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7:2 I. Bezáková et al.

1 INTRODUCTION

Spectral independencemethodwas introduced by Anari, Liu, and Oveis Gharan [3] as a framework
to obtain polynomial bounds on the mixing time of Glauber dynamics. Originally based on a series
of works on high-dimensional expansion [1, 15, 27, 28, 31], it has since then been developed further
using entropy decay by Chen, Liu, and Vigoda [13] who obtained optimalO (n logn) mixing results
on graphs of boundedmaximum degree Δwhenever the framework applies. This article focuses on
relaxing the bounded-degree assumption of Reference [13], in sparse graphs where the maximum
degree is not the right parameter to capture the density of the graph.
As a running example, we will use the problem of sampling (weighted) independent sets, also

known as the sampling problem from the hard-core model. For a graph G = (V ,E), the hard-core
model with parameter λ > 0 speci�es a distribution μG,λ on the collection of independent sets ofG,
where for an independent set I it holds that μG,λ (I ) = λ |I |/ZG,λ whereZG,λ is the partition function
of the model (the normalising factor that makes the probabilities add up to 1). For bounded-degree
graphs of maximum degree d + 1 (where d ≥ 2 is an integer), it is known that the problems
of sampling and approximately counting from this model undergo a computational transition at

λc (d ) =
dd

(d−1)d+1 , the so-called uniqueness threshold [20, 38, 40]: they are poly-time solvable when

λ < λc (d ), and computationally intractable for λ > λc (d ). Despite this clear complexity picture,
prior to the introduction of spectral independence, the algorithms for λ < λc (d ) were based on
elaborate enumeration techniques whose running times scale as nO (logd ) [29, 32, 33, 40]. The anal-
ysis of Glauber dynamics1 using spectral independence in the regime λ < λc (d ) yielded initially
nO (1) algorithms for any d [3] (see also Reference [14]), and then O (n logn) for bounded-degree
graphs [13]. More recently, Chen, Feng, Yin, and Zhang [10] obtained O (n2 logn) results for arbi-
trary graphs G = (V ,E) that apply when λ < λc (ΔG − 1), where ΔG is the maximum degree of G
(see also Reference [23] for related results when ΔG grows like logn); this has been further re�ned
to O (n logn) in References [2, 9, 11].

The maximum degree is frequently a bad measure of the density of the graph, especially for
graphswith unbounded-degree. One of themost canonical examples is the random graphG (n,d/n)

where the maximum degree grows with n but the average degree is d , and therefore one would
hope to be able to sample from μG,λ for λ up to some constant, instead of λ = o(1) that the pre-
vious results yield. In this direction, [35, 37] obtained an nO (logd ) algorithm based on correlation
decay that applies to all λ < λc (d ) for all graphs with “connective constant” bounded by d (mean-
ing, roughly, that for all � = Ω(logn) the number of length-� paths starting from any vertex is
bounded by d�). The result of Reference [35] applies toG (n,d/n) for all d > 0. In terms of Glauber
dynamics onG (n,d/n), [30] showed an n1+Ω(1/ log logn) lower bound on the mixing time in the case
of the Ising model; this lower bound actually applies to most well-known models, and in particular
rules outO (n logn) mixing time results for the hard-core model when λ = Ω(1). The mixing-time
lower bound onG (n,d/n) has only been matched by complementary fast mixing results in models
with strong monotonicity properties, see Reference [30] for the ferromagnetic Ising model and Ref-
erence [7] for the random-cluster model. Such monotonicity properties unfortunately do not hold
for the hard-core model, and the best known results [16, 18] for Glauber dynamics on G (n,d/n)

give an nC algorithm for λ < 1/d and su�ciently large d (where C is a constant depending on d).
Our goal in this article is to go all the way up to λc (d ) (which converges to e/d so is larger than 1/d).

1Recall, for a graph G , the Glauber dynamics for the hard-core model iteratively maintains a random independent set
(It )t≥0, where at each step t a vertex v is chosen uniformly at random (u.a.r.) and, if It ∪ {v } is independent, then it
sets It+1 = It ∪ {v } with probability λ

λ+1 ; otherwise, It+1 = It \{v }. The mixing time is the maximum number (over the

starting I0) of steps t needed to get within total variation distance 1/4 of μG,λ ; see Section 4.1 for the precise de�nitions.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 7. Publication date: January 2024.



Fast sampling via spectral independence beyond bounded-degree graphs 7:3

Our main contribution is to obtain nearly linear-time algorithms onG (n,d/n), for all of the mod-
els considered in Reference [35], i.e., the hard-core model, the monomer-dimer model (weighted
matchings), and the antiferromagnetic Ising model. Key to our results are new spectral indepen-
dence bounds for any d > 0 in the regime λ < λc (d ) for arbitrary graphs G = (V ,E) in terms of
their “d-branching value” (which resembles the connective-constant notion of Reference [35]). To
state our main theorem for the hard-core model onG (n,d/n), we �rst extend the de�nition of λc (d )

to all reals d > 0 by setting λc (d ) =
dd

(d−1)d+1 for d > 1, and λc (d ) = ∞ for d ∈ (0, 1). We use the

term “with probability (whp) over the choice of G ∼ G (n,d/n)” as a shorthand for “as n grows
large, with probability 1 − o(1) over the choice of G (n,d/n).” An ε-sample from a distribution μ

supported on a �nite set Ω is a random σ ∈ Ω whose distribution ν satis�es ��ν − μ��TV ≤ ε , where
‖ν − σ ‖TV = 1

2

∑

σ ∈Ω |ν (σ ) − μ (σ ) |.
Theorem 1.1. Let d, λ > 0 be such that λ < λc (d ). For any arbitrarily small constant θ > 0, there

is an algorithm such that, whp over the choice ofG ∼ G (n,d/n), when the algorithm is given as input

the graph G and an arbitrary rational ε > 0, it outputs an ε-sample from μG,λ in time n1+θ log 1
ε
.

The reader might wonder why is there no constant in front of the running time (in Theo-
rems 1.1, 1.2, and 1.3) or why is there no requirement that n is su�ciently large? The assumption
that n is su�ciently large is taken care of in the whp condition: there is a function fd,λ,θ : Z→ R
such that limn→∞ fd,λ,θ (n) = 0 and the “whp” means with probability ≥ 1 − fd,λ,θ (n); the func-
tion fd,λ,θ equals 1 for small n (making the conclusion trivial for such n). Moreover, the family of
O (n1+θ ) algorithms from Theorem 1.1 can be turned into an n1+o (1) algorithm, see Remark 6.7 for
a discussion.
We remark also here that the algorithm of Theorem 1.1 (as well as Theorems 1.2 and 1.3 below)

can also recognise in time n1+o (1) whether the graph G ∼ G (n,d/n) is a “good” graph, i.e., we can
formulate graph properties that guarantee the success of the algorithm, are satis�ed whp, and are
also e�ciently veri�able, see Section 6.4 for details.
The key to obtaining Theorem 1.1 is to bound the spectral independence of theGibbs distribution

onG (n,d/n). The main strategy that has been applied so far to bound spectral independence is to
adapt suitably correlation decay arguments and, therefore, it is tempting to use the correlation de-
cay analysis of Reference [35]. This poses new challenges in our setting, since Reference [35] uses
an Lp -norm analysis of correlation decay on trees, and the non-linearity of Lp -norms is an obstacle
to converting their analysis into spectral independence bounds (in contrast, for bounded-degree
graphs, the L∞-norm is used, which can be converted to spectral independence bounds using a
purely analytic approach, see Reference [14]). Our solution to work around that is to “linearise”
the Lp -analysis by taking into account the structural properties of subtrees. This allows us to amor-
tise over the tree-recurrence using appropriate combinatorial information (thed-branching values)
and to bound subsequently spectral independence; details are given in Section 3, see Lemmas 3.6
and 3.8 (and Equation (2) that is at the heart of the argument). Once the spectral independence
bound is in place, further care is needed to obtain the fast nearly linear running time, paying spe-
cial attention to the distribution of high-degree vertices insideG (n,d/n) and to blend this with the
entropy-decay tools developed in Reference [13], see Section 4.2 for this part of the argument.
In addition to our result for the hard-core model, we also obtain similar results for the Ising

model and the Momomer-Dimer model. The con�gurations of the Ising model on a graph G =

(V ,E) are assignments σ ∈ {0, 1}V , which assign the spins 0 and 1 to the vertices of G. The Ising
model with parameter β > 0 corresponds to a distribution μG,β on {0, 1}V , where for an assign-

ment σ ∈ {0, 1}V , it holds that μG,β (σ ) = βm (σ )/ZG,β wherem(σ ) is the number of edges whose
endpoints have the same spin assignment under σ , and ZG,β is the partition function of the model.
The model is antiferromagnetic when β ∈ (0, 1), and ferromagnetic otherwise. For d ≥ 1, let
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7:4 I. Bezáková et al.

βc (d ) =
d−1
d+1 ; for d ∈ (0, 1), let βc (d ) = 0. It is known that on bounded-degree graphs of maximum

degree d + 1 the sampling/counting problem for the antiferromagnetic Ising model undergoes a
phase transition at β = βc (d ), analogous to that for the hard-core model [22, 29, 36, 39].

Theorem 1.2. Let d, β > 0 be such that β ∈ (βc (d ), 1). For any constant θ > 0, there is an

algorithm such that, whp over the choice of G ∼ G (n,d/n), when the algorithm is given as input the

graph G and an arbitrary rational ε > 0, it outputs an ε-sample from μG,β in time n1+θ log 1
ε
.

For a graph G = (V ,E), the monomer-dimer model with parameter γ > 0 corresponds to a
distribution μG,γ on the set of matchings of G, where for a matching M , it holds that μG,γ (M ) =

γ |M |/ZG,γ where ZG,γ is the partition function. For general graphs G = (V ,E) and γ = O (1),
[25, 26] gave anO (n2m logn) algorithm (wheren = |V |,m = |E |), whichwas improved for bounded-
degree graphs to O (n logn) in Reference [13] using spectral independence. For G (n,d/n), [35]
gave anO (nlogd ) deterministic algorithm using correlation decay, and Reference [23] showed that
Glauber dynamics mixes in n2+o (1) steps when γ = 1.

Theorem 1.3. Let d,γ > 0. For any constant θ > 0, there is an algorithm such that, whp over the

choice of G ∼ G (n,d/n), when the algorithm is given as input the graph G and an arbitrary rational

ε > 0, it outputs an ε-sample from μG,γ in time n1+θ log 1
ε
.

In the next section, we give the main ingredients of our algorithm for the hard-core model,
and we give the proof of Theorem 1.1. The proofs of Theorems 1.2 and 1.3 build on similar ideas,
though there are some modi�cations needed to obtain the required spectral independence bounds.
We give their proofs in Section 5.3.

Before proceeding let us �nally mention that, to go beyond the two-spin models studied here,
the main obstacle is to establish the spectral independence bounds for graphs with potentially un-
bounded degrees. As it is pointed out in Reference [35, Section 7], their correlation-decay analysis
does not extend to other models in a straightforward manner, and hence it is natural to expect that
the same is true for spectral independence as well.

1.1 Further Developments

Our algorithms are based on running Glauber dynamics on (relatively) low-degree vertices. Subse-
quent to our work, Efthymiou and Feng [17] obtained for the hard-core model an n1+O (1/ log logn)

mixing-time bound for Glauber dynamics on G (n,d/n) when λ < λc (d ) (and similarly for the
monomer-dimer model), i.e., without the need to restrict to low-degree vertices. Their spectral in-
dependence arguments build upon the “linearisation” of the Lp analysis we introduce here, which
are then combined with the framework of Reference [10] to obtain the improved mixing-time
bounds.

2 PROOF OUTLINE FOR THEOREM 1.1

Our algorithm for sampling from the hard-core model on a graph G = (V ,E) is an adaptation of
Glauber dynamics on an appropriate set of “small-degree” vertices U , the details of the algorithm
are given in Figure 1. Henceforth, analogously to the Ising model, it will be convenient to view
the hard-core model as a two-spin model supported on Ω ⊆ {0, 1}V , where Ω corresponds to the
set of independent sets of G (for an independent set I , we obtain σ ∈ {0, 1}V by setting σv = 1 i

v ∈ I ). Note that for general graphsG, implementing Steps 2 and Steps 3 of the algorithm might be
di�cult. The following lemma exploits the sparse structure of G (n,d/n) and in particular the fact
that high-degree vertices are sparsely scattered. We will use this in the proof of our main theorems
to show that the algorithm Sample(G,T ) can be implemented very e�ciently for appropriate D,
paying only O (logn) per loop operation in Step 2 and only O (n logn) in Step 3. The tree-excess of
a graph G = (V ,E) is de�ned as |E | − |V | + 1.

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 7. Publication date: January 2024.



Fast sampling via spectral independence beyond bounded-degree graphs 7:5

Fig. 1. The Sample(G,T ) subroutine for sampling from the hard-core distribution μG,λ . We use the analogue
of this algorithm for the Ising model with parameter β (replacing μG,λ by μG,β ). For the monomer-dimer
model, the only di�erence is that the algorithm needs to update (single) edges in F , where F is the set of
edges whose both endpoints lie inU (i.e., degree ≤ D).

Lemma 2.1. Let d > 0 be an arbitrary real. There exist constants D, � > 0 such that the following

holds whp over the choice of G = (V ,E) ∼ G (n,d/n). Each of the connected components of G[V \U ],
whereU is the set of vertices of degree ≤ D, has size O (logn) and tree-excess at most �.

Lemma 2.1 follows using relatively standard techniques from random graphs and is proved in
Section 6. Later, wewill establish amore re�ned version of this property that will allow us to bound
the mixing time of the single-site dynamics that we consider (the main loop of Sample(G,T )).

The key ingredient needed to prove ourmain result is to show that themain loop of our sampling
algorithm returns a good sample on the induced hard-core distribution on the setU . More precisely,
for a graphG = (V ,E) andU ⊆ V , we let μG,λ,U (·) denote the induced distribution on the spins of
U , i.e., the marginal distribution μG,λ (σU = ·).

Lemma 2.2. Let d, λ > 0 be constants such that λ < λc (d ). For any arbitrarily small constant θ > 0,
there is D > 0 such that the following holds whp over the choice of G ∼ G (n,d/n).

Let U be the set of vertices in G of degree ≤ D. Then, for any ε > 0, for T = �n1+θ /2 log 1
ε
�, the

main loop of Sample(G,T ) returns a sample XT from a distribution that is ε-close to μG,λ,U .

We will prove Lemma 2.2 in Section 4.2. We are ready to prove Theorem 1.1.

Proof of Theorem 1.1. We give �rst the details for the more interesting case d ≥ 1. Consider
arbitrarily small θ > 0 and D, � as in Lemmas 2.1 and 2.2, so that whp G satis�es the properties
therein. (It is clear from the proofs of Lemmas 2.1 and 2.2 that D and � can be computed given d , λ,
and θ .) Let ε > 0 be the desired accuracy for sampling from μG,λ ; it is su�cient to consider ε < 1/e.
Let U be the set of vertices with degree ≤ D, and set T = �n1+θ /2 log 1

ε
�.

By Lemma 2.2, whp over the choice ofG, the main loop of Sample(G,T ) returns a con�guration
XT : U → {0, 1} that is ε-close to μG,λ,U . Note that each iteration of the main loop of Sample(G,T )
can be implemented in O (logn) time, since G[V \U ] has components of size O (logn) and tree
excess at most �. In particular, any vertex u ∈ U can be adjacent to at most D of these components,
and therefore the component of u in G[(V \U ) ∪ {u}] has size O (logn) and tree excess at most
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7:6 I. Bezáková et al.

k = D ��� = O (1). We can therefore sample the spin of u under μG,λ conditioned on the spins
of U \{u} in time O (4k logn) = O (logn).2 Therefore, the main loop of Sample(G,T ) runs in time
O (T logn). Analogously, the �nalisation step of Sample(G,T ), i.e., extending the con�gurationXT

on U to a con�guration σ on the whole vertex set V , can be implemented in time O (n logn) by
iterating over the vertices inV \U and using the fact that the components ofG[V \U ] have excess at
most �. Therefore, the overall running time of the algorithm is bounded byO (T logn) +O (n logn),
which is less than �n1+θ log 1

ε
� for all su�ciently large n. It remains to note that, sinceXT is ε-close

to the marginal distribution of μG,λ on U , and the �nalisation step is done perfectly conditioned
on the con�guration on U , the �nal con�guration σ is ε-close to the distribution μG,λ .
For d < 1, whpG consists of treelike components of sizeO (logn), and therefore we can obtain a

perfect sample from μG,λ in timeO (n logn) by going through the vertices one by one and, for each
vertex, takingO (logn) time to compute its marginal, conditioned on the spins already sampled. �

3 SPECTRAL INDEPENDENCE VIA BRANCHING VALUES

We �rst introduce the notions of spectral independence and pairwise vertex in�uences, which we
will later use to bound the mixing time of the main loop of Sample(G,T ), i.e., to prove Lemma 2.2.
We will de�ne the terminology in a general way that will be useful both for our analysis of the
hard-core model, and for our later analysis of other models.
Let q ≥ 2 be an integer indicating the number of spins and let V be a set of size n. We consider

distributions μ supported on a set Ω ⊆ [q]V .3 For S ⊆ V , let ΩS = {τ ∈ [q]S | μ (σS = τ ) > 0} be the
set of all partial con�gurations on [q]S that have non-zero marginal under μ. For τ ∈ ΩS , let μτ be
the conditional distribution on Ω induced by τ , i.e., μτ (·) = μ (· | σS = τ ). Let μmin = minσ ∈Ω μ (σ ).

For S ⊆ V and τ ∈ ΩS , the in�uence matrix conditioned on τ is the matrix Ψτ whose rows and
columns are indexed by Ṽτ = {(v, i ) | v ∈ V \S, μτ (σv = i ) > 0}, where the entry indexed by
(v, i ), (w,k ) equals μτ (σw = k | σv = i )−μτ (σw = k ) ifv � w , and 0 otherwise. It is a standard fact
that the eigenvalues of the matrix Ψ are all real [3], and we denote by λ1 (Ψ) its largest eigenvalue.

De�nition 3.1. Let q ≥ 2 be an integer and V be a set of size n ≥ 2. Let μ be a distribution
supported over Ω ⊆ [q]V . Let η,b > 0. We say that μ is η-spectrally independent if for all S ⊂ V

and τ ∈ ΩS , it holds that λ1 (Ψτ ) ≤ η. We say that μ is b-marginally bounded if for all S ⊂ V ,
v ∈ V \S , τ ∈ ΩS , and i ∈ [q], it either holds that μτ (σv = i ) = 0 or else μτ (σv = i ) ≥ b.

Following References [3, 14], for distributions μ induced by two-spin systems, we work with the
following notion of pairwise vertex-in�uence, which can be used to bound the spectral indepen-
dence. For a graph G = (V ,E) and τ ∈ {0, 1}S for some S ⊂ V , for vertices u,v with u ∈ V \S and
0 < μτ (σu = 1) < 1, we de�ne the in�uence of u on v (under μτ ) as

IτG (u → v ) = μτ (σv = 1 | σu = 1) − μτ (σv = 1 | σu = 0).

For matchings, we will work with an analogous notion from the perspective of edges (see Sec-
tion 5.2). For all these models, spectral independence will be bounded by summing the absolute
value of the in�uences of an arbitrary vertex u to the rest of the graph. In turn, it has been shown
in Reference [14] that summing the in�uences of a vertex u in a graph G reduces to summing the
sum of in�uences on the self-avoiding walk tree emanating from u (this is the tree whose vertices
correspond to self-avoiding walks inG that start fromu, where two vertices are adjacent when one

2One “naive” way to do this is by considering a spanning tree and then brute-forcing over all ≤ 4k possibilities
for the endpoints of the excess edges (the spins on each edge can be set in at most four ways). For each of these, the
marginal probability at u and the corresponding partition function can be computed using dynamic programming on the
left-over tree.
3For an integer k ≥ 1, we denote by [k] the set {0, 1, . . . , k − 1}.
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walk is a one-step extension of the other; it was �rst introduced in related contexts by References
[34, 40]).

We will use the following lemma from Reference [14].

Lemma 3.2 ([14]). Consider an arbitrary two-spin system on a graphG = (V ,E), with distribution

μ supported on Ω ⊆ {0, 1}V . Let ρ ∈ V be an arbitrary vertex,T = (VT ,ET ) be the tree of self-avoiding

walks in G starting from ρ, and ν be the distribution of the two-spin system on T .

Then, for any S ⊆ V \{ρ} and τ ∈ ΩS with 0 < μτ (σρ = 1) < 1, there is a subsetW ⊆ VT \{ρ} and
a con�guration ϕ ∈ {0, 1}W such that μτ (σρ = 1) = νϕ (σρ = 1) and

∑

v ∈V

���I
τ
G (ρ → v )

��� ≤
∑

u ∈VT

���I
ϕ

T
(ρ → u)

���,

where Iϕ
T
(ρ → ·) denotes the in�uence of ρ on the vertices of T under νϕ .

3.1 The branching value

We will need the following notion to capture the growth of the self-avoiding walk tree from a
vertex.

De�nition 3.3. Let d > 0 be a real number and G = (V ,E) be a graph. For a vertex v in G, the
d-branching value Sv equals

∑

�≥0 Nv, �/d
� , where Nv, � is the number of (simple) paths with a total

of � + 1 vertices starting from v (for convenience, we set Nv,0 = 1).

We will show the following lemma in Section 6.1, which bounds the d ′-branching value of
G (n,d/n) for any d ′ > d .

Lemma 3.4. Let d ≥ 1. Then, for every d ′ > d and ε > 0, whp over the choice ofG ∼ G (n,d/n), the

d ′-branching value of every vertex in G is at most ε logn.

3.2 Spectral Independence for the Hard-Core Model

In this section, we bound the spectral independence of G (n,d/n) in the hard-core model when
λ < λc (d ). We will need the following technical lemma that can be derived from Reference [35].
The derivation details are similar to an analogous lemma for matchings (cf. Lemma 5.4 below),
which can be found in Reference [5, Lemma 15].

Lemma 3.5 ([35]). Let d > 1 and λ > 0 be constants such that λ < λc (d ). Let χ ∈ (1, 2) be given
from 1

χ
= 1− d−1

2 log(1+ 1
d−1 ) and set a =

χ
χ−1 . Consider also the function Φ(y) =

1√
y (1+y )

for y > 0.

Then, there is a constant 0 < κ < 1/d such that the following holds for any integer k ≥ 1.
Let x1, . . . ,xk > 0 be reals and x = λ

∏k
i=1

1
1+xi

. Then (Φ(x ))a
∑k

i=1 (
x

(1+xi )Φ(xi )
)a ≤ κa/χ .

We will show the following.

Lemma 3.6. Let d > 1 and λ > 0 be constants such that λ < λc (d ). Then, there is a constant χ > 1
such that the following holds.

LetT = (V ,E) be a tree rooted at ρ, whose d-branching value is ≤ α and whose root has k children.

Then, for the hard-core distribution on T with parameter λ, any S ⊆ V \{ρ} and τ ∈ ΩS with 0 <
μτ (σρ = 1) < 1, it holds that

∑

v ∈V

���I
τ
T (ρ → v )

��� ≤Wkα
1/χ ,

whereWk > 0 is a real depending only on the degree k of the root (and the constants d, λ).
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7:8 I. Bezáková et al.

Proof. Let κ ∈ (0, 1/d ) and χ ∈ (1, 2) be the constants from Lemma 3.5, and Φ(x ) = 1√
x (1+x )

be

also as in Lemma 3.5. We may assume without loss of generality that S is empty (and τ is trivial) by
truncating the tree T using the following procedure: just remove vertices u ∈ S with τu = 0, and
for u ∈ S with τu = 1 remove u and all of its neighbours. Note that for all the removed vertices v
it holds that Iτ

T
(ρ → v ) = 0, so the removal procedure does not decrease the sum of the absolute

in�uences, while at the same time decreasing the d-branching value of the treeT . Henceforth, we
will drop τ and S from notation.

To prove the lemma, we will work inductively on the depth of the tree. To this end, we �rst
de�ne for each vertex u in T the following values αu and Ru ; the α ’s capture a rooted analogue
of the branching value of internal vertices within T , while the R’s the marginals of the vertices in
the corresponding subtrees. More precisely, if v is a leaf, then set αv = 1 and Rv = λ; otherwise,
set αv = 1 + 1

d

∑t
i=1 αvi and Rv = λ

∏t
i=1

1
1+Rvi

, where v1, . . . ,vt are the children of v . Note that

for the root ρ, we have that αρ = Sρ ≤ α , where Sρ is the d-branching value of ρ in the tree T .
Moreover, if we denote by Tv the subtree of T rooted at v and by u the parent of v in T , then it
holds that

Rv =
μTv ,λ (σv = 1)

μTv ,λ (σv = 0)
and IT (u → v ) = − Rv

Rv + 1
. (1)

The �rst equality is fairly standard and can be proved using induction on the height of the tree,
while the second one is Reference [14, Lemma 15] (it also follows directly from the de�nition of
in�uence and the �rst equality).
For an integer h ≥ 0, let L(h) be the nodes at distance h from the root ρ. Let Mk =
√

1 + (1 + λ)k/λ, where recall that k is the degree of the root ρ. We will show that

∑

v ∈L(h)

(

αv

αρ

)1/χ
���IT (ρ → v )

���
RvΦ(Rv )

≤ Mk (dκ)
h/χ . (2)

Since αv ≥ 1 for v ∈ V , αρ ≤ α and RvΦ(Rv ) ≤ 1, Equation (2) yields
∑

v ∈L(h)
���IT (ρ → v )

��� ≤
Mkα

1/χ (dκ)h/χ for all integer h ≥ 0, and therefore summing over h, we obtain that

∑

v ∈V

���IT (ρ → v )
��� ≤ Mkα

1/χ
∑

h≥0
(dκ)h/χ ≤ Mkα

1/χ

1 − (dκ)1/χ
,

which proves the result withWk =
Mk

1−(dκ )1/χ . So it only remains to prove (2).

We will work inductively. The base case h = 0 is equivalent toMk ≥ 1/(RρΦ(Rρ )) =
√

1 + 1/Rρ ,

which is true, since from the recursion Equation (1) for Rρ , we have that Rρ ≥ λ/(1 + λ)k (using
the trivial bound Rv ≤ λ for each v). For the induction step, consider v ∈ L(h − 1) and suppose it
has kv ≥ 0 children, denoted by vi for i ∈ [kv ]. Then, for each i ∈ [kv ], since v is on the unique
path joining ρ to vi , it holds that (see Reference [3, Lemma B.2])

IT (ρ → vi ) = IT (ρ → v )IT (v → vi ),

so we can write

∑

v ∈L(h)

(

αv
αρ

)1/χ |IT (ρ→v ) |
RvΦ(Rv )

=

∑

v ∈L(h−1)

(

αv
αρ

)1/χ |IT (ρ→v ) |
RvΦ(Rv )

∑

i ∈[kv ]

(

αvi
αv

)1/χ
RvΦ(Rv )

|IT (v→vi ) |
Rvi Φ(Rvi )

.

(3)
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Fast sampling via spectral independence beyond bounded-degree graphs 7:9

Consider an arbitrary v ∈ L(h − 1). Then, since 1
χ
+

1
a
= 1, by Hölder’s inequality we have that

∑

i ∈[kv ]

(αvi
αv

)1/χ
RvΦ(Rv )

|IT (v → vi ) |
RviΦ(Rvi )

≤
(

∑

i ∈[kv ]

αvi
αv

)1/χ (

(RvΦ(Rv ))
a
∑

i ∈[kv ]

( |IT (v → vi ) |
RviΦ(Rvi )

)a
)1/a

.

(4)
Note that for x = Rv and xi = Rvi , i ∈ [kv ], we have from Equation (1) that |IT (v→vi ) |

Rvi
=

1
1+xi

and

x = λ
∏

i ∈[kv ]
1

1+xi
, so by Lemma 3.5, we have that

(

(RvΦ(Rv ))
a
∑

i ∈[kv ]

( |IT (v → vi ) |
RviΦ(Rvi )

)a
)1/a

≤ κ1/χ .

By de�nition of the d-branching value, we also have αv = 1 + 1
d

∑

i ∈[kv ] αvi ≥
1
d

∑

i ∈[kv ] αvi , so
plugging these back into Equation (4) yields

∑

i ∈[kv ]

(αvi
αv

)1/χ
RvΦ(Rv )

|IT (v → vi ) |
RviΦ(Rvi )

≤ (dκ)1/χ .

In turn, plugging this into Equation (3) and using the induction hypothesis yields Equation (2),
�nishing the proof. �

Remark 3.7. For simplicity, and since it is not important for our arguments, the constantWk

in the proof depends exponentially on the degree k of the root. With a more careful inductive
proof (cf. Reference [14, Proof of Lemma 14]), the dependence on k can be made linear. In either
case, because of the high-degree vertices inG (n,d/n), both bounds do not yield su�ciently strong
bounds on the spectral independence of the whole distribution μG,λ , and this is one of the reasons
that we have to consider the spectral independence on the induced distribution on low-degree
vertices.

Recall that for a graphG = (V ,E) andU ⊆ V , we let μG,λ,U (·) denote the marginal distribution
on the spins of U , i.e., the distribution μG,λ (σU = ·).

Lemma 3.8. Letd ≥ 1 and λ > 0 be constants such that λ < λc (d ). Then, for any constantsD, ε > 0,
whp over the choice of G ∼ G (n,d/n), the marginal hard-core distribution μG,λ,U , where U is the set

of vertices in G with degree ≤ D, is (ε logn)-spectrally independent.

Proof. Let D, ε > 0 be arbitrary constants, and let d ′ > d be such that λ < λc (d
′); such d ′

exists, because the function λc (·) is continuous in the interval (1,∞) and λc (d ) → ∞ for d ↓ 1. Let
χ ∈ (1, 2) andW = max{W1, . . . ,WD } where χ and theWk ’s are as in Lemma 3.6 (corresponding
to the constants d ′, λ). By Lemma 3.4, whp all of the vertices of the graph G = (V ,E) ∼ G (n,d/n)

have d ′-branching value less than ε logn. We will show that the result holds for all such graphsG
(for su�ciently large n).

LetU be the set of vertices inG with degree ≤ D, and let for convenience μ = μG,λ,U . Consider
arbitrary S ⊂ U and τ ∈ ΩS . It su�ces to bound the largest eigenvalue of the in�uence matrix Ψτ

by ε logn. Analogously to References [3, 14], we do this by bounding the absolute-value row sums
of Ψτ . Recall that the rows and columns of Ψτ are indexed by Ṽτ = {(v, i ) | v ∈ U \S, μτ (σv = i ) >
0}, where the entry indexed by (v, i ), (w,k ) equals μτ (σw = k | σv = i ) − μτ (σw = k ) if v � w , and
0 otherwise. Consider arbitrary (v, i ) ∈ Ṽτ ; our goal is to show

∑

(w,k )∈Ṽτ

���μτ (σw = k | σv = i ) − μτ (σw = k )
��� ≤ ε logn. (5)

ACM Transactions on Algorithms, Vol. 20, No. 1, Article 7. Publication date: January 2024.



7:10 I. Bezáková et al.

Henceforth, we will also assume that μτ (σv = i ) < 1 (in addition to μτ (σv = i ) > 0); otherwise, the
sum on the left-hand side is equal to 0. Then, by the law of total probability, for any (w,k ) ∈ Ṽτ ,
we have
���μτ (σw = k | σv = i ) − μτ (σw = k )

��� ≤
���μτ (σw = k | σv = 1) − μτ (σw = k | σv = 0)��� =

���I
τ
G (v → w )

���,

where the last equality follows from the fact that μ is the marginal distribution of μG,λ on U .
Therefore, we can bound

∑

(w,k )∈Ṽτ

���μτ (σw = k | σv = i ) − μτ (σw = k )
��� ≤ 2

∑

w ∈U

���I
τ
G (v → w ) | ≤ 2

∑

w ∈V

���I
τ
G (v → w )

���.

By Lemma 3.2, for the self-avoiding walk treeT = (VT ,ET ) from v , there is a subset Z ⊆ VT \{ρ}
and a con�guration ϕ ∈ {0, 1}Z such that

2
∑

w ∈V

���I
τ
G (v → w )

��� ≤ 2
∑

w ∈VT

���I
ϕ

T
(v → w )

���,

where Iϕ
T
(v → ·) denotes the in�uence ofv on the vertices ofT (in the hard-core distribution μT ,λ

conditioned on ϕ). Since the d ′-branching value of v (and any other vertex of G) is bounded by
ε logn and the degree of v is ≤ D, by Lemma 3.6 applied to T , we have that

2
∑

w ∈VT

���I
ϕ

T
(v → w )

��� ≤ 2W (ε logn)1/χ .

Since χ > 1, for all su�ciently large n, we have that 2W (ε logn)1/χ ≤ ε logn, which proves
Equation (5). �

We also record the following corollary of the arguments in Lemma 3.6.

Corollary 3.9. Let λ > 0 and D > 0 be real numbers. For a graph G = (V ,E), let U be the set

of vertices in G with degree ≤ D and suppose that |U | ≥ 2. Then, the distribution μ := μG,λ,U is

b-marginally bounded for b = min{ 1
1+λ ,

λ
λ+(1+λ)D

}.

Proof. By Lemma 3.2, for any vertexv ∈ U and any boundary condition τ on (a subset of)U \{v},
there is a corresponding treeT and a boundary condition ϕ onT such that μτ (σv = ·) = νϕ (σv = ·).
Since v has degree ≤ D, from the proof of Lemma 3.6, see in particular Equation (1), we have that
νϕ (σv = ·) ≥ b, where b is as in the lemma statement. �

4 ENTROPY FACTORISATION FOR BOUNDED-DEGREE VERTICES

In this section, we show how to convert the spectral independence results of the previous section
into fast mixing results for Glauber dynamics on the set of small-degree vertices onG (n,d/n). Our
strategy here follows the technique of Reference [13], though to obtain nearly linear results, we
have to pay attention to the connected components induced by high-degree vertices and how these
can connect up small-degree vertices.

4.1 Preliminaries

Entropy factorisation for probability distributions. For a real function f on Ω ⊆ [q]V , we
use Eμ ( f ) for the expectation of f with respect to μ and, for f : Ω → R≥0, Entμ ( f ) =
Eμ [f log f ] − Eμ ( f ) logEμ ( f ), with the convention that 0 log 0 = 0. Finally, for S ⊂ V , let

EntSμ ( f ) = Eτ∼μV \S
[
Entμτ ( f )

]
i.e., EntSμ ( f ) is the expected value of the conditional entropy of

f when the assignment outside of S is chosen according to the marginal distribution μV \S (the in-
duced distribution of μ onV \S). For convenience, when S = V , we de�ne EntSμ ( f ) = Entμ ( f ). The
following inequality of entropy under tensor product is a special case of Shearer’s inequalities.
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Fact 4.1. Let q,k ≥ 2 be integers and suppose that, for i ∈ [k], μi is a distribution supported over

Ωi ⊆ [q]Vi , whereV1, . . . ,Vk are pairwise disjoint sets. Let μ = μ1⊗· · ·⊗μk be the product distribution
on Ω = Ω1 × · · · × Ωk . Then, for any f : Ω → R≥0, it holds that Entμ ( f ) ≤

∑k
i=1 Ent

Vi
μ ( f ).

To bound the mixing time of Markov chains such as the Glauber dynamics, we will be interested
in establishing inequalities for factorisation of entropy, de�ned as follows (see Reference [8] for
more details).

De�nition 4.2. Let q ≥ 2, r ≥ 1 be integers andV be a set of size n ≥ r +1. Let μ be a distribution
supported over Ω ⊆ [q]V . We say that μ satis�es the r -uniform-block factorisation of entropy with
multiplier4 Cr if for all f : Ω → R≥0 it holds that r

n
Entμ ( f ) ≤ Cr

1
(nr )

∑

S ∈(Vr )
EntSμ ( f ).

The following lemma will be useful to bound the (r -uniform-block) factorisation multiplier for
conditional distributions on sets with small cardinality.

Lemma 4.3 ([13, Lemma 4.2]). Let q ≥ 2 be an integer and V be a set of size n ≥ 2. Let μ be a

distribution supported over Ω ⊆ [q]V , which is b-marginally bounded for some b > 0. Then, for any

S ⊆ V and τ ∈ ΩV \S , for f : Ω → R≥0, it holds that Entμτ ( f ) ≤
2 |S |2 log(1/b )

b2|S |+2
∑

v ∈S Ent
v
μτ
( f ).

The r -uniform-block dynamics and its mixing time. For an integer r = 1, . . . ,n, the r -uniform-
block dynamics for μ is a Markov chain (Xt )t ≥0 where X0 ∈ Ω is an arbitrary con�guration and,
for t ≥ 1,Xt is obtained fromXt−1 by �rst picking a subset S ∈ V of size r uniformly at random and
updating the con�guration on S according to μ (σS = · | σV \S = Xt−1 (V \S )). Note, the case r = 1
corresponds to the single-site dynamics, where at every step the spin of a single vertex, chosen
u.a.r., is updated conditioned on the spins of the remaining vertices. For ε > 0, the mixing time
of the r -uniform-block dynamics is de�ned as Tmix (ε ) = maxσ ∈Ω min{t |X0 = σ , ��νt − μ��TV ≤ ε },
where νt denotes the distribution of Xt . The following lemma builds upon a well-known connec-
tion between factorisation of entropy and modi�ed log-Sobolev inequalities (see, e.g., Reference
[8] for more discussion), we will use the following version that can be extracted from recent works.

Lemma 4.4 (See, e.g., Reference [13, Lemma 2.6 & Fact 3.5(4)] or Reference [12, Lemma 3.2.6
& Fact 3.4.2]). Let q ≥ 2, r ≥ 1 be integers and V be a set of size n ≥ r + 1. Let μ be a distribution

supported over Ω ⊆ [q]V that satis�es the r -uniform-block factorisation of entropy with multiplier

Cr . Then, for any ε > 0, the mixing time of the r -uniform-block dynamics on μ satis�es

Tmix (ε ) ≤
⌈

Cr
n

r

(

log log
1

μmin
+ log

1

2ε2

)

⌉

, where μmin = minσ ∈Ω μ (σ ).

We remark that to deduce the lemma from Reference [13] or Reference [12], which refer to the
so-called “entropy decay constant κ,” one needs to use the equality Crκ = r/n from Reference [13,
Lemma 2.6] or Reference [12, Lemma 3.2.6].

From spectral independence to r -uniform-block factorisation multipliers. The following theorem
is shown in Reference [13]; while the version that we state here cannot be found verbatim in
Reference [13], we explain in Appendix A how to combine the results therein to obtain it.

Theorem 4.5 ([13]). Let q ≥ 2 be an integer and V be a set of size n ≥ 2. Let μ be a distribution

supported over Ω ⊆ [q]V that is η-spectrally independent and b-marginally bounded for η,b > 0.

4We note that in related works Cr is usually referred to as the “factorisation constant”; we deviate from this terminology,
since for usCr will depend on n (cf. Corollary 4.6 and Lemma 4.8), and referring to it as a constant could cause confusion.
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7:12 I. Bezáková et al.

Then, for all integers r = 1, . . . ,n, the distribution μ satis�es the r -uniform-block factorisation of

entropy with multiplier Cr =
r
n

∑n−1
k=0 Γk

∑n−1
k=n−r Γk

, where Γk =
∏k−1

j=0 α j for k ∈ [n],5 and αk = max{0, 1 −
4η

b2 (n−1−k ) } for k ∈ [n − 1].

4.2 Entropy Factorisation for Bounded-degree Vertices in the Hard-core Model

We begin by noting that our arguments in this section, while developed primarily in the context
of the hard-core model, apply more generally and will be used in particular for our Ising and
monomer-dimer results on G (n,d/n) (cf. Section 5.3).
The �rst step of the analysis of Glauber dynamics for the hard-core model on the set of small-

degree vertices will be to employ spectral independence results of Section 3.2 to conclude fast
mixing for the r -uniform-block dynamics for r = θ |U | for any arbitrarily small constant θ . This
step will follow by applying the recent technology of entropy factorisation described above.
The second step is the more challenging for us. Here, we need to conclude fast mixing for r = 1,

and in particular prove that C1/Cr = no (1) . This is done roughly by studying the connected com-
ponents of G that arise when resampling an r -subset of the low-degree vertices; the factorisation
multiplier of these components controls the ratio C1/Cr . While this resembles the approach of
Reference [13], there is a key di
erence here, in that high-degree vertices are not resampled. This
can not only cause potentially large components but also imposes a deterministic lower bound on
components sizes (since a component consisting of high-degree vertices will be deterministically
present in the percolated graph consisting of the r -subset of low-degree vertices and all of the
high-degree vertices). This lower bound on the component sizes is actually more signi�cant than
it might initially seem, since the relatively straightforward bound of Ω(logn) would unfortunately
give a relatively large factorisation multiplier of nΩ(1) (through Lemma 4.3). Instead, we need to
show that components have size o(logn), which in turn requires more delicate estimates for the
distribution of high-degree vertices in connected sets (see Lemma 4.7 below).
We start with the following corollary of Lemma 3.8, which converts a spectral independence

bound into a bound on the factorisation multiplier for the r -uniform-block dynamics when r scales
linearly with small-degree vertices. This is analogous to Reference [13, Lemma 2.4], where they
obtain a 2O (η/b2 ) bound onCr when r = Θ(n) via Theorem 4.5 (whereη is the spectral independence
bound and b is the bound on the marginals). By restricting to small-degree vertices, we obtain that
b is a constant, which combined with the bound η = o(logn) from Lemma 3.8 gives the bound
Cr = no (1) , as detailed below (for clarity, we show the relevant lemmas using arbitrarily small
constants instead of o(1), see Remark 6.7 on how to extract o(1)). The proof of the corollary is
given for completeness in Appendix A.

Corollary 4.6. Let d ≥ 1 and λ > 0 be constants such that λ < λc (d ). Then, for any constants

D,θ > 0, whp over the choice ofG ∼ G (n,d/n), the marginal hard-core distribution μG,λ,U , whereU

is the set of vertices inG with degree ≤ D, satis�es for any integer r ∈ [θ |U |, |U |] the r -uniform-block

factorisation of entropy with multiplier Cr ≤ nθ .

Note that the reason that we are able to use the same θ in the bounds for both r and Cr is that
the bound on Cr is loose (we can obtain a sharper result, since we have a bound on the spectral
independence of ε logn for any ε > 0).

We will now re�ne the bound of Corollary 4.6 down to r = 1 by exploiting the fact that high-
degree vertices are sparsely scattered. In particular, we will need the following lemma, which is

5We note that for k = 0, the product de�ning Γk is empty and therefore Γ0 = 1.
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a re�nement of Lemma 2.1. For a graph G = (V ,E), we say that a set S ⊆ V is connected if the
induced subgraph G[S] is connected.

Lemma 4.7. Let d > 0 be an arbitrary real. There exists an L > 0 such that for any δ ∈ (0, 1), the
following holds whp over the choice of G = (V ,E) ∼ G (n,d/n). For Δ = 1/(δ log 1

δ
), for all integers

k ≥ δ logn and any v ∈ V , there are ≤ (2e)ΔLk connected sets S ⊆ V containing v with |S | = k .

Moreover, every such set contains ≥ k/2 vertices with degree less than LΔ.

The proof of Lemma 4.7 is given in Section 6.3. We are now ready to show the following.

Lemma 4.8. Let d ≥ 1 and λ > 0 be constants such that λ < λc (d ). For any θ > 0, there is a
constant D > 0 such that whp over the choice of G ∼ G (n,d/n), the marginal hard-core distribution

μG,λ,U , whereU is the set of vertices inG with degree ≤ D, satis�es the 1-uniform-block factorisation

of entropy with multiplier C1 ≤ nθ .

Proof. Let L > 0 be as in Lemma 4.7, and consider an arbitrarily small constant θ > 0. Let
δ ∈ (0, 1) be a su�ciently small constant so that for D = L/(δ log 1

δ
) and b = min{ 1

1+λ ,
λ

λ+(1+λ)D
}

it holds that 1
b2δ < eθ /4; such a constant exists, since b2δ → 1 as δ ↓ 0. Let Δ = 1/(δ log 1

δ
) and

ζ > 0 be a small constant so that 2(2e)LΔ (2ζ )1/2 ≤ b2/2.
LetU be the vertices inG with degree ≤ D, and let r = �ζ |U |�+1. Let μ = μG,λ,U . By Corollary 4.6,

we have that whp over the choice of G, there is Cr ≤ nθ /3 such that for every f : Ω → R≥0 it
holds that

r

|U |Entμ ( f ) ≤ Cr
1
( |U |
r

)

∑

S ∈(Ur )

EntSμ ( f ). (6)

For S ⊆ U , let C′(S ) denote the collection of the connected components of the graph G[S ∪
(V \U )], viewed as vertex sets, and let C (S ) = ⋃R∈C′ (S ) {R ∩ U } be the restriction of these com-
ponents to the set U . Note that, for S ⊆ U and τ ∈ ΩU \S , μτ factorises over the components of
G[S ∪ (V \U )] and in particular, applying Fact 4.1, we have that

EntSμ ( f ) = Eτ∼μU \S
[
Entμτ ( f )

]
≤ Eτ∼μU \S

[
∑

R∈C (S )
EntRμτ ( f )

]

.

Using the bound in Lemma 4.3, we further obtain that

EntSμ ( f ) ≤ Eτ∼μU \S

[
∑

R∈C (S )

2|R |2 log(1/b)
b2 |R |+2

∑

u ∈R
Entuμτ ( f )

]

=

∑

R∈C (S )

∑

u ∈R

2|R |2 log(1/b)
b2 |R |+2

Entuμ ( f ),

where the last equality follows by linearity of expectation and the fact that Eτ∼μU \S [Ent
u
μτ
( f )] =

Entuμ ( f ). Plugging this bound into Equation (6), we obtain that

Entμ ( f ) ≤
2Cr log(1/b)

b2
( |U |−1
r−1

)

∑

S ∈(Ur )

∑

R∈C (S )

∑

u ∈R

|R |2

b2 |R |
Entuμ ( f ),

which yields that

Entμ ( f ) ≤
2Cr log(1/b)

b2

∑

u ∈U
Entuμ ( f )

n
∑

k=1

k2

b2k
Pr[Cu (S ) = k], (7)

where Pr[Cu (S ) = k] denotes the probability that u belongs to a set of size k in the set C (S ), when
we pick S uniformly at random from {S ∈

(

U
r

)

| u ∈ S }. De�ne analogously Pr[C′u (S ) = k] to be
the probability that u belongs to a connected component of size k in the set C′(S ). By Lemma 4.7,
whp over G ∼ G (n,d/n), for all vertices u and any integer t ≥ δ logn, there are at most (2e)LΔt
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connected sets of size t containing a given vertex u, and each of them contains at least t/2 vertices
fromU . In particular, for any integer k ≥ δ logn, it holds that Pr[Cu (S ) = k] ≤ Pr[k ≤ C′u (S ) ≤ 2k].
For all k ≤ 2|U |, the probability that a speci�c subset of k/2 vertices ofU is present inG[S∪ (V \U )]

is at most
( |U |−�k/2�r−�k/2� )

( |U |−1r−1 )
≤ ( r

|U | )
k/2 ≤ (2ζ )k/2. Therefore, for all k ≥ δ logn, by a union bound over the

connected sets of size k , we have

Pr[C′u (S ) = k] ≤ (2e)LΔk2k (2ζ )k/2 =
(

2(2e)LΔ (2ζ )1/2
)k
≤ (b2/2)k ,

where in the �rst inequality the �rst factor is the number of size-k connected sets T of G contain-
ing u, the second factor is an upper bound on the number of size k/2 subsetsW of U that might
be included in T and the �nal factor is the probability thatW is included in S . The last inequality
is by the choice of ζ . It follows that

Pr[Cu (S ) = k] ≤ Pr[k ≤ C′u (S ) ≤ 2k] ≤ 2k (b2/2)k .

From this bound and the inequality 1/b2δ < eθ /4 by the choice of δ , we can split and bound the
rightmost sum in Equation (7) by

n
∑

k=1

k2

b2k
Pr[Cu (S ) = k] ≤

(δ logn)2

b2δ logn
+

∑

k≥δ logn

2k3

2k
≤ nθ /3,

where the last inequality holds for all su�ciently large n, since the �rst term isO ((logn)2nθ /4) and
the second term is O (1). In turn, plugging this into Equation (7), we obtain that μ satis�es the 1-

uniform block factorisation of entropy with multiplierC1 =
2Cr log(1/b )

b2 nθ /3 ≤ nθ for all su�ciently

large n (since b is a constant and Cr ≤ nθ /3), as needed. �

Lemma 2.2 now follows easily by combining Lemmas 4.4 and 4.8. This was the last ingredient
needed in the proof of Theorem 1.1.

5 PROOFS FOR THE ISING AND MONOMER-DIMER MODELS

5.1 Antiferromagnetic Ising Model

In this section, we bound the spectral independence of G (n,d/n) in the antiferromagnetic Ising
model. We will need the following well-known lemma; the version we state here is from Reference
[6, Lemma 40], but it traces back to Reference [30] based on a lemma from Reference [4] (that was
originally stated for the ferromagnetic Ising model).

Lemma 5.1 ([6, Lemma 40], see also References [4, 30]). Let β ∈ (0, 1). Let T = (V ,E) be a

tree, S ⊆ V be a subset of the vertices and v ∈ V be an arbitrary vertex. Let τ1,τ2 ∈ {0, 1}S be two

con�gurations on S , which di	er only a subsetW ⊆ S . Then,

���μT ,β (σv = 1 | σS = τ1) − μT ,β (σv = 1 | σS = τ2)��� ≤
∑

w ∈W

( 1 − β
1 + β

)dist(v,w )

,

where for a vertexw ∈W , dist(v,w ) denotes the distance between v andw in T .

Lemma 5.2. Let d ≥ 1 and β > 0 be constants such that β ∈ (βc (d ), 1). For any constant ε > 0, whp
over the choice of G ∼ G (n,d/n), the antiferromagnetic Ising distribution μG,β is (ε logn)-spectrally
independent.

Proof. Let d ′ > d be a real number such that β > βc (d
′), i.e., 1−β

1+β <
1
d ′ ; such d

′ exists, because

of the continuity of the function βc (·) in the interval (0, 1). By Lemma 3.4, whp all of the vertices
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the graphG = (V ,E) ∼ G (n,d/n) have d ′-branching value less than ε logn. We will show that the
result holds for all such graphsG.
Let for convenience μ = μG,β . Consider arbitrary S ⊂ V and τ ∈ ΩS . We will once again bound

the largest eigenvalue of the in�uence matrix Ψτ by bounding the absolute-value row sums of Ψτ .
In particular, analogously to the proof of Lemma 3.8, it su�ces to show that for v ∈ V \S , we have

∑

w ∈V

���I
τ
G (v → w )

��� ≤ ε logn, (8)

where Iτ
G
(v → w ) denotes the in�uence ofv on the vertices ofG conditioned on τ . By Lemma 3.2,

for the self-avoiding walk treeT = (VT ,ET ) from v , there is a subsetW ⊆ VT \{v} and a con�gura-
tion ϕ ∈ {0, 1}W such that

∑

w ∈V

���I
τ
G (v → w )

��� ≤
∑

w ∈VT

���I
ϕ

T
(v → w )

���, (9)

where Iϕ
T
(v → ·) denotes the in�uence of v on the vertices of T (in the Ising distribution μT ,λ

conditioned on ϕ). Since the d ′-branching value of v (and any other vertex of G) is bounded by
ε logn, and applying Lemma 5.1 to T , we have that

∑

w ∈VT

���I
ϕ

T
(v → w )

��� ≤
∑

�≥0
Nv, �

( 1 − β
1 + β

)�

≤
∑

�≥0
Nv, �/(d

′)� ≤ ε logn,

where Nv, � is the number of paths in G with a total of � + 1 vertices starting from v . Combining
this with Equation (9) proves Equation (8), as wanted. �

The following lemma is a crude (and relatively standard) bound on the marginals for the an-
tiferromagnetic Ising distribution, a proof can be found in, e.g., Reference [6, Lemma 26]; there,
the result is stated for bounded-degree graphs, but the proof of the marginal bound applies to any
vertex whose degree is bounded.

Lemma 5.3 (see, e.g., Reference [6, Lemma 26]). Let β ∈ (0, 1) and D > 0 be real numbers. For

a graph G = (V ,E), letU be the set of vertices in G with degree ≤ D and suppose that |U | ≥ 2. Then,

the distribution μ := μG,β,U is b-marginally bounded for b =
βD

1+βD
.

5.2 Monomer-Dimer Model

In this section, we bound the spectral independence of G (n,d/n) in the monomer-dimer model.
Instead of vertex-to-vertex in�uences thatwe considered for two-spin systems, we need to consider
instead edge-to-edge in�uences. Namely, for a graphG = (V ,E) and μ = μG,γ , �x some τ ∈ {0, 1}S
for some S ⊂ E. Then, following Reference [13, Section 6], for edges e, f with e ∈ E\S and 0 <
μτ (σe = 1) < 1, we de�ne the in�uence of e on f (under μτ ) as

IτG (e → f ) = μτ (σf = 0 | σe = 0) − μτ (σf = 0 | σe = 1).

We will need the following technical lemma from Reference [35]. The version below can be more
easily derived from Reference [5, Lemma 15] (where it is explained how to combine the results of
Reference [35]; in the notation below, the values of a, χ correspond to those of p,q there, respec-
tively).

Lemma 5.4 ([35]). Let d > 1 and γ > 0. Let χ = (1 + 4γd̂ )1/2 where d̂ = max{d, 3/(4γ )}, and set

a =
χ

χ−1 . Consider also the functionΦ(x ) =
1

x (2−x ) for x ∈ (0, 1]. Then, there is a constant 0 < κ < 1/d

given by κ = 1
d̂
(1 − 2

1+χ )
χ such that the following holds for any integer k ≥ 1.

Let R1, . . . ,Rk ∈ (0, 1] be reals and R = 1
1+γ
∑k
j=1 Rj

. Then (Φ(R))a
∑k

j=1 (
γ R2

Φ(Rj )
)a ≤ κa/χ .
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7:16 I. Bezáková et al.

With this in hand, and using the notion of branching values (cf. De�nition 3.3), we are now able
to bound the total sum of in�uences.

Lemma 5.5. Let d > 1 and γ > 0 be constants. Then, there is a constant χ > 1 such that the

following holds.

Let T = (V ,E) be a tree and e be an edge of T , whose endpoints v1 and v2 have d-branching

values ≤ α , and let k = max{deg(v1), deg(v2)}. Then, for the monomer-dimer distribution on T with

parameter γ , it holds that
∑

f ∈E

���IT (e → f )
��� ≤Wkα

1/χ ,

whereWk > 0 is a real depending only on k (and the constants d,γ ).

Proof. Let κ ∈ (0, 1/d ) and χ > 1 be the constants from Lemma 5.4, and Φ(x ) = 1
x (2−x ) be also

as in Lemma 5.4. LetMk = 2k/κ1/χ andWk =
Mk

1−(dκ )1/χ .

Let μ = μT ,γ . For i ∈ {1, 2}, let T̂i be the subtree containingvi obtained fromT when we remove

the edge e , and let Ti be the tree obtained by adding the edge e to T̂i . We will root Ti at vi , and set
μi = μTi ,γ . We will show that

∑

f ∈ETi

|ITi (e → f ) | ≤Wkα
1/χ , (10)

where ITi (e → ·) denotes the in�uence of e on the edges ofTi under μi . Note that for any f ∈ ETi ,
we have that IT (e → f ) = ITi (e → f ). Therefore, by adding Equation (10) for i = 1, 2, we obtain
the statement of the lemma.
We therefore focus on proving Equation (10) for i = 1, 2. The argument is analogous to that

used in Lemma 3.6 with suitable adaptations to account for the monomer-dimer model. We will
work inductively on the depth of Ti . Analogously to that lemma, we �rst de�ne for each vertex
u in Ti the following values αu and Ru . If u is a leaf, then set αu = 1 and Ru = 1; otherwise, set
αu = 1+ 1

d

∑t
j=1 αuj and Ru =

1
1+γ
∑t
j=1 Ruj

, where u1, . . . ,ut are the children of u in the rooted tree

Ti . Note that we have that αvi ≤ α , where α is the upper bound on the d-branching value of vi in
the treeTi . Moreover, if we denote byTi (u) the subtree ofTi rooted at u, then a standard induction
argument shows that

Ru = μTi (u ),γ (u is unmatched). (11)

For an integer h ≥ 1, let Li (h) be the set of edges at distance h from the edge e in the tree Ti , so
that Li (1) consists of the edges incident to vi other than e , and so on. Moreover, for an edge f , let
v ( f ) be the endpoint of f , which is the farthest from v3−i . We will show that

∑

f ∈Li (h)

(αv (f )

αvi

)1/χ
���ITi (e → f )

���
Rv (f )Φ(Rv (f ) )

≤ Mk (dκ )
h/χ . (12)

Note that αv ≥ 1 and RvΦ(Rv ) ≤ 1 for all vertices v in Ti , and for the root αvi ≤ α . So, Equation

(12) yields
∑

f ∈Li (h)
���ITi (e → f )

��� ≤ Mkα
1/χ (dκ )h/χ for all integer h ≥ 0, and therefore summing

over h, yields Equation (10), since κ < 1/d . So, it only remains to prove Equation (12).
We will work inductively. For the base case h = 1, we have for every edge f ∈ Li (h) the trivial

bounds |ITi (e → f )
��� ≤ 1 and 1/(Rv (f )Φ(Rvf )) = 2 − Rv (f ) ≤ 2. Moreover, by the de�nition of αvi ,

we have αvi ≥ 1
d
αv (f ) , so

αv (f )

αvi
≤ d . Using these and Mk = 2k/κ1/χ , we obtain that Equation (12)

holds for h = 1. For the induction step, consider f ∈ L(h), and let v = v ( f ). Suppose v has kv ≥ 0
children in the tree Ti , joined by the edges fj for j ∈ [kv ]. Then, for each j ∈ [kv ], since f is on
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the unique path joining e to fj and the edges f , fj cannot simultaneously belong to a matching, it
holds that (see Reference [13, Lemmas 6.11 and 6.12])

ITi (e → fj ) = ITi (e → f )ITi ( f → fj ), and
���ITi ( f → fj )

��� = μTi (v (f )) (σfj = 1) = γRv (fj )Rv (f ),

where the last equality follows from Equation (11). Therefore, we can write

∑

f ∈L(h+1)

(αv (f )

αvi

)1/χ
���ITi (e → f )

���
Rv (f )Φ(Rv (f ) )

=

∑

f ∈L(h)

(αv (f )

αvi

)1/χ |ITi (e → f ) |
Rv (f )Φ(Rv (f ) )

∑

j ∈[kv (f )]

(αv (fj )

αv (f )

)1/χ
Rv (f )Φ(Rv (f ) )

|ITi ( f → fj ) |
Rv (fj )Φ(Rv (fj ) )

,

≤ Mk (dκ)
h/χ max

f ∈L(h)

{

∑

j ∈[kv (f )]

(αv (fj )

αv (f )

)1/χ
Φ(Rv (f ) )

γR2
v (f )

Φ(Rv (fj ) )

}

. (13)

Consider an arbitrary f ∈ L(h). Since 1
χ
+

1
a
= 1, by Hölder’s inequality, we have that

∑

j ∈[kv (f )]

(αv (fj )

αv (f )

)1/χ
Φ(Rv (f ) )

γR2
v (f )

Φ(Rv (fj ) )
≤
(

∑

j ∈[kv (f )]

αv (fj )

αv (f )

)1/χ (
(

Φ(Rv (f ) )
)a ∑

i ∈[kv ]

( γR2
v (f )

Φ(Rv (fj ) )

)a
)1/a

.

(14)

By Lemma 5.4, we have that ((Φ(Rv (f ) ))
a ∑

i ∈[kv ] (
γ R2

v (f )

Φ(Rv (fj )
)
)a )1/a ≤ κ1/χ . Moreover, by the

de�nition of the α values, we have αv (f ) = 1 + 1
d

∑

j ∈[kv (f )] αv (fj ) ≥
1
d

∑

j ∈[kv (f )] αvf (j ) . Plugging
these bounds into Equation (14), and then into Equation (13) completes the inductive proof of
Equation (12). �

We can now conclude the following spectral independence property for the monomer-dimer
distribution on G (n,d/n).

Lemma 5.6. Let d ≥ 1 and γ > 0. Then, for any constants D, ε > 0, whp over the choice of

G ∼ G (n,d/n), the marginal monomer-dimer distribution μG,γ ,F , where F is the set of edges in G

whose both endpoints have degree ≤ D, is (ε logn)-spectrally independent.

Proof. Consider arbitrary D, ε > 0 and let d ′ > d . Let χ > 1 andW = max{W1, . . . ,WD } where
χ and theWk ’s are as in Lemma 3.6 (corresponding to the constants d ′,γ ). By Lemma 3.4, whp all
of the vertices the graphG = (V ,E) ∼ G (n,d/n) have d ′-branching value less than ε logn. We will
show that the result holds for all such graphs G.
Let for convenience μ = μG,γ ,F , where F is the set of edges whose both endpoints have degree
≤ D. Consider arbitrary S ⊂ F and τ ∈ ΩS . We will once again bound the largest eigenvalue of
the in�uence matrix Ψτ by bounding the absolute-value row sums of Ψτ . It su�ces to consider
the case that S is empty (and τ is trivial), since conditioning on an arbitrary τ is equivalent to
the monomer-dimer model on a subgraph of G. Analogously to the hard-core model (cf. proof of
Lemma 3.8), to bound the largest eigenvalue, it su�ces to show for arbitrary e ∈ F that

∑

f ∈F

���IG (e → f )
��� ≤ ε logn, (15)

where IG (e → ·) denotes the in�uence of e on the edges of G under the (full) distribution μG,γ .
In Reference [14, Theorem 6.2], they showed the analogue of Lemma 3.2 in the case of matchings.
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In particular, letv be one of the endpoints of e and consider the self-avoidingwalk treeT = (VT ,ET )

emanating from v , then Reference [13, Theorem 6.2] asserts that
∑

f ∈E

���IG (e → f )
��� ≤
∑

f ∈ET

���IT (e → f )
���,

where IT (e → ·) denotes the in�uence of e to the edges of T , under μT ,γ . By Lemma 5.5 applied
to the tree T , the right-hand side is bounded byW (ε logn)1/χ , which is less than ε logn for all
su�ciently large n. This gives Equation (15), as wanted. �

5.3 Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2. This is completely analogous to the proof of Theorem 1.1 presented in
Section 2. Lemma 2.1 is about structural properties of the random graphG ∼ G (n,d/n), so we can
use it verbatim. Therefore, we only need to establish the analogue of Lemma 2.2, i.e., for any θ > 0
and all su�ciently largeD > 0, whp overG ∼ G (n,d/n), running Glauber dynamics onU , whereU
is the set of vertices with degree ≤ D, gives an ε-sample from μG,β,U in timen1+θ log 1

ε
. Completely

analogously to the hard-core model, using now the spectral independence bound of Lemma 5.2,
we conclude that for any integer r ∈ [θ |U |, |U |] the distribution μG,β,U satis�es the r -uniform-
block factorisation of entropy with multiplierCr ≤ nθ /3 (i.e., the analogue of Corollary 4.6 for the
antiferromagnetic Ising model). From there, the same argument as in Lemma 4.8 yields that μG,β,U
satis�es the 1-uniform-block factorisation of entropy with multiplier C1 ≤ nθ . �

Proof of Theorem 1.3. Again, this is very similar to the proof of Theorems 1.1 and 1.2, we only
need to adapt the argument slightly to account for updating edges (instead of vertices).
Once again, we only need to establish the analogue of Lemma 2.2, i.e., for any θ > 0 and all

su�ciently large D > 0, whp over G ∼ G (n,d/n), running Glauber dynamics on F , where F

is the set of vertices whose both endpoints have degree ≤ D, gives an ε-sample from μG,γ ,F in
time n1+θ log 1

ε
. Using the spectral independence bound of Lemma 5.6, we obtain the analogue of

Corollary 4.6, i.e., for any integer r ∈ [θ |F |, |F |] the distribution μG,β,F satis�es the r -uniform-block
factorisation of entropy with multiplierCr ≤ nθ /3. The same argument as in Lemma 4.8 yields that
μG,β,F satis�es the 1-uniform-block factorisation of entropy with multiplier C1 ≤ nθ . �

6 RANDOM GRAPH PROPERTIES USED IN OUR PROOFS

In this section, we prove the random graph properties that we have used in our proofs, i.e., Lem-
mas 2.1, 3.4, and 4.7.

6.1 Bounding the Branching Value

Letd ≥ 1. In this section, we prove Lemma 3.4, which bounds thed-branching values of the vertices
in G (n,d/n). The key ingredient is to bound the following closely related quantity. For a graph G
and a vertexv ofG, let N̂v,r be the number of vertices at (graph) distance exactly r fromv . We call
a vertex v ε-good if it holds that

Ŝv :=
∑

r ≥0
N̂v,r /((1 + ε )d )

r ≤ ε logn.

Note that the main di
erence between Ŝv and the d-branching value Sv (cf. De�nition 3.3) is that
the latter is de�ned with respect to the number of paths, and therefore we trivially have Ŝv ≤ Sv .
For random graphs, however, we will also be able to show that Sv ≤ 2Ŝv .

We start with showing that whp all vertices in G (n,d/n) are ε-good.
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Lemma 6.1. For any constants d ≥ 1 and ε > 0, whp over the choice of G ∼ G (n,d/n), all vertices

of G are ε-good.

Proof. For integers n ≥ 1, consider a (�nite) tree rooted at ρ created by a branching process
where a node at depth r has Bin(n − r , d

n−r ) children, and let Yn,r be the number of nodes at depth
r . Set

Xn =

n−1
∑

r=0

α r Yn,r , where α := 1
d (1+ε ) < 1/d ≤ 1.

For any �xed vertexv ofG, we can couple Sv andXn , so that Sv ≤ Xn . Indeed, the BFS exploration
process in G starting from v is stochastically dominated by the branching process above, since at
depth r of the BFS process the number of unexplored vertices is at most n − r and the connection
probability d

n
is less than d

n−r . In particular, there is a coupling so that N̂v,r ≤ Yn,r for all integers

r ≥ 0, therefore yielding Ŝv ≤ Xn as well. It follows that

Pr[Ŝv ≥ ε logn] ≤ Pr[Xn ≥ ε logn]. (16)

To bound the probability Pr[Xn ≥ ε logn], we will use moment generating functions, adapting
an argument from Reference [30]. For integer n ≥ 1 and real t ≥ 0, let дn (t ) = E[exp(tXn )] and
consider the functions { fn (t )}n≥1 de�ned for t ≥ 0 by

f1 (t ) = exp(t ), fn (t ) = exp
(

t + d ( fn−1 (αt ) − 1)
)

for n ≥ 2.

We will show by induction on n that дn (t ) ≤ fn (t ) for all t ≥ 0. Since X1 = 1, the base case is
trivial. For n ≥ 2, observe that

Xn = 1 + α
(

X
(1)
n−1 + . . .X

(K )
n−1
)

where K ∼ Bin(n, d
n
),

and X (1)
n−1,X

(2)
n−1, . . . are i.i.d. variables with distribution Xn−1. Therefore,

дn (t ) =

n
∑

k=0

(

n

k

)

(

d

n

)k (

1 − d

n

)k

E

[
et (1+α (X

(1)
n−1+· · ·+X

(k )
n−1 )

]
= et
(

1 +
d

n
(дn−1 (tα ) − 1)

)n

≤ et
(

1 +
d

n
( fn−1 (tα ) − 1)

)n

≤ exp
(

t + d ( fn−1 (αt ) − 1)
)

= fn (t ),

completing the inductive proof that дn (t ) ≤ fn (t ).
We will next de�ne a function F (t ) so that fn (t ) ≤ F (t ) for all n and t . To de�ne F , let c be a

constant such that c > 1/(1 − αd ) and note that c > 1, since αd < 1. Let t0 > 0 be such that

exp(cαt0) = 1 +
c − 1
d

t0, (17)

and note that such t0 exists, since both sides at t = 0 have value 1, and their derivatives at t = 0
are given by cα and (c − 1)/d , satisfying cα < (c − 1)/d from the choice of c . From convexity of
exp(cαt ), we obtain that for all t ∈ [0, t0] it holds that

exp(cαt ) ≤ 1 +
c − 1
d

t , or equivalently exp
(

t + d (exp(cαt ) − 1)
)

≤ exp(ct ). (18)

Now, consider the function F de�ned by setting F (t ) = exp(ct ) for t ∈ [0, t0]; for t > t0, we de�ne
F inductively on intervals (t0 (1/α )k , t0 (1/α )k+1] by

F (t ) = exp
(

t + d (F (αt ) − 1)
)

.

It is not hard to see that the function F is increasing and continuous, satisfying the inequality

exp(t + d (F (αt ) − 1)) ≤ F (t ). (19)
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Using Equation (18), the validity of Equation (19) and monotonicity are trivial; to check continuity,
note that F can only be discontinuous at the points tk = t0 (1/αk ); let k ≥ 0 be the �rst such integer.
By construction, F is continuous at t0 (see Equation (17)), and hence it must be the case that k ≥ 1.
But then

lim
t ↓tk

F (t ) = lim
t ↓tk

exp
(

t + d (F (αt ) − 1)
)

= exp
(

t + d (F (tk−1) − 1)
)

= F (tk ),

contradicting the choice of k . Now, we also prove, by induction, that fn (t ) ≤ F (t ). We have f1 (t ) =
exp(t ) ≤ F (t ), since c > 1/(1 − αd ) > 1. Now suppose fn (t ) ≤ F (t ). Then, using Equation (19), we
have

fn+1 (t ) = exp(t − d + d fn (αt )) ≤ exp(t − d + dF (αt )) ≤ F (t ),

as needed.
Using Markov’s inequality and the fact that дn (t ) ≤ fn (t ) ≤ F (t ) for arbitrary t ≥ 0, we have

Pr(Xn ≥ ε logn) = Pr
(

exp(tXn ) ≥ exp(tε logn)
)

≤ F (t )

exp(tε logn)
≤ exp

(

− h(ε logn)
)

, (20)

where the function h is de�ned for A ≥ 0 by

h(A) := sup
t ≥0
{tA − log F (t )}.

LetM = 1 + 5/ε . For any A ≥ F (M ), we have

h(A)

A
= sup

t ≥0

{

t − log F (t )

A

}

≥ M − 1 = 5/ε,

where the inequality follows by considering t = M and observing that log F (M ) ≤ F (M ) ≤ A.
Since F (M ) is a constant (depending only on ε , d), we have that for all su�ciently large n it holds

that ε logn ≥ F (M ), and therefore h(ε logn) ≥ 5 logn. From Equations (16) and (20), we therefore
obtain that Pr[Sv ≥ ε logn] ≤ 1/n5, and Lemma 6.1 follows by taking a union bound over the n
vertices of G. �

To obtain the desired bound on the branching values from Lemma 6.1, we will need to relate
Nv,r , the number of paths with r + 1 vertices from v , with N̂v,r , the number of nodes at distance
r from v . This will follow by the following treelike property of G (n,d/n). For a graph G, a vertex
v of G and real r > 0, we use B (v, r ) to be the set of vertices in G at distance ≤ r from v .

Lemma 6.2 ([30, Lemma 7]). Let d ≥ 1. The following holds whp over G = (V ,E) ∼ G (n,d/n)

and R = (log logn)2. For all v ∈ V , |B (v,R) | ≤ dR logn and the tree-excess of the induced graph

G[B (v,R)] is at most 1.

We can now prove Lemma 3.4, which we restate here for convenience.

Lemma 3.4. Let d ≥ 1. Then, for every d ′ > d and ε > 0, whp over the choice ofG ∼ G (n,d/n), the

d ′-branching value of every vertex in G is at most ε logn.

Proof. It su�ces to prove the result for arbitrarily small constant ε > 0 and d ′ = (1 + ε )d . Let
R = �(log logn)2� − 1 and ε ′ = d ′−1

4d ′ ε . We have that whp G = (V ,E) ∼ G (n,d/n) satis�es the
conclusions of Lemmas 6.1 and 6.2.

For arbitraryv ∈ V , we can bound the d ′-branching value ofv from above by
∑

i≥0 si , where for

an integer i ≥ 0, we set si :=
∑(i+1)R

r=iR
Nv,r /(d

′)r . From Lemma 6.2, the tree-excess ofG[B (v,R+ 1)]
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is at most 1, and hence for integers r ≤ R + 1, we have the bound6

Nv,r ≤ 2
r
∑

r ′=0

N̂v,r ′ . (21)

It follows that s0 ≤ 2
∑R

r ′=0
N̂v,r ′

(d ′)r ′
∑R

r=r ′
1

(d ′)r−r ′
≤ ε

2 logn, where in the last inequality, we used the

fact from Lemma 6.1 that all vertices inG are ε ′-good, and in particular that
∑R

r ′=0
N̂v,r ′

(d ′)r ′
≤ ε ′ logn.

To bound si for an integer i ≥ 1, note that for integer iR ≤ r ≤ (i + 1)R, we can decompose a
path with r vertices starting from v into two paths with r − R and R + 1 vertices, so we have

Nv,r ≤ Nv,r−R max
w ∈B (v,r−R )

Nw,R+1 ≤ 2dR+1Nv,r−R logn,

where the last inequality follows from applying Equation (21) for r = R + 1 and noting that
∑R+1

r ′=0 N̂v,r ′ = |B (v,R + 1) | ≤ dR+1 logn from Lemma 6.2. Therefore,

si =

(i+1)R
∑

r=iR

Nv,r

(d ′)r
≤ si−1

(i+1)R
∑

r=iR

2dR+1 logn

(d ′)R
≤ si−1

2(R + 1)dR+1 logn

(d ′)R
≤ si−1/2, (22)

where the last inequality is true for all su�ciently large n, since d ′ > d and R = ω (log logn).
Using Equation (22) and summing over i ≥ 0, we have that the d ′-branching value of v is

bounded by
∑

i≥0 si ≤ 2s0 ≤ ε logn. Sincev was an arbitrary vertex ofG, this �nishes the proof. �

6.2 Bounding the Tree-excess of Small Connected Sets

We start with the following lemma, which shows that the tree-excess of logarithmically sized con-
nected sets inG (n,d/n) is bounded by an absolute constant (a similar result in a slightly di
erent
setting was shown in Reference [21]).

Lemma 6.3. Let d,M > 0 be arbitrary reals. There exists a positive integer � such that the following
holds whp over the choice of G = G (n,d/n). There is no connected set S of vertices such that |S | ≤
M logn and the tree excess is more than �.

Proof. It su�ces to prove the lemma for all su�ciently large d , since the property is increasing
under edge inclusion; in particular, we will assume that d ≥ e. Let � be an integer bigger than
2M + 5.
For a positive integer k ≤ ⌊M logn

⌋

, we calculate the expected number of sets S as in the

statement of the lemma with |S | = k . There are
(

n
k

)

choices for the set S , kk−2 labelled trees on S ,

and at most
(

k2

�

)

choices for � additional edges. The probability that all these k + � − 1 edges are

inG is (d/n)k−1+� . Therefore, by a union bound, we can upper bound the expected number of such
sets S with |S | = k by

(

n

k

)

kk−2
(

k2

�

) (

d

n

)k+�−1
≤ ek+�dk+�−1k2�

n�−1��
≤ 1

n2
,

where the last inequality holds for all su�ciently large n using that � > 2M + 5. By summing
over theO (logn) values for the integer k , we obtain that the expected number of such sets S with
|S | ≤ M logn is o(1), and therefore the result follows by Markov’s inequality. �

6This can be proved by considering the BFS tree from v . An “excess” edge can only connect vertices either at the same or
consecutive levels of the BFS tree. In either case, every path of length r that uses that edge can be mapped injectively to a
vertex at distance ≤ r from v .
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6.3 Bounding the Number of High-degree Vertices in Connected Components

In this section, we prove Lemma 4.7, that bounds the number of connected sets in G (n,d/n) as
well as the fraction of high-degree vertices. We also prove Lemma 2.1. (Note, Lemma 4.7 shows
the existence of a quantity L, which depends on a quantity M from Lemma 6.6: We take δ to be a
su�ciently small constant, Δ = 1/(δ log 1

δ
), M = max{10d, 50(1 + logd )}, and L = 4M . We state

these quantities upfront to help with the readability of the expressions in this section.)
For a graph G = (V ,E) and a set S ⊆ V , we let degG (S ) denote the sum of the degrees of the

vertices in S . To control the number of connected sets containing a given vertex, we will use the
following bound that holds for general graphs G.

Lemma 6.4 ([21, Lemma 6]). Let G = (V ,E) be a graph, v ∈ V , and � ≥ 1 be an integer. The

number of connected sets S ⊆ V such that v ∈ V and degG (S ) = � is at most (2e)2�−1.

We will use the following version of Cherno
 bounds to upper bound the total degree of con-
nected sets with Ω(logn) size.

Lemma 6.5. SupposeX1, . . . ,Xn are i.i.d. Bernoulli random variables. LetX = X1+ · · ·+Xn denote

their sum and set μ = E[X ]. Then, for any t ≥ 5, Pr(X > tμ ) ≤ e−
1
2 t μ log t .

Proof. It is well-known (see, e.g., Reference [24, Theorem 2.1]) that for any δ > 0, it holds that

Pr(X > (1 + δ )μ ) ≤
( eδ

(1 + δ ) (1+δ )

) μ

.

For δ ≥ 4, we have that (1+δ ) (1+δ )

eδ
≥ (1 + δ ) (1+δ )/2, and the result follows. �

Lemma 6.6. Let d > 0 be an arbitrary real. There is an M > 0 such that for any δ ∈ (0, 1),
whp over the choice of G = G (n,d/n), every connected set S of vertices with |S | = �δ logn� satis�es
degG (S ) ≤ MΔ|S |, where Δ = 1/(δ log 1

δ
).

Proof. The proof is close to an argument of Fountoulakis and Reed [19, Lemma 2.4], the only
di
erence is that we have to account for the smaller size of S . We may assume for convenience
that d ≥ 1, since the graph property is increasing with respect to adding edges in the graph G.
Let M = max{10d, 50(1 + logd )}, and δ ∈ (0, 1) be an arbitrarily small constant, we will in fact
assume henceforth that δ < 1/e2. Let Δ = 1/(δ log(1/δ )) and note that Δ > 2. For convenience, let
k = �δ logn�.

For a set S , let ein (S ) be the number of edges whose both endpoints belong to S , and eout (S ) be the
number of edges with exactly one endpoint in S . By Lemma 6.3, whp we conclude the crude bound
ein (S ) ≤ 2|S | = 2k for all connected sets S with size k (since for such sets S the tree excess ofG[S]
is bounded by an absolute constant and |S | = k = Ω(logn)). We also have that E[eout (S )] ≤ dk , so
by Lemma 6.5,

Pr
(

eout (S ) ≥ 1
2kMΔ

)

≤ e−
1
4kMΔ log

ΔM
4d .

SinceM ≥ 4d,δ < 1/e2 and Δ = 1/(δ log 1
δ
), we have that log ΔM

4d ≥ logΔ ≥ 1
2 log(1/δ ). Therefore,

since k ≥ δ logn andM ≥ 50(1 + logd ), we have that
1
4kMΔ log MΔ

4d ≥ 3(1 + logd ) logn.

Using that the number of labelled trees on a vertex set of size k is kk−2, we have that the ex-

pected number of trees with size k in G (n,d/n) is
(

n
k

)

kk−2 (d/n)k ≤ n(ed )k , and hence there are

in expectation at most n(ed )k connected sets S with size k . Note also that the event eout (S ) ≥
1
2kMΔ is independent of the event that S is connected. Therefore, by linearity of expectation,
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we obtain that the number of connected sets S with |S | = k and eout (S ) ≥ 1
2kMΔ is at most

n(ed )ke−3(1+logd ) logn ≤ n(ed )logne−3(1+logd ) logn ≤ 1/n, and hence whp there are no such sets by
Markov’s inequality. This �nishes the proof of the lemma, since any other connected set S of size
k satis�es degG (S ) ≤ 2ein (S ) + eout (S ) ≤ 4k + 1

2kMΔ ≤ MΔk . �

We next prove Lemma 4.7, which we restate here for convenience.

Lemma 4.7. Let d > 0 be an arbitrary real. There exists an L > 0 such that for any δ ∈ (0, 1), the
following holds whp over the choice of G = (V ,E) ∼ G (n,d/n). For Δ = 1/(δ log 1

δ
), for all integers

k ≥ δ logn and any v ∈ V , there are ≤ (2e)ΔLk connected sets S ⊆ V containing v with |S | = k .

Moreover, every such set contains ≥ k/2 vertices with degree less than LΔ.

Proof. LetM be as in Lemma 6.6, and let L = 4M . Consider arbitrary δ ∈ (0, 1). By Lemma 6.6,
we have whp that every connected set S of vertices in G with |S | = r := �δ logn� has in total at
most MΔ|S | edges incident to it, where Δ = 1/(δ log 1

δ
). We claim that for all connected sets S

with |S | ≥ r , it holds that degG (S ) ≤ 2MΔ|S |. Indeed, we can decompose any connected set S into
at most t ≤ 2|S |/r connected sets (not necessarily disjoint) S1, . . . , St , each of size k .7 From this, it
follows that

degG (S ) ≤
t
∑

i=1

degG (Si ) ≤ tMΔr ≤ 2MΔ|S |,

as claimed. The bound on the number connected sets S with |S | = k ≥ δ logn containingv follows
by applying Lemma 6.4, by aggregating over the possible values of degG (S ), which can be at most
2MΔk . Moreover, the number of vertices in such a set S with degree ≥ LΔ has to be at most k/2
(otherwise, degG (S ) > LΔ(k/2) = 2MΔk). This �nishes the proof. �

We can also give now the proof of Lemma 2.1, which we restate here for convenience.

Lemma 2.1. Let d > 0 be an arbitrary real. There exist constants D, � > 0 such that the following

holds whp over the choice of G = (V ,E) ∼ G (n,d/n). Each of the connected components of G[V \U ],
whereU is the set of vertices of degree ≤ D, has size O (logn) and tree-excess at most �.

Proof. Let D = eL, where L > 0 is the constant from Lemma 4.7. Let � be the integer of
Lemma 6.3 corresponding toM = 1/e.
By Lemma 4.7 applied to δ = 1/e, whp over the choice of G, every connected set S with size

k ≥ 1
e logn has at least k/2 vertices with degree ≤ D = eL. Therefore, with U being the set of

vertices with degree ≤ D, we obtain that the components of G[V \U ] have size at most 1
e logn.

Moreover, by Lemma 6.3, whp over the choice ofG, all these components have tree excess ≤ �. �

6.4 Verifying the Random Graph Properties E�iciently

Here, we brie�y discuss how to verify in time n1+o (1) that a random graph G ∼ G (n,d/n) satis�es
the high-probability properties of Lemmas 2.1, 3.4, and 4.7. The property in Lemma 2.1 is immedi-
ate, since we only need to do an exploration of the graph G[V \U ]. To ensure that the property of
Lemma 3.4 is satis�ed, and following its proof, we only need to check the property in Lemma 6.2,
and that for R = �(log logn)2� −1 and allv ∈ V it holds that

∑R
r=0 Nv,r /d

r
= o(logn). Both of these

properties can be checked via enumeration in time n1+o (1) . Similarly for the property in Lemma 4.7,
whose proof used only the property in Lemma 6.6 (which is veri�able in time n1+o (1)).

7One way to do this is to consider a spanning tree of S , double its edges, and obtain an Eulerian tour of the resulting graph.
The desired decomposition of S can then be obtained by traversing the tour and extracting connected sets with k vertices.
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Remark 6.7. We claimed in the Introduction that the family of O (n1+θ ) algorithms from Theo-
rem 1.1 can be turned into an n1+o (1) algorithm. We now explain how to do this for the interested
reader.
As noted after the statement of Theorem 1.1, there is a function fd,λ,θ : Z → R such that

limn→∞ fd,λ,θ (n) = 0 and the “whp” bound in Theorems 1.1, 1.2, and 1.3 means with probability
≥ 1 − fd,λ,θ (n); the function equals 1 for small n (making the conclusion trivial for such n).
To understand the function fd,λ,θ (n), we need to look at the whp bounds in the lemmas that

we use. The whp bound functions are ≥ 1 − 1/n for su�ciently large n where su�ciently large is
(ultimately) a simple function of d, λ,θ (for example, Lemma 2.1, 4.7, 6.3, and 6.6). Lemma 6.1 (and
as a consequence Lemma 3.4) has a more wild dependence on the parameter ε : the function F (t )

inside the proof can be bounded from above by a tower of exponentials of depth loдd (t ). The whp
bound is then ≥ 1−1/n assuming n ≥ exp(F (1+5/ε )/ε ); this whp bound propagates to Lemma 4.8,
then to Lemma 2.2 and �nally to Theorems 1.1, 1.2, and 1.3.
For �xed d and λ, the dependence of ε on θ (used in Lemma 6.1) can be extracted from Corollary

4.6 and Lemma 4.8, where ε (controlling the leading constant in the branching value) needs to
be small enough to compensate the leading constant from the spectral-independence bound η; in

particular, ε scales roughly as 1/ee
C/θ

, whereC is a constant depending only on d and λ. It follows
that we can set fd,λ,θ (n) = 1/n when n ≥ Nd,λ (θ ) and 1 otherwise, where Nd,λ (θ ) is a computable
function satisfying n ≥ Nd,λ (1/k ) for some function k = k (n) = ω (1) (for example, it su�ces to
take k (n) = �Ĉ log(3) log∗ log(2) n)� where Ĉ is a constant depending only on d and λ).

The n1+o (1) algorithm then proceeds as follows. Given the input size n, it �rst computes k = k (n)
as above in O (logn) time (say). Then, by the de�nition of k (n), we have n ≥ Nd,λ (1/k ) for all
su�ciently large n. The new algorithm runs the algorithm of Theorem 1.1 with θ = 1/k in time
n1+1/k log 1

ε
= n1+o (1) log 1

ε
, which succeeds with probability ≥ 1 − 1/n = 1 − o(1) over the choice

of G (n,d/n).

APPENDIX

A OTHER OMITTED PROOFS

Proof of Theorem 4.5. The theorem follows by combining Reference [13, Claim 1.13, Theorem
1.14, Lemma 2.6], which bound the factorisation multiplier of the more general order-(r , s ) down-
up walk; the result here is the special case s = n. The only di
erence is that in Reference [13] they

state the r -uniform-block multiplier Ĉr =
r
n

∑n−1
k=0 Γ̂k

∑n−1
k=n−r Γ̂k

, with Γ̂k =
∏k−1

j=0 α̂ j , where

α̂k = max
{

1 − 4ηk
b2
,

1 − ηk
4 + 2 log( 1

2bkbk+1
)

}

,

with ηk =
η

n−1−k for k ∈ [n−1], bk = b
n−k for k ∈ [n]. The only thing we need to note, which is also

implicit in Reference [13, Proof of Lemma 2.4], is that Ĉr ≤ Cr . In particular, for each k ∈ [n], Cr

is decreasing with respect to αk (both numerator and denominator are multi-linear functions and
the value of Cr increases as αk ↓ 0), so we only need to check that α̂k ≥ αk . For this, we need to
further note that ηk is an upper bound to the so-called local spectral expansion, which is de�ned
as the second largest eigenvalue of the transition matrix of an appropriate random walk (on a
suitable simplicial complex corresponding to μ; the details are not important for our purposes).
This implies that ηk ≤ 1, and hence α̂k ≥ 0, since α̂k ≥ 1−ηk

4+2 log( 1
2bk bk+1

)
, proving that α̂k ≥ αk . �

Proof of Corollary 4.6. The proof is analogous to Reference [13, Proof of Lemma 2.4], we
highlight the main di
erences for completeness (since the context is somewhat di
erent). Let
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D,θ > 0 be arbitrary constants; we may assume that D ≥ 1 (otherwise, U is empty) and
θ ∈ (0, 1] (otherwise, there are no relevant r ). Note that since U is the set of vertices with
degree ≤ D, we have from Corollary 3.9 that the marginal distribution μG,λ,U is b-marginally
bounded for b = min{ 1

1+λ ,
λ

λ+(1+λ)D
}. Let u = |U |, by a standard balls-and-bins bound, we have

that whp u ≥ n1/2. By Lemma 3.8, we have that whp μ := μG,λ,U is η-spectrally independent for

η = b2θ 2

10 logn. Let R = �4η/b2� and note that for all su�ciently large n, θu ≥ θ 2 logn ≥ 4R.
Consider an arbitrary integer r ∈ [θu,u] as in the lemma statement so that u ≥ r ≥ 2R. From

Theorem 4.5, we therefore have that μ satis�es the r -uniform-block factorisation of entropy with

multiplier Cr =
r
u

∑u−1
k=0 Γk

∑u−1
k=u−r Γk

≤
∑u−1
k=0 Γk

∑u−1
k=u−r Γk

, with Γk =
∏k−1

j=0 α j for k ∈ [u] and αk = max{0, 1 −
4η

b2 (u−k−1) } for k ∈ [u − 1]. Then, we can apply the exact same reasoning as in Reference [13] to

obtain that

Cr ≤
(

u − R
r − R

)R

≤
( 2u

r

)R

≤
( 2

θ

)R

.

Note that for x ∈ (0, 1), we have the inequality (1/x )x
2 ≤ ex , which for x = θ/2 and using that

R ≤ ( θ2 )
2 logn gives that Cr ≤ nθ , as claimed. �
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