
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 69, NO. 4, APRIL 2024 2429

Secure Perception-Driven Control of Mobile Robots
Using Chaotic Encryption

Xu Zhang , Zhenyuan Yuan , Siyuan Xu , Yang Lu , and Minghui Zhu

Abstract—This article considers perception-driven control of a
mobile robot for path tracking where perception is performed by a
machine learning system. The robot is subject to passive attacks
and evasion attacks on image transmission. To defeat the passive
attacks, we adopt chaotic encryption technique to disguise pixels
of plain images in real time, and construct a bank of fuzzy unknown
input observers to decrypt the cipher pixels in parallel. We char-
acterize the security level of the proposed chaotic cryptographic
scheme. As for the path tracking, we derive a set of linear matrix
inequality (LMI) conditions of the existence of a robust controller,
which renders the output zeroing manifold attractive and invariant
by using internal model technique, and also attenuates the effects
of the evasion attacks and learning errors of the machine learning
system by reducing L2 gain. Simulations are conducted in the
CARLA simulator to demonstrate robust path tracking and secure
image transmission.

Index Terms—Perception, robotic motion planning, security.

I. INTRODUCTION

Mobile robotic systems, e.g., unmanned aerial vehicles and self-

driving cars, are becoming ubiquitous and have found a number of

civilian and military applications [1]. Mobile robots integrate heteroge-

neous devices for embedded sensing, mobile computing, and real-time

control. These devices exchange information via on-board commu-

nication medium. Moreover, modern mobile robots adopt machine

learning techniques to improve intelligence. However, the adoption

of new technologies brings a wide spectrum of privacy and security

issues. This article specifically considers two classes of attacks. One is

passive attacks on intrarobot communication, which can be launched to

eavesdrop confidential information during data transmission. The other

one is active attacks against machine learning systems at test time.

Literature review: In control systems, cryptography has been widely

used to ensure data privacy during transmission. Existing works mainly

focus on encrypting all the data in the control systems by homomorphic

cryptosystems, such that all the operations in encrypted control systems

are performed over encrypted data [3]. This common feature renders

the sensitive data to be protected from eavesdroppers. However, homo-

morphic encryption could be slow and computationally expensive as
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key length increases [4], hence it is not suitable for high-dimensional

image data encryption, especially when encryption needs to be done

in real time. Since chaotic systems are extremely sensitive to initial

states and system parameters, chaotic encryption methods can provide

exceptionally good properties with regard to strong security and high

speed [6]. However, chaotic encryption is also not integrated with

control problems of dynamic systems.

Adversarial machine learning has been receiving increasing atten-

tion [23], [24]. In general, machine learning systems could be com-

promised during the training and test stages. First of all, training of a

machine learning model requires an enormous amount of computational

resources and data gathered by diverse sources, and adversaries can

inject dirty samples into the training dataset to manipulate the model [7].

Second, evasion attacks at test time generate a set of elaborate samples

to evade detection [8]. This set of results do not consider mitigation

of the attacks on machine learning algorithms, which are deployed on

control systems.

There have been recent works which study attack-resilient estimation

and control of robot systems. Availability, integrity, and confidentiality

is the classic categorization of information security. Availability refers

to that authorized users are able to access data whenever required.

Denial-of-service (DoS) attacks are commonly launched to compro-

mise data availability and prevent legitimate users from accessing

specific network resources [9]. Integrity refers to that data is not manip-

ulated such that it keeps authentic, correct, and reliable. Sensor attacks

are typical examples to compromise data integrity and are studied in

papers [10]. The abovementioned DoS attacks and sensor attacks are

classified into active attacks and are well-studied. In contrast, passive

attacks in robotic systems that can be launched to compromise data

confidentiality [2] have not been sufficiently discussed yet.

Contributions: In this article, we consider perception-driven control

of a mobile robot for path tracking where perception is performed by

a machine learning system. The robot is subject to passive attacks and

evasion attacks on image transmission. Major contributions are listed

as follows.

1) To defeat the passive attacks, we adopt chaotic encryption tech-

nique to disguise pixel values in the real-time plain images, and

construct a bank of fuzzy unknown input observers (UIOs) to

decrypt the cipher pixels in parallel.

2) We provide a sufficient condition of the equivalence between the

proposed chaotic cryptographic scheme and conventional self-

synchronizing stream cipher by using flatness.

3) We derive a set of linear matrix inequality (LMI) conditions of the

existence of a robust controller, which renders the output zeroing

manifold attractive and invariant by using internal model technique,

and also attenuates the effects of the evasion attacks and learning

errors of the machine learning system by reducing L2 gain.

The CARLA platform is used to conduct simulations on double

integrator. The simulation results demonstrate robust path tracking

and secure image transmission. Preliminary results of this article were

published in [12] where the system can track arbitrary differentiable
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paths under the assumptions on matching condition and observability.

This article relaxes these two assumptions, and instead assumes that

the path is generated by a nonlinear exosystem. Moreover, this article

provides the theoretical and experimental results including attenuation

to evasion attacks.

Notions and notations: Throughout this article, we useR to represent

the set of real numbers. The set of positive real numbers is denoted by

R+. We use R
m×n to denote the set of m× n real matrices. The set

of m-dimensional symmetric positive definite matrices is denoted by

S
m
+ . The complement of set B1 with respect to a set B2 is written

by B2/B1. We denote Bn
r the ball centered at 0 with radius r in R

n.

A block diagonal matrix with submatrices X1, . . . ,Xp on its main

diagonal is denoted by diag{X1, . . . ,Xp}. For a matrix Γ ∈ R
m×n,

ΓT denotes its transpose, the hermitian operator H {·} is defined as

H {Γ} � Γ + ΓT, the orthogonal complement matrix Γ⊥ is defined

as Γ⊥Γ = 0 and Γ† � (ΓTΓ)−1ΓT is the left pseudoinverse of Γ. We

use σ(Γ) to denote the spectrum of Γ. We use λmin(Γ) and λmax(Γ)
to denote the minimal eigenvalue and maximal eigenvalue of matrix

Γ, respectively. Moreover, we use the symbol � in an LMI to denote

entries that follow from symmetry. Let A be an n× p matrix and B an

m× q matrix. The Kronecker product ofA andB is denoted byA⊗B.

We denote the ith column of A by a·,i � [a1i a2i . . . ani]
T, and the

vec operator generates a column vector from a matrix A by stacking

the column vectors of A = [a·,1 a·,2 . . . a·,p] below one another, i.e.,

vec(A) � [ aT
·,1 . . . aT

·,p ]T.

For function w(t) : [0,∞) → R
m, we denote ‖w[t1,t2]‖ �

supt1≤t≤t2
‖w(t)‖. For function f(x) : Rn → R, we denote by∇f(x)

its gradient at x.

A function γ : R+ → R+ is of class K if it is continuous, γ(0) = 0,

and strictly increasing; and is of classK∞ if in addition it is unbounded.

A function β : R+ × R+ → R+ is of class KL if for each fixed t ≥ 0,

β(s, t) is of class K and for each fixed s ≥ 0, β(s, t) decreases to zero

as t → ∞. Function composition is defined by g ◦ f(x) � g(f(x)).
Consider a nonlinear system

ẋ(t) = f(x(t), w(t)), y(t) = h(x(t)) (1)

where f : Rn × R
m → R

n is locally Lipschitz continuous in x and w
with f(0, 0) = 0, h : Rn → R

l is continuous with h(0) = 0 and w(t)
is a piecewise continuous, bounded function of t for all t ≥ 0.

Definition 1: System (1) is input-to-state stable (ISS) from w(t) to

x(t) if there exist a class KL function β and a class K function γ
such that for any initial state x(t0) and any input w(t), it holds that

‖x(t)‖ ≤ β(‖x(t0)‖, t− t0) + γ(‖w[t0,t]‖) for all t ≥ t0.

The following flatness extends controllability from linear systems to

nonlinear systems.

Definition 2: System (1) is said to be flat if there exists output y(t),
referred to as flat output, such that state x(t) and input w(t) can be

expressed as a function of the flat output y(t) and a finite number of its

derivatives [21].

II. PROBLEM FORMULATION

This section introduces secure perception-driven control of a mobile

robot by applying chaotic encryption to communication of sensor

readings.

A. System Model Without Encryption and Evasion Attacks

Consider the feedback loop in Fig. 1 where encryption and decryp-

tion, together with evasion attack d(t) are excluded. The dynamic

system of the robot is given by the following linear time-invariant

Fig. 1. Feedback loop of perception-driven control.

system:

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) (2)

where x(t) ∈ R
n is the state vector, u(t) ∈ R

m is the control signal

and y(t) ∈ R
l is the output. The camera can generate state-dependent

images, which is modeled by z(t) = q(x(t)) where z(t) ∈ R
np is the

image vector and np � n. As [13], the image z(t) passes through

the perception unit, and the output is given as y(t) = p(z(t)) where

p : Rnp → R
l is the perception mapping. The output y(t) is used to

generate control command u(t). Given a desired output matrix C,

the perception mapping p is learned offline from training data set

{z(t), Cx(t)} such that p ◦ q(x(t)) = Cx(t). Due to inherent learning

errors, p ◦ q(x(t)) could be different from Cx(t). Then, the output

equation becomes y(t) = Cx(t) + w(t) where w(t) � p ◦ q(x(t))−
Cx(t) represents the learning error of mapping p.

B. System Model With Encryption and Evasion Attacks

Now we consider the complete feedback loop in Fig. 1 where

encryption, decryption, and evasion attacks are included. The 8-bit

image data z(t) can be tampered by evasion attacks d(t) ∈ R
np . If

the image is free of evasion attacks at time instant t then d(t) = 0np ,

otherwise the evasion attacks can take any value from −255 to 255 to

alter the pixels. We denote the corrupted image by ž(t) � z(t) + d(t),
which is transmitted through communication channels. In order to

ensure confidentiality of the image, the camera encrypts the plain image

using secret key Θ and sends the cipher image to the perception unit.

Then, the perception unit decrypts the encrypted image using Θ. The

encryption mapping denoted by EΘ : Rnp → R
ne is used to mask the

corrupted plain image and the corresponding corrupted cipher image is

represented as ze(t) � EΘ(ž(t)). The decryption mapping denoted by

DΘ : Rne → R
np is used to decrypt the cipher image and the decrypted

image is represented by žd(t) � DΘ(ze(t)). The decrypted image

žd(t) passes through the perception unit and thus y(t) = p(žd(t)). By

function composition, we get y(t) = p ◦ DΘ ◦ EΘ ◦ (q(x(t)) + d(t)).
Notice that DΘ ◦ EΘ(ž(t)) may not be equal to ž(t).

The overall dynamic system for Fig. 1 is given by

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t) + v(t) (3)

where v(t) � p ◦ DΘ ◦ EΘ ◦ (q(x(t)) + d(t))− p ◦ q(x(t)) + w(t).
Note that the difference between the first two terms represents the error

caused by decryption and evasion attacks.

C. Control Objective and Assumptions

We consider a scenario where the robot dedicates to keeping track of

a leading robot. We aim to design a secure perception-driven controller

to achieve two goals:
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(G1) image data ž(t) is transmitted securely;

(G2) output y(t) can keep track of the leading robot whose trajectory

is generated by a nonlinear exosystem.

We impose a mild assumption on mappings p and q.

Assumption 1: Mappings p and q are continuous.

Neural networks are widely used for perception (see [14] and refer-

ences therein). Since a neural network can be chosen by a composition

of affine functions and continuous activation functions, e.g., sigmoid

and ReLU, then p can be made continuous. By calibrating the camera,

the pixel coordinates can be obtained from the world coordinate by

linear matrix transformations, e.g., rotations and translations [15].

Then, the continuity of mapping q is satisfied.

The following assumption requires that the learning errors along the

trajectory of system (2) are uniformly bounded. Remark 4 discusses

how to design the perception unit p to satisfy the assumption.

Assumption 2: ‖w(t)‖ ≤ cw for some cw > 0 and all t ≥ 0.

III. MAIN RESULTS

This section develops a secure perception-driven controller which

includes two components. One is chaotic encryption that protects con-

fidentiality of image data. The other is a robust path tracking controller

that attenuates the error caused by decryption and evasion attacks.

A. Chaotic Encryption

This section employs message-embedded chaotic encryption, and

injects the plain image into a chaotic system. Many chaotic systems,

e.g., Lorenz’s system and Chua’s circuit [6], can be written as a Takagi–

Sugeno fuzzy system

ẋe(t) =

N
∑

i=1

μi(ξ(t))(Ae,ixe(t))

ze(t) =
N
∑

i=1

μi(ξ(t))(Ce,ixe(t)) (4)

where xe(t) ∈ R
ns , ze(t) ∈ R

ne are the state and output vectors,

respectively; N is the number of subsystems, Ae,i and Ce,i are ma-

trices with appropriate dimensions. The weighting functions μi(ξ)
depend on parameter vector ξ and satisfy the convex sum property
∑N

i=1 μi(ξ) = 1 and 0 ≤ μi(ξ) ≤ 1. Note that ξ is usually a function

of measurable state variables. As [20] defined, system (4) exhibiting

chaos is commonly referred to as a transmitter.

The camera maintains a message-embedded cryptosystem for each

pixel žj(t) ∈ R, and the cryptosystems are in the same form and

executed in parallel. To simplify notations, we remove the subscript

j of each pixel žj(t), and directly use ž(t) to represent a pixel in

the remaining of this section. In particular, each pixel ž(t) ∈ R of

the corrupted plain image is injected into the transmitter (4) with zero

feedthrough matrix, which becomes the following cryptosystem:

ẋe(t) =
N
∑

i=1

μi(ξ(t)) (Ae,ixe(t)) +Bež(t)

ze(t) = Cexe(t). (5)

In the previous, the pixel ž(t) acts as an unknown input of the transmitter

whose state is xe(t) ∈ R
ns and output is ze(t) ∈ R

ne . We represent

Be and Ce as the input matrix and output matrix, respectively. In cryp-

tography, xe(t) can be considered as keystream. For each cryptosystem

(5), the initial state xe(0) as well as the matrices Ae,i, Be, Ce can be

considered as part of the secret key Θ. The perception unit aims to use

ze(t) and że(t) to recover the corrupted plain pixel ž(t). This can be

achieved via a UIO.

In this article, we pick a nonsingular matrix Ce such that

rank(CeBe) = rankBe in the design of the cryptosystem (5). Then,

we decompose cryptosystem (5) into two subsystems: one is free of

the unknown input ž(t), and the other is dependent on it. Matrices

Te ∈ R
ns×ns and Ue ∈ R

ne×ne are defined as

Te �

[

B⊥
e

(CeBe)
†Ce

]

, Ue �

[

(CeBe)
⊥

(CeBe)
†

]

. (6)

Note that Te is nonsingular since T−1
e Te = Ins where T−1

e �

[ T̃e Be ] and T̃e � [Ins −Be(CeBe)
†Ce](B

⊥
e )

†. With the state

transformation x̄e � Texe and output transformation z̄e � Ueze, cryp-

tosystem (5) is partitioned into a new form

˙̄xe,1(t) =
N
∑

i=1

μi(ξ(t))
(

A1
e,ix̄e,1(t) +A2

e,ix̄e,2(t)
)

˙̄xe,2(t) =
N
∑

i=1

μi(ξ(t))
(

A3
e,ix̄e,1(t)

+A4
e,ix̄e,2(t) + ž(t)

)

z̄e,1(t) = C̄ex̄e,1(t), z̄e,2(t) = x̄e,2(t)

where x̄e(t) � [x̄e,1(t)
T, x̄e,2(t)

T]T, z̄e(t) � [z̄e,1(t)
T, z̄e,2(t)

T]T,

x̄e,1(t) ∈ R
ns−1, x̄e,2(t) ∈ R, z̄e,1(t) ∈ R

ne−1, z̄e,2(t) ∈ R, and

A1
e,i � B⊥

e Ae,iT̃e, A
2
e,i � B⊥

e Ae,iBe, C̄e � (CeBe)
⊥CeT̃e

A3
e,i � (CeBe)

†CeAe,iT̃e, A4
e,i � (CeBe)

†CeAe,iBe.

It indicates that x̄e,2(t) can be directly recovered from z̄e,2(t), i.e.,

x̄e,2(t) = z̄e,2(t). We use the following unknown-input-free subsystem

to reconstruct x̄e,1(t):

˙̄xe,1(t) =
N
∑

i=1

μi(ξ(t))
(

A1
e,ix̄e,1(t) +A2

e,ix̄e,2(t)
)

z̄e,1(t) = C̄ex̄e,1(t)

and then the state xe(t) can be recovered as follows:

xe(t) = T−1
e

[

x̄e,1(t)
x̄e,2(t)

]

= T−1
e

[

x̄e,1(t)
(CeBe)

†ze(t)

]

. (7)

The perception unit uses the following state observer to recover xe(t):

˙̄̂xe,1(t) =
N
∑

i=1

μi(ξ(t))
(

A1
e,i

ˆ̄xe,1(t)

+A2
e,iz̄e,2(t) + Le,i(C̄e ˆ̄xe,1(t)− z̄e,1(t))

)

x̂e(t) = T−1
e

[

ˆ̄xe,1(t)
(CeBe)

†ze(t)

]

(8)

where ˆ̄xe,1(t) is the estimate of x̄e,1(t), and Le,i, i = 1, . . . , N ,

are the observer gains. Differentiating the output equation of

cryptosystem (5) with regard to t and replacing xe(t) with x̂e(t), the

decrypted pixel is given as

žd(t) =

N
∑

i=1

μi(ξ(t))(CeBe)
† (że(t)− CeAe,ix̂e(t)) (9)
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and the decrypted image consists of žd(t). In theory, że(t) is required

for the abovementioned derivation of the decrypted pixel žd(t). We

define the state estimation error as ˜̄xe,1(t) � x̄e,1(t)− ˆ̄xe,1(t), then

by the obtained state observer (8), we derive the error dynamics

˙̄̃xe,1(t) =
N
∑

i=1

μi(ξ(t))
(

(A1
e,i − Le,iC̄e)˜̄xe,1(t)

)

. (10)

The following lemma employs a common Lyapunov function to derive

a sufficient condition for exponential convergence of estimation errors,

which guarantees the synchronization between the state xe(t) of the

cryptosystem (5) and the state x̂e(t) of the receiver (8).

Lemma 1: If there exist matrices Pe ∈ S
ns−1
+ , Qe,i ∈

R
(ns−1)×(ne−1), ∀i ∈ {1, . . . , N} and scalar γe ∈ R+, to satisfy

the following LMI conditions:

(A1
e,i)

TPe + PeA
1
e,i − (C̄e)

TQT
e,i −Qe,iC̄e + γeI < 0

∀i = 1, . . . , N (11)

the error dynamics (10) is globally exponentially stable with observer

gain matrices Le,i = P−1
e Qe,i, and ‖ž(t)− žd(t)‖ diminishes expo-

nentially.

The proof of Lemma 1 is present in Appendix VI.A of [27]. Next, we

discuss the security level of our chaotic encryption method. The follow-

ing lemma theoretically shows the equivalence between the message-

embedded cryptosystem and the conventional self-synchronizing

stream cipher.

Lemma 2: The message-embedded cryptosystem (5) is equivalent

to a conventional self-synchronizing stream cipher.

The proof of Lemma 2 is given in Appendix VI.B of [27].

Remark 1: By Lemma 2 and Proposition 1 in [20], our chaotic

encryption is able to provide the same level of security as a conventional

self-synchronizing stream cipher.

Remark 2: Notice that że(t) is used to theoretically guarantee the

recovery of the unknown input, and it is a standard and necessary

requirement for the continuous-time UIO technique (see [11] and

references therein). Notice that że(t) is well-defined only when ze(t)
is real-valued. However, in this article, ze(t) is the value of a pixel and

an integer. In practice, we replace że(t) by
ze(t)−ze(t−τ)

τ
where τ is the

sampling period.

B. Robust Tracking Controller

The robot aims to follow the leading robot whose trajectory is

generated by the following nonlinear measurable exosystem, which

includes the Van der Pol oscillator:

ẋr(t) = Arxr(t) +

K
∑

i=1

Eixr(t)ai(xr(t))

r(t) = Crxr(t) (12)

wherexr(t) ∈ R
nr is the state, ai : R

nr → R is continuously differen-

tiable with ai(0) = 0 and Ar , Cr , Ei, i = 1, . . . ,K, are matrices with

appropriate dimensions. Combining (12) with the controlled system (3)

as well as e(t) = y(t)− r(t) renders the following augmented system:

ẋ(t) = Ax(t) +Bu(t)

ẋr(t) = Arxr(t) +
K
∑

i=1

Eixr(t)ai(xr(t))

e(t) = Cx(t)− Crxr(t) + v(t). (13)

We decompose v(t) in such a way that v(t) = Δ(t) + w(t) where

Δ(t) � p(žd(t))− p(z(t)). The following lemma gives an upper

bound of Δ(t).
Lemma 3: Let the assumptions of Lemma 1 and Assumption 1 hold.

Then, there exists a constant cΔ > 0 such that ‖Δ(t)‖ ≤ cΔ for all

t ≥ 0.

The proof of Lemma 3 is given in Appendix VI.C of [27]. Assume

v(t) = 0. We would like to determine sufficiently smooth functions

x(xr) and u(xr) with x(0) = 0 and u(0) = 0 such that the tracking

error is constantly zero when the state of system (13) is restricted to the

output zeroing manifold M1 � {(x, xr) ∈ R
n × R

nr |x = x(xr)}
under controller u = u(xr). Substituting x = x(xr) and u = u(xr)
into dynamics (13) renders the following regulator equation:

Ax(xr) +Bu(xr) =
∂x(xr)

∂xr

(

Arxr +

K
∑

i=1

Eixrai(xr)

)

Cx(xr)− Crxr = 0. (14)

Assumption 3: Solutions x(xr) and u(xr) of regulator (14) exist

and u(xr) is polynomial in xr .

The existence of solution x = x(xr) and u = u(xr) only ensures

the tracking error e = 0. To guarantee the boundedness of all tra-

jectories of the closed-loop system associated with system (13) and

controller u(t), the assumption that u(xr) is polynomial in xr is

required [18]. Since it is hard to solve regulator (14), we first design

a steady-state generator to reproduce u(xr). Second, we design an

internal model to reconstruct u(xr).
Lettingx(xr) = Πxr with a matrixΠ ∈ R

nr×nr . Since the solution

u(xr(t)) is a polynomial in xr(t), there exists a set of matrices

Λ1,Λ2, . . . ,Λr ∈ R
m×m for some positive integer r, such that

Lr
Arxr

u = Λ1u+Λ2LArxru+ . . .+ΛrL
r−1
Arxr

u

where LArxru � ∂u
∂xr

Arxr , and Lj
Arxr

u �
∂L

j−1

Arxr
u

∂xr
Arxr , j =

2, 3, . . . , r. Denote

θ(xr) � [u(xr)
T, (LArxru(xr))

T, . . . , (Lr−1
Arxr

u(xr))
T]T.

There existΦ �

[

0m(r−1)×m Im(r−1)

Λ1 [Λ2 · · ·Λr]

]

andΨ � [Im 0m . . . 0m]

such that

∂θ(xr)

∂xr

Arxr = Φθ(xr), u(xr) = Ψθ(xr). (15)

Assumption 4: There exists some matrix Φi satisfying

∂θ(xr)

∂xr

Eixr = Φiθ(xr), i = 1, . . . ,K. (16)

As [18] shows, Assumption 4 may hold in many cases, e.g., Van

der Pol oscillator. Assumptions 3 and 4 imply that system (13) has a

steady-state generator with output u. Let θ̂(xr(t)) � Ωθ(xr(t)) with

any nonsingular matrix Ω, and take Lie derivative on both sides along

system (12). By using (16), the steady-state generator is constructed as

˙̂
θ(xr(t)) = Ω(Φ + φ(xr(t)))Ω

−1θ̂(xr(t))

u(xr(t)) = β(θ̂(xr(t))) = ΨΩ−1θ̂(xr(t)) (17)

where φ(xr(t)) �
∑K

i=1 Φiai(xr(t)).
We design a nonlinear internal model candidate as follows. We pick

any controllable pair (F,G) with F ∈ R
mr×mr being Hurwitz and

G ∈ R
mr×m. By [17], there exists a nonsingular matrix Ω ∈ R

mr×mr

as the unique solution of the following Sylvester equation:

ΩΦ− FΩ = GΨ. (18)
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By (15) and (18), the steady-state generator (17) is written as

˙̂
θ(xr(t)) = F θ̂(xr(t)) + Ωφ(xr(t))Ω

−1θ̂(xr(t)) +Gu(xr(t)).

Then, an internal model candidate is constructed as

η̇(t) = Fη(t) + Ωφ(xr(t))Ω
−1η(t) +Gu(t). (19)

Applying the following state and input transformations:

x̃(t) � x(t)−Πxr(t), η̃(t) � η(t)− θ̂(xr(t))

ũ(t) � u(t)− β(η(t))

yields an error dynamics

˙̃x(t) = Ax̃(t) +BΨΩ−1η̃(t) +Bũ(t)

+BΨθ(xr(t))−Πa(xr(t)) +AΠxr(t)

˙̃η(t) = (F +GΨΩ−1 +Ωφ(xr(t))Ω
−1)η̃(t) +Gũ(t)

e(t) = Cx̃(t) + v(t).

We let xr(t) = 0, and the resulting system is simplified as

˙̃x(t) = Ax̃(t) +BΨΩ−1η̃(t) +Bũ(t)

˙̃η(t) = (F +GΨΩ−1)η̃(t) +Gũ(t)

e(t) = Cx̃(t) + v(t). (20)

A dynamic error compensator is chosen as

ẋp(t) = Apxp(t) +Bpe(t), ũ(t) = Cpxp(t) (21)

wherexp(t) ∈ R
nc is state andAp, Bp, Cp are controller parameters to

be determined. Substituting controller (21) into (20) renders a closed-

loop system

˙̃xcl(t) = Ãclx̃cl(t) + B̃clΔ(t) + B̃clw(t)

e(t) = C̃clx̃cl(t) + Δ(t) + w(t) (22)

where x̃cl(t) � [x̃(t)T η̃(t)T xp(t)
T]T ∈ R

n+mr+nc , Ãcl �
[

A′ B′Cp

BpC
′ Ap

]

, B̃cl �

[

0
Bp

]

, C̃cl �
[

C ′ 0
]

and A′ �

[

A BΨΩ−1

0 F +GΨΩ−1

]

, B′ �

[

B
G

]

, and C ′ �
[

C 0
]

. The following

lemma shows the convergence to a neighborhood of the output zeroing

manifold M2 � {(x, η, xr) ∈ R
n × R

mr × R
nr |x = Πxr, η =

θ̂(xr)}.

Lemma 4: If there exist P ∈ S
n+mr+nc
+ and γp ∈ R+ such that

⎡

⎣

H {PÃcl}+ P PB̃cl C̃T
cl

B̃T
clP −(γp − 1)Il Il
C̃cl Il −(γp − 1)Il

⎤

⎦ < 0 (23)

then system (22) is ISS from w(t) and Δ(t) to x̃cl(t).
The proof of Lemma 4 is provided in Appendix VI.D of [27].

Attaching the internal model (19) to the given system (3) renders the

following augmented system:

ẋ(t) = Ax(t) +Bu(t)

η̇(t) = Fη(t) + Ωφ(xr(t))Ω
−1η(t) +Gu(t)

e(t) = Cx(t)− Crxr(t) + v(t). (24)

Then, the path tracking problem is converted into a stabilization prob-

lem of the augmented system (24). By (17) and (21), an output-feedback

controller is given by

ẋp(t) = Apxp(t) +Bpe(t), u(t) = Cpxp(t) + ΨΩ−1η(t) (25)

and substituting it into the augmented system (24) yields the following

closed-loop system:

ẋcl(t) = Acl(xr(t))xcl(t) +Bcl(xr(t), v(t))

e(t) = Cclxcl(t)− Crxr(t) + v(t) (26)

where xcl(t) � [x(t)T η(t)T xp(t)
T]T, Acl(xr) �

⎡

⎣

A BΨΩ−1 BCp

0 F +GΨΩ−1 +Ωφ(xr)Ω
−1 GCp

BpC 0 Ap

⎤

⎦, and Bcl(xr, v) �

⎡

⎣

0
0

−BpCrxr +Bpv

⎤

⎦.

Considering a ballBn
ν̂ with the radius ν̂, the following lemma is used

in the proof of our main results.

Lemma 5: If f(x) : Rn → R is continuous on R
n, then g(ν̂) �

maxx∈Bn
ν̂
f(x) is continuous on R+.

The proof of Lemma 5 is given in Appendix VI.E of [27]. We

pick any ν > 0 such that ‖xr(t)‖ ≤ ν for t ≥ 0. The following the-

orem shows a sufficient condition of the local stability of closed-loop

system (26).

Theorem 1: Let the assumptions of Lemma 3 and Assumption 2

hold. Suppose that there exist R ∈ S
n+mr
+ , S ∈ S

n+mr
+ , and matrices

Âp ∈ R
nc×nc , B̂p ∈ R

nc×l, Ĉp ∈ R
m×nc , and scalar γp ∈ R+ such

that the following LMIs are feasible:

⎡

⎢

⎢

⎢

⎣

H {A′R+B′Ĉp}+R �

Âp +A′T + In+mr H {SA′ + B̂pC
′}+ S

0 B̂T
p

C̄ ′R C̄ ′

� �

� �
−(γp − 1)Il �

Il −(γp − 1)Il

⎤

⎥

⎥

⎦

< 0 (27)

[

R In+mr

In+mr S

]

> 0. (28)

Then, the following properties hold.

(P1) The scalar γp and the positive-definite matrix P =

[

S Y
Y T Inc

]

satisfy (23), and the parameters Ap, Bp, Cp, in controller (25) can

be computed by

[

Ap Bp

Cp 0

]

=

[

Y SB′

0 Il

]−1

×

([

Âp B̂p

Ĉp 0

]

−

[

SA′R 0
0 0

])[

MT 0
C ′R Il

]−1

(29)

where matrices M,Y ∈ R
nc×nc have full rank and satisfy YMT =

Inc −RS.

(P2) Choose any R0 > 0 and δ ∈ (0, 1). Let Rs �

√

λmax(P )
λmin(P )

R0 +
2‖P ‖‖Bp‖‖Cr‖

λmin(P )δ
(ν + ‖Cr‖

−1(cw + cΔ)). For a sufficiently small ν, if

xcl(0) ∈ Bn+mr+nc
R0

, system (26) satisfies the following properties.

(P2.1) ISS from w(t), Δ(t) and xr(t) to xcl(t).
(P2.2) xcl(t) ∈ Bn+mr+nc

Rs
for all t ≥ 0.

(P2.3) limT→∞

∫ T

0
‖e(t)‖2dt

∫ T

0
‖Δ(t)+w(t)‖2dt

< γ2
p .
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The proof of Theorem 1 is given in Appendix VI.F of [27].

Remark 3: One can check the feasibility of the LMI conditions

(27), (28) using robust control toolbox in MATLAB [26].

Remark 4: Theorem 1 provides a guideline to design a neural

network for the perception unit p to satisfy Assumption 2. First, choose

any bound cw > 0 for learning error w. Second, choose a pair of R0

and δ and compute Rs. Third, by universal approximation property

(see Theorem 2 in [22]), for any compact set, a standard multilayer

feedforward network with a sufficiently large number of hidden-layer

neurons is able to approximate any continuous function to any degree

of accuracy if the activation functions are continuous, bounded, and

nonconstant. Hence, we can choose a neural network with sigmoid

activation functions for the perception unit p, and increase the num-

ber of hidden-layer neurons such that ‖w(x)‖ ≤ cw for all x ∈ Bn
Rs

.

By Theorem 1, if xcl(0) ∈ Bn+mr+nc
R0

, then xcl(t) ∈ Bn+mr+nc
Rs

and

‖w(t)‖ ≤ cw for all t ≥ 0, i.e., Assumption 2 holds.

IV. SIMULATION

This section provides a simulation by using double integrators in the

CARLA simulator [16]. The computer used in the simulation has Core

i7− 3632 QM CPU with 2.20 GHz and 15.5 GiB Memory.

A. System Model

Consider a robot moving in a 2-D plane. The dynamics of the double

integrator for horizontal and vertical directions are compactly given by

ẋ(t) =

⎡

⎢

⎢

⎣

0 1 0 0
0 0 0 0

0 0 0 1
0 0 0 0

⎤

⎥

⎥

⎦

x(t) +

⎡

⎢

⎢

⎣

0 0
1 0

0 0
0 1

⎤

⎥

⎥

⎦

u(t)

y(t) =

[

1 0 0 0

0 0 1 0

]

x(t)

where state x(t) includes positions x1(t), x3(t) and velocities x2(t),
x4(t), output y(t) includes positions, and control u(t) is acceleration.

The camera model is z(t) = q(x(t)) where z(t) is the plain image.

We learn the perception mapping p by a convolutional neural network,

which has been widely applied to image detection and recognition.

B. Controller and UIO Design

This section considers the case where the trajectory of the leader

robot is generated by a Van der Pol oscillator

[

ẋr1(t)
ẋr2(t)

]

=

[

xr2(t)
−xr1(t) + (1− xr1(t)

2)xr2(t)

]

= Arxr(t) +E1xr(t)a1(xr(t))

with Ar =

[

0 1
−1 1

]

, E1 =

[

0 0
0 −1

]

, and a1(xr(t)) = xr1(t)
2. We

let two double integrators track xr1 and xr2, respectively. For brevity,

we only give the controller design details when the double integrator

in the horizontal direction follows xr1. In this case, system matrices

are given by A =

[

0 1
0 0

]

, B =

[

0
1

]

, C =
[

1 0
]

, and Cr =
[

1 0
]

.

The solution of regulator (14) is given as x(xr) =
[

xr1 xr2

]T
,

u(xr) = −xr1 + (1− x2
r1)xr2. Then, Assumption 3 is satisfied.

As [18], to simplify the controller design, we let uc(xr) = (1−
x2
r1)xr2 and û(xr) = −xr1 such that u(xr) = uc(xr) + û(xr).

Given û(xr), we can design a steady-state generator with state

θ(xr) = [−xr1 − xr2]
T. Then, based on (15), we derive matricesΦ =

[

0 1
−1 1

]

andΨ =
[

1 0
]

. After calculation, we haveΦ1 =

[

0 0
0 −1

]

satisfying Assumption 4 andφ(xr) = Φ1a1(xr) =

[

0 0
0 −1

]

x2
r1. The

next step is to find the solution Ω of Sylvester (18). According to

the property of Kronecker product, taking vec operation on both

sides of (18) renders vec(ΩΦ) = (ΦT ⊗ I2)vec(Ω) and vec(FΩ) =
(I2 ⊗ F )vec(Ω). Then, Sylvester (18) is rewritten as

[

ΦT ⊗ I2 −I2 ⊗ F
−I2 ⊗ F ΦT ⊗ I2

] [

vec(Ω)
vec(Ω)

]

=

[

vec(GΨ)
vec(GΨ)

]

.

We let F =

[

−0.7 0
0 −0.4

]

and G =

[

0.549
1

]

such that F is non-

singular and the pair (F,G) is controllable. Then substituting system

parameters into (18) and solving the abovementioned equation yields

Ω =

[

0.42616 −0.25068
0.89743 −0.64102

]

. After solving LMI conditions (27) and

(28), we obtain the controller parameters for horizontal and vertical

directions as follows:

Ap =

⎡

⎢

⎢

⎣

18.749 −1292.58 −486.05 −623.56
38.51 −2584.42 −971.45 −1246.23
−78.76 5057.8 1899.11 2431.74
−18.49 1218.39 459.07 589.91

⎤

⎥

⎥

⎦

Bp =
[

−2.86 −0.000028 0.0002 −0.000076
]T

Cp =
[

115.27 −7473.56 −2810.15 −3604.22
]

.

The controller of the double integrator in the horizontal direction is

given by u(t) = ΨΩ−1η(t) + Cpxp(t) + (1− x2
r1)xr2.

For the vertical direction, Cr =
[

0 1
]

, and the solution of reg-

ulator (14) is u(xr) = −xr1 − 2xr1x
2
r2 + x3

r1 − 2x2
r1xr2 + x4

r1xr2.

Using the same procedure, we obtain the same parameters

Φ,Ψ,Ω, Ap, Bp, Cp, and the controller of the double integrator in

the vertical direction is given by u(t) = ΨΩ−1η(t) + Cpxp(t)−
2xr1x

2
r2 + x3

r1 − 2x2
r1xr2 + x4

r1xr2. Lorenz’s chaotic system is

adopted for encryption [6]. Its T-S fuzzy model is written as (4)

whereAe,1 =

⎡

⎣

−10 10 0
28 −1 −30
0 30 − 8

3

⎤

⎦, andAe,2 =

⎡

⎣

−10 10 0
28 −1 30
0 −30 − 8

3

⎤

⎦.

To transmit the image data, we pick Ce = I3 and Be =
[

1 0 0
]T

such that rank(CeBe) = rankBe = 1. After solving the LMI condi-

tions (11), the gains of the state observer (8) are given by Le,i =
[

1.1497 0
0 −0.5170

]

, i = 1, 2.

C. Experiment Results

1) Encryption: As [6], we evaluate the performance of chaotic

encryption from the following two aspects: encryption and decryption

speed, as well as key sensitivity.

Conventional encryption schemes usually involve modular exponen-

tiation operations over large integers, which could be highly time-

consuming, while our proposed chaotic encryption algorithm only

involves simple matrix inverse operations and solves ordinary differ-

ential equations. For an 8-bit image in the experiments, the average

speed of Paillier’s algorithm [5] is about 1Kb/s with key length 1024,

while the average speeds of our chaotic encryption and decryption are

about 4.7 and 5.2Mb/s, respectively. It demonstrates that the proposed
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Fig. 2. Results of chaotic encryption and decryption. (a) Plain track
image. (b) Cipher track image. (c) Decrypted image (correct key).
(d) Decrypted image (wrong key).

Fig. 3. Path tracking for the Van der Pol oscillator.

chaotic encryption algorithm in this article is significantly faster than

the conventional encryption methods.

We let the initial state of the transmitter be the secret key Θ. Fig. 2

shows the chaotic encryption and decryption results of key sensitivity

test. Specifically, Fig. 2(a) is a plain track image with size 80 × 60,

Fig. 2(b) is its cipher track image, and Fig. 2(c) is the correctly recovered

track image. The difference between the plain image and the correct

decrypted image is 6.9282 where 2-norm is used. This demonstrates the

correctness of chaotic encryption strategy. We assume that the attacker

eavesdrops the cipher image ze, and knows everything of the chaotic

transmitter (4) except for the secret key, e.g., −10. If the eavesdropper

instead uses −10.00000000001, the recovered image is a random

image, as shown in Fig. 2(d). The difference between the plain image

and the incorrectly decrypted image is 3.4174 × 104. It shows that the

cipher image cannot be accurately recovered with a slightly changed

key, which demonstrates the key sensitivity of chaotic encryption.

2) Path Tracking in Absence of Evasion Attacks: We

choose an initial state as (1.4 2.1)m, which is at the center of the track.

Fig. 3 shows the path tracking in first 15 s. Fig. 4(a) shows the tracking

errors over time. In particular, dotted line depicts the tracking error in

absence of evasion attacks, and the subfigure clearly shows that the

steady tracking error is smaller than 0.05 m where 2-norm is used, and

Fig. 4. Tracking error over time: (a) provides tracking error compar-
isons between attack-free scenario and attacked scenario; (b) provides
tracking error comparisons applying chaotic encryption and Paillier al-
gorithm.

the settling time is about 2 s. Fig. 4(a) demonstrates that the double

integrator can quickly track the path with a small steady-state error

despite the learning error of the perception mapping p. We replace

chaotic encryption with partially homomorphic encryption algorithm,

e.g., Paillier algorithm [5], in the control loop. In terms of high security,

the key length of Paillier algorithm is typically chosen as 1024 [25].

The controller performance comparisons applying chaotic encryption

and Paillier algorithm are shown in Fig. 4(b). It can be seen that the

tracking error diverges using 1024-bits Paillier algorithm since time

delay caused by encryption and decryption is introduced in the control

loop.

3) Path Tracking Under Evasion Attacks: We adopt the fast

gradient sign method to generate the attacks. As [19], the perturbation

of a plain image is denoted as d � c0sign(∇ziJ) where J is the cost

function of the trained model, ∇zi is the gradient of the model and c0 is

the perturbation’s amplitude. Here, the attacker chooses c0 = 5. Then,

the ith corrupted image is given by ži = zi + di.
We choose the same initial state as (1.4 2.1)m. Solid line in Fig. 4(a)

shows the tracking errors subject to evasion attacks over time. The

steady tracking error is smaller than 0.08 m, and the settling time is

also about 2 s. The simulation results demonstrate that evasion attacks

only induce small degradation of tracking performance.

V. CONCLUSION

In this article, we study perception-driven control of a mobile robot

for path tracking. We consider passive attacks on image transmission

and evasion attacks on a machine learning system. To defeat the passive

attacks, we utilize chaotic encryption technique to mask pixels of plain

images in real time, and construct a bank of fuzzy UIOs to decrypt

the cipher pixels in parallel. As for the path tracking, we design a

robust output-feedback controller, which can attenuate the effects of the

evasion attacks and learning errors of the machine learning system by

reducing L2 gain. Simulations are conducted in the CARLA simulator

to demonstrate robust path tracking and secure image transmission.
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