation of
stresses, which in turn, results in a coarser analysis discre-
tization. Moreover, a significant reduction in computational
cost, i.e., Ey;,, larger than 10, is observed when comparing the
higher-order B-Spline discretization to a uniform Lagrange
discretization. This is expected as the higher-order B-spline
space is a proper subspace of the Lagrange space of the same
order defined over the same mesh, as B-spline basis func-
tions exhibit a higher continuity than Lagrange basis func-
tions. As a consequence, the higher-order B-spline space has

fewer DOFs than the Lagrange space. Furthermore, we recall
that the higher continuity only applies to regions inside of a
material domain defined by the XIGA model as described in
Sect. 3.3. In combination with the larger support of higher-
order B-spline basis functions, this leads to a diminishing
reduction in computational cost for fine geometric features.

In contrast to the previous example, the peak resource
requirement Ry;,, also shows a significant reduction in com-
putational cost. In comparison to a classic Lagrange dis-
cretization, a factor of 9.0 is observed which may have a
significant impact on the choice of solvers that may be used
to solve the linear system.

8.2.2 Three-dimensional setup

This section extends the previous 2D configuration to 3D.
The displacement field is approximated with a linear poly-
nomial order. The optimization is initialized with uniformly,
once refined meshes Hz and H . The parameters for RCAs 5
and 6 are given in Table 6.

The optimization results generated with adaptively
refined discretizations are presented in Fig. 16, along with
vertical cross-sections of the design to visualize the internal
material layout. The optimized design together with the non-
conformal background mesh H; and B-spline mesh H, used

Fig. 17 Optimized design with non-conformal background mesh H (left) and structural analysis B-spline mesh H, (right)
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Table 7 Performance in terms
of computational cost for

linear

. . . THB_
designs in Fig. 16 splines
Exiga 1.61
R 2.88

xiga

for the evaluation of the displacement field are presented in
Fig. 17. The optimized design exhibits a noticeable similar-
ity to the two-dimensional design except for the development
of shear webs usually observed when solving optimization
problems on fine, uniform meshes. The results show that
the presented optimization strategy is applicable to three-
dimensional problems.

Given the limitation in hardware resources, a direct com-
parison of the computational cost of adaptive versus uniform
discretizations was not possible in this case. To estimate the
cost of using uniform discretizations, we assume an identical
evolution of the design during the optimization process, irre-
spective of using adaptive or uniform discretizations. Based
on this assumption, a lower estimate can be calculated for
the size of the linear systems considering the volume in each
optimization iteration. The efficiency factors comparing the
adaptive results with a uniform estimate are given in Table 7.
This example shows that, in the three-dimensional setting, a
reduction of computation cost with respect to the size of the
linear system for both the efficiency factor E,;,, of 1.6 and

xiga
peak resource requirement R, of 2.8 is achieved.

xiga

9 Conclusion

This paper presents an adaptive discretization framework
for level-set-based topology optimization. The geometry
of the design is described implicitly by a level-set field.
An immersed method, the XIGA, predicts the structural
response and the design criteria. Design optimization prob-
lems often present different local resolution requirements
for geometric and state variable fields. To address this
problem, a hierarchical meshing strategy is presented that
enables the construction of multiple, differently adaptively
refined approximation spaces, utilizing truncated hierarchi-
cal B-spline discretizations. The numerical integration of
the governing equation is performed on a single XIGA inte-
gration mesh of sufficient refinement and order to represent
accurately all underlying approximation spaces. This XIGA
integration mesh is constructed based on a non-conformal
Lagrange background mesh. Lagrange extraction links the
B-spline discretizations to the non-conformal background
mesh.

The user-defined refinements considered in this work
are performed based on geometric and physics-based error
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indicators. Adaptive re-meshing, including an increase of
the maximum and a decrease of the minimum refinement
level, is performed after a given number of iterations or
when the material interface moves into a less refined region
of the XIGA integration mesh. A simple mesh adaptation
strategy is chosen to demonstrate the functionality of the
presented framework but may need further research for
practical applications. To allow for sufficient freedom in
the design, the numerical examples either utilize an initial
hole-seeding approach or nucleate holes based on a com-
bined level-set/density approach. The proposed optimiza-
tion strategy is applied to 2D and 3D structural problems.
Differently adaptively refined meshes are constructed for the
non-conformal background mesh, the level-set field discre-
tization, the evaluation of the structural response, and auxil-
iary diffusion fields used for regularization and stabilization.
Optimization results are computed for uniformly and adap-
tively refined discretizations up to a cubic polynomial order.
Comparing these results provides insight into the influence
of the discretization on the final design and the associated
computational cost.

Numerical results suggest that separating the level-set
and state variable field discretizations enables direct con-
trol over the accuracy and cost of the individual approxi-
mations. A coarser level-set field discretization promotes
smoother designs with larger features and overall bulkier
designs. Moreover, a higher-order B-spline discretization
promotes a smooth level-set field due to a higher inter-
element continuity. A coarser, higher-order level-set field
discretization eliminates the need for a convolutional fil-
ter while providing similar functionality with respect to
controlling the smoothness of the design. Similarly, the
convergence rate of the optimization problem directly
benefits from a coarser level-set field discretization due to
the larger support of each design variable. Adapting the
state variable field based on physics-based error estimators
allows for a significant reduction in computational cost
while meeting accuracy requirements on the prediction
of the physical response, such as displacement and stress
fields.

The adaptive discretization for design and state variable
fields yields similar design performances when compared
to a uniform, fine discretization. In addition, a reduction
in computational cost is observed, achieved through a
decreased size of the linear system in the response predic-
tion. This reduction in computational cost is especially
apparent when comparing the adaptively refined higher-
order THB-spline discretization for state variable fields
with a classic Lagrange discretization of the same poly-
nomial order.

Possible future work may focus on extending the adap-
tive optimization framework to goal-oriented refinement
strategies, a more sophisticated approach to control the
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geometric error, and advanced strategies for triggering
mesh adaptation. Furthermore, the proposed framework
could be applied to optimization problems that require pre-
dicting different phenomena, such as fluid flow or conju-
gate heat transfer. These problems may benefit from mesh
adaptivity to resolve boundary layers.
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