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Spectral independence is a recently developed framework for obtaining sharp bounds on the convergence
time of the classical Glauber dynamics. This new framework has yielded optimal O(nlogn) sampling algo-
rithms on bounded-degree graphs for a large class of problems throughout the so-called uniqueness regime,
including, for example, the problems of sampling independent sets, matchings, and Ising-model configura-
tions. Our main contribution is to relax the bounded-degree assumption that has so far been important in
establishing and applying spectral independence. Previous methods for avoiding degree bounds rely on using
LP-norms to analyse contraction on graphs with bounded connective constant (Sinclair, Srivastava, and Yin,
FOCS’13). The non-linearity of LP-norms is an obstacle to applying these results to bound spectral indepen-
dence. Our solution is to capture the LP-analysis recursively by amortising over the subtrees of the recurrence
used to analyse contraction. Our method generalises previous analyses that applied only to bounded-degree
graphs. As a main application of our techniques, we consider the random graph G(n, d/n), where the previ-
ously known algorithms run in time n©1°89) or applied only to large d. We refine these algorithmic bounds
significantly, and develop fast nearly linear algorithms based on Glauber dynamics that apply to all constant
d, throughout the uniqueness regime.
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7:2 I. Bezakové et al.

1 INTRODUCTION

Spectral independence method was introduced by Anari, Liu, and Oveis Gharan [3] as a framework
to obtain polynomial bounds on the mixing time of Glauber dynamics. Originally based on a series
of works on high-dimensional expansion [1, 15, 27, 28, 31], it has since then been developed further
using entropy decay by Chen, Liu, and Vigoda [13] who obtained optimal O(n log n) mixing results
on graphs of bounded maximum degree A whenever the framework applies. This article focuses on
relaxing the bounded-degree assumption of Reference [13], in sparse graphs where the maximum
degree is not the right parameter to capture the density of the graph.

As a running example, we will use the problem of sampling (weighted) independent sets, also
known as the sampling problem from the hard-core model. For a graph G = (V, E), the hard-core
model with parameter A > 0 specifies a distribution yi 3 on the collection of independent sets of G,
where for an independent set I it holds that g 3 () = Al /Zg. 2 where Z_ is the partition function
of the model (the normalising factor that makes the probabilities add up to 1). For bounded-degree
graphs of maximum degree d + 1 (where d > 2 is an integer), it is known that the problems
of sampling and approximately counting from this model undergo a computational transition at
Ac(d) =
A < A¢(d), and computationally intractable for A > A.(d). Despite this clear complexity picture,
prior to the introduction of spectral independence, the algorithms for A < A.(d) were based on
elaborate enumeration techniques whose running times scale as nOlogd) [29, 32, 33, 40]. The anal-
ysis of Glauber dynamics! using spectral independence in the regime A < A.(d) yielded initially
n®® algorithms for any d [3] (see also Reference [14]), and then O(nlogn) for bounded-degree
graphs [13]. More recently, Chen, Feng, Yin, and Zhang [10] obtained O(n? log n) results for arbi-
trary graphs G = (V, E) that apply when A < A.(Ag — 1), where Ag is the maximum degree of G
(see also Reference [23] for related results when Ag grows like log n); this has been further refined
to O(nlogn) in References [2, 9, 11].

The maximum degree is frequently a bad measure of the density of the graph, especially for
graphs with unbounded-degree. One of the most canonical examples is the random graph G(n, d/n)
where the maximum degree grows with n but the average degree is d, and therefore one would
hope to be able to sample from pg » for A up to some constant, instead of A = o(1) that the pre-
vious results yield. In this direction, [35, 37] obtained an nOlogd) algorithm based on correlation
decay that applies to all A < A.(d) for all graphs with “connective constant” bounded by d (mean-
ing, roughly, that for all £ = Q(logn) the number of length-{ paths starting from any vertex is
bounded by d). The result of Reference [35] applies to G(n, d/n) for all d > 0. In terms of Glauber
dynamics on G(n, d/n), [30] showed an n'*?(1/1oglogn) Jower bound on the mixing time in the case
of the Ising model; this lower bound actually applies to most well-known models, and in particular
rules out O(nlog n) mixing time results for the hard-core model when A = Q(1). The mixing-time
lower bound on G(n, d/n) has only been matched by complementary fast mixing results in models
with strong monotonicity properties, see Reference [30] for the ferromagnetic Ising model and Ref-
erence [7] for the random-cluster model. Such monotonicity properties unfortunately do not hold
for the hard-core model, and the best known results [16, 18] for Glauber dynamics on G(n,d/n)
give an n€ algorithm for A < 1/d and sufficiently large d (where C is a constant depending on d).
Our goal in this article is to go all the way up to A.(d) (which converges to e/d so is larger than 1/d).

#, the so-called uniqueness threshold [20, 38, 40]: they are poly-time solvable when

IRecall, for a graph G, the Glauber dynamics for the hard-core model iteratively maintains a random independent set
(It)r>0, where at each step ¢ a vertex v is chosen uniformly at random (u.a.r.) and, if I; U {v} is independent, then it
sets I;+1 = I; U {v} with probability ﬁ; otherwise, I;+1 = I;\{v}. The mixing time is the maximum number (over the
starting I) of steps ¢ needed to get within total variation distance 1/4 of u ;; see Section 4.1 for the precise definitions.
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Fast sampling via spectral independence beyond bounded-degree graphs 7:3

Our main contribution is to obtain nearly linear-time algorithms on G(n, d/n), for all of the mod-
els considered in Reference [35], i.e., the hard-core model, the monomer-dimer model (weighted
matchings), and the antiferromagnetic Ising model. Key to our results are new spectral indepen-
dence bounds for any d > 0 in the regime A < A.(d) for arbitrary graphs G = (V, E) in terms of
their “d-branching value” (which resembles the connective-constant notion of Reference [35]). To
state our main theorem for the hard-core model on G(n, d/n), we first extend the definition of A (d)
to all reals d > 0 by setting A.(d) = # ford > 1, and A.(d) = o for d € (0,1). We use the
term “with probability (whp) over the choice of G ~ G(n,d/n)” as a shorthand for “as n grows
large, with probability 1 — o(1) over the choice of G(n,d/n)” An e-sample from a distribution p
supported on a finite set Q is a random o € Q whose distribution v satisfies ||v — p|ly < €, where
lv=clltv = 3 Yoeq V() = u(o)l.

THEOREM 1.1. Letd, A > 0 be such that A < A.(d). For any arbitrarily small constant 6 > 0, there
is an algorithm such that, whp over the choice of G ~ G(n,d/n), when the algorithm is given as input
the graph G and an arbitrary rational e > 0, it outputs an e-sample from pig, ; in time n**% log %

The reader might wonder why is there no constant in front of the running time (in Theo-
rems 1.1, 1.2, and 1.3) or why is there no requirement that n is sufficiently large? The assumption
that n is sufficiently large is taken care of in the whp condition: there is a function f; 29 :Z — R
such that lim,_,« f4,1,0(n) = 0 and the “whp” means with probability > 1 — f; 1 o(n); the func-
tion fz 5.9 equals 1 for small n (making the conclusion trivial for such n). Moreover, the family of
O(n'*9) algorithms from Theorem 1.1 can be turned into an n'*°(") algorithm, see Remark 6.7 for
a discussion.

We remark also here that the algorithm of Theorem 1.1 (as well as Theorems 1.2 and 1.3 below)
can also recognise in time n'*°() whether the graph G ~ G(n,d/n) is a “good” graph, i.e., we can
formulate graph properties that guarantee the success of the algorithm, are satisfied whp, and are
also efficiently verifiable, see Section 6.4 for details.

The key to obtaining Theorem 1.1 is to bound the spectral independence of the Gibbs distribution
on G(n, d/n). The main strategy that has been applied so far to bound spectral independence is to
adapt suitably correlation decay arguments and, therefore, it is tempting to use the correlation de-
cay analysis of Reference [35]. This poses new challenges in our setting, since Reference [35] uses
an L”-norm analysis of correlation decay on trees, and the non-linearity of L?-norms is an obstacle
to converting their analysis into spectral independence bounds (in contrast, for bounded-degree
graphs, the L*-norm is used, which can be converted to spectral independence bounds using a
purely analytic approach, see Reference [14]). Our solution to work around that is to “linearise”
the LP-analysis by taking into account the structural properties of subtrees. This allows us to amor-
tise over the tree-recurrence using appropriate combinatorial information (the d-branching values)
and to bound subsequently spectral independence; details are given in Section 3, see Lemmas 3.6
and 3.8 (and Equation (2) that is at the heart of the argument). Once the spectral independence
bound is in place, further care is needed to obtain the fast nearly linear running time, paying spe-
cial attention to the distribution of high-degree vertices inside G(n, d/n) and to blend this with the
entropy-decay tools developed in Reference [13], see Section 4.2 for this part of the argument.

In addition to our result for the hard-core model, we also obtain similar results for the Ising
model and the Momomer-Dimer model. The configurations of the Ising model on a graph G =
(V, E) are assignments o € {0, 1}V, which assign the spins 0 and 1 to the vertices of G. The Ising
model with parameter f > 0 corresponds to a distribution pg g on {0,1}V, where for an assign-
ment o € {0,1}", it holds that UG, p(0) = ﬂm(“) /Zg,p where m(c) is the number of edges whose
endpoints have the same spin assignment under o, and Zg g is the partition function of the model.
The model is antiferromagnetic when f € (0, 1), and ferromagnetic otherwise. For d > 1, let
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7:4 I. Bezakové et al.

Be(d) = %; for d € (0,1), let f.(d) = 0.1t is known that on bounded-degree graphs of maximum
degree d + 1 the sampling/counting problem for the antiferromagnetic Ising model undergoes a
phase transition at § = f.(d), analogous to that for the hard-core model [22, 29, 36, 39].

THEOREM 1.2. Let d,f > 0 be such that f € (f.(d),1). For any constant 6 > 0, there is an
algorithm such that, whp over the choice of G ~ G(n,d/n), when the algorithm is given as input the
graph G and an arbitrary rational € > 0, it outputs an e-sample from ug, g in time n'*%log %

For a graph G = (V,E), the monomer-dimer model with parameter y > 0 corresponds to a
distribution g, , on the set of matchings of G, where for a matching M, it holds that yg, (M) =
y™Ml)Zs,, where Zg , is the partition function. For general graphs G = (V,E) and y = O(1),
(25, 26] gave an O(n?mlog n) algorithm (where n = |V|, m = |E|), which was improved for bounded-
degree graphs to O(nlogn) in Reference [13] using spectral independence. For G(n,d/n), [35]
gave an O(n'°8 %) deterministic algorithm using correlation decay, and Reference [23] showed that
Glauber dynamics mixes in n**°() steps when y = 1.

THEOREM 1.3. Letd,y > 0. For any constant 0 > 0, there is an algorithm such that, whp over the
choice of G ~ G(n,d/n), when the algorithm is given as input the graph G and an arbitrary rational
£ > 0, it outputs an e-sample from yig,, in time n'*%log %

In the next section, we give the main ingredients of our algorithm for the hard-core model,
and we give the proof of Theorem 1.1. The proofs of Theorems 1.2 and 1.3 build on similar ideas,
though there are some modifications needed to obtain the required spectral independence bounds.
We give their proofs in Section 5.3.

Before proceeding let us finally mention that, to go beyond the two-spin models studied here,
the main obstacle is to establish the spectral independence bounds for graphs with potentially un-
bounded degrees. As it is pointed out in Reference [35, Section 7], their correlation-decay analysis
does not extend to other models in a straightforward manner, and hence it is natural to expect that
the same is true for spectral independence as well.

1.1 Further Developments

Our algorithms are based on running Glauber dynamics on (relatively) low-degree vertices. Subse-
quent to our work, Efthymiou and Feng [17] obtained for the hard-core model an n!*O(1/loglogn)
mixing-time bound for Glauber dynamics on G(n,d/n) when A < A;(d) (and similarly for the
monomer-dimer model), i.e., without the need to restrict to low-degree vertices. Their spectral in-
dependence arguments build upon the “linearisation” of the L” analysis we introduce here, which
are then combined with the framework of Reference [10] to obtain the improved mixing-time
bounds.

2 PROOF OUTLINE FOR THEOREM 1.1

Our algorithm for sampling from the hard-core model on a graph G = (V,E) is an adaptation of
Glauber dynamics on an appropriate set of “small-degree” vertices U, the details of the algorithm
are given in Figure 1. Henceforth, analogously to the Ising model, it will be convenient to view
the hard-core model as a two-spin model supported on Q C {0,1}", where Q corresponds to the
set of independent sets of G (for an independent set I, we obtain o € {0, 1}V by setting o, = 1 iff
v € I). Note that for general graphs G, implementing Steps 2 and Steps 3 of the algorithm might be
difficult. The following lemma exploits the sparse structure of G(n, d/n) and in particular the fact
that high-degree vertices are sparsely scattered. We will use this in the proof of our main theorems
to show that the algorithm SAMPLE(G, T) can be implemented very efficiently for appropriate D,
paying only O(log n) per loop operation in Step 2 and only O(nlog n) in Step 3. The tree-excess of
a graph G = (V,E) is defined as |E| — |V| + 1.
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Algorithm SampLE(G, T)

Parameters: D > 0 (threshold for small/high degree vertices).

Input: Graph G = (V,E), integer T > 1 (number of iterations).

1. Initialisation: Let U be the set of all vertices with degree < D.

Let X, be the empty independent set on U.

2. Main loop: Fort=1,...,T,

e Pick a vertex u uniformly at random from U.

e For every vertex v € U\{u}, set X;(v) = X;_1(v).

e Sample the spin X;(u) according to ,UG,A(O'M | oovfuy = Xt(U\{u})), i.e., update u
according to the hard-core distribution on the whole graph G, conditioned on the
spins of U\{u}.

3. Finalisation: Sample o ~ ,uG,A( . | oy = XT), i.e., extend X7 to the whole vertex set of

G by sampling from pg ) conditioned on the configuration on U.

Fig. 1. The SAMPLE(G, T) subroutine for sampling from the hard-core distribution pg_ ;. We use the analogue
of this algorithm for the Ising model with parameter § (replacing pg 2 by pg, g). For the monomer-dimer
model, the only difference is that the algorithm needs to update (single) edges in F, where F is the set of
edges whose both endpoints lie in U (i.e., degree < D).

LEMMA 2.1. Letd > 0 be an arbitrary real. There exist constants D,{ > 0 such that the following
holds whp over the choice of G = (V,E) ~ G(n,d/n). Each of the connected components of G[V\U],
where U is the set of vertices of degree < D, has size O(log n) and tree-excess at most €.

Lemma 2.1 follows using relatively standard techniques from random graphs and is proved in
Section 6. Later, we will establish a more refined version of this property that will allow us to bound
the mixing time of the single-site dynamics that we consider (the main loop of SAmMPLE(G, T)).

The key ingredient needed to prove our main result is to show that the main loop of our sampling
algorithm returns a good sample on the induced hard-core distribution on the set U. More precisely,
foragraph G = (V,E) and U C V, we let yg 5, 7 (+) denote the induced distribution on the spins of
U, i.e., the marginal distribution pg 1 (oy = -).

LEMMA 2.2. Letd, A > 0 be constants such that A < A.(d). For any arbitrarily small constant § > 0,
there is D > 0 such that the following holds whp over the choice of G ~ G(n,d/n).

Let U be the set of vertices in G of degree < D. Then, for any e > 0, for T = [n'*%/2log %], the
main loop of SAMPLE(G, T) returns a sample Xt from a distribution that is e-close to jiG, ), u.

We will prove Lemma 2.2 in Section 4.2. We are ready to prove Theorem 1.1.

ProoF oF THEOREM 1.1. We give first the details for the more interesting case d > 1. Consider
arbitrarily small 6 > 0 and D, ¢ as in Lemmas 2.1 and 2.2, so that whp G satisfies the properties
therein. (It is clear from the proofs of Lemmas 2.1 and 2.2 that D and ¢ can be computed given d, A,
and 0.) Let ¢ > 0 be the desired accuracy for sampling from i ;; it is sufficient to consider ¢ < 1/e.
Let U be the set of vertices with degree < D, and set T = [n!"/2log 11.

By Lemma 2.2, whp over the choice of G, the main loop of SAMPLE(G, T') returns a configuration
X7 : U — {0, 1} that is e-close to jig 3. Note that each iteration of the main loop of SAMPLE(G, T)
can be implemented in O(logn) time, since G[V\U] has components of size O(logn) and tree
excess at most €. In particular, any vertex u € U can be adjacent to at most D of these components,
and therefore the component of u in G[(V\U) U {u}] has size O(logn) and tree excess at most
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7:6 I. Bezakové et al.

k = D[{] = O(1). We can therefore sample the spin of u under pg ) conditioned on the spins
of U\{u} in time O(4* logn) = O(log n).? Therefore, the main loop of SAMPLE(G, T) runs in time
O(T log n). Analogously, the finalisation step of SAMPLE(G, T), i.e., extending the configuration Xr
on U to a configuration o on the whole vertex set V, can be implemented in time O(nlogn) by
iterating over the vertices in V\U and using the fact that the components of G[V\U] have excess at
most €. Therefore, the overall running time of the algorithm is bounded by O(T log n) + O(nlogn),
which is less than [n'*? log %] for all sufficiently large n. It remains to note that, since X7 is e-close
to the marginal distribution of yi 4 on U, and the finalisation step is done perfectly conditioned
on the configuration on U, the final configuration ¢ is e-close to the distribution g, ;.

For d < 1, whp G consists of treelike components of size O(log n), and therefore we can obtain a
perfect sample from i ; in time O(n log n) by going through the vertices one by one and, for each
vertex, taking O(log n) time to compute its marginal, conditioned on the spins already sampled. O

3 SPECTRAL INDEPENDENCE VIA BRANCHING VALUES

We first introduce the notions of spectral independence and pairwise vertex influences, which we
will later use to bound the mixing time of the main loop of SAMPLE(G, T), i.e., to prove Lemma 2.2.
We will define the terminology in a general way that will be useful both for our analysis of the
hard-core model, and for our later analysis of other models.

Let ¢ > 2 be an integer indicating the number of spins and let V be a set of size n. We consider
distributions y supported onaset Q C [q]V.>ForS C V,let Qs = {r € [q]° | u(os = 7) > 0} be the
set of all partial configurations on [g]° that have non-zero marginal under y. For 7 € Qg, let i1, be
the conditional distribution on Q induced by 7, i.e., i (:) = u(: | os = 7). Let pmin = mingeq p(0).

For S C V and 7 € Qg, the influence matrix conditioned on 7 is the matrix ¥, whose rows and
columns are indexed by V, = {(v,i) | v € V\S, p (0, = i) > 0}, where the entry indexed by
(v, 1), (w, k) equals y, (o, =k | 0, = i) —pr (04 = k) if v # w, and 0 otherwise. It is a standard fact
that the eigenvalues of the matrix ¥ are all real [3], and we denote by A; (W) its largest eigenvalue.

Definition 3.1. Let ¢ > 2 be an integer and V be a set of size n > 2. Let u be a distribution
supported over Q C [q]V. Let n,b > 0. We say that y is n-spectrally independent if for all S ¢ V
and 7 € Qg, it holds that 1,(¥,) < 1. We say that y is b-marginally bounded if for all S c V,

veV\S, t € Qg,and i € [q], it either holds that y; (o, = i) = 0 or else (0, = i) = b.

Following References [3, 14], for distributions y induced by two-spin systems, we work with the
following notion of pairwise vertex-influence, which can be used to bound the spectral indepen-
dence. For a graph G = (V,E) and 7 € {0,1}® for some S C V, for vertices u,v with u € V\S and
0 < pr(oy = 1) < 1, we define the influence of u on v (under y;) as

Ié(uﬁv)zﬂr(o'vzl|0'u=1)_/11(0'v=1|O'u=0)-

For matchings, we will work with an analogous notion from the perspective of edges (see Sec-
tion 5.2). For all these models, spectral independence will be bounded by summing the absolute
value of the influences of an arbitrary vertex u to the rest of the graph. In turn, it has been shown
in Reference [14] that summing the influences of a vertex u in a graph G reduces to summing the
sum of influences on the self-avoiding walk tree emanating from u (this is the tree whose vertices
correspond to self-avoiding walks in G that start from u, where two vertices are adjacent when one

20ne “naive” way to do this is by considering a spanning tree and then brute-forcing over all < 4% possibilities
for the endpoints of the excess edges (the spins on each edge can be set in at most four ways). For each of these, the
marginal probability at u and the corresponding partition function can be computed using dynamic programming on the
left-over tree.

3For an integer k > 1, we denote by [k] the set {0, 1, ..., k —1}.
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walk is a one-step extension of the other; it was first introduced in related contexts by References
[34, 40]).
We will use the following lemma from Reference [14].

LEmMA 3.2 ([14]). Consider an arbitrary two-spin system on a graph G = (V, E), with distribution
p supported on Q € {0,1}V. Let p € V be an arbitrary vertex, T = (Vr, ET) be the tree of self-avoiding
walks in G starting from p, and v be the distribution of the two-spin system on T.

Then, for any S C V\{p} and t € Qs with0 < pi; (0, = 1) < 1, there is a subset W C Vr\{p} and
a configuration ¢ € {0,1}" such that ji (0, = 1) = vy(o, = 1) and

Do) < D (0 - w)

veV ueVr

where IT(/’ (p — -) denotes the influence of p on the vertices of T under v.

3.1 The branching value

We will need the following notion to capture the growth of the self-avoiding walk tree from a
vertex.

Definition 3.3. Let d > 0 be a real number and G = (V, E) be a graph. For a vertex v in G, the
d-branching value S, equals ;59 Ny, ¢/ d’, where Ny, ¢ is the number of (simple) paths with a total
of £ + 1 vertices starting from v (for convenience, we set Ny o = 1).

We will show the following lemma in Section 6.1, which bounds the d’-branching value of
G(n,d/n) for any d’ > d.

LEMMA 3.4. Letd > 1. Then, for everyd’ > d and ¢ > 0, whp over the choice of G ~ G(n,d/n), the
d’-branching value of every vertex in G is at most ¢ log n.

3.2 Spectral Independence for the Hard-Core Model

In this section, we bound the spectral independence of G(n,d/n) in the hard-core model when
A < Ac(d). We will need the following technical lemma that can be derived from Reference [35].
The derivation details are similar to an analogous lemma for matchings (cf. Lemma 5.4 below),
which can be found in Reference [5, Lemma 15].

LEmMA 3.5 ([35]). Letd > 1 and A > 0 be constants such that A < A.(d). Let y € (1,2) be given

1_q{_d1 1 X ~ ; _ 1
from = 1-5 log(1+ =) and seta =g Consider also the function ®(y) oo fory > 0.

Then, there is a constant 0 < k < 1/d such that the following holds for any integer k > 1.
Letx1,...,x; > 0 berealsandx = A Hle ﬁ Then (®(x))*¢ Z{;l(m)“ < kX,

We will show the following.

LEmMMA 3.6. Letd > 1 and A > 0 be constants such that A < A.(d). Then, there is a constant y > 1
such that the following holds.

LetT = (V,E) be a tree rooted at p, whose d-branching value is < a and whose root has k children.
Then, for the hard-core distribution on T with parameter A, any S € V\{p} and t € Qg with0 <
pr (0, = 1) < 1, it holds that

Z |27 (p > v)| < Wea'/X,

veV

where Wy > 0 is a real depending only on the degree k of the root (and the constants d, A).
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7:8 I. Bezakové et al.

Proor. Let k € (0,1/d) and y € (1, 2) be the constants from Lemma 3.5, and ®(x) =

Vx (1+x) be

also as in Lemma 3.5. We may assume without loss of generality that S is empty (and 7 is trivial) by
truncating the tree T using the following procedure: just remove vertices u € S with 7, = 0, and
for u € S with 7, = 1 remove u and all of its neighbours. Note that for all the removed vertices v
it holds that 77 (p — v) = 0, so the removal procedure does not decrease the sum of the absolute
influences, while at the same time decreasing the d-branching value of the tree T. Henceforth, we
will drop 7 and S from notation.

To prove the lemma, we will work inductively on the depth of the tree. To this end, we first
define for each vertex u in T the following values a,, and R,; the @’s capture a rooted analogue
of the branching value of internal vertices within T, while the R’s the marginals of the vertices in
the corresponding subtrees. More precisely, if v is a leaf, then set a,, = 1 and R, = A; otherwise,
seta, =1+ 3 21 10y, and Ry, = A ]—[l 1 1+R , where vy, ..., v; are the children of v. Note that

for the root p, we have that 2, = S, < a, where S » is the d-branching value of p in the tree T.
Moreover, if we denote by T, the subtree of T rooted at v and by u the parent of v in T, then it
holds that

p1,.2(00 = 1) Ry

and I7(u - v) =-—

R, = .
° " pr, (0 = 0) R, +1

1)

The first equality is fairly standard and can be proved using induction on the height of the tree,
while the second one is Reference [14, Lemma 15] (it also follows directly from the definition of
influence and the first equality).

For an integer h > 0, let L(h) be the nodes at distance h from the root p. Let My =

1+ (14 A)k/A, where recall that k is the degree of the root p. We will show that

(a_v)”?fm < My (di)" 7. @)

vellh) Ry, @(Ry)
Since a, > 1forv € V, a, < a and R,®(R,) < 1, Equation (2) yields ¥\, cr(n) ’IT(p - v)| <
Mallx (dK)h/ X for all integer h > 0, and therefore summing over h, we obtain that

Mallx
1/x hiy o k¢ 7
Z ‘IT('O - U)l < Mia Z dx) = 1- (di)lx’
veV h>0

which proves the result with Wy = % So it only remains to prove (2).

We will work inductively. The base case h = 0 is equivalent to M > 1/(R,®(R,)) = m,
which is true, since from the recursion Equation (1) for R,, we have that R, > 1/(1 + A)F (using
the trivial bound R, < A for each v). For the induction step, consider v € L(h — 1) and suppose it
has k,, > 0 children, denoted by v; for i € [k, ]. Then, for each i € [k, ], since v is on the unique
path joining p to v;, it holds that (see Reference [3, Lemma B.2])

Ir(p = vi) = It(p = v) I1 (v > vy),

SO we can write

1/ x Tr(p— Tr(p—s o 1/x Tr(v—
ZveL(h) (Z; ) lRTv(g(R:))I = ZveL(h—l) (Zﬂ ) lRT(g(R:))I Zze (0;; ) qu)(R ) lRT(g(va))l
®3)
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Fast sampling via spectral independence beyond bounded-degree graphs 7:9

. . . 1 1 _ . s . .
Consider an arbitrary v € L(h — 1). Then, since yta=1 by Holder’s inequality we have that

o \ VX 1 Ir(v > v;)| o X . | Ir (v — vp)[\2\/*
Z (Z_) Ro®(Ro) ;Uiz)@(R:) S( Z 00({_) ((R”(D(R”)) Z ( 1::@(1%:) ) ) ’

ielk,] Y ielk,] Y ielks]

Ir(w—v)| _ _1
Rvi - 1+x;

Note that for x = R, and x; = Ry, i € [k, ], we have from Equation (1) that

x = ATiefky] Tlx, so by Lemma 3.5, we have that

N a 1/a
((R&(Rv))“ > (—"Z(E(RU’)”) ) < X
iclks] vi Vi

By definition of the d-branching value, we also have o, = 1 + % Dielky] oy 2 % Die[ky] v, SO
plugging these back into Equation (4) yields

Vi I/X I i
Z (&) RUQ(RU)M < (dr)Vx.
iG[kv] Qy Rviq)(Rvi)

In turn, plugging this into Equation (3) and using the induction hypothesis yields Equation (2),
finishing the proof. O

Remark 3.7. For simplicity, and since it is not important for our arguments, the constant Wy
in the proof depends exponentially on the degree k of the root. With a more careful inductive
proof (cf. Reference [14, Proof of Lemma 14]), the dependence on k can be made linear. In either
case, because of the high-degree vertices in G(n, d/n), both bounds do not yield sufficiently strong
bounds on the spectral independence of the whole distribution yg », and this is one of the reasons
that we have to consider the spectral independence on the induced distribution on low-degree
vertices.

Recall that for a graph G = (V,E) and U C V, we let ug, 1 y(-) denote the marginal distribution
on the spins of U, i.e., the distribution pg 3 (o = ).

LEMMA 3.8. Letd > 1 and A > 0 be constants such that A < A.(d). Then, for any constants D, ¢ > 0,
whp over the choice of G ~ G(n, d/n), the marginal hard-core distribution ug, ) v, where U is the set
of vertices in G with degree < D, is (¢log n)-spectrally independent.

Proor. Let D,e > 0 be arbitrary constants, and let d* > d be such that A < A.(d’); such d’
exists, because the function A.(+) is continuous in the interval (1, o) and A.(d) — oo ford | 1. Let
x € (1,2) and W = max{W, ..., Wp} where y and the W} ’s are as in Lemma 3.6 (corresponding
to the constants d’, ). By Lemma 3.4, whp all of the vertices of the graph G = (V,E) ~ G(n,d/n)
have d’-branching value less than ¢ log n. We will show that the result holds for all such graphs G
(for sufficiently large n).

Let U be the set of vertices in G with degree < D, and let for convenience i = yig 3, r7. Consider
arbitrary S € U and 7 € Qg. It suffices to bound the largest eigenvalue of the influence matrix ¥,
by ¢log n. Analogously to References [3, 14], we do this by bounding the absolute-value row sums
of ¥,. Recall that the rows and columns of ¥ are indexed by V, = {(v,i) | v € U\S, pr(op =) >
0}, where the entry indexed by (v, i), (w, k) equals y; (o =k | 05, = i) — (o = k) if v # w, and
0 otherwise. Consider arbitrary (v, i) € VT; our goal is to show

2,

(w,k)eV;

pe(ow =k | 0y = 1) = e (0 = k)| < elogn. (5)
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7:10 I. Bezakova et al.

Henceforth, we will also assume that i, (07, = i) < 1 (in addition to yi; (65, = i) > 0); otherwise, the
sum on the left-hand side is equal to 0. Then, by the law of total probability, for any (w, k) € V;,
we have

pe(ow =k | 0y =) = e (0w = k)| < |ue (0w =k | 05 = 1) = e (0 = k | 0 = 0)| = | TG (0 = W),

where the last equality follows from the fact that p is the marginal distribution of pg ; on U.
Therefore, we can bound

D, llov=klou=i-plow=R|s2) |IEe-wi<2 ) [IE@-w)]|

(w, k) eV, weU wev

By Lemma 3.2, for the self-avoiding walk tree T = (Vr, Et) from v, there is a subset Z C Vr\{p}
and a configuration ¢ € {0, 1} such that

2 Z ‘IGT(U—HM)‘ <2 Z ‘If(vﬁw)L

wevV weVr

where IT¢ (v — ) denotes the influence of v on the vertices of T (in the hard-core distribution yr 3
conditioned on ¢). Since the d’-branching value of v (and any other vertex of G) is bounded by
elog n and the degree of v is < D, by Lemma 3.6 applied to T, we have that

2 Z |IT¢(U - w)‘ < 2W(elogn)V/X.

weVr

Since y > 1, for all sufficiently large n, we have that 2W (elogn)'/*¥ < elogn, which proves
Equation (5). O

We also record the following corollary of the arguments in Lemma 3.6.

COROLLARY 3.9. Let A > 0 and D > 0 be real numbers. For a graph G = (V,E), let U be the set
of vertices in G with degree < D and suppose that |U| > 2. Then, the distribution y := ug ) v is

b-marginally bounded for b = min{ﬁ, W}.

Proor. By Lemma 3.2, for any vertex v € U and any boundary condition 7 on (a subset of) U\{v},
there is a corresponding tree T and a boundary condition ¢ on T such that i, (o, = -) = v4 (0, = ).
Since v has degree < D, from the proof of Lemma 3.6, see in particular Equation (1), we have that
v4(0y = +) 2 b, where b is as in the lemma statement. O

4 ENTROPY FACTORISATION FOR BOUNDED-DEGREE VERTICES

In this section, we show how to convert the spectral independence results of the previous section
into fast mixing results for Glauber dynamics on the set of small-degree vertices on G(n, d/n). Our
strategy here follows the technique of Reference [13], though to obtain nearly linear results, we
have to pay attention to the connected components induced by high-degree vertices and how these
can connect up small-degree vertices.

4.1 Preliminaries
Entropy factorisation for probability distributions. For a real function f on Q < [q]V, we
use E,(f) for the expectation of f with respect to y and, for f : Q — Ry, Ent,(f) =

E,[flog f] — E,(f)logE,(f), with the convention that 0log0 = 0. Finally, for S c V, let
Entﬁ (f) = Ecvpps [Ent,,r f )] ie, Enti (f) is the expected value of the conditional entropy of
f when the assignment outside of S is chosen according to the marginal distribution piy\s (the in-
duced distribution of 2 on V'\S). For convenience, when S = V, we define Entlsl (f) = Ent,(f). The
following inequality of entropy under tensor product is a special case of Shearer’s inequalities.
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Fast sampling via spectral independence beyond bounded-degree graphs 7:11

FacT 4.1. Let q,k > 2 be integers and suppose that, fori € [k], p; is a distribution supported over
Q; € [q)Vi, where Vi, . .., Vi are pairwise disjoint sets. Let i = ji1 ®- - -® . be the product distribution
onQ = QX --- X Q. Then, forany f : Q — Ry, it holds that Ent, (f) < po Entl‘,/"(f).

To bound the mixing time of Markov chains such as the Glauber dynamics, we will be interested
in establishing inequalities for factorisation of entropy, defined as follows (see Reference [8] for
more details).

Definition 4.2. Let q > 2,r > 1 be integers and V be a set of size n > r+ 1. Let y be a distribution
supported over Q C [q]". We say that y satisfies the r-uniform-block factorisation of entropy with
multiplier* C, if for all f : Q@ — Ry, it holds that ~Ent,(f) < Crﬁ ZSG(V) Entz ().

The following lemma will be useful to bound the (r-uniform-block) factorisation multiplier for
conditional distributions on sets with small cardinality.

LEMMA 4.3 ([13, LEMMA 4.2]). Let q > 2 be an integer and V be a set of sizen > 2. Let i be a
distribution supported over Q C [q]V, which is b-marginally bounded for some b > 0. Then, for any

SCVandr € Qus, for f : Q = R, it holds that Ent,,, (f) < 2L 5 Cpnee (f),

The r-uniform-block dynamics and its mixing time. For an integer r = 1,...,n, the r-uniform-
block dynamics for y is a Markov chain (X;);>o where Xy € Q is an arbitrary configuration and,
fort > 1, X, is obtained from X, _; by first picking a subset S € V of size r uniformly at random and
updating the configuration on S according to p(os = - | oy\s = X—1(V\S)). Note, the case r = 1
corresponds to the single-site dynamics, where at every step the spin of a single vertex, chosen
u.a.r., is updated conditioned on the spins of the remaining vertices. For ¢ > 0, the mixing time
of the r-uniform-block dynamics is defined as Thix(¢) = maxy,ecq min{t | Xy = o, ||[vi — pllpv < €},
where v; denotes the distribution of X;. The following lemma builds upon a well-known connec-
tion between factorisation of entropy and modified log-Sobolev inequalities (see, e.g., Reference
[8] for more discussion), we will use the following version that can be extracted from recent works.

LEMMA 4.4 (SEE, E.G., REFERENCE [13, LEMMA 2.6 & FACT 3.5(4)] OR REFERENCE [12, LEMMA 3.2.6
& Fact 3.4.2]). Letq > 2,r > 1 be integers and V be a set of sizen > r + 1. Let u be a distribution
supported over Q C [q]V that satisfies the r-uniform-block factorisation of entropy with multiplier
Cy. Then, for any ¢ > 0, the mixing time of the r-uniform-block dynamics on u satisfies

1

1
Thix(€) < {C,E ( log log + log 22 )}, where iy, = mingeq p(o).
r €

Hmin

We remark that to deduce the lemma from Reference [13] or Reference [12], which refer to the
so-called “entropy decay constant k,” one needs to use the equality C,x = r/n from Reference [13,
Lemma 2.6] or Reference [12, Lemma 3.2.6].

From spectral independence to r-uniform-block factorisation multipliers. The following theorem
is shown in Reference [13]; while the version that we state here cannot be found verbatim in
Reference [13], we explain in Appendix A how to combine the results therein to obtain it.

THEOREM 4.5 ([13]). Let q > 2 be an integer and V be a set of sizen > 2. Let p be a distribution
supported over Q C [q]V that is n-spectrally independent and b-marginally bounded for n,b > 0.

*We note that in related works C, is usually referred to as the “factorisation constant”; we deviate from this terminology,
since for us C,- will depend on n (cf. Corollary 4.6 and Lemma 4.8), and referring to it as a constant could cause confusion.
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7:12 I. Bezakova et al.

Then, for all integersr = 1,...,n, the distribution u satisﬁes the r-uniform-block factorisation of
entropy with multiplier C, = %Zz'ikl—oi’
k=n-r

—bl(n s } fork € [n—1].

where I}, = ﬂj o aj fork € [n],” and o = max{0,1 -

4.2 Entropy Factorisation for Bounded-degree Vertices in the Hard-core Model

We begin by noting that our arguments in this section, while developed primarily in the context
of the hard-core model, apply more generally and will be used in particular for our Ising and
monomer-dimer results on G(n, d/n) (cf. Section 5.3).

The first step of the analysis of Glauber dynamics for the hard-core model on the set of small-
degree vertices will be to employ spectral independence results of Section 3.2 to conclude fast
mixing for the r-uniform-block dynamics for » = 9|U]| for any arbitrarily small constant 8. This
step will follow by applying the recent technology of entropy factorisation described above.

The second step is the more challenging for us. Here, we need to conclude fast mixing for r = 1,
and in particular prove that C;/C, = n°". This is done roughly by studying the connected com-
ponents of G that arise when resampling an r-subset of the low-degree vertices; the factorisation
multiplier of these components controls the ratio C;/C,. While this resembles the approach of
Reference [13], there is a key difference here, in that high-degree vertices are not resampled. This
can not only cause potentially large components but also imposes a deterministic lower bound on
components sizes (since a component consisting of high-degree vertices will be deterministically
present in the percolated graph consisting of the r-subset of low-degree vertices and all of the
high-degree vertices). This lower bound on the component sizes is actually more significant than
it might initially seem, since the relatively straightforward bound of Q(log n) would unfortunately
give a relatively large factorisation multiplier of ! (through Lemma 4.3). Instead, we need to
show that components have size o(log n), which in turn requires more delicate estimates for the
distribution of high-degree vertices in connected sets (see Lemma 4.7 below).

We start with the following corollary of Lemma 3.8, which converts a spectral independence
bound into a bound on the factorisation multiplier for the r-uniform-block dynamics when r scales
linearly with small-degree vertices. This is analogous to Reference [13, Lemma 2.4], where they
obtain a 2°(7/%") bound on C, when r = ©(n) via Theorem 4.5 (where 1 is the spectral independence
bound and b is the bound on the marginals). By restricting to small-degree vertices, we obtain that
b is a constant, which combined with the bound n = o(logn) from Lemma 3.8 gives the bound
C, = n°@ a5 detailed below (for clarity, we show the relevant lemmas using arbitrarily small
constants instead of o(1), see Remark 6.7 on how to extract o(1)). The proof of the corollary is
given for completeness in Appendix A.

COROLLARY 4.6. Letd > 1 and A > 0 be constants such that A < A.(d). Then, for any constants
D, 0 > 0, whp over the choice of G ~ G(n,d/n), the marginal hard-core distribution yig ) v, where U
is the set of vertices in G with degree < D, satisfies for any integerr € [0|U|, |U|] the r-uniform-block
factorisation of entropy with multiplier C, < n%.

Note that the reason that we are able to use the same 0 in the bounds for both r and C, is that
the bound on C, is loose (we can obtain a sharper result, since we have a bound on the spectral
independence of ¢ log n for any ¢ > 0).

We will now refine the bound of Corollary 4.6 down to r = 1 by exploiting the fact that high-
degree vertices are sparsely scattered. In particular, we will need the following lemma, which is

SWe note that for k = 0, the product defining Ty is empty and therefore Ty = 1.
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a refinement of Lemma 2.1. For a graph G = (V, E), we say that a set S C V is connected if the
induced subgraph G[S] is connected.

LEmMA 4.7. Letd > 0 be an arbitrary real. There exists an L > 0 such that for any é € (0, 1), the
following holds whp over the choice of G = (V,E) ~ G(n,d/n). For A = 1/( log %),for all integers
k > Slogn and any v € V, there are < (2e)*'* connected sets S C V containing v with |S| = k.
Moreover, every such set contains > k/2 vertices with degree less than LA.

The proof of Lemma 4.7 is given in Section 6.3. We are now ready to show the following.

LEMMA 4.8. Letd > 1 and A > 0 be constants such that A < A.(d). For any 8 > 0, there is a
constant D > 0 such that whp over the choice of G ~ G(n,d/n), the marginal hard-core distribution
UG 2. U, Where U is the set of vertices in G with degree < D, satisfies the 1-uniform-block factorisation
of entropy with multiplier C; < n?.

Proor. Let L > 0 be as in Lemma 4.7, and consider an arbitrarily small constant 0 > 0. Let
6 €(0,1) bea sufﬁc1ently small constant so that for D = L/(5 log 5) and b = min{— ol W}
it holds that W < e?/%; such a constant exists, since b*®> — 1as§ | 0. Let A = 1/(5log 6) and

{ > 0 be a small constant so that 2(2e)"*(20)'/? < b?/2.

Let U be the vertices in G with degree < D, andletr = [ {|U|]+1.Let y = pg, 5, u. By Corollary 4.6,
we have that whp over the choice of G, there is C, < n%/3 such that for every f : Q — Ry it
holds that

l—{”Ent#( < c,(%l Z; EntS (f). ©)

For S C U, let C’(S) denote the collection of the connected components of the graph G[S U
(V\U)], viewed as vertex sets, and let C(S) = Urecr(s){R N U} be the restriction of these com-
ponents to the set U. Note that, for S C U and 7 € Q\s, y; factorises over the components of
G[S U (V\U)] and in particular, applying Fact 4.1, we have that

Ent(f) = Eropys [Enty, (£)] < E,N,,U\S[ > Entf ( f)].

ReC(S)
Using the bound in Lemma 4.3, we further obtain that
2|R|210g 1/b) 2|R|%log(1/b)
S
Ent,(f) <E ~uu\s[ T BRIz Z Enty, ()| = Z Z WEntz(f)’
ReC(S) ReC(S) ueR

where the last equality follows by linearity of expectation and the fact that E..,, ;[Ent};, (f)] =
Ent); (f). Plugging this bound into Equation (6), we obtain that

2C, log (1/b) IRI
Ent (f) |U| 1 Z Z z\RI (f)’

r—1 SE(U) ReC(S) uerR

which yields that

Ent, () < 2r108WP) log (/%) ZE t (f)ZﬁPr S) = kI, (7)

uelU
where Pr[C, (S) = k] denotes the probability that u belongs to a set of size k in the set C(S), when
we pick S uniformly at random from {S € ((rj) | u € S}. Define analogously Pr[C} (S) = k] to be
the probability that u belongs to a connected component of size k in the set C’(S). By Lemma 4.7,
whp over G ~ G(n,d/n), for all vertices u and any integer t > &logn, there are at most (2e)"*

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 7. Publication date: January 2024.



7:14 I. Bezakova et al.

connected sets of size t containing a given vertex u, and each of them contains at least ¢/2 vertices
from U. In particular, for any integer k > § log n, it holds that Pr[C,,(S) = k] < Pr[k < C/(S) < 2k].

For all k < 2|U]|, the probability that a specific subset of k/2 vertices of U is present in G[SU(V\U)]
(V-T2

is at most Eﬁ;—’fff; < (ﬁ)k/2 < (20)*/2. Therefore, for all k > §log n, by a union bound over the

r—1

connected sets of size k, we have
Pr{CL(S) = k] < (2¢)"525 20)"/% = (2(20)"2(20)%)" < (v*/2)%,

where in the first inequality the first factor is the number of size-k connected sets T of G contain-
ing u, the second factor is an upper bound on the number of size k/2 subsets W of U that might
be included in T and the final factor is the probability that W is included in S. The last inequality
is by the choice of ¢. It follows that

Pr[C,(S) = k] < Pr[k < CL(S) < 2k] < 2k(b?/2)*.

From this bound and the inequality 1/b*® < e?/% by the choice of &, we can split and bound the
rightmost sum in Equation (7) by

S k2 (6 log n)? 2k 4
D Pl =k < o T S <l
k=1 k>6logn

where the last inequality holds for all sufficiently large n, since the first term is O((log n)?n®/*) and
the second term is O(1). In turn, plugging this into Equation (7), we obtain that u satisfies the 1-

2C, log(1
C c;gz( /b)ne/s <n

uniform block factorisation of entropy with multiplier C; = 9 for all sufficiently

large n (since b is a constant and C, < n%/?), as needed. O

Lemma 2.2 now follows easily by combining Lemmas 4.4 and 4.8. This was the last ingredient
needed in the proof of Theorem 1.1.

5 PROOFS FOR THE ISING AND MONOMER-DIMER MODELS

5.1 Antiferromagnetic Ising Model

In this section, we bound the spectral independence of G(n,d/n) in the antiferromagnetic Ising
model. We will need the following well-known lemma; the version we state here is from Reference

[6, Lemma 40], but it traces back to Reference [30] based on a lemma from Reference [4] (that was
originally stated for the ferromagnetic Ising model).

LEMMA 5.1 ([6, LEMMA 40], SEE ALSO REFERENCES [4, 30]). Let f € (0,1). Let T = (V,E) be a
tree, S C V be a subset of the vertices and v € V be an arbitrary vertex. Let 11, 7, € {0, 1}5 be two
configurations on S, which differ only a subset W C S. Then,

1-— ﬁ)dist(v,w)

|#T,/3(O'v =1los=m1)—prp(op =105 = Tz)‘ < Z (m

weWw

>

where for a vertex w € W, dist(v, w) denotes the distance between v and w in T.

LEMMA 5.2. Letd > 1 and > 0 be constants such that € (f.(d), 1). For any constant ¢ > 0, whp
over the choice of G ~ G(n,d/n), the antiferromagnetic Ising distribution ug, p is (¢ log n)-spectrally
independent.

Proor. Let d’ > d be a real number such that § > f.(d’), i.e., % < %; such d’ exists, because
of the continuity of the function f.(-) in the interval (0, 1). By Lemma 3.4, whp all of the vertices
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the graph G = (V, E) ~ G(n,d/n) have d’-branching value less than ¢log n. We will show that the
result holds for all such graphs G.

Let for convenience y = g, 5. Consider arbitrary S C V and r € Qg. We will once again bound
the largest eigenvalue of the influence matrix ¥, by bounding the absolute-value row sums of ¥ .
In particular, analogously to the proof of Lemma 3.8, it suffices to show that for v € V\S, we have

Z |Ié(v - w)

wevV

< elogn, 8)

where 7% (v — w) denotes the influence of v on the vertices of G conditioned on 7. By Lemma 3.2,
for the self-avoiding walk tree T = (Vr, E7) from v, there is a subset W C Vr\{v} and a configura-

tion ¢ € {0,1}" such that
Z |I5(v — w)| < Z |_[T¢(‘U - w)|,

wevV weVr

©)

where IT¢ (v — ) denotes the influence of v on the vertices of T (in the Ising distribution ur ;
conditioned on ¢). Since the d’-branching value of v (and any other vertex of G) is bounded by
¢logn, and applying Lemma 5.1 to T, we have that

Z ‘I]?(U—)W ZNu[( ) ZNU[/ <glogn,

weVr

where Ny, ¢ is the number of paths in G with a total of £ + 1 vertices starting from v. Combining
this with Equation (9) proves Equation (8), as wanted. O

The following lemma is a crude (and relatively standard) bound on the marginals for the an-
tiferromagnetic Ising distribution, a proof can be found in, e.g., Reference [6, Lemma 26]; there,
the result is stated for bounded-degree graphs, but the proof of the marginal bound applies to any
vertex whose degree is bounded.

LEMMA 5.3 (SEE, E.G., REFERENCE [6, LEMMA 26]). Let f € (0,1) and D > 0 be real numbers. For
a graph G = (V,E), let U be the set of vertices in G with degree < D and suppose that |U| > 2. Then,

the distribution p := ug, g u is b-marginally bounded for b =

1+ﬁD
5.2 Monomer-Dimer Model

In this section, we bound the spectral independence of G(n,d/n) in the monomer-dimer model.
Instead of vertex-to-vertex influences that we considered for two-spin systems, we need to consider
instead edge-to-edge influences. Namely, for a graph G = (V,E) and yt = pg,y, fix some 7 € {0,1}"
for some S C E. Then, following Reference [13, Section 6], for edges e, f with e € E\S and 0 <
Uz (oe = 1) < 1, we define the influence of e on f (under y,) as

I5(e— f)=p(of=0]|0.=0)—p(op =00, =1).
We will need the following technical lemma from Reference [35]. The version below can be more
easily derived from Reference [5, Lemma 15] (where it is explained how to combine the results of

Reference [35]; in the notation below, the values of a, y correspond to those of p, g there, respec-
tively).

LEMMA 5.4 ([35]). Letd > 1 andy > 0. Let y = (1 + 4yd)"/? where d = max{d, 3/(4y)}, and set
a= % Consideralso the function ®(x) = x(Zl ) forx € (0,1]. Then, there is a constant0 < k < 1/d
——)X such that the following holds for any mtegerk > 1.

a alx
—IH/Z}Zl % Then (®(R)) 1(®(R )) < kX,

given by k = é(l - 1+)(

LetRq,...,R; € (0,1] be reals and R =
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With this in hand, and using the notion of branching values (cf. Definition 3.3), we are now able
to bound the total sum of influences.

LEMMA 5.5. Letd > 1 andy > 0 be constants. Then, there is a constant y > 1 such that the
following holds.

Let T = (V,E) be a tree and e be an edge of T, whose endpoints v, and v, have d-branching
values < a, and let k = max{deg(v;), deg(vz)}. Then, for the monomer-dimer distribution on T with
parametery, it holds that

Z |IT(e - f)| < WeallX,
feE
where Wy > 0 is a real depending only on k (and the constants d, y ).

Proor. Let k € (0,1/d) and y > 1 be the constants from Lemma 5.4, and ®(x) = ﬁ be also

as in Lemma 5.4. Let My = 2k/k'/X and W;, = %.

Let y = pr,,.Fori € {1,2}, let Ti be the subtree containing v; obtained from T when we remove
the edge e, and let T; be the tree obtained by adding the edge e to fi. We will root T; at v;, and set
Mi = i1,y We will show that

> (e = Pl < Wea'/7, (10)

fEEn

where I7,(e — -) denotes the influence of e on the edges of T; under y;. Note that for any f € Er,,
we have that Ir(e — f) = I7,(e — f). Therefore, by adding Equation (10) for i = 1, 2, we obtain
the statement of the lemma.

We therefore focus on proving Equation (10) for i = 1,2. The argument is analogous to that
used in Lemma 3.6 with suitable adaptations to account for the monomer-dimer model. We will
work inductively on the depth of T;. Analogously to that lemma, we first define for each vertex
u in T; the following values ¢, and R,,. If u is a leaf, then set @, = 1 and R, = 1; otherwise, set

ay =1+13t o, and R, = ——=+——, where uy, . .., u; are the children of u in the rooted tree
d &j=1"Uj 14y Xjoy Ru;

T;. Note that we have that @,,, < a, where « is the upper bound on the d-branching value of v; in
the tree T;. Moreover, if we denote by T;(u) the subtree of T; rooted at u, then a standard induction
argument shows that

Ry = pr,(u),y (u is unmatched). (11)
For an integer h > 1, let L;(h) be the set of edges at distance h from the edge e in the tree T;, so
that L; (1) consists of the edges incident to v; other than e, and so on. Moreover, for an edge f, let
v(f) be the endpoint of f, which is the farthest from v5_;. We will show that

(e ke~ 1)
FELi(h) Rop)®Re()

Note that o, > 1 and R, ®(R,) < 1 for all vertices v in T;, and for the root a,, < a. So, Equation
(12) yields Y rer,(n) )ITZ. (e — f)‘ < Mya'/X (dx)" X for all integer h > 0, and therefore summing
over h, yields Equation (10), since k < 1/d. So, it only remains to prove Equation (12).

We will work inductively. For the base case h = 1, we have for every edge f € L;(h) the trivial
bounds |77, (e — f)| < 1and 1/(Ry()®(Ro,)) = 2 — Ry(r) < 2. Moreover, by the definition of as,,
we have a,, > éav(f), ) aa”—:f) < d. Using these and My = 2k/x'/X, we obtain that Equation (12)
holds for h = 1. For the induction step, consider f € L(h), and let v = v(f). Suppose v has k,, > 0
children in the tree T;, joined by the edges f; for j € [k.]. Then, for each j € [k], since f is on

< M (di)'x. (12)
Qo
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the unique path joining e to f; and the edges f, fj cannot simultaneously belong to a matching, it
holds that (see Reference [13, Lemmas 6.11 and 6.12])

Ir,(e = fj) = Ir,(e = /)Ir,(f — fj), and ‘fn— (f = fj)| = 1100 (05, = 1) = YRo(5) Rogr).

where the last equality follows from Equation (11). Therefore, we can write

(av(f) )1/)( )fTi (e — f)|

feky \ %o Ry(r)@(Ro(r))

o) \VX I, (e = f) o) \ M X [ I7,(f = f;)l

- Ry ®(R R ®Roh) 35 Rar )

feriny o o PRon) it Folr) o(f) P(Ro(r)

2
QAu(f;) \ 1/ X YRv(f)

<M dkh/xmax{ ’) d(R — . 13
k{dr) feL(h) je[;m] o f) (”(f))fb(Rv(m) (13)

. . . 1 1 _ . > . .
Consider an arbitrary f € L(h). Since o + 5 = 1, by Holder’s inequality, we have that

2 1/x R? 1/a

Qo () \ 1 X YRv(f) Ao (f;) a Y% ¢
(a ) R G R = I B (LIPS (cp(R )) :

jelkgp] 20 o(f) jelkogn] 00 =T o(f)

(14)

RZ
By Lemma 5.4, we have that ((®(Ryf)))* Zie[kv](;(/R:g))))a)l/u < kX, Moreover, by the

definition of the & values, we have ay(r) = 1+ ézje[kv(f)] Au(fy) = é Zje[kv(f)] Aoy, - Plugging
these bounds into Equation (14), and then into Equation (13) completes the inductive proof of
Equation (12). O

We can now conclude the following spectral independence property for the monomer-dimer
distribution on G(n, d/n).

LEMMA 5.6. Letd > 1 and y > 0. Then, for any constants D,e > 0, whp over the choice of
G ~ G(n,d/n), the marginal monomer-dimer distribution g,y r, where F is the set of edges in G
whose both endpoints have degree < D, is (¢ log n)-spectrally independent.

Proor. Consider arbitrary D,e > 0 and let d’ > d. Let y > 1 and W = max{W,, ..., Wp} where
x and the Wj.’s are as in Lemma 3.6 (corresponding to the constants d’, y). By Lemma 3.4, whp all
of the vertices the graph G = (V,E) ~ G(n,d/n) have d’-branching value less than ¢ log n. We will
show that the result holds for all such graphs G.

Let for convenience 1 = yg,,,F, Where F is the set of edges whose both endpoints have degree
< D. Consider arbitrary S € F and 7 € Qg. We will once again bound the largest eigenvalue of
the influence matrix ¥, by bounding the absolute-value row sums of ¥.. It suffices to consider
the case that S is empty (and 7 is trivial), since conditioning on an arbitrary 7 is equivalent to
the monomer-dimer model on a subgraph of G. Analogously to the hard-core model (cf. proof of
Lemma 3.8), to bound the largest eigenvalue, it suffices to show for arbitrary e € F that

Z|Ic(e—>f)| < ¢elogn, (15)
feF
where Ig(e — -) denotes the influence of e on the edges of G under the (full) distribution pg ).

In Reference [14, Theorem 6.2], they showed the analogue of Lemma 3.2 in the case of matchings.
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In particular, let v be one of the endpoints of e and consider the self-avoiding walk tree T = (Vr, Et)
emanating from v, then Reference [13, Theorem 6.2] asserts that

Diltste— < D |mre— £,

f€E feEr

where I7(e — -) denotes the influence of e to the edges of T, under yr,,. By Lemma 5.5 applied
to the tree T, the right-hand side is bounded by W (elogn)'/*, which is less than ¢logn for all
sufficiently large n. This gives Equation (15), as wanted. ]

5.3 Proof of Theorems 1.2 and 1.3

Proor oF THEOREM 1.2. This is completely analogous to the proof of Theorem 1.1 presented in
Section 2. Lemma 2.1 is about structural properties of the random graph G ~ G(n,d/n), so we can
use it verbatim. Therefore, we only need to establish the analogue of Lemma 2.2, i.e., for any 6 > 0
and all sufficiently large D > 0, whp over G ~ G(n, d/n), running Glauber dynamics on U, where U
is the set of vertices with degree < D, gives an e-sample from y g i in time n'*%log % Completely
analogously to the hard-core model, using now the spectral independence bound of Lemma 5.2,
we conclude that for any integer r € [0|U], |U|] the distribution pg, g v satisfies the r-uniform-
block factorisation of entropy with multiplier C, < n%? (i.e., the analogue of Corollary 4.6 for the
antiferromagnetic Ising model). From there, the same argument as in Lemma 4.8 yields that yig, g,/
satisfies the 1-uniform-block factorisation of entropy with multiplier C; < n?. ]

ProoF oF THEOREM 1.3. Again, this is very similar to the proof of Theorems 1.1 and 1.2, we only
need to adapt the argument slightly to account for updating edges (instead of vertices).

Once again, we only need to establish the analogue of Lemma 2.2, i.e., for any 6 > 0 and all
sufficiently large D > 0, whp over G ~ G(n,d/n), running Glauber dynamics on F, where F
is the set of vertices whose both endpoints have degree < D, gives an e-sample from pg , r in
time n'*? log % Using the spectral independence bound of Lemma 5.6, we obtain the analogue of
Corollary 4.6, 1i.e., for any integer r € [0|F|, |F|] the distribution yig, g, r satisfies the r-uniform-block
factorisation of entropy with multiplier C, < n%/®. The same argument as in Lemma 4.8 yields that

pc, g, F satisfies the 1-uniform-block factorisation of entropy with multiplier C; < n. O

6 RANDOM GRAPH PROPERTIES USED IN OUR PROOFS

In this section, we prove the random graph properties that we have used in our proofs, i.e., Lem-
mas 2.1, 3.4, and 4.7.

6.1 Bounding the Branching Value

Letd > 1.Inthis section, we prove Lemma 3.4, which bounds the d-branching values of the vertices
in G(n, d/n). The key ingredient is to bound the following closely related quantity. For a graph G
and a vertex v of G, let N, , be the number of vertices at (graph) distance exactly r from v. We call
a vertex v e-good if it holds that

Sy 1= Z Nv,r/((l +¢)d)" < elogn.
r=0
Note that the main difference between S, and the d-branching value S,, (cf. Definition 3.3) is that
the latter is defined with respect to the number of paths, and therefore we trivially have S, < S,,.

For random graphs, however, we will also be able to show that S, < 2§U.
We start with showing that whp all vertices in G(n, d/n) are e-good.
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LEmMMA 6.1. For any constantsd > 1 and € > 0, whp over the choice of G ~ G(n,d/n), all vertices
of G are e-good.

Proor. For integers n > 1, consider a (finite) tree rooted at p created by a branching process

where a node at depth r has Bin(n — r, =2-) children, and let Y, , be the number of nodes at depth

> n-r
r. Set
n—1

X, = Zar Y, r, where a := m <1/d < 1.
r=0
For any fixed vertex v of G, we can couple S, and X, so that S, < X,,. Indeed, the BFS exploration
process in G starting from v is stochastically dominated by the branching process above, since at
depth r of the BFS process the number of unexplored vertices is at most n — r and the connection
probability % is less than %. In particular, there is a coupling so that N, , < Y,, , for all integers

r > 0, therefore yielding S, < X,, as well. It follows that
Pr[S, > elogn] < Pr[X, > elogn]. (16)

To bound the probability Pr[X, > ¢logn], we will use moment generating functions, adapting
an argument from Reference [30]. For integer n > 1 and real t > 0, let g, (¢) = E[exp(tX,)] and
consider the functions {f;,(¢)},>1 defined for t > 0 by

filt) =exp(t),  fult) = exp (t + d(fu1(at) — 1)) forn > 2.

We will show by induction on n that g,(¢) < f,(¢) for all t > 0. Since X; = 1, the base case is
trivial. For n > 2, observe that

X,=1+ (J((X,(ll_)1 +.. Xfffi) where K ~ Bin(n, %),

and XV x?

n-1"“""n-1>"

gn(t) = Zn: (Z)(g)k(l _ i)kE[et(1+a(x,(f,)1+...+Xfl’i>l)] _ et(l + g(gn_l(m) _ 1))"
k=0

.. are 1.i.d. variables with distribution X,,_;. Therefore,

n n

<e!(1+ (fatta) = 1)) < exp (14 dlfur (@) - 1) = fu(0),

completing the inductive proof that g, (¢) < f,(¢).
We will next define a function F(t) so that f,,(t) < F(t) for all n and t. To define F, let ¢ be a
constant such that ¢ > 1/(1 — ad) and note that ¢ > 1, since ad < 1. Let t, > 0 be such that

c—1

exp(caty) =1+ to, (17)

and note that such t; exists, since both sides at t = 0 have value 1, and their derivatives at t = 0
are given by ca and (c — 1)/d, satisfying ca < (¢ — 1)/d from the choice of ¢. From convexity of
exp(cat), we obtain that for all t € [0, £,] it holds that

-1
exp(cat) <1+ cTt, or equivalently exp (t + d(exp(cat) — 1)) < exp(ct). (18)

Now, consider the function F defined by setting F(t) = exp(ct) for t € [0, tp]; for t > t;, we define
F inductively on intervals (to(1/a)¥, to(1/a)**'] by

F(t) = exp (t + d(F(at) - 1)).
It is not hard to see that the function F is increasing and continuous, satisfying the inequality

exp(t + d(F(at) — 1)) < F(t). (19)
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Using Equation (18), the validity of Equation (19) and monotonicity are trivial; to check continuity,
note that F can only be discontinuous at the points t; = to(1/a¥);let k > 0 be the first such integer.
By construction, F is continuous at ¢, (see Equation (17)), and hence it must be the case that k > 1.
But then

ltm F(t) = hm exp (t + d(F(at) — 1)) = exp (t + d(F(tg_q) — 1)) = F(ty),

tlt

contradicting the choice of k. Now, we also prove, by induction, that f,,(t) < F(t). We have fi(t) =
exp(t) < F(t), since ¢ > 1/(1 —ad) > 1. Now suppose f,,(t) < F(t). Then, using Equation (19), we
have

fur1(t) = exp(t —d + dfn(at)) < exp(t —d + dF(at)) < F(t),

as needed.
Using Markov’s inequality and the fact that g, () < f,(t) t) for arbitrary ¢t > 0, we have
Pr(X, > elogn) = Pr ( exp(tX,) > exp(telog n)) < Lt) < exp ( — h(elog n)), (20)
exp(telogn)

where the function h is defined for A > 0 by
h(A) := sup {tA—log F(t)}.

t>0

Let M =1+ 5/¢. For any A > F(M), we have
h(A) log F(t)
= sup {t
20 A

A

} M—1=5/¢,

where the inequality follows by considering ¢ = M and observing that log F(M) < F(M) < A.
Since F(M) is a constant (depending only on ¢, d), we have that for all sufficiently large n it holds
that elogn > F(M), and therefore h(¢logn) > 5logn. From Equations (16) and (20), we therefore
obtain that Pr[S, > elogn] < 1/n°, and Lemma 6.1 follows by taking a union bound over the n
vertices of G. ]

To obtain the desired bound on the branching values from Lemma 6.1, we will need to relate
Ny, r, the number of paths with r + 1 vertices from v, with ]\Afv,r, the number of nodes at distance
r from v. This will follow by the following treelike property of G(n, d/n). For a graph G, a vertex
v of G and real r > 0, we use B(v, r) to be the set of vertices in G at distance < r from v.

LEMMA 6.2 ([30, LEMMA 7]). Let d > 1. The following holds whp over G = (V,E) ~ G(n,d/n)
and R = (loglogn)?. For allv € V, |B(v,R)| < dRlogn and the tree-excess of the induced graph
G[B(v, R)] is at most 1.

We can now prove Lemma 3.4, which we restate here for convenience.

LEMMA 3.4. Letd > 1. Then, for everyd’ > d and € > 0, whp over the choice of G ~ G(n,d/n), the
d’-branching value of every vertex in G is at most € log n.

Proor. It suffices to prove the result for arbitrarily small constant ¢ > 0 and d’ = (1 + ¢)d. Let
R = |(loglogn)?] — 1 and ¢’ = 4d, Le. We have that whp G = (V,E) ~ G(n,d/n) satisfies the
conclusions of Lemmas 6.1 and 6.2.

For arbitrary v € V, we can bound the d’-branching value of v from above by }};, s;, where for
an integer i > 0, we set s; := Zi’:illgR Nu.»/(d")". From Lemma 6.2, the tree-excess of G[B(v, R+ 1)]
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is at most 1, and hence for integers r < R + 1, we have the bound®

.
Nor <2 N . (21)
r’=0

It follows that sy < 2 3% Nor YR

£ . . .
=0 @) < £ Iog n, where in the last inequality, we used the

r=r’ (d/)r r’
N,
r’'=0 (d/)r
To bound s; for an integer i > 1, note that for integer iR < r < (i + 1)R, we can decompose a
path with r vertices starting from v into two paths with r — R and R + 1 vertices, so we have

fact from Lemma 6.1 that all vertices in G are ¢’-good, and in particular that 3% < ¢’ logn.

Nv,r < N‘u,r—R max Nw,R+1 < 2dR-Hl\]v,r—R 10g n,
weB(v,r—R)

where the last inequality follows from applying Equation (21) for = R + 1 and noting that
RH1 N, = |B(v,R +1)| < d®*'logn from Lemma 6.2. Therefore,

r’'=0
RELSY (K 248+ log n 2(R +1)d** log n
Z < sioq <sic1/2, (22)
r=iR r=iR (d/)R (d,)R

where the last inequality is true for all sufficiently large n, since d’ > d and R = w(loglogn).
Using Equation (22) and summing over i > 0, we have that the d’-branching value of v is
bounded by };5¢si < 259 < ¢logn. Since v was an arbitrary vertex of G, this finishes the proof. O

6.2 Bounding the Tree-excess of Small Connected Sets
We start with the following lemma, which shows that the tree-excess of logarithmically sized con-

nected sets in G(n, d/n) is bounded by an absolute constant (a similar result in a slightly different
setting was shown in Reference [21]).

LEMMA 6.3. Letd, M > 0 be arbitrary reals. There exists a positive integer { such that the following
holds whp over the choice of G = G(n,d/n). There is no connected set S of vertices such that |S| <
M log n and the tree excess is more than (.

Proor. It suffices to prove the lemma for all sufficiently large d, since the property is increasing
under edge inclusion; in particular, we will assume that d > e. Let £ be an integer bigger than
2M + 5.

For a positive integer k < |Mlogn], we calculate the expected number of sets S as in the
statement of the lemma with |S| = k. There are (”) choices for the set S, k*2 labelled trees on S,

and at most ( ) choices for ¢ additional edges. The probability that all these k + ¢ — 1 edges are

in Gis (d/n)*~1*¢. Therefore, by a union bound, we can upper bound the expected number of such

sets S with |S| = k by
2 k+6-1 K+l gk+0—17.20
n\ k-2 k%) (d Z¢ d k < i,
k ) \n nt-1¢t n?

where the last inequality holds for all sufficiently large n using that £ > 2M + 5. By summing
over the O(log n) values for the integer k, we obtain that the expected number of such sets S with
IS| < Mlognis o(1), and therefore the result follows by Markov’s inequality. O

®This can be proved by considering the BFS tree from v. An “excess” edge can only connect vertices either at the same or
consecutive levels of the BFS tree. In either case, every path of length r that uses that edge can be mapped injectively to a
vertex at distance < r from v.
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6.3 Bounding the Number of High-degree Vertices in Connected Components

In this section, we prove Lemma 4.7, that bounds the number of connected sets in G(n, d/n) as
well as the fraction of high-degree vertices. We also prove Lemma 2.1. (Note, Lemma 4.7 shows
the existence of a quantity L, which depends on a quantity M from Lemma 6.6: We take § to be a
sufficiently small constant, A = 1/( log %), M = max{10d,50(1 + logd)}, and L = 4M. We state
these quantities upfront to help with the readability of the expressions in this section.)

For a graph G = (V,E) and a set S C V, we let deg;(S) denote the sum of the degrees of the
vertices in S. To control the number of connected sets containing a given vertex, we will use the
following bound that holds for general graphs G.

LEmMMA 6.4 ([21, LEMMA 6]). Let G = (V,E) be a graph,v € V, and { > 1 be an integer. The
number of connected sets S C V such thatv € V and deg;(S) = ¢ is at most (2e)*(71.

We will use the following version of Chernoff bounds to upper bound the total degree of con-
nected sets with Q(log n) size.

LEMMA 6.5. Suppose X1, ..., X, arei.i.d. Bernoulli random variables. Let X = X1 +- - -+ X,, denote
1
their sum and set u = E[X]. Then, for anyt > 5, Pr(X > ty) < e 2iHlogt

Proor. It is well-known (see, e.g., Reference [24, Theorem 2.1]) that for any & > 0, it holds that

S
Pr(X > (1+6)p) < ((ng)F'

> (1 + 6)1%9)/2 and the result follows. |

(1+8)
For 6 > 4, we have that %

LEMMA 6.6. Let d > 0 be an arbitrary real. There is an M > 0 such that for any § € (0, 1),
whyp over the choice of G = G(n,d/n), every connected set S of vertices with |S| = [ log n] satisfies
deg;(S) < MA|S|, where A = 1/(5 log %).

Proor. The proof is close to an argument of Fountoulakis and Reed [19, Lemma 2.4], the only
difference is that we have to account for the smaller size of S. We may assume for convenience
that d > 1, since the graph property is increasing with respect to adding edges in the graph G.
Let M = max{10d, 50(1 + logd)}, and § € (0, 1) be an arbitrarily small constant, we will in fact
assume henceforth that § < 1/e%. Let A = 1/(§log(1/6)) and note that A > 2. For convenience, let
k = [5logn].

For aset S, let ;,(S) be the number of edges whose both endpoints belong to S, and e, (S) be the
number of edges with exactly one endpoint in S. By Lemma 6.3, whp we conclude the crude bound
ein(S) < 2|S| = 2k for all connected sets S with size k (since for such sets S the tree excess of G[S]
is bounded by an absolute constant and |S| = k = Q(log n)). We also have that E[eou(S)] < dk, so
by Lemma 6.5,

1,0 AM
Pr (eout(S) > %kMA) < e akMAlog G
Since M > 4d,8 < 1/eand A = 1/(S log %), we have that log ﬁ—jy >logA > %log(l/&). Therefore,
since k > §logn and M > 50(1 + log d), we have that
1kMAlog 22 > 3(1 + log d) log n.
Using that the number of labelled trees on a vertex set of size k is k72, we have that the ex-
pected number of trees with size k in G(n,d/n) is (Z)kk_z(d/n)k < n(ed)¥, and hence there are

in expectation at most n(ed)* connected sets S with size k. Note also that the event ey (S) >
2kMA is independent of the event that S is connected. Therefore, by linearity of expectation,
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we obtain that the number of connected sets S with |S| = k and eyt(S) > %kMA is at most
n(ed)ke3(+logd)logn < p(eg)logne=3(1+logd)logn < 1/n and hence whp there are no such sets by
Markov’s inequality. This finishes the proof of the lemma, since any other connected set S of size
k satisfies deg;(S) < 2€in(S) + €out(S) < 4k + 3kMA < MAk. O

We next prove Lemma 4.7, which we restate here for convenience.

LEmMA 4.7. Letd > 0 be an arbitrary real. There exists an L > 0 such that for any é € (0, 1), the
following holds whp over the choice of G = (V,E) ~ G(n,d/n). For A = 1/(6 log %), for all integers
k > Slogn and any v € V, there are < (2e)*'¥ connected sets S C V containing v with |S| = k.
Moreover, every such set contains > k/2 vertices with degree less than LA.

Proor. Let M be as in Lemma 6.6, and let L = 4M. Consider arbitrary § € (0, 1). By Lemma 6.6,
we have whp that every connected set S of vertices in G with |S| = r := [dlogn] has in total at
most MA|S| edges incident to it, where A = 1/(d log %). We claim that for all connected sets S
with |S] > r, it holds that deg;(S) < 2MA|S|. Indeed, we can decompose any connected set S into
at most t < 2|S|/r connected sets (not necessarily disjoint) Sy, . .., S;, each of size k.” From this, it
follows that

t
deg () < ' degg(Si) < tMAr < 2MA[S],
i=1

as claimed. The bound on the number connected sets S with |S| = k > 6 log n containing v follows
by applying Lemma 6.4, by aggregating over the possible values of deg;(S), which can be at most
2MAk. Moreover, the number of vertices in such a set S with degree > LA has to be at most k/2
(otherwise, deg;(S) > LA(k/2) = 2MAk). This finishes the proof. O

We can also give now the proof of Lemma 2.1, which we restate here for convenience.

LEmMA 2.1. Letd > 0 be an arbitrary real. There exist constants D,{ > 0 such that the following
holds whp over the choice of G = (V,E) ~ G(n,d/n). Each of the connected components of G[V\U],
where U is the set of vertices of degree < D, has size O(log n) and tree-excess at most €.

Proor. Let D = eL, where L > 0 is the constant from Lemma 4.7. Let ¢ be the integer of
Lemma 6.3 corresponding to M = 1/e.

By Lemma 4.7 applied to § = 1/e, whp over the choice of G, every connected set S with size
k > %log n has at least k/2 vertices with degree < D = eL. Therefore, with U being the set of
vertices with degree < D, we obtain that the components of G[V\U] have size at most %log n.
Moreover, by Lemma 6.3, whp over the choice of G, all these components have tree excess < £. O

6.4 Verifying the Random Graph Properties Efficiently

Here, we briefly discuss how to verify in time n'*°(") that a random graph G ~ G(n, d/n) satisfies
the high-probability properties of Lemmas 2.1, 3.4, and 4.7. The property in Lemma 2.1 is immedi-
ate, since we only need to do an exploration of the graph G[V\U]. To ensure that the property of
Lemma 3.4 is satisfied, and following its proof, we only need to check the property in Lemma 6.2,
and that for R = | (loglogn)?| —1and all v € V it holds that Zf:o Ny, »/d" = o(log n). Both of these
properties can be checked via enumeration in time n'+°(\)_ Similarly for the property in Lemma 4.7,
whose proof used only the property in Lemma 6.6 (which is verifiable in time n'*°(\)),

7One way to do this is to consider a spanning tree of S, double its edges, and obtain an Eulerian tour of the resulting graph.
The desired decomposition of S can then be obtained by traversing the tour and extracting connected sets with k vertices.
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Remark 6.7. We claimed in the Introduction that the family of O(n'*?) algorithms from Theo-
rem 1.1 can be turned into an n'*+°(") algorithm. We now explain how to do this for the interested
reader.

As noted after the statement of Theorem 1.1, there is a function f; ¢ : Z — R such that
lim, e fg.2,0(n) = 0 and the “whp” bound in Theorems 1.1, 1.2, and 1.3 means with probability
> 1— fa.2.0(n); the function equals 1 for small n (making the conclusion trivial for such n).

To understand the function f; 1 ¢(n), we need to look at the whp bounds in the lemmas that
we use. The whp bound functions are > 1 — 1/n for sufficiently large n where sufficiently large is
(ultimately) a simple function of d, 4, 6 (for example, Lemma 2.1, 4.7, 6.3, and 6.6). Lemma 6.1 (and
as a consequence Lemma 3.4) has a more wild dependence on the parameter e: the function F(t)
inside the proof can be bounded from above by a tower of exponentials of depth log,(t). The whp
bound is then > 1—1/n assuming n > exp(F(1+5/¢)/¢); this whp bound propagates to Lemma 4.8,
then to Lemma 2.2 and finally to Theorems 1.1, 1.2, and 1.3.

For fixed d and A, the dependence of ¢ on 6 (used in Lemma 6.1) can be extracted from Corollary
4.6 and Lemma 4.8, where ¢ (controlling the leading constant in the branching value) needs to
be small enough to compensate the leading constant from the spectral-independence bound 7; in
particular, ¢ scales roughly as 1/ eec/g, where C is a constant depending only on d and A. It follows
that we can set f; 1 9(n) = 1/n when n > Ny 2(0) and 1 otherwise, where Ny () is a computable
function satisfying n > Ny ;(1/k) for some function k = k(n) = w(1) (for example, it suffices to
take k(n) = |Clog® log” log'? n)| where C is a constant depending only on d and 1).

The n'+°() algorithm then proceeds as follows. Given the input size n, it first computes k = k(n)
as above in O(logn) time (say). Then, by the definition of k(n), we have n > Ny ;(1/k) for all
sufficiently large n. The new algorithm runs the algorithm of Theorem 1.1 with § = 1/k in time
n*/klog 1 = n*°W log L which succeeds with probability > 1 — 1/n = 1 — o(1) over the choice
of G(n,d/n).

APPENDIX
A OTHER OMITTED PROOFS

ProoF oF THEOREM 4.5. The theorem follows by combining Reference [13, Claim 1.13, Theorem
1.14, Lemma 2.6], which bound the factorisation multiplier of the more general order-(r, s) down-
up walk; the result here is the special case s = n. The only difference is that in Reference [13] they
_r 22;3 fk

state the r-uniform-block multiplier C, = w e fo with I} = j-:ol a;, where
k=n-r 'k
4 1-
P -
b* "4+ 2log(z54—)
with n = n—_}17—k fork € [n—1], by = ﬁ for k € [n]. The only thing we need to note, which is also

implicit in Reference [13, Proof of Lemma 2.4], is that C, <Cr.In particular, for each k € [n], C,
is decreasing with respect to @y (both numerator and denominator are multi-linear functions and
the value of C, increases as ax | 0), so we only need to check that @, > «ai. For this, we need to
further note that 5y is an upper bound to the so-called local spectral expansion, which is defined
as the second largest eigenvalue of the transition matrix of an appropriate random walk (on a
suitable simplicial complex corresponding to y; the details are not important for our purposes).

.. . A~ . ~ 1- . A~
This implies that 5 < 1, and hence @ > 0, since @y > Wnkl), proving that @ > ax. O
2bybpeiy

ProoF oF COROLLARY 4.6. The proof is analogous to Reference [13, Proof of Lemma 2.4], we
highlight the main differences for completeness (since the context is somewhat different). Let
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D,0 > 0 be arbitrary constants; we may assume that D > 1 (otherwise, U is empty) and

0 € (0,1] (otherwise, there are no relevant r). Note that since U is the set of vertices with

degree < D, we have from Corollary 3.9 that the marginal distribution pg j ¢ is b-marginally
1 A

bounded for b = min{ {5, m}. Let u = |U], by a standard balls-and-bins bound, we have

that whp u > n'/?. By Lemma 3.8, we have that whp p := yg ;. v is 7-spectrally independent for
n= % log n. Let R = [45/b?] and note that for all sufficiently large n, u > 6% logn > 4R.
Consider an arbitrary integer r € [0u,u] as in the lemma statement so that u > r > 2R. From

Theorem 4.5, we therefore have that y satisfies the r-uniform-block factorisation of entropy with

- gy gy . _
multiplier C, = ~ %’f;" ’; < %’f;” K with T} = ;‘:01 aj for k € [u] and ax = max{0,1 —
k=u-r -k k=u-r -k

172(1+7k—1)} for k € [u — 1]. Then, we can apply the exact same reasoning as in Reference [13] to

obtain that
(=) = () = (5)
C < <(=) <(3) .
r—R r 0

Note that for x € (0, 1), we have the inequality (1/)()"2 < e*, which for x = 6/2 and using that

R< (g)2 log n gives that C, < n%, as claimed. O
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