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Secure Perception-Driven Control of Mobile Robots
Using Chaotic Encryption

Xu Zhang *“, Zhenyuan Yuan

Abstract—This article considers perception-driven control of a
mobile robot for path tracking where perception is performed by a
machine learning system. The robot is subject to passive attacks
and evasion attacks on image transmission. To defeat the passive
attacks, we adopt chaotic encryption technique to disguise pixels
of plain images in real time, and construct a bank of fuzzy unknown
input observers to decrypt the cipher pixels in parallel. We char-
acterize the security level of the proposed chaotic cryptographic
scheme. As for the path tracking, we derive a set of linear matrix
inequality (LMI) conditions of the existence of a robust controller,
which renders the output zeroing manifold attractive and invariant
by using internal model technique, and also attenuates the effects
of the evasion attacks and learning errors of the machine learning
system by reducing £2 gain. Simulations are conducted in the
CARLA simulator to demonstrate robust path tracking and secure
image transmission.

Index Terms—Perception, robotic motion planning, security.

I. INTRODUCTION

Mobile robotic systems, e.g., unmanned aerial vehicles and self-
driving cars, are becoming ubiquitous and have found a number of
civilian and military applications [1]. Mobile robots integrate heteroge-
neous devices for embedded sensing, mobile computing, and real-time
control. These devices exchange information via on-board commu-
nication medium. Moreover, modern mobile robots adopt machine
learning techniques to improve intelligence. However, the adoption
of new technologies brings a wide spectrum of privacy and security
issues. This article specifically considers two classes of attacks. One is
passive attacks on intrarobot communication, which can be launched to
eavesdrop confidential information during data transmission. The other
one is active attacks against machine learning systems at test time.

Literature review: In control systems, cryptography has been widely
used to ensure data privacy during transmission. Existing works mainly
focus on encrypting all the data in the control systems by homomorphic
cryptosystems, such that all the operations in encrypted control systems
are performed over encrypted data [3]. This common feature renders
the sensitive data to be protected from eavesdroppers. However, homo-
morphic encryption could be slow and computationally expensive as
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key length increases [4], hence it is not suitable for high-dimensional
image data encryption, especially when encryption needs to be done
in real time. Since chaotic systems are extremely sensitive to initial
states and system parameters, chaotic encryption methods can provide
exceptionally good properties with regard to strong security and high
speed [6]. However, chaotic encryption is also not integrated with
control problems of dynamic systems.

Adversarial machine learning has been receiving increasing atten-
tion [23], [24]. In general, machine learning systems could be com-
promised during the training and test stages. First of all, training of a
machine learning model requires an enormous amount of computational
resources and data gathered by diverse sources, and adversaries can
inject dirty samples into the training dataset to manipulate the model [7].
Second, evasion attacks at test time generate a set of elaborate samples
to evade detection [8]. This set of results do not consider mitigation
of the attacks on machine learning algorithms, which are deployed on
control systems.

There have been recent works which study attack-resilient estimation
and control of robot systems. Availability, integrity, and confidentiality
is the classic categorization of information security. Availability refers
to that authorized users are able to access data whenever required.
Denial-of-service (DoS) attacks are commonly launched to compro-
mise data availability and prevent legitimate users from accessing
specific network resources [9]. Integrity refers to that data is not manip-
ulated such that it keeps authentic, correct, and reliable. Sensor attacks
are typical examples to compromise data integrity and are studied in
papers [10]. The abovementioned DoS attacks and sensor attacks are
classified into active attacks and are well-studied. In contrast, passive
attacks in robotic systems that can be launched to compromise data
confidentiality [2] have not been sufficiently discussed yet.

Contributions: In this article, we consider perception-driven control
of a mobile robot for path tracking where perception is performed by
a machine learning system. The robot is subject to passive attacks and
evasion attacks on image transmission. Major contributions are listed
as follows.

1) To defeat the passive attacks, we adopt chaotic encryption tech-
nique to disguise pixel values in the real-time plain images, and
construct a bank of fuzzy unknown input observers (UIOs) to
decrypt the cipher pixels in parallel.

2) We provide a sufficient condition of the equivalence between the
proposed chaotic cryptographic scheme and conventional self-
synchronizing stream cipher by using flatness.

3) We derive a set of linear matrix inequality (LMI) conditions of the
existence of a robust controller, which renders the output zeroing
manifold attractive and invariant by using internal model technique,
and also attenuates the effects of the evasion attacks and learning
errors of the machine learning system by reducing Lo gain.

The CARLA platform is used to conduct simulations on double
integrator. The simulation results demonstrate robust path tracking
and secure image transmission. Preliminary results of this article were
published in [12] where the system can track arbitrary differentiable
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paths under the assumptions on matching condition and observability.
This article relaxes these two assumptions, and instead assumes that
the path is generated by a nonlinear exosystem. Moreover, this article
provides the theoretical and experimental results including attenuation
to evasion attacks.

Notions and notations: Throughout this article, we use R to represent
the set of real numbers. The set of positive real numbers is denoted by
R4. We use R™*™ to denote the set of m X n real matrices. The set
of m-dimensional symmetric positive definite matrices is denoted by
ST. The complement of set B, with respect to a set By is written
by Bs/B;1. We denote B the ball centered at 0 with radius 7 in R™.
A block diagonal matrix with submatrices X,..., X, on its main
diagonal is denoted by diag{X,...,X,}. For a matrix I € R"™*",
I'T denotes its transpose, the hermitian operator 7#°{-} is defined as
A{T} 2T 4+ T'T, the orthogonal complement matrix T'* is defined
as T =0 and I'" & (TTT)71I'7 is the left pseudoinverse of T'. We
use o(I") to denote the spectrum of I'. We use Amin (I') and Ayax (T)
to denote the minimal eigenvalue and maximal eigenvalue of matrix
T, respectively. Moreover, we use the symbol x in an LMI to denote
entries that follow from symmetry. Let A be an n. X p matrix and B an
m x ¢ matrix. The Kronecker product of A and B is denotedby A ® B.
We denote the ith column of A by a.; £ [ay; a; ... an;)*, and the
vec operator generates a column vector from a matrix A by stacking
the column vectors of A = [a. 1 a....a.,] below one another, i..,
vec(A)£[a", ... dF T

For function w(t):[0,00) — R™, we denote ||wp, ¢l
SUP;, <4<, |w(t)||. For function f(z) : R™ — R, we denote by V f(x)
its gradient at x.

A function vy : Ry — Ry is of class K if it is continuous, (0) = 0,
and strictly increasing; and is of class K, if in addition it is unbounded.
A function 8 : Ry x Ry — Ry is of class KL if for each fixed t > 0,
B(s,t) is of class K and for each fixed s > 0, (s, t) decreases to zero
as t — oo. Function composition is defined by g o f(z) £ g(f(x)).

Consider a nonlinear system

4

ey

where f : R™ x R™ — R™ is locally Lipschitz continuous in x and w
with £(0,0) = 0, h : R® — R is continuous with h(0) = 0 and w(t)
is a piecewise continuous, bounded function of ¢ for all £ > 0.

Definition 1: System (1) is input-to-state stable (ISS) from w(t) to
x(t) if there exist a class JCL function 8 and a class X function ~y
such that for any initial state x(tp) and any input w(t), it holds that
le(t)]] < Bllla(to)ll,t — to) +¥(llwi.q ) for all t > to.

The following flatness extends controllability from linear systems to
nonlinear systems.

Definition 2:  System (1) is said to be flat if there exists output y(t),
referred to as flat output, such that state z(¢) and input w(t) can be
expressed as a function of the flat output y(¢) and a finite number of its
derivatives [21].

II. PROBLEM FORMULATION

This section introduces secure perception-driven control of a mobile
robot by applying chaotic encryption to communication of sensor
readings.

A. System Model Without Encryption and Evasion Attacks

Consider the feedback loop in Fig. 1 where encryption and decryp-
tion, together with evasion attack d(¢) are excluded. The dynamic
system of the robot is given by the following linear time-invariant

u
y|—> Controller (-~ —»| Dynamics (-, X
| !
Perception Camera
e 3z
1z, Z Z -
— —Decryptionf« = Encryption[* ~ d

Fig. 1. Feedback loop of perception-driven control.

system:

i(t) = Aw(t) + Bu(t), y(t) = Ca(t) @)

where z(t) € R™ is the state vector, u(t) € R™ is the control signal
and y(t) € R! is the output. The camera can generate state-dependent
images, which is modeled by z(t) = g(z(t)) where z(t) € R"» is the
image vector and n, > n. As [13], the image z(t) passes through
the perception unit, and the output is given as y(t) = p(z(t)) where
p: R" — R! is the perception mapping. The output y(¢) is used to
generate control command u(t). Given a desired output matrix C,
the perception mapping p is learned offline from training data set
{z(t), Cx(t)} such that p o g(x(t)) = Cz(t). Due to inherent learning
errors, p o g(x(t)) could be different from Cz(t). Then, the output
equation becomes y(t) = Cz(t) + w(t) where w(t) = po q(x(t)) —
C'z(t) represents the learning error of mapping p.

B. System Model With Encryption and Evasion Attacks

Now we consider the complete feedback loop in Fig. 1 where
encryption, decryption, and evasion attacks are included. The 8-bit
image data z(t) can be tampered by evasion attacks d(t) € R"». If
the image is free of evasion attacks at time instant ¢ then d(t) = 0,,,,,
otherwise the evasion attacks can take any value from —255 to 255 to
alter the pixels. We denote the corrupted image by 2(t) £ z(t) + d(t),
which is transmitted through communication channels. In order to
ensure confidentiality of the image, the camera encrypts the plain image
using secret key © and sends the cipher image to the perception unit.
Then, the perception unit decrypts the encrypted image using ©. The
encryption mapping denoted by &g : R™» — R"™e is used to mask the
corrupted plain image and the corresponding corrupted cipher image is
represented as z. (t) £ & ((t)). The decryption mapping denoted by
Do : R™e — R™ isused to decrypt the cipher image and the decrypted
image is represented by Z,(t) £ P (2.(t)). The decrypted image
Z4(t) passes through the perception unit and thus y(t) = p(Z4(t)). By
function composition, we get y(t) = p o Zg o &g o (q(x(t)) + d(t)).
Notice that Zg o &g (Z(t)) may not be equal to Z(t).

The overall dynamic system for Fig. 1 is given by

#(t) = Az(t) + Bu(t), y(t) = Cx(t) + v(t) 3)
where v(t) £ po P o &e o (q(x(t)) +d(t)) —poq(z(t)) + w(t).
Note that the difference between the first two terms represents the error

caused by decryption and evasion attacks.

C. Control Objective and Assumptions

We consider a scenario where the robot dedicates to keeping track of
a leading robot. We aim to design a secure perception-driven controller
to achieve two goals:
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(G1) image data Z(t) is transmitted securely;
(G2) output y(t) can keep track of the leading robot whose trajectory
is generated by a nonlinear exosystem.

We impose a mild assumption on mappings p and q.

Assumption 1: Mappings p and q are continuous.

Neural networks are widely used for perception (see [14] and refer-
ences therein). Since a neural network can be chosen by a composition
of affine functions and continuous activation functions, e.g., sigmoid
and ReL.U, then p can be made continuous. By calibrating the camera,
the pixel coordinates can be obtained from the world coordinate by
linear matrix transformations, e.g., rotations and translations [15].
Then, the continuity of mapping q is satisfied.

The following assumption requires that the learning errors along the
trajectory of system (2) are uniformly bounded. Remark 4 discusses
how to design the perception unit p to satisfy the assumption.

Assumption 2: ||w(t)]| < ¢, for some ¢,, > 0 and all ¢t > 0.

I1l. MAIN RESULTS

This section develops a secure perception-driven controller which
includes two components. One is chaotic encryption that protects con-
fidentiality of image data. The other is a robust path tracking controller
that attenuates the error caused by decryption and evasion attacks.

A. Chaotic Encryption

This section employs message-embedded chaotic encryption, and
injects the plain image into a chaotic system. Many chaotic systems,
e.g., Lorenz’s system and Chua’s circuit [6], can be written as a Takagi—
Sugeno fuzzy system

am:memwwﬂD

N
2e(t) =Y pi(6(1))(Ceize (t)) “
i=1

where z.(t) € R, z.(t) € R"e are the state and output vectors,
respectively; IV is the number of subsystems, A. ; and C, ; are ma-
trices with appropriate dimensions. The weighting functions (&)
depend on parameter vector £ and satisfy the convex sum property
Zf;l wi(€) = land 0 < p;(§) < 1. Note that £ is usually a function
of measurable state variables. As [20] defined, system (4) exhibiting
chaos is commonly referred to as a transmitter.

The camera maintains a message-embedded cryptosystem for each
pixel Z;(t) € R, and the cryptosystems are in the same form and
executed in parallel. To simplify notations, we remove the subscript
j of each pixel Z;(t), and directly use Z(t) to represent a pixel in
the remaining of this section. In particular, each pixel 2(t) € R of
the corrupted plain image is injected into the transmitter (4) with zero
feedthrough matrix, which becomes the following cryptosystem:

i’e(t) = Z/L—L(f(t)) (Ae,ixe(t)) =+ Beé(t)

2e(t) = Cozo(t). )

In the previous, the pixel Z(t) acts as an unknown input of the transmitter
whose state is z.(t) € R™* and output is z.(¢) € R™. We represent
B, and C. as the input matrix and output matrix, respectively. In cryp-
tography, z.. () can be considered as keystream. For each cryptosystem
(5), the initial state . (0) as well as the matrices A, ;, B, C can be
considered as part of the secret key ©. The perception unit aims to use

z.(t) and Z.(t) to recover the corrupted plain pixel Z(¢). This can be
achieved via a UIO.

In this article, we pick a nonsingular matrix C. such that
rank(C, B.) = rank B, in the design of the cryptosystem (5). Then,
we decompose cryptosystem (5) into two subsystems: one is free of
the unknown input Z(¢), and the other is dependent on it. Matrices
T, € R*s*™s and U, € R™*™e are defined as

2o ve [,

QZLQ&W; (C.B.) ©)

Note that 7, is nonsingular since 7.'7T, = I,, where T, =

[T. B.]and T, 2 [I,, — B.(C.B.)C.](B)!. With the state
transformation z, £ 7Tz, and output transformation z, = U, z,, cryp-
tosystem (5) is partitioned into a new form

N
im®=§)&MN%ﬁmm+£ﬁw@)

mm:mem&mm)

+ AL Tea(8) + £(2))
Ze,l(t) = éeje,l(t)7 26,2 (t) = je,Q(t)

where Zo(t) £ [Te1(8)T, Zea(H)T]Y, Zo(t) & [Ze1 ()T, Ze o)™,
Te1(t) €R™ 71, T 5(t) ER, Zo 1 () € R, 2, 5(t) € R, and

Aé,i é BéAeyiT€7 Ag,i é BjAe,iBea ée é (CeBE)lCeTe
A%, £ (C.B.) C.A.,T., A, 2 (C.B.)'C.A.;B..

It indicates that Z. »(¢) can be directly recovered from z. »(t), i.e.,
Ze 2(t) = Ze 2(t). We use the following unknown-input-free subsystem
to reconstruct Z. 1 (t):

Teq(t) = Zﬂi(f(t)) (Al Ten(t) + A2 T 0(1))

25,1 (t) = C_Ve.’feyl (t)
and then the state x. (t) can be recovered as follows:

%mztﬂgﬁﬂztﬂwE§ZJ'

The perception unit uses the following state observer to recover . (t):

N

®)

where Z,,(t) is the estimate of Z,,(¢), and Le;, i =1,...,N,
are the observer gains. Differentiating the output equation of
cryptosystem (5) with regard to ¢ and replacing x.(t) with &.(t), the
decrypted pixel is given as

Zd(t) = Z Mi(g(t))(CeBe)T ('ée (t) - CeAe,i:%e (t)) (9)
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and the decrypted image consists of Z4(t). In theory, Z,(t) is required
for the abovementioned derivation of the decrypted pixel Z4(t). We
define the state estimation error as I, ; (t) £ Z, , (t) — Z, (), then
by the obtained state observer (8), we derive the error dynamics

Tea(t) = D pa(€(0) (Al = LeiCo)iea () . (10)

The following lemma employs a common Lyapunov function to derive
a sufficient condition for exponential convergence of estimation errors,
which guarantees the synchronization between the state x.(t) of the
cryptosystem (5) and the state Z.. () of the receiver (8).

Lemma 1: If there exist matrices P, € Sirl, Qe,i €
Rms—Dx(me=D i ¢ {1,...,N} and scalar v, € Ry, to satisfy
the following LMI conditions:

(Ai,i)TPE + PﬁAi,i - (C’E)T Zi - Qﬁ,iée + ’Ye] <0

Vi=1,...,N (11)

the error dynamics (10) is globally exponentially stable with observer
gain matrices L. ; = P 'Q.;, and ||2(t) — Z4(t)|| diminishes expo-
nentially.

The proof of Lemma 1 is present in Appendix VI.A of [27]. Next, we
discuss the security level of our chaotic encryption method. The follow-
ing lemma theoretically shows the equivalence between the message-
embedded cryptosystem and the conventional self-synchronizing
stream cipher.

Lemma 2: The message-embedded cryptosystem (5) is equivalent
to a conventional self-synchronizing stream cipher.

The proof of Lemma 2 is given in Appendix VLB of [27].

Remark I1: By Lemma 2 and Proposition 1 in [20], our chaotic
encryption is able to provide the same level of security as a conventional
self-synchronizing stream cipher.

Remark 2: Notice that 2. (t) is used to theoretically guarantee the
recovery of the unknown input, and it is a standard and necessary
requirement for the continuous-time UIO technique (see [11] and
references therein). Notice that Z.(¢) is well-defined only when z, (¢)
is real-valued. However, in this article, z. (¢) is the value of a pixel and
an integer. In practice, we replace Z.(t) by M where 7 is the
sampling period.

B. Robust Tracking Controller

The robot aims to follow the leading robot whose trajectory is
generated by the following nonlinear measurable exosystem, which
includes the Van der Pol oscillator:

i (1) = Az, (t) + Z E;x,(t)a;(z,(t))

r(t) = Cra,(t) (12)

where x,.(t) € R™ isthe state, a; : R™" — R is continuously differen-
tiable with a;(0) = 0and A,, C,., E;,i = 1, ..., K, are matrices with
appropriate dimensions. Combining (12) with the controlled system (3)
aswell as e(t) = y(t) — r(¢) renders the following augmented system:

i(t) = Az (t) + Bu(t)

(1) = Arx, (L) + Z E;z.(t)a;(x,(t))

=1

e(t) = Cx(t) — Crz,(t) + v(t). (13)

We decompose v(t) in such a way that v(t) = A(t) + w(t) where
A(t) 2 p(24(t)) — p(2(t)). The following lemma gives an upper
bound of A(t).

Lemma 3: Let the assumptions of Lemma 1 and Assumption 1 hold.
Then, there exists a constant ca > 0 such that |A(¢)| < ca for all
t>0.

The proof of Lemma 3 is given in Appendix VI.C of [27]. Assume
v(t) = 0. We would like to determine sufficiently smooth functions
x(z,) and u(z,) with £(0) = 0 and w(0) = 0 such that the tracking
error is constantly zero when the state of system (13) is restricted to the
output zeroing manifold M; £ {(z,z,) € R® x R"" |z = z(z,.)}
under controller u = w(x,). Substituting z = x(z,) and u = u(x,)
into dynamics (13) renders the following regulator equation:

K
(AT:ET + Z Eimrai(xr))
=1

14)

Az(z,) + Bu(z,) = %

Ly

Cz(z,) — Crz, = 0.

Assumption 3: Solutions @(z,) and u(z,) of regulator (14) exist
and u(x,.) is polynomial in ..

The existence of solution x = x(x,.) and u = u(x,.) only ensures
the tracking error e = 0. To guarantee the boundedness of all tra-
jectories of the closed-loop system associated with system (13) and
controller u(t), the assumption that w(z,) is polynomial in z,. is
required [18]. Since it is hard to solve regulator (14), we first design
a steady-state generator to reproduce w(z,). Second, we design an
internal model to reconstruct w(z,.).

Letting (z,.) = Iz, withamatrix IT € R™"*"r_ Since the solution
u(x,(t)) is a polynomial in z,.(t), there exists a set of matrices
Ay, Aoy ..o A € R™ ™ for some positive integer r, such that

Ly pu=Mu+ALa,ut...+ALY u

rTr

Jj-1

where L4, . u2 %A,.x,,, and Li‘ﬂru = %AT.%, j=
2,3,...,r.Denote
0(z,) £ [u(z,)”, (La,a,ul@))”, .. (L, u(@)) "
There exist & £ Omryem Im(r-1) and ¥ £ [1,,0,, ... 0]
Ay [Ag-- A,
such that
00 (x,
@) g 40 = 00(,), w(oy) = VO(z,). (15)
oz,
Assumption 4: There exists some matrix ®; satisfying
00(z,
a(; )Eixr =®,0(x,),i=1,..., K. (16)

As [18] shows, Assumption 4 may hold in many cases, e.g., Van
der Pol oscillator. Assumptions 3 and 4 imply that system (13) has a
steady-state generator with output w. Let 6(z,.(t)) £ Q6 (z,(t)) with
any nonsingular matrix {2, and take Lie derivative on both sides along
system (12). By using (16), the steady-state generator is constructed as

0(z, (1)) = QD + B, (1)) 0, (1))
w(@, (1)) = B(B(x (1)) = VO 0(x. (1))

where ¢(z, (1)) £ 32/, Bia; (. (1))

We design a nonlinear internal model candidate as follows. We pick
any controllable pair (F,G) with F' € R™"™™" being Hurwitz and
G € R™™*™ By [17], there exists a nonsingular matrix 2 € R™"*™"
as the unique solution of the following Sylvester equation:

QP - FQ =GV.

a7

(18)
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By (15) and (18), the steady-state generator (17) is written as

B(x, (1)) = FO(z, () + Q(x, (£))2 (2, (1)) + Gulw. (1))

Then, an internal model candidate is constructed as

0(t) = Fr(t) + Qé(a,(6)Qn(t) + Gu(?). (19)
Applying the following state and input transformations:
() £ x(t) — M (), () = n(t) - 0z, (1))
a(t) = u(t) — B(n(t))
yields an error dynamics
I(t) = AZ(t) + BEQ 'i(t) + Ba(t)
+ BUO(x, (1)) — Ha(a, (¢ >> + Alle, (1)
i(t) = (F + GUQ ™ + Qé(x,(£))Q 1)at) + Ga(t)
e(t) = C&(t) +v(t).
We let ,.(t) = 0, and the resulting system is simplified as
Z(t) = AZ(t) + BUQ 'q(t) + Ba(t)
i) = (F +GUQ M)i(t) + Ga(t)
e(t) = Cz(t) + v(t). (20)
A dynamic error compensator is chosen as
p(t) = App(t) + Bpe(t), a(t) = Cpp(t) 21

where x,,(t) € R" is state and A, B),, C}, are controller parameters to
be determined. Substituting controller (21) into (20) renders a closed-
loop system

iCl (t) ( ) + BCZA( ) + Bclw(t)
e(t) = Clmz( 1)+ A(t) + w(t) (22)
where  G.(t) 2 [#(1)T ()T 0, ()T)T € RrFmrene, g 2
A’ B'C ~ A 10 N , s
[ch/ App:| 5 Bcl - |:Bp:| . Ccl = [C O} and A=

A BuQ! .o [B o .
[O F+G\I/Q—1:|7 B'= | ] and 7= [C 0]. The following

lemma shows the convergence to a neighborhood of the output zeroing
manifold My 2 {(x,n,2,) € R x R™" x R |z = Tlx,,n =
0(x,)}.
Lemma 4: 1f there exist P € S "™ and ~,, € R, such that
H{PA,}+ P PB. cy
B;cIl‘P —(’Yp—l)ll Il
Cu I; _(’Yp_ NI,

then system (22) is ISS from w(t) and A(t) to Z(t).
The proof of Lemma 4 is provided in Appendix VI.D of [27].
Attaching the internal model (19) to the given system (3) renders the
following augmented system:

#(t) = Ax(t) + Bu(t)
0(t) = F(t) + Qe(a. ()2 " n(t) + Gu(t)
e(t) = Cx(t) — Cra(t) + v(t).

Then, the path tracking problem is converted into a stabilization prob-
lem of the augmented system (24). By (17) and (21), an output-feedback
controller is given by

Bp(t) = Apzy(t) + Bpe(t), u(t) =

<0

(23)

(24)

Cpap(t) +¥Q () (25)

and substituting it into the augmented system (24) yields the following
closed-loop system:

er(t) = Act(r(8))ze(t) + Be(z:(t),v(t))

e(t) = Cclxcl (t) - Crxr(t) + U(t) (26)
where za(t) = [z()" n(t)" z,(t)"]", Aa(z,) £
A BUQ! BC,
0 F+GIQ '+ Q¢p(z,)Qt GC,|, and By(z,,v) =
B,C 0 A,
0
0

—B,C,x, + Byv

Considering a ball B} with the radius , the following lemma is used
in the proof of our main results.

Lemma 5: If f(z):R"™ — R is continuous on R", then g(¥) £
max,cpn f(x) is continuous on R..

The f)/roof of Lemma 5 is given in Appendix VLE of [27]. We
pick any v > 0 such that ||z, (¢)|| < v for ¢ > 0. The following the-
orem shows a sufficient condition of the local stability of closed-loop
system (26).

Theorem 1: Let the assumptions of Lemma 3 and Assumption 2
hold. Suppose that there exist R € S77™", S € ™", and matrices
A, e R*exme, B € R, (), € R™ ", and scalar v, € R, such
that the following LMIs are feasible:

A {AR+BC,} + R * |
LAt ATt Ly H{SA 4 B,CT) S
T i
____________ 0 B
C'R c’ '
* ; *
* : *
' <0 27
Bl /et S e
Il . —(’yp - ].)Il
R In+mr
L.nﬂw g } >0 (28)
Then, the following properties hold.
. . . S Y
(P1) The scalar -, and the positive-definite matrix P = vT T

satisfy (23), and the parameters A,, B, C,, in controller (25) can
be computed by

A, B, [v sB7] "
C, 0] |0 I
A, B, [SA'R 0]\ [MT 0]
X([ép o}_{ 0o o)|or 1 29
where matrices M,Y € R™<*"¢ have full rank and satisfy Y MT =

I.. - RS.
(P2) Choose any Ry > 0 and § € (0,1). Let R, £

Jmax (P) Ry +

)‘miu(P)
%ﬁp‘!?r“ (v 4+ ||Cr|| 7t (cw + ca)). For a sufficiently small v, if
z.(0) € ngm“rnc, system (26) satisfies the following properties.

(P2.1) ISS from w(t), A(t) and z,.(t) to 2 (t).
(P2.2) zoi(t) € BET™ " forall t > 0.

[ lewi2ar .

(P2.3) limy e —p20———— < 72
Jy 1a@m+w)Ra
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The proof of Theorem 1 is given in Appendix VLF of [27].

Remark 3: One can check the feasibility of the LMI conditions
(27), (28) using robust control toolbox in MATLAB [26].

Remark 4: Theorem 1 provides a guideline to design a neural
network for the perception unit p to satisfy Assumption 2. First, choose
any bound ¢,, > 0 for learning error w. Second, choose a pair of R,
and § and compute R,. Third, by universal approximation property
(see Theorem 2 in [22]), for any compact set, a standard multilayer
feedforward network with a sufficiently large number of hidden-layer
neurons is able to approximate any continuous function to any degree
of accuracy if the activation functions are continuous, bounded, and
nonconstant. Hence, we can choose a neural network with sigmoid
activation functions for the perception unit p, and increase the num-
ber of hidden-layer neurons such that ||w(z)| < ¢, for all z € BE .
By Theorem 1, if z;(0) € B’;{gm””c, then z; () € B’Igm””c and
lw(t)| < ey forallt > 0, i.e., Assumption 2 holds.

IV. SIMULATION

This section provides a simulation by using double integrators in the
CARLA simulator [16]. The computer used in the simulation has Core
17 — 3632 QM CPU with 2.20 GHz and 15.5 GiB Memory.

A. System Model

Consider a robot moving in a 2-D plane. The dynamics of the double
integrator for horizontal and vertical directions are compactly given by

0 1:0 0 0:0
, 0 0.0 0 110
z(t) = 0 0701 x(t) + 010 u(t)
L0 0:0 0 0:1
[1 0:0 0
y(t) = 00T o x(t)

where state x(¢) includes positions x1 (t), z3(t) and velocities xo(t),
x4(t), output y(t) includes positions, and control u(t) is acceleration.
The camera model is z(t) = q(z(t)) where z(¢) is the plain image.
We learn the perception mapping p by a convolutional neural network,
which has been widely applied to image detection and recognition.

B. Controller and UIO Design

This section considers the case where the trajectory of the leader
robot is generated by a Van der Pol oscillator

ot I e

= Az, (t) + Erz,(t)as (. (t))

1 0
1}’E1_{0

let two double integrators track x,.; and x ., respectively. For brevity,
we only give the controller design details when the double integrator
in the horizontal direction follows z..;. In this case, system matrices
are given by A = [8 é],B = [ﬂ,C: [1 O},andCT = [1 O].
The solution of regulator (14) is given as x(z,) = [:c,,l :r,.g]T,
u(z,) = =, + (1 — 22,)z,2. Then, Assumption 3 is satisfied.
As [18], to simplify the controller design, we let u.(z,) = (1 —
22z and @(z,) = —x,1 such that u(z,) = u.(z,) + a(z,).
Given 4(x,), we can design a steady-state generator with state
0(z,) = [~xr1 — x,2]T. Then, based on (15), we derive matrices ® =

with A, = {Bl PJ ,and ay (2, (1)) = z,1(t)%. We

{_01 ﬂ and ¥ = [1 0].Aftercalculati0n, we have &, = {8 _OJ
0 O
0 -1
next step is to find the solution 2 of Sylvester (18). According to
the property of Kronecker product, taking vec operation on both
sides of (18) renders vec(Q®) = (T ® I)vec(Q) and vec(FQ) =
(I> ® F)vec(2). Then, Sylvester (18) is rewritten as

satisfying Assumption4 and ¢(x,.) = ®1aq(z,) = { x2,.The

ST, —I,®F|[vec()] [vec(GW)
~LRF TR | |vec()|  |vec(G¥)|"
—-0.7 0 0.549 .
We let F' = { 0 _0‘4] and G = [ 1 } such that F' is non-

singular and the pair (F, G) is controllable. Then substituting system
parameters into (18) and solving the abovementioned equation yields
Q- 0.42616 —0.25068

0.89743 —0.64102
(28), we obtain the controller parameters for horizontal and vertical

directions as follows:

] . After solving LMI conditions (27) and

18.749 —1292.58 —486.05 —623.56
A = 38.51  —2584.42 —971.45 —1246.23
P | —78.76  5057.8 1899.11  2431.74
—18.49  1218.39 459.07 589.91

[—2.86 —0.000028 0.0002 —0.000076]T

BP
Cp = [115.27 —7473.56 —2810.15 —3604.22].

The controller of the double integrator in the horizontal direction is
given by u(t) = ¥Q n(t) + Cpz,(t) + (1 — 22))xpe.

For the vertical direction, C,. = [0 1], and the solution of reg-
ulator (14) is w(z,) = —x,1 — 2z 22 + 23, — 222 200 + 22 700
Using the same procedure, we obtain the same parameters
®, ¥, Q, A, By, C,, and the controller of the double integrator in
the vertical direction is given by wu(t) = ¥Q 'n(t) + Cpz,(t) —
272, + 23 — 222, T0 + T 2. Lorenz’s chaotic system is
adopted for encryption [6]. Its T-S fuzzy model is written as (4)

-10 10 0 -10 10 0
where Ay = | 28 —1 —-30|,andA..,= |28 -1 30
0 30 -3 0 -30 -%

To transmit the image data, we pick C, = I3 and B, = [1 0 0] t
such that rank(C,.B.) = rankB. = 1. After solving the LMI condi-
tions (11), the gains of the state observer (8) are given by L. ; =
{1.1497 0

0 —osi70 T b2

C. Experiment Results

1) Encryption: As [6], we evaluate the performance of chaotic
encryption from the following two aspects: encryption and decryption
speed, as well as key sensitivity.

Conventional encryption schemes usually involve modular exponen-
tiation operations over large integers, which could be highly time-
consuming, while our proposed chaotic encryption algorithm only
involves simple matrix inverse operations and solves ordinary differ-
ential equations. For an 8-bit image in the experiments, the average
speed of Paillier’s algorithm [5] is about 1 Kb/s with key length 1024,
while the average speeds of our chaotic encryption and decryption are
about 4.7 and 5.2 Mb/s, respectively. It demonstrates that the proposed
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(c)

Fig. 2. Results of chaotic encryption and decryption. (a) Plain track
image. (b) Cipher track image. (c) Decrypted image (correct key).
(d) Decrypted image (wrong key).

== tracked path
—— trajectory

= = boundary
initial position

initial tracking position

X (m)

Fig. 3. Path tracking for the Van der Pol oscillator.

chaotic encryption algorithm in this article is significantly faster than
the conventional encryption methods.

We let the initial state of the transmitter be the secret key ©. Fig. 2
shows the chaotic encryption and decryption results of key sensitivity
test. Specifically, Fig. 2(a) is a plain track image with size 80 x 60,
Fig. 2(b)isits cipher track image, and Fig. 2(c) is the correctly recovered
track image. The difference between the plain image and the correct
decrypted image is 6.9282 where 2-norm is used. This demonstrates the
correctness of chaotic encryption strategy. We assume that the attacker
eavesdrops the cipher image z., and knows everything of the chaotic
transmitter (4) except for the secret key, e.g., —10. If the eavesdropper
instead uses —10.00000000001, the recovered image is a random
image, as shown in Fig. 2(d). The difference between the plain image
and the incorrectly decrypted image is 3.4174 x 10*. It shows that the
cipher image cannot be accurately recovered with a slightly changed
key, which demonstrates the key sensitivity of chaotic encryption.

2) Path Tracking in Absence of Evasion Attacks: We
choose an initial state as (1.4 2.1) m, which is at the center of the track.
Fig. 3 shows the path tracking in first 15 s. Fig. 4(a) shows the tracking
errors over time. In particular, dotted line depicts the tracking error in
absence of evasion attacks, and the subfigure clearly shows that the
steady tracking error is smaller than 0.05 m where 2-norm is used, and

—— Attack No attack

—— Pailliar - Chaotic -+ No attack

é 0.6 ::Z: Al “‘,{" ,M!v”l’ﬁ’ E 107
204 = UM g a0
o T o
10
2o.2 2
S $ 1072
= Y. =
1072 107! 10° 10! 102 107! 10° 10!
time (s) time (s)
(@) (b)
Fig. 4. Tracking error over time: (a) provides tracking error compar-

isons between attack-free scenario and attacked scenario; (b) provides
tracking error comparisons applying chaotic encryption and Paillier al-
gorithm.

the settling time is about 2 s. Fig. 4(a) demonstrates that the double
integrator can quickly track the path with a small steady-state error
despite the learning error of the perception mapping p. We replace
chaotic encryption with partially homomorphic encryption algorithm,
e.g., Paillier algorithm [5], in the control loop. In terms of high security,
the key length of Paillier algorithm is typically chosen as 1024 [25].
The controller performance comparisons applying chaotic encryption
and Paillier algorithm are shown in Fig. 4(b). It can be seen that the
tracking error diverges using 1024-bits Paillier algorithm since time
delay caused by encryption and decryption is introduced in the control
loop.

3) Path Tracking Under Evasion Attacks: We adopt the fast
gradient sign method to generate the attacks. As [19], the perturbation
of a plain image is denoted as d £ cosign(V ., J) where J is the cost
function of the trained model, V _, is the gradient of the model and ¢ is
the perturbation’s amplitude. Here, the attacker chooses ¢y = 5. Then,
the ith corrupted image is given by 2; = z; + d;.

We choose the same initial state as (1.4 2.1) m. Solid line in Fig. 4(a)
shows the tracking errors subject to evasion attacks over time. The
steady tracking error is smaller than 0.08 m, and the settling time is
also about 2 s. The simulation results demonstrate that evasion attacks
only induce small degradation of tracking performance.

V. CONCLUSION

In this article, we study perception-driven control of a mobile robot
for path tracking. We consider passive attacks on image transmission
and evasion attacks on a machine learning system. To defeat the passive
attacks, we utilize chaotic encryption technique to mask pixels of plain
images in real time, and construct a bank of fuzzy UIOs to decrypt
the cipher pixels in parallel. As for the path tracking, we design a
robust output-feedback controller, which can attenuate the effects of the
evasion attacks and learning errors of the machine learning system by
reducing £- gain. Simulations are conducted in the CARLA simulator
to demonstrate robust path tracking and secure image transmission.
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