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Widespread slow growth of acquisitive tree 
species
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Trees are an important carbon sink as they accumulate biomass through 
photosynthesis1. Identifying tree species that grow fast is therefore commonly 
considered to be essential for effective climate change mitigation through forest 
planting. Although species characteristics are key information for plantation design 
and forest management, field studies often fail to detect clear relationships between 
species functional traits and tree growth2. Here, by consolidating four independent 
datasets and classifying the acquisitive and conservative species based on their 
functional trait values, we show that acquisitive tree species, which are supposedly 
fast-growing species, generally grow slowly in field conditions. This discrepancy 
between the current paradigm and field observations is explained by the interactions 
with environmental conditions that influence growth. Acquisitive species require 
moist mild climates and fertile soils, conditions that are generally not met in the  
field. By contrast, conservative species, which are supposedly slow-growing species, 
show generally higher realized growth due to their ability to tolerate unfavourable 
environmental conditions. In general, conservative tree species grow more steadily 
than acquisitive tree species in non-tropical forests. We recommend planting 
acquisitive tree species in areas where they can realize their fast-growing potential.  
In other regions, where environmental stress is higher, conservative tree species 
have a larger potential to fix carbon in their biomass.

The potential to mitigate current rates of climate change depends on 
reducing greenhouse gas emissions and enhancing carbon (C) sinks3. 
Along with oceans, forests constitute one of the two main carbon sinks 
on Earth3, but the potential for enhancing forest carbon sinks differs 
among biomes4. Tropical forests are under high anthropogenic pres-
sure with a continuous decline in surface area5. Therefore, maintaining 
their role in climate change mitigation first requires protection and 
restoration1. Conversely, despite being threatened by global changes6, 
the forested area in temperate and boreal regions is expanding and 
remains important for climate change mitigation through biophysi-
cal effects (evapotranspiration and albedo), carbon storage in soils, 
standing biomass and wood products1,4,5,7. In such a context, storing 
carbon in tree biomass and therefore promoting tree species that 
grow fast may strengthen one of the pathways to increased mitiga-
tion. This leads to a key question for managing forests in a global 
change context regarding which tree species enable an efficient and 
sustainable mitigation.

Research in plant ecophysiology has shown under controlled con-
ditions that species that are able to efficiently acquire resources 
(sunlight, water, nutrients) generally grow fast8–10. These acquisitive 
species are characterized by high values of functional traits involved 
in resource collection, such as specific leaf area (SLA; for sunlight) 
and specific root length (SRL; for water and nutrients). Acquisitive 
species also have high values of functional traits involved in trans-
forming resources into biomass (maximum photosynthetic capacity 
(Amax), and leaf content of nitrogen (N)). Owing to their ability to 
efficiently acquire and transform resources, acquisitive species are 
commonly considered to be fast-growing species in most environ-
ments8,10. Similarly, species that are more efficient at keeping their 
internal resources (that is, nutrients, water and energy) than collect-
ing external resources are defined as conservative species and are 
commonly assumed to be slow-growing species, except in particu-
larly unfavourable environments. Current knowledge therefore sug-
gests that acquisitive tree species should be promoted for mitigating 
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climate change through fast biomass growth, but this paradigm is 
only partly supported by the literature. We compiled data from 10 
independent greenhouse experiments, involving a total of 212 tree 
species from all biomes, and confirmed the well-established result 
that seedlings of acquisitive species (that is, with high SLA values) 
grow faster than conservative species (low SLA values) under favour-
able conditions of temperature and resource availability (Extended 
Data Fig. 1). Conversely, while robust growth–trait relationships 
are observed for seedlings under controlled conditions, studies on 
adult trees in natural conditions displayed high variability. Even if 
local-to-regional-scale studies identified some growth–trait rela-
tionships11,12, some others found only weak relationships at best13,14, 
and studies that compared tree growth in contrasting regions did 
not find consistent patterns2,15. This lack of a clear pattern has led 
some scientists to question whether trait-based studies are a good 
approach for predicting plant growth2,15,16. The aim of this study was 
to evaluate whether acquisitive tree species do really grow fast in the 
field. The premises of our study are that (1) the observed growth–trait 
relationships are relevant only in environmental conditions that 
are favourable to biological activity (that is, moist warm climates 
and fertile soils)10,11,17, but (2) these conditions are more and more 
uncommon due to widespread nutritive limitations and climatic 
stresses18–21. On the basis of this, and because acquisitive species 
are resource demanding and also stress sensitive9,22–24, we hypoth-
esized that acquisitive species are often constrained by environ-
mental limitations and, consequently, do not perform on average 
better than conservative species (Extended Data Fig. 2). To test 
this hypothesis, and therefore investigate the interactive effects 

of functional traits, climate and soil on tree growth, we compiled 
data describing tree growth, functional traits and environmental 

conditions for 1,262 monospecific stands, distributed in 160 com-
mon gardens (hereafter, sites), and representing 223 distinct tree 
species. The consolidated database was composed of four inde-
pendent datasets that enabled us to test the reliability of results in 
all forest biomes, all forested continents and at different tree ages 
(Methods): (1) the European Atlantic Network (EAN); (2) the Tree 
Diversity Network (TreeDivNet, hereafter TDN); (3) a global dataset 
of stand biomass (SBD); and (4) a dataset containing tropical extra  
data (TED).

First, we investigated growth–trait relationships without taking into 
account possible interactions with site conditions. We found that, in 
non-tropical forests, tree growth showed significant correlations with 
many functional traits (Extended Data Figs. 3 and 4) such as wood den-
sity (Extended Data Fig. 3c), a functional trait that is consistently and 
negatively associated with growth rate16,25,26. Notably, we found that tree 
growth was negatively associated with several important traits that are 
typically linked to fast growth (such as SLA and leaf N and phosphorus 
(P) content; Extended Data Fig. 3a,e,f). This was particularly noticeable 
for the Amax of tree species (Fig. 1 and Extended Data Fig. 5), which is a 
key trait in plant growth as it integrates the effects of other traits24,27. In 
a second step, following our first premise and because there was large 
variability in growth–trait relationships (Fig. 1 and Extended Data Fig. 5), 
we investigated the extent to which local conditions influence growth–
trait relationships. For this purpose, we analysed the growth–trait–site 
interactions using random-forest models, mixed linear models and 
linear modelling of growth–trait correlation values. The analysis of the 
EAN data showed that drivers of forest growth such as atmospheric N 
deposition28, climate19,29 and soil properties30 were all highly influential 
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Fig. 1 | The negative relationship between the leaf Amax of tree species and 
tree growth. Tree growth was quantified based on several metrics and values 
are standardized to enable comparisons among sites using the approach  
of the log growth ratio (positive values and negative values indicate values 
higher and lower than the site mean value, respectively; Methods). Results are 
presented by latitude class (high-latitudes sites, |latitude| ≥ 45°; intermediate 
sites, 23° < |latitude| < 45°; tropical sites, |latitude| ≤ 23°). A linear regression  
was fitted (level of confidence of the error band = 0.95) for each class (for 
high-latitude, intermediate and tropical sites, respectively: P = 1.7 × 10−4, 
P = 0.005 and P = 0.379; t = −3.79, −2.83 and 0.88; d.f. = 499, 434 and 135; 
n = 501, 436 and 137). ***P < 0.001; **P < 0.010; NS, not significant, P ≥ 0.100). For 
readability, data points are not presented together with regression lines and 
error bands (data points are presented class by class in Extended Data Fig. 3). 
Results are confirmed when presented by an independent dataset 
(Supplementary Methods 1).

Table 1 | Interactive effects of functional traits values and site 
productivity on tree growth

Trait Effects Early growth 
(cm yr–1) 
(EAN + TDN + TED)

Late growth 
(t ha−1 yr−1)  
(SBD)

Leaf Amax Trait *** P = 2.8 × 10−4  
(n = 756; χ2 = 13.6)

** P = 0.006  
(n = 257; χ2 = 7.8)

Trait × Siteprod ** P = 0.009  
(n = 756; χ2 = 6.8)

P = 0.409  
(n = 257; χ2 = 0.7)

SLA Trait *** P = 3.2 × 10−7  
(n = 783; χ2 = 26.1)

*** P = 4.2 × 10−6 
(n = 324; χ2 = 21.2)

Trait × Siteprod *** P = 7.9 × 10−5  
(n = 783; χ2 = 15.6)

*** P = 2.3 × 10−4 
(n = 324; χ2 = 13.5)

Leaf N Trait * P = 0.011  
(n = 761; χ2 = 6.5)

*** P = 2.4 × 10−4 
(n = 325; χ2 = 13.5)

Trait × Siteprod ** P = 0.010  
(n = 761; χ2 = 6.6)

P = 0.108  
(n = 325; χ2 = 2.6)

Leaf P Trait * P = 0.012  
(n = 755; χ2 = 6.3)

** P = 0.004  
(n = 315; χ2 = 8.1)

Trait × Siteprod * P = 0.022  
(n = 755; χ2 = 5.2)

(*) P = 0.097  
(n = 315; χ2 = 2.8)

Wood density Trait *** P = 1.1 × 10−4  
(n = 787; χ2 = 15.0)

* P = 0.027  
(n = 342; χ2 = 4.9)

Trait × Siteprod * P = 0.015  
(n = 787; χ2 = 5.9)

P = 0.104  
(n = 342; χ2 = 2.6)

SRL Trait *** P = 1.1 × 10−4  
(n = 702; χ2 = 14.9)

** P = 0.002  
(n = 231; χ2 = 9.7)

Trait × Siteprod *** P = 3.5 × 10−4  
(n = 702; χ2 = 12.8)

(*) P = 0.092  
(n = 231; χ2 = 2.8)

Values were standardized to enable comparisons among sites and removing the prominent 
effect of site productivity (Methods). Trait effects (and trait × productivity interactions) were 
tested using linear mixed models with site identity and tree species identity as random factors, 
as follows: growth ~ trait (trait site ) (1 site ) (1 species )prod ID ID+ × + + . Siteprod, site productivity. 
***P < 0.001; **P < 0.010; *P < 0.050; (*)P < 0.100).
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(random forest models; Extended Data Table 1). At these sites, three 
functional traits had consistent relationships with tree growth across 
sites and, consequently, along environmental gradients (Extended 
Data Table 2; negative effect, wood density; positive effect, leaf carbon 
and root phosphorus).

By contrast, some traits (such as SLA, SRL, leaf N, leaf Amax) had incon-
sistent relationships with tree growth (Extended Data Table 2). We 
considered that these inconsistent relationships may be due to growth–
trait–site interactions, and investigated such interactions using mixed 
linear modelling. We found statistically significant growth–trait–site 
interactions for most functional traits, at the worldwide scale and at 

different development stage of trees (Table 1). Finally, we explored 
these interactions by studying the extent to which the growth–trait 
relationships depended on local conditions (as approximated by 
the site productivity, which integrates all environmental constraints 
on plants). We found that, for these traits, both the strength and the 
direction of the growth–trait relationships depended on the local 
environment. Notably, if some traits such as wood density had a con-
sistent effect across different environments, as the site productivity 
increased, the strength of the correlation between growth rate and 
trait value weakened (Fig. 2a). This dependency on site conditions was 
particularly clear for several functional traits, such as Amax, SLA and SRL, 
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Fig. 2 | The influence of site productivity on growth–trait relationships.  
a–d, Site productivity (x axis) is the mean growth value of all tree species of a 
given site (in cm per year of height growth). The correlation coefficient (y axis) 
refers to the relationship at a given site between tree species growth and 
species trait value: positive y-axis values and negative y-axis values indicate  
a positive growth–trait correlation and a negative growth–trait correlation, 
respectively (Pearson method). The presented traits are as follows: wood 
density (a), SLA (b), leaf Amax (c) and SRL (d). Data were selected from the sites 
that had at least ten different tree species, which comprised all EAN sites 
(triangles), three TDN sites (squares) and four TED sites (diamonds). The black 
line represents the linear regression between the productivity and correlation 

r value (with the P value in parentheses). As the TDN and TED sites did not have 
the same number of tree species as the EAN sites, and because r values tend to 
increase with decreasing size of data (Methods), the TDN–TED sites were not 
used to fit the regressions. One TDN site had very high r values that were beyond 
the y-axis limit (b and c) and this was plotted in the upper part of the graph (with 
its r value in brackets). Two TED sites had very high site productivity and their 
correlation value was indicated with red arrows. Six examples of relationships 
between growth and trait values are presented in Extended Data Fig. 6, and these 
six sites are identified by the letters A–F (b). For a–d, the respective statistics 
were as follows: t = 2.80, 2.15, 2.02 and 2.56; d.f. = 30 and n = 32 in all cases; 
r = 0.45, 0.37, 0.35 and 0.42.
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which previously showed inconsistent effects over sites (Extended 
Data Table 2). For these traits, which are key for acquiring and using 
resources, the correlation with growth rate progressively switched 
from negative to positive with increasing site productivity (Fig. 2b–d 
and Extended Data Fig. 6). We observed this pattern for most traits at 
the EAN sites (Extended Data Fig. 7) and it was confirmed in three com-
mon gardens of the TDN network and four tropical common gardens 
(Fig. 2 and Extended Data Fig. 6).

Together, our results supported our initial expectation that positive 
relationships between key functional traits and tree growth occur only 
in field conditions with favourable environments but are uncommon 
in stressful environments. The discrepancy between an abundant lit-
erature based on experiments under controlled conditions (Extended 
Data Fig. 1) and observations in the field can therefore be explained 

by ontogenetic effects, functional ecology and changes in resource 
allocation. Indeed, for obvious technical constraints, experiments 
under controlled conditions (often greenhouse experiments) used 
seedlings as model plants, whereas in situ studies often focused on 
saplings or adult trees. Seedlings, saplings and adult trees respond 
differently to environmental constraints11,16, which may explain why 
our results did not align with expectations derived from theory and 
greenhouse experiments. Moreover, greenhouse seedlings were gener-
ally grown under conditions with optimal temperature, light intensity, 
water and nutrient supplies, and with no herbivory pressure. In such 
non-limiting conditions, acquisitive species are by definition able to 
acquire resources fast (due to high SLA and SRL) and can in turn produce 
new biomass quickly (Amax, leaf N), defining the concept of fast-growing 
species. Conversely, under unfavourable conditions, plant growth is 
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Fig. 3 | Growth rates according to species strategy and resource supply.  
a,b, The expected response of tree species to environmental conditions. The 
current paradigm, which is adapted from a previous study23, with acquisitive 
species and conservative species representing high- and low-resource species, 
respectively (a), and a revised version of the paradigm (b). c,d, This revised 
version is supported by the results of this study of tree species growth along 
gradients of site productivity for young trees (c; the dataset, EAN + TDN + TED) 
and mature stands (d; dataset, SBD). Values were standardized to enable 
comparison of sites from all datasets (Methods). Growth strategies (that is, 
acquisitive versus conservative) were defined a priori, based on theory and trait 
values (leaf Amax, SLA and leaf N; Methods). Sites that included only acquisitive 
species, or only conservative species, were not taken into account in data 
analyses. Three classes of site productivity were defined based on percentiles 

33% and 66%, before testing possible differences between acquisitive and 
conservative species (two-sided Kruskal–Wallis test). A linear regression was 
fitted (level of confidence of the error band = 0.95) for each growth strategy. 
The slope difference was tested using covariance analysis. As the number of 
species highly varied from site to site, values were averaged by site (that is,  
one acquisitive average value + one conservative average value per site) to give 
the same statistical weight to all sites. n was 776 and 288 for individual values, 
which were averaged into 92 and 150 final values for c and d. Test of slope 
difference: F = 16.11 and 9.48 for c and d (averaged values). The results remained 
unchanged if individual values were used. Similarly, the results remained 
statistically significant if the two outlier sites (identified in the ‘Assessment  
of the datasets’ section of the Methods) were included.
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not limited by C assimilation (as it is under optimal conditions) but 
is constrained by the capacity to efficiently use nutrients and water 
from soils27 and to endure stress, conditions under which tree species 
with high trait values (SLA and leaf N) tend to be less efficient10,23,24,31. 
Furthermore, allocation of resources to processes and organs that 
promote stress tolerance (for example, for defence) and reproduc-
tion rather than growth changes the relationship between functional 
traits and growth32. Consequently, conservative species are generally 
stress tolerant10,23,33 and are, on average, able to maintain substantial 
effective growth under conditions of ambient environmental stress 
despite trait values (such as low SLA24,34) that reduce maximum growth 
rate. In the field, along gradients of environmental conditions from 
favourable to stressful, functional traits involved in plant growth shift 

progressively from beneficial to deleterious. This observed change 
explains the inconsistency in the literature between greenhouse experi-
ments and field studies2,16,35.

On the basis of empirical observations, the current paradigm is that 
acquisitive species are fast-growing species because they generally 
outpace conservative species, except in particularly resource-deficient 
sites (Fig. 3a). However, based on common gardens worldwide, our data 
suggest that the optimal conditions required by acquisitive species are 
the exception rather than the rule (Fig. 3b–d). Indeed, if acquisitive 
species do perform well in particularly favourable environments36,37, 
they are more sensitive to environmental harshness38,39, whereas con-
servative, stress-tolerant tree species perform better in most environ-
ments, therefore supporting our initial hypothesis that environmental 
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Fig. 4 | The effective ability of acquisitive tree species and conservative  
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conservative) were defined a priori based on theory and trait values (leaf Amax, 
SLA and leaf N; Methods). Growth values were standardized to enable comparison 
of sites from all datasets (Methods). Results are presented together (a) and  
by latitudinal classes (high (b), intermediate (c) and tropical (d)), with 23°  
and 45° as limit values. The results are confirmed when presented by dataset 
(Supplementary Methods 2). Sites that included only acquisitive species, or 
only conservative species, were not taken into account in data analyses. As the 
number of species highly varied from site to site, values were averaged by site 

(that is, one acquisitive average value + one conservative average value per site) 
to give the same statistical weight to all sites. n was 1,159, 514, 427 and 218 for 
individual values, which were averaged into 256, 124, 90 and 42 final values  
for a–d. The box plots represent the median (centre line), the first and third 
quartiles (box limits) and 1.5× the interquartile range (whiskers). Different 
letters indicate a significant difference between the two growth strategies. 
Differences were tested using the two-sided Kruskal–Wallis non-parametric 
test. For a–d, χ2 = 40.41, 32.83, 22.44 and 0.51; d.f. = 1 in all cases. The results 
remained unchanged if individual values were used.
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conditions are generally disadvantageous to acquisitive species. In 
practice, acquisitive species grew on average more slowly in field con-
ditions than conservative tree species (Fig. 4a–c), except in tropical 
regions (Fig. 4d). This difference was large in terms of height growth 
rate for young adult trees (Fig. 3c), and it remained significant in terms 
of biomass growth and accumulation in mature stands (Fig. 3d; final 
biomass: P = 5.9 × 10−7, χ2 = 24.9, n = 288). Such a persistent difference 
over time may be partly explained by a similar survival rate at young 
stages (P = 0.775, χ2 = 0.1, n = 571 EAN stands), and longer lifespan values 
of conservative species40 (Extended Data Table 3). Despite this step 
forward, further research is still needed as several questions remain 
open (that is, growth–trait interactions with other important processes 
such as growth–survival–reproduction trade-offs, competition along 
gradients of productivity, intraspecific variability, interspecific effects 
in mixed forests or multistrata forests). This is particularly the case for 
tropical forests for which functional traits and ecological strategies 
have on average less importance than in non-tropical forests (Fig. 1 
and Extended Data Fig. 3), confirming previous studies that found 
a non-significant or minor effect of functional traits—except wood 
density41—on the growth rate of tropical trees12,15,35,42. This average weak 
effect is consistent with our main findings as tropical forests generally 
present favourable climatic conditions and high net primary produc-
tion43 (Methods). In wet tropical regions, a general positive growth–trait 
relationship might even have been expected, but tropical forests are 
often locally limited by water supply or nutrient availability18,19,43,44, 
resulting in complex growth–trait–site interactions36,45. As such, and 
based on our tropical data, we posit that local conditions are prob-
ably favourable from site to site for acquisitive species or conservative  
species36,38,46.

Forests provide many ecosystem services47 and not only wood pro-
duction and carbon storage. Although our findings have implications 
for carbon storage, the other ecosystem services and sustainable 
silviculture encompass more than just selecting the fastest growing 
tree species. Our results do not question the general guidelines for 
sustainable forest management, including favouring a high level of 
biodiversity, which is important for conservation. Biodiversity is an 
even more important issue because mixing tree species in forests is 
an efficient lever for increasing carbon storage48 and for improving 
forest resistance to disturbances and stressors49. On the other hand, 
taking into account the complexity of forest management, this does 
not mean that favouring certain tree species is not important. Indeed, 
the change of view regarding the so-called fast-growing species has 
implications for climate change mitigation through tree growth7,50. 
In tropical regions, where functional traits seem to have a limited 
influence on tree growth, we posit that protecting forests from deg-
radation5 remains the priority. Conversely, in non-tropical regions, 
to enhance carbon storage in biomass, tree species should not be 
favoured based on their absolute potential, but by matching them 
with the local conditions, each tree species having its own ecologi-
cal niche and specific requirements29. In a context of promotion for 
programmes of massive tree planting, we stress that the choice of tree 
species should not rely on a priori expectations but on local forester 
knowledge. Furthermore, if low-risk strategies for mitigating climate 
change are a priority, then dedicated approaches should always con-
sider choosing tree species with caution, regardless of the other sil-
vicultural options used. As such, conservative tree species—which 
are stress-tolerant and long-lived—appear to be a better strategy for 
fixing carbon than the so-called ‘fast growing’ acquisitive tree species, 
which generally grow slowly.
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Methods

Experimental networks and tree species
Our study was based on complementary sets of forest sites (EAN, TDN, 
SBD, TED), their common features being: (1) spread across large-scale 
geographical regions; and (2) composed of common gardens51 with at 
least two different tree species compared. In each common garden, 
characterized by homogeneous conditions, several monospecific 
stands were installed by planting only one tree species by stand. All 
stands within a given site were installed and managed identically. In 
total, tree growth was assessed in 1,262 monospecific stands distributed 
over 160 common gardens (hereafter referred to as sites) located mainly 
in Europe, but also in all other forested continents (Supplementary 
Methods 3). Together, these sites encompass large ranges of climatic 
conditions and soil properties (Supplementary Methods 4 and Sup-
plementary Table 1). In total, our study comprised the growth data 
about 223 tree species representing 166 angiosperm species and 57 
gymnosperm species, 114 genera and 42 families (mainly, in decreas-
ing order of abundance: Pinaceae, Fabaceae, Fagaceae, Myrtaceae, 
Cupressaceae, Betulaceae, Malvaceae, Meliaceae and Sapindaceae). 
These tree species are representative of the main plant functional 
types (that is, broadleaf species: 59% deciduous and 41% evergreen; 
needleleaf species: 10% deciduous and 90% evergreen). The studied 
tree species are also representative of the main mycorrhizal symbioses 
(ectomycorrhizal, 20% and 75% in angiosperms and gymnosperms, 
respectively; arbuscular mycorrhizal, 65% and 25% in angiosperms and 
gymnosperms; mixed preference for mycorrhizae, 15% in angiosperms), 
and included tree species with N-fixing symbioses (20%).

EAN. The EAN, also known as the REINFFORCE experimental network 
(https://reinfforce.iefc.net/en)52, is composed of 38 common gardens 
found across the European Atlantic region. The EAN constitutes a gradi-
ent of latitude (38.7–56.5° N) and climatic conditions (Supplementary 
Table 1), from Portugal to Scotland. The common gardens were installed 
in 2011–2013 and monitored afterwards with common protocols. Each 
common garden had 2,000 trees and 37 common tree species (each 
having several geographical provenances) planted in an area (as flat 
and homogeneous as possible) of about 2 ha. All of the seedlings were 
produced in the same nursery at the same time, and their vigour and 
homogeneity were checked by the coordinators of the network before 
being sent to the different common gardens.

Among the tree species of the EAN, for our study we chose 23 tree 
species (Acer pseudoplatanus, Betula pendula, Calocedrus decurrens, 
Castanea sativa, Cedrus atlantica, Cupressus sempervirens, Eucalyptus 
nitens, Fagus orientalis, Fagus sylvatica, Larix decidua, Liquidambar 
styraciflua, Pinus nigra, Pinus pinaster, Pinus sylvestris, Pinus taeda, 
Pseudotsuga menziesii, Quercus ilex, Quercus petraea, Quercus robur, 
Quercus rubra, Robinia pseudoacacia, Sequoia sempervirens, Thuja 
plicata) based on several selection criteria, including: (1) species that 
have enough trait values reported in the literature (for example, leaf 
nutrient content and photosynthetic capacity); (2) having a diversity 
of plant functional types (that is, broadleaf species versus needleleaf 
species, deciduous versus evergreen, early- and late-successional spe-
cies53, N-fixing species or not and different mycorrhizal symbioses) 
and taxonomic families; and (3) species with a good survival rate in the 
network, implying that species that were planted outside their ecologi-
cal niche were not retained (for example, Ceratonia siliqua and Pinus 
caribaea; Supplementary Note 2). We selected only one provenance 
per species based on several criteria (for example, survival rate, data 
availability and so on; Supplementary Note 3), one criterion being 
that we chose preferably a provenance that was within or close to the 
European Atlantic region or (for non-European species) having a cli-
mate similar to those of the European Atlantic region. A provenance 
of a given tree species was not replicated, except for four species (B. 
pendula, C. atlantica, P. pinaster and Q. robur) that were replicated three 

times in each common garden. We used these replicates to exclude the 
common gardens that showed spatial heterogeneity, as quantified by 
the coefficient of variation of tree growth among replicates of a given 
provenance (in the retained sites, CV = 26.6 ± 2.7%). We also excluded 
a few common gardens where catastrophic events (disease problems, 
exceptional drought just after tree planting or destruction of most 
seedlings by dense populations of herbivores), caused very low survival 
and made it difficult to obtain reliable growth data. Finally, data from 
three common gardens were merged and considered as one single 
common garden because these sites were located next to each other 
(distance < 1 km). All in all, we retained 32 sites. The dataset comprised 
139,049 values of total tree height from 18,576 different trees.

TDN. The TDN is a global network of forest diversity experiments  
(https://treedivnet.ugent.be)54,55. We selected sites from this network 
with the following criteria: (1) a limited number of sites that were located 
in the same areas as the EAN to avoid giving a high statistical weight 
to the European Atlantic region; (2) the tree species included in the 
experimental design are species for which trait data are available in the 
literature; and (3) stands were planted before 2010 to have growth data 
on young adult trees16. On the basis of these criteria and the response 
we received from their principal investigators, we retained 14 sites in 
Europe and Northern America (Supplementary Table 1 and Supple-
mentary Methods 3). It is noticeable that the TDN sites are often (that 
is, 10 sites out of 14) located on land that was previously dedicated to 
agriculture (that is, fertilized croplands or grasslands). In each site, 
there were 3–12 different tree species, growing in monospecific stands, 
resulting in 88 site-species combinations. The choice of the planted 
tree species was made by each site principal investigator, based on 
knowledge of the ecological niche of tree species, and their suitability 
to local environmental conditions. Tree species were replicated at least 
twice in each site (except in one site where there was no replication). 
The dataset comprised 81,932 tree height measurements from 19,778 
different trees.

SBD. The SBD originated from a study56 that investigated the influence 
of tree functional traits on soil organic carbon, but which also used 
stand biomass values when available, as an explanatory variable. After 
assessing the data suitability, we extracted data from this publication 
that contained biomass information for 76 sites. We complemented this 
dataset with biomass values from 28 sites, provided by some authors 
of the present study or found in recent publications (Supplementary 
Note 4), giving 104 sites worldwide (Supplementary Methods 3). In each 
site, there were 2–14 different tree species growing in monospecific 
stands (mean value: 3.5 ± 0.2 tree species per site), generally following 
a common garden design56. Stands that were described as unhealthy 
or containing important canopy gaps were not retained. In total, the 
SBD represented 359 site-species combinations. In contrast to EAN 
and TDN data that were successive surveys of identified trees, the SBD 
contained only one survey of aboveground tree biomass at the stand 
scale. For the SBD, the growth rate was estimated as the stand biomass 
divided by the stand age, and was consequently the mean rate of net 
biomass accumulation (see below).

TED. Because the EAN–TDN–SBD data were more representative of 
Mediterranean forests, temperate forests and boreal forests than of 
tropical forests, we complemented our study with data about this latter 
biome through an investigation of the literature. As field experiments 
with a common garden design with mature monospecific stands are rare 
in tropical studies, we used inclusion/exclusion criteria that were more 
flexible than for our other datasets (that is, growth metric, tree age). We 
retained 6 publications (Supplementary Note 4) that contained usable 
growth data about 10 sites (Supplementary Methods 3). After having 
checked that functional trait values existed in the literature (see below), 
we retained 71 distinct tree species and 196 site-species combinations 
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(Supplementary Table 1). In each TED site, there were 4–37 different tree 
species (19.6 ± 4.8 species per site) growing in monospecific stands.

Data about tree growth
Tree growth data in the EAN and TDN were based on surveys of young 
adult trees, enabling the quantification of growth rate in post-sapling 
stages. On the other hand, the SBD compiled information about above-
ground net biomass accumulation during adult tree ageing. Finally, the 
TED were informative of growth dynamics of tropical tree species at 
different tree development stages (from saplings to adult trees). Thus, 
these independent datasets were complementary to each other, as it 
is well-established that the ontogenetic stage is an important factor 
driving trait-growth relationships57,58.

Tree growth values were calculated based on the difference between 
two surveys at the tree scale for EAN and TDN data, on one survey at 
the stand scale for SBD data (by dividing the stand biomass value by 
the stand age) and on the available metric for TED.

Tree height growth (EAN, TDN). The quantification of tree growth rate 
was based on tree height, a variable that was monitored in all common 
gardens (contrary to other metrics such as biomass, volume or stem 
diameter). Growth rate values (cm yr−1) were calculated as the differ-
ence in tree height between two surveys (each carried out during the 
dormant season for vegetation), taking into account the number of 
growing seasons between the two surveys. This method was compared 
with a method that estimates tree growth simply as the height:age ratio 
and found good consistency (r = 0.97). Nevertheless, we preferred to 
quantify tree growth based on two surveys because it enables excluding 
the period after plantation (that is, 1–2 years), which is often problem-
atic for seedlings (transplant shock). We chose the final survey based 
on available data for each site, trying to find a trade-off between the 
quantity of available data and the duration of growth (that is, the time 
difference between the two surveys). The measurement period was 
generally between 3 and 9 years (41 sites) but was shortened to 1–2 years 
when necessary (5 sites). Taking into account the start of monitoring, 
growth data were mainly representative of young adult individuals 
(37 sites where age > 5 years; ontogenetic stage defined previously16), 
with a small proportion of saplings (9 sites; 1 year < age ≤ 5 years), but 
no seedlings (0 site; age ≤ 1 year).

Before analysis, data were curated with several quality controls. Nota-
bly a few negative values of tree growth were observed so we removed 
these trees, which apparently ‘shrank’ probably due to dieback of their 
top (∼4% of trees). In the case of multistemmed trees (around 2% of 
trees), we selected the height value of the tallest stem as the tree height 
value. We also removed a few site-species combinations for which not 
enough surviving trees remained (that is, n < 5). In the EAN dataset, we 
observed that some trees (around 12%) died after the second survey 
retained in our study. For each site, we tested the extent to which these 
nearly dying trees might have biased our results, for example, due to 
a depressed growth rate before death. Comparing growth rate values 
with or without these nearly dying trees showed that there was a sig-
nificant difference (Dunnett test on ratio values, and linear regression 
analysis testing for both zero intercept and unit slope) for only one 
common garden when growth rate was assessed in original values (that 
is, cm yr−1), and that there was no difference at all when standardized 
values were used (see the ‘Data analyses’ section). On the basis of these 
tests, we decided to not remove trees that died after the second survey, 
except for the common garden mentioned above. After all of these 
quality checks, the growth rate was estimated for each site–species 
combination as the arithmetic mean height growth value of all trees.

SBD. The SBD contained data of standing aboveground biomass (in 
tdry weight ha−1). Considering the tight allometric relationships that exist 
among tree structural components (stem, stump, branches, roots 
and so on)59–62, we assumed that aboveground biomass was well 

representative of stand total biomass. This dataset is based mainly on 
quite old common gardens (46 ± 3 years; 25–63 years between the first 
and third quartiles) for which generally only one survey of biomass 
measurements was available. When needed, stand aboveground bio-
mass was estimated using specific or generic63 allometric relationships. 
The estimated values were evaluated using an independent dataset64 
and showed satisfactory consistency (Supplementary Methods 5). 
The growth rate was calculated by dividing standing aboveground 
biomass by stand age. As there was no information about tree mortal-
ity, the SBD growth rate (in t ha−1 yr−1) was the mean rate of net biomass 
accumulation.

TED. While growth data were homogeneous in other datasets (that 
is, cmheight yr−1 for EAN + TDN, t ha−1 yr−1 for SBD), growth data for TED 
used several metrics (relative growth rate, cmheight yr−1, cmdiameter yr−1, 
kgtree yr−1). This limitation implied that, contrary to other datasets 
(which could be used with original values and mixed linear model-
ling to explore growth–trait–site interactions; see the ‘Data analyses’ 
section), TED data were used mainly for growth–trait relationships.

Trait data
The functional traits that were studied in our four datasets are known 
to be key traits in plant functioning65–67: plant maximal height (m), plant 
longevity (years), successional stage (integer from 1 to 5; from pioneer 
species to climax species), seed mass (mg; log-transformed to avoid 
data skewness), wood density (mg cm−3), foliage and root element 
content (C, N, P, Ca; mg g−1), SLA (mm2 mg−1), maximum photosynthetic 
capacity (Amax; µmol g−1 s−1) and SRL (m g−1). We used mass-based values 
of Amax and foliage composition but not area-based values because the 
former generally explain plant growth, and functioning in general, 
better than the latter27,68–70.

Trait values were obtained from a previous global scale study of 178 
different tree species56. To fill the data gaps, we first complemented this 
database with trait values (if any) found in the publications containing 
our growth data, and in 76 publications and a few specialized websites 
(Supplementary Note 5). Wood carbon values were extracted from an 
open database71. When several values existed for a trait–species combi-
nation, we retained the mean value. In a second step, we measured traits 
for the 23 tree species of the EAN. To do this, we sampled one common 
garden (in south-western France) for mature foliage (n = 36 per species), 
living branches (n = 3 per species) and living fine roots (n = 6 soil cores; 
roots of <2 mm in diameter). Samples were analysed (C, N, P, Ca; for foli-
age and roots) and measured (wood density (WD), SLA, SRL) according 
to standard methods72,73. Data obtained from field samplings showed 
satisfactory consistency with the initial database56 (r = +0.55 to +0.95 
for WD, SLA and element contents in leaves; regression slope values 
were close to 1) and we kept the measured values for our study. For 
four tree species of the EAN (C. decurrens, C. atlantica, E. nitens, F. ori-
entalis), we had no Amax value so, in the field, we also measured their 
maximum photosynthetic capacity under good conditions (cumulated 
precipitation in the week before sampling = 34.5 mm; soil water content 
during measurements ~60–70% of the soil water holding capacity; 
vapour pressure deficit = 0.64–1.38 kPa; air temperature = 16–25 °C; 
photosynthetically active radiation > 1,500 µmol m−2 s−1; data from 
the XyloSylve monitoring platform, 1.5 km from the common garden). 
Finally, for genera with several tree species, we complemented trait 
values by replacing missing values by the mean value of their genus, 
provided that at least two values were available and that they had a 
similar magnitude. This latter gap-filling represented a small propor-
tion of trait values (proportion of estimated values for a given tree 
species: median = 0%; mean = 5%).

Trait values were generally highly interrelated (Supplementary 
Methods 6), which is a common pattern in functional ecology11,56,74,75 
as plant functions are dependent on each other, implying trade-offs and 
high levels of correlation among traits33,65,67,76–79. Owing to this strong 
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interplay among functional traits24,80, and because data about nutrient 
content of fine roots were scarce for tree species of TDN and SBD, we 
restrained the use of most root traits to EAN results. Trait value dis-
tribution was comparable among datasets (Supplementary Table 2).

Site data
We collected auxiliary data related to factors (hereafter, site properties) 
that may affect tree growth, notably climate, atmospheric N deposi-
tion, past land-use and soil properties. At the site scale, the collected 
information was: site name and location (longitude and latitude), eleva-
tion, mean annual values of temperature and precipitation (MAT, MAP), 
past land-use and fertilization history (information provided by the 
principal investigator of each site), soil name and soil parent material, 
topsoil clay or sand content, and other topsoil properties (for exam-
ple, pH, cation-exchange capacity and its ‘base’ saturation value, total 
content of phosphorus, soil organic carbon content (SOC) and its ratio 
with total nitrogen (C/N), and soil water-holding capacity). Original 
site data were obtained differently for our four networks of common 
gardens: EAN site data were obtained using a shared protocol and soil 
analyses were carried out at a single laboratory. Data about TDN sites 
(and the few SBD sites that complemented the original dataset) were 
provided by the principal investigator of each site, when requested 
data were available. Data of most SBD–TED sites were extracted from 
publications56, with the same availability limitation. This process of 
data acquisition implied that site data were homogeneous in the EAN 
dataset, whereas they contained a varying proportion of missing values 
and there were some heterogeneities in the methods used (for example, 
for soil phosphorus analyses) for TDN, SBD and TED.

Owing to missing auxiliary data in the TDN–SBD–TED datasets (cli-
mate, elevation and soil properties), we complemented them from 
external sources using the latitude–longitude coordinates of the sites. 
Similarly, we used global datasets to include variables that were never 
measured in the field (for example, atmospheric N deposition). The 
data sources used were taken from the literature (N deposition81; soil 
properties82,83) or from large-scale databases. Elevation values were 
obtained from the Enhanced Shuttle Land Elevation Data (https://
www2.jpl.nasa.gov/srtm). For climatic variables, we collected data 
for mean annual values of precipitation or temperature (MAP, MAT; 
http://worldclim.org), potential evapotranspiration and aridity index 
(https://cgiarcsi.community). For sites in Europe, we also collected 
climate data from the Climate Downscaling Tool (https://www.ibbr.
cnr.it/climate-dt), from the B4EST European project (https://b4est.
eu), which enables one to work with scale-free queries, customized 
periods (for this study, the period of tree growth in our datasets) and 
many other variables (for example, the sum of degree-days above 5 °C). 
The B4EST climate values were consistent with those obtained from 
other sources and were also consistent with data from the XyloSylve 
monitoring platform. The quality of the external sources was checked 
by comparing them with the measured values (when they existed) and 
showed acceptable consistency for most variables (r = +0.67 to +0.90 
for MAT, MAP, soil pH and soil clay or sand content; regression slope 
values were close to 1) but not for some soil properties (for example, 
P content or cation-exchange capacity), which was consistent with 
previous large-scale studies18,84. We observed a high level of covariation 
among several collected site variables. For example, MAT was highly 
correlated with potential evapotranspiration (PET; r = +0.84), sum of 
degree-days above 5 °C (r = +0.85) and mean temperature during the 
growing season (r = +0.90). Similarly, the soil water holding capacity 
was strongly controlled by soil clay content (r = +0.86) and sand content 
(r = −0.82). As highly correlated variables can bias methods of model 
selection85, we retained only a few variables to describe climatic con-
ditions: MAT and MAP (which are commonly used in ecology86–89) and 
the climate factor index (hereafter, fclimate)90. The climate factor index 
is based on monthly climatic conditions of a given site, and increases 
with concomitant water availability (that is, the precipitation:PET ratio) 

and warm temperatures (Supplementary Methods 7), conditions that 
favour biological activity91 and tree growth18. This fclimate index is normal-
ized to between 0 (harsh conditions) and 1 (optimal conditions)18 and 
has already been tested at national or global scales18,91,92. We applied 
the same parsimonious approach for soil data, retaining clay content, 
SOC content, P content, C:N ratio and pH as explanatory variables. 
In addition to continuous climatic variables, we used a categorical 
approach to assess the influence of biomes on growth–trait relation-
ships. In practice, we grouped all sites into three classes based on their 
latitude absolute value: tropical sites (|latitude| ≤ 23°), high-latitude 
sites (|latitude| ≥ 45°; generally cold sites93) and intermediate sites 
(generally warm temperate sites).

With the scope of discussing our results in a global perspective, we 
finally collected data for all forests worldwide. Net primary production 
(NPP) of terrestrial ecosystems was retained using TERRA/MODIS data 
(https://neo.gsfc.nasa.gov/view.php?datasetId=MOD17A3H_Y_NPP). 
We averaged the annual NPP of all grid cells based on the 2010s decade. 
We also calculated the fclimate index at the global scale. To enable relevant 
comparisons with our results about forests, we retained in global data 
only cell grids with at least 90% of their surface area covered by forest 
ecosystems (land-use data)94. At the global scale, the forest ecosystems 
are characterized by high NPP, caused by favourable climatic condi-
tions, at low latitudes (Supplementary Methods 8).

Data analyses
Identifying the factors influencing site productivity. We first ex-
plored the drivers of tree growth with data from the EAN, because 
these are derived from common gardens sharing the same studied 
tree species and protocols (29 sites with enough data). The influence 
of functional traits (for example, leaf N content), site properties (for 
example, MAT, soil pH) and site productivity were assessed using three 
independent approaches (see below). We defined site productivity as 
the arithmetic mean value of the mean growth rate (cm yr-1) of the n 
tree species studied in this site:

∑ nsite productivity = species mean growth rate/ (1)
i

i n

i
=1

=

The three approaches for data analysis were: (1) mixed linear models 
(lme4 R package95; assigning the site identity as a random effect), (2) lin-
ear models based on the Akaike information criterion for the selection 
of the best model (ols_step_forward_aic function of the olsrr package96) 
and (3) nonlinear random-forest analyses (randomForest package97). 
For the latter, we followed a backward elimination method98 to select 
by iterations the best random forest model, which consists of eliminat-
ing the least important variables until out-of-bag prediction accuracy 
drops. The importance of each variable in the retained model is assessed 
based on the percentage increase of mean squared error (%IncMSE). 
The threshold value above which a variable is considered as important 
is not consistent among studies using the random forest approach99,100 
and, consequently, we defined four levels of confidence to interpret our 
results: low (2% ≤ %IncMSE < 5%), moderate (5% ≤ %IncMSE < 10%), high 
(10% ≤ %IncMSE < 20%) and very high (%IncMSE ≥ 20%). Considering all 
tree species of the EAN together, the soil C:N ratio and fclimate were the 
most influential factors of site productivity (Extended Data Table 1).

We quantified site productivity in other datasets using the same 
method as for EAN sites (equation (1)). As TDN data (and data from a 
few TED sites) had the same metric of tree growth as EAN data (that is, 
tree height growth, in cm yr−1), we were able to present merged results 
(that is, EAN + TDN + TED). As the growth metric of SBD was different 
(in t ha−1 yr−1), these results were consequently presented separately. 
Contrary to other datasets, we could not calculate site productivity in 
all TED sites because the growth metric varied from site to site. Thus, 
for some TED sites, only growth–trait relationships were investigated 
and no growth–trait–site interaction was tested.

https://www2.jpl.nasa.gov/srtm
https://www2.jpl.nasa.gov/srtm
http://worldclim.org
https://cgiarcsi.community
https://www.ibbr.cnr.it/climate-dt
https://www.ibbr.cnr.it/climate-dt
https://b4est.eu
https://b4est.eu
https://neo.gsfc.nasa.gov/view.php?datasetId=MOD17A3H_Y_NPP


Standardizing growth rate. The tree growth rate does not depend on 
functional traits alone, but is also strongly dependant on site proper-
ties (that is, local climate and soil fertility)19,30,101–104. Indeed, when we 
investigated the main factors influencing tree growth, all of our results 
confirmed foresters’ knowledge that site productivity was the main 
factor controlling species growth: site productivity was selected first 
by a mixed linear model (χ2 = 63.2), a predictive linear model (contri-
bution to explained variance = 29.1 %) and a non-linear random for-
est model (%IncMSE = 55.3%). In addition, site productivity was much 
more predictive than the other variables (e.g. leaf C:N, leaf C, wood 
density) selected by these three models (χ2 = 22.0; explained variance 
= 10.4 %; %IncMSE = 34.2%). To remove the prominent influence of site 
productivity and hence to enable comparisons among species across 
all sites, we standardized the original values of tree species growth. 
To do so, we tested two different approaches: the z-score105 and a log 
growth ratio (see equation 2). The two metrics were highly correlated 
to each other (r = +0.86), but the log growth ratio metric was more 
suitable for our data because (1) the z-score cannot be calculated for 
sites with only two tree species (Supplementary Note 6) and (2) the 
values transformed as log growth ratios showed better distributions 
as evaluated by normality tests (Lilliefors and Shapiro-Wilk tests106) 
and QQ plots. We consequently standardized the original values using 
the log growth ratio metric, which consisted in dividing the absolute 
values of tree species growth by the site productivity value. This ratio 
was then log-transformed (natural logarithm)107:
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The log growth ratio metric is very similar to the centred log-ratio 
metric108, the later using the geometric mean instead of the arithmetic 
mean. We preferred to use the arithmetic mean because (1) the geomet-
ric mean might be biased if one single value of the studied population 
is nil or very close to zero (which happens sometimes when comparing 
the growth rate of different plant species); and (2) the arithmetic mean 
is consistent with the site productivity metric (equation (1)).

Positive standardized growth rates (that is, log growth ratio values) 
indicate that these species had a higher growth rate than the average 
growth of the site, and negative standardized values indicate a lower 
growth rate than average for the site. For a few tree species that grew 
extremely slowly compared with the other species within the same site, 
this formula led to very negative values of standardized growth, with 
skewness problems of data distribution. Consequently, we corrected 
extreme values of standardized growth to −2.0 based on assessments 
of data distribution (histograms; Shapiro–Wilk tests).

An example of a data subset is presented, showing how the transfor-
mation of growth values removed the relationship between tree spe-
cies growth and site productivity (Supplementary Methods 9a,c). An 
example of relationships between a functional trait and growth is also 
presented (Supplementary Methods 9b,d). Note that standardization of 
values was done for subsets of data with no missing value implying that, 
when there was a missing trait value for a tree species of a given site, the 
growth values of this site were standardized without taking into account 
this tree species (an example is provided in Supplementary Table 3). 
It is also noticeable that the method used for data standardization, 
while improving statistical power, enabled the study of interactions 
with possible confounding factors109 (see below).

Defining acquisitive species and conservative species. As trait 
values constitute ecological gradients24,110,111, continuous data analyses 

are adequate to test our hypothesis (see the next section). Neverthe-
less, to test our hypothesis, we used in addition categorical analyses 
by classifying tree species into acquisitive species or conservative 
species based on their trait values. Tree species were considered to be 
acquisitive species if they have high values of photosynthetic capacity 
(Amax), SLA and leaf N content10,24,27. We prioritized Amax to class tree 
species because this trait is integrative of plant functioning24,27,112. For 
tree species without an Amax value, we used the SLA value or the leaf 
N value instead. The procedure enabled the classification of 212 tree 
species, representing 98.3% of growth data (~87%, ~10% and ~1% of 
data based on Amax, SLA and leaf N, respectively). However, in practice, 
there is no functional threshold value between acquisitive species and 
conservative species as they are distributed along trait gradients24,110,111. 
Following previous studies113, we defined our species classes based 
on value distributions of our global database of functional traits. We 
defined acquisitive species and conservative species, with limit values 
close to median values (Amax = 0.1 µmol g−1 s−1; SLA = 13.3 mm2 mg−1; leaf 
N content = 19.3 mg g−1). Although these threshold values are consist-
ent with the distributions reported in other studies carried out at the 
global scale (figure 2 in refs. 110,111), we performed a sensitivity analysis 
to assess to which extent changing the chosen values may affect our 
results (see below).

With this trait-based classification, acquisitive species tended to 
be represented more in broadleaf deciduous species than in needle-
leaf evergreen species, whereas conservative species included both 
broadleaf species and needleleaf species (Extended Data Table 3 and 
Supplementary Note 7). Similarly, both groups contained arbuscular 
mycorrhizal species and ectomycorrhizal species. Although there was 
no significant difference in shade tolerance and both groups contained 
early-successional species (for example, Pinus species and Betula spe-
cies), acquisitive species were on average characteristic of earlier suc-
cessional stages than conservative species. Finally, acquisitive species 
were shorter-lived than conservative species, which is consistent with 
how different ecological functions (that is, growth, survival, reproduc-
tion) are coordinated in woody plants40.

Investigating site–trait interactive effects on tree growth. We ex-
pected that the role of functional traits in tree growth was neither uni-
directional (that is, always positive or negative) nor systematic (that 
is, the traits correlated with tree growth were not systematically the 
same across different regions), but that it depended on environmental 
conditions12,15,36,58,114. To investigate these possible site–trait interac-
tions, we used three complementary approaches: (1) interactions were 
statistically tested using mixed models45; (2) interactions were visu-
ally illustrated by regressing linear models between site productivity 
and growth–trait correlation values; and (3) the slope values of the 
regression between site productivity and standardized growth were 
compared for acquisitive species and conservative species.

(1) Mixed models were fitted on standardized values to remove the 
prominent effect of site productivity (equation (2)) and therefore 
enable comparisons among sites. The mixed models were built with 
site identity and tree species identity as random factors, as follows:

∣growth ~ trait + (trait × site ) + (1 site ) + (1 species ) (3)prod ID ID

where siteprod is the site productivity (equation (1)), siteID is the site 
identity and speciesID is the species identity.

(2) For common gardens where it was possible to quantify a site pro-
ductivity metric (in cm yr−1) and that included at least ten different tree 
species, we graphically illustrated the extent to which the influence 
of trait values depended on site productivity by regressing a linear 
relationship between site productivity and the [species growth–trait 
value] correlation value of the same site:

fcorr{growth − trait } = (site productivity) (4)species species
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with corr{growthspecies–traitspecies} = correlation value (Pearson method) 
between species growth rate and species trait value; correlations being 
performed site by site.

This case corresponded to all EAN sites and a few sites from TDN and 
TED. Nevertheless, it was not possible to include TDN and TED r values 
to fit the linear regression because the probability of having by-random 
high r values tends to increase with decreasing size of data115,116, implying 
that correlations obtained from TDN (10–12 species per site) or from 
TED (up to 34 species per site) were not directly comparable to correla-
tions obtained from EAN (23 tree species per site). Nevertheless, even if 
TDN and TED r values were not used along with EAN r values to statisti-
cally test the interactions between site properties and growthspecies– 
traitspecies relationships, in the graphs, we added the results from the 
TDN–TED sites that contained at least ten tree species.

(3) We tested whether the functional traits and site properties inter-
actively influenced tree growth by comparing the slope value of the 
relationship between site productivity and tree growth (in standard-
ized values), taking into account our two tree species classes (that is, 
acquisitive versus conservative, with respectively high and low values 
of Amax, SLA and leaf N). To do so, we built one linear regression model 
with interaction with site productivity, and a second model without 
interaction (using the aov function). Then, the two regression models 
were compared using covariance analysis (using the anova function). 
We concluded that a site–trait interaction existed if the slope of the 
regression was significantly different between the acquisitive tree 
species and the conservative tree species. For this approach, sites that 
included only acquisitive species, or only conservative species, were 
not taken into account in data analyses.

Analysing possible misleading effects or confounding effects in 
data analyses
Assessment of the datasets. The first three datasets that were built 
(EAN, TDN, SBD) are complementary in terms of tree age and climatic 
conditions. As the collected data lacked tropical data, a fourth dataset 
(TED) was built to supplement the three others, and the final data were 
representative of all climates (Supplementary Methods 10). Neverthe-
less, although the TED dataset was useful as complementary data, it is 
less homogeneous as it is based on several growth metrics (see above) 
and it includes sites with a very different number of tree species (Supple-
mentary Methods 11). The TED results, when presented independently 
from other data, should consequently be interpreted with caution.

Moreover, even as a data supplement, we cautiously combined TED 
data with other data. In most cases, we found no risk of biasing the 
results. An exception was the study of the interaction between site 
productivity and growth–trait relationships in young sites. Indeed, two 
sites showed being much more productive than the rest of the studied 
population (Supplementary Methods 12). As outliers of a predictor 
variable may induce spurious correlations116,117, these two sites were 
not used during data analyses implying possible interactions with site 
productivity.

Interactions with tree age. It is well-established that tree growth rate 
varies as a function of tree age118 and we consequently tested this pos-
sible effect. For the young stands (EAN and TDN datasets; age at tree 
measurement, 3–24 years), we found no significant effect (P > 0.1), 
neither considering site productivity (mixed model: P = 0.555, t = +0.60, 
d.f. = 21.5) nor considering tree growth at the stand scale (P = 0.788, 
t = −0.27, d.f. = 31.0). We also checked whether an interaction with tree 
species might exist by plotting the growth–age curve for each of them, 
and found no clear trend. We finally concluded that there was no sub-
stantial age effect in our data about young trees.

By contrast, data about mature stands showed a clear age effect on 
tree growth (Supplementary Methods 13a). This effect had no influence 
on results when data were standardized because the standardized 
values are species growth rate (or species trait value) that are relative 

to the site productivity (equation (2)). Conversely, the age effect may 
affect the results when the site productivity is used as a predictor (equa-
tion (3), Table 1 and Fig. 3d), and we corrected growth values in these 
cases. To do so, we first fitted a nonlinear regression between forest 
age and productivity (Supplementary Methods 13a). The modelling 
efficiency value of the fitted regression was 0.46 (ref. 119). We then 
calculated a standardized growth rate, using 40 years old as a reference 
(which was close to the mean age value of SBD stands of 41.8 years):

growth = growth ×
growth

growth
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where growth40 is the growth estimated at 40 years old, growthfitted.40 is 
value of the regression at age 40 years (growthfitted.40 = 4.446 t ha−1 yr−1), 
growthoriginal is the growth original value and growthfitted is the value of 
the regression at the actual age of the stand.

The distribution of the corrected values is presented in the Sup-
plementary Methods 13b.

Intraspecific differences. Different populations of a given tree spe-
cies may differ in terms of trait values and growth rate due to genetic 
differences and plasticity to local conditions120. In this study, the effect 
of intraspecific variability was not quantified, as the interspecific 
influence on growth was the main topic. Although it is well estab-
lished that intraspecific variability exists, it is also observed that 
inter-specific variation can be much larger than the intraspecific 
variation121,122. As such, retaining only the mean trait value of each 
plant species is considered to be a relevant and reliable approach in 
large scale studies2,110,111,122–124, even with partly imputed data74,125. In 
the present study dedicated to interspecific variation, the coefficient 
of variation (CV) of trait values was 25% for wood density and ranged 
from 42% to 78% for the acquisitive-conservative traits (Amax, SLA, SRL, 
leaf N and P). Conversely, intraspecific variation of traits was found 
to range from 9% to only 22% of CV for wood density, SLA, leaf N and 
leaf P126–128, confirming that interspecific variability is larger than 
intraspecific variability in multispecies studies. Another possible 
problem is the variability of trait values over plant development129 
because some trait values found in the literature or trait databases 
were determined using seedlings and not adult trees130. However, it 
was also shown that trait values at seedling stage are well correlated 
with trait values at adult stage131, implying that interspecific rankings 
are maintained over ontogenic development132.

We used EAN data to evaluate the possible effect of intraspecific 
variability on tree growth. Indeed, each EAN site contains for each tree 
species up to eight different provenances. We found that intraspecific 
variability of tree growth was around fourfold lower than interspecific 
variability (CV = 17% and 66%, respectively), indicating that the interspe-
cific effect on tree growth was much more important than intraspecific 
variations. This result is consistent with recent studies133,134 showing 
that provenance is generally a second-order driver of tree growth.

On the basis of these results, the literature results and on published 
guidelines135, we concluded the intraspecific variability of trait values 
(or of growth rate values) probably had a minor effect on our results.

Ecological niches. One possible pitfall in studies based on common 
gardens is that some tree species might be planted outside their eco-
logical niche (that is, unfavourable climatic/edaphic conditions),  
biasing the species growth dynamics. This possible bias was taken into 
account (1) during the design definition of most common gardens;  
(2) during data acquisition; and (3) after data acquisition:

At least for the common gardens of the EAN and TDN networks, the 
principal investigators (who are co-authors of this study) chose tree 
species not at random but based on their ecological requirements, 
implying that the planted tree species were expected to be adapted 
to local conditions.



During data acquisition, we excluded a few tree species with low 
survival rate (EAN-TDN common gardens) or described as unhealthy 
(SBD-TED; see the ‘Experimental networks and tree species’ section 
above).

Finally, we tested a possible niche effect using our data and quanti-
tative information about ecological niches. To do so, we studied the 
23 tree species of the EAN network, which is a network with a factorial 
design (that is, all tree species are present in all sites). For each tree 
species, we collected the surface area of the natural niche of the spe-
cies and (for MAT, MAP and soil pH) the ranges of the species in natural 
conditions. This data collection was made based on information found 
in dedicated websites and publications (Supplementary Note 8). Then, 
for each species–site combination, we evaluated whether the trees were 
within or outside their niche by checking whether the site conditions 
(MAT, MAP, soil pH) were within or outside the range of values reported 
for the species in natural conditions. We also tested whether the eco-
logical range of the tree species (as defined as {MATmax − MATmin}, and 
so on for MAP, soil pH) might explain tree growth. We found that (1) in 
a majority of cases, tree species were planted in sites where environ-
mental conditions were suitable for them (see the percentage values 
in Supplementary Methods 14a–d); (2) trees planted in sites where 
conditions did not comply to the expected species requirements did 
not grow differently compared with trees planted in suitable conditions 
(Supplementary Methods 14a–d); (3) tree species with large ranges 
of ecological niche did not growth faster than tree species with nar-
row niches (Supplementary Methods 14e–g); (4) tree species with a 
large spatial niche did not perform better than tree species from small 
regions (Supplementary Methods 14h); and (5) there was a slight, but 
significant negative effect of the MAP range value on standardized 
tree growth (Supplementary Methods 14f). The latter result is mainly 
due to three tree species with a large MAP range (caused by very high 
MAPmax values; >2,000 mm yr−1) but having on average a lower standard-
ized growth rate than the other tree species. Although this MAP range 
effect was significant, it explained less than 1% of the growth variance 
(R2 = 0.7%) and became not significant when considering tree species 
with MAPmax ≤ 2,000 mm yr−1 (compare with the red line in Supplemen-
tary Methods 14f), which is the most common case for temperate-boreal 
tree species. As a whole, we concluded that the ecological requirements 
of the studied tree species were fairly well respected and we conse-
quently assumed that the results of the study were not severely biased.

Possible phylogenetic effect. Two tree species may be functionally 
very different because their most recent common ancestor existed in 
the far past, enabling its descendants to evolve differently for long times. 
As such, phylogeny may be a powerful predictor of plant species func-
tioning123,136 and, in our case, may have explained tree growth better 
than functional traits. We tested this possible effect for the EAN dataset 
because this network has a factorial design. We built a phylogenetic tree 
for the 23 species of the dataset, which included closely related species 
(for example, species of the same genus) and evolutionary distant spe-
cies (for example, angiosperms and gymnosperms). The phylogenetic 
distance between two species was estimated based on the approach of 
the most recent common ancestor. The distance between angiosperms 
and gymnosperms was fixed as 350 million years (Myr) and the distance 
between Cupressales and Pinales was set at 273 Myr (ref. 137). Within 
the gymnosperms, the distances among clades down to genera were 
estimated based on a dedicated study138. Similarly, within the angio-
sperms, we used first the phylogenetic distances among families139. For 
shorter phylogenetic distances (such as between genera of the same 
family or between two species of the same genus), we used the Angio-
sperm Phylogeny Website and relevant references138,140–142. We calcu-
lated the phylogenetic distance of all possible pairs of tree species 
(n i= ∑ ( − 1)i

i
=1
=23 ) and then we tested the extent to which this distance 

might explain tree growth and trait values. Using a linear plateau regres-
sion, we found that the phylogenetic distance had an effect for tree 

species that were close to each other in the phylogenetic tree (that is, 
distance <98–137 Myr). However, this effect was weak and explained 
only a very small proportion of the variance, from 1% (for leaf Amax, wood 
density or SRL; data not shown) to 5–11% (for SLA or leaf N-P; Supple-
mentary Methods 15). These results are consistent with previous stud-
ies showing that phylogeny often poorly explains functional traits, site 
properties or ecosystem functioning56,143,144. On the basis of these results 
and on the literature, we concluded that, in our study, there was a sig-
nificant but minor effect of the phylogeny on tree growth.

Possible spermatophyte effect. Our datasets comprise both an-
giosperm species and gymnosperm species. These two groups are 
evolutionary and functionally quite different145–149, which might 
have induced apparent growth–trait correlations without any true 
functional relationships. We tested this possible effect by investi-
gating the extent to which the growth–trait relationships were ob-
servable within a spermatophyte group (that is, only angiosperms 
or only gymnosperms). We found that growth–trait relationships 
were generally still significant for most traits (Supplementary Meth-
ods 16a,b,d). Similarly, within the angiosperm group, acquisitive 
species and conservative species showed the same growth trends 
as for the complete dataset, which was a significantly higher growth 
rate of the conservative species (Supplementary Methods 16f; not 
tested within the gymnosperm group due to an insufficient number 
of acquisitive species). Conversely, the growth–trait relationships 
were no longer significant, or significant only for angiosperms, for 
some other traits (Supplementary Methods 16c,e). These results are 
consistent with studies that explored plant functioning across plant 
functional types and found weaker or absent relationships for gymno-
sperms150–152. This pattern can be explained by the level of functional 
diversity within each group: for six major traits (Amax, SLA, SRL, wood 
density, and leaf N and P), the range of values was between 59% and 
215% higher for angiosperm species than for gymnosperm species 
(see also supplementary figure 3 of ref. 150 and figure 1 of ref. 151). 
These ranges of values in the gymnosperm group were probably too 
narrow for some functional traits to enable isolating a significant 
growth–trait relationship. Besides, this explanation may also apply 
to leaf nitrogen (Supplementary Methods 16c) as the data dispersion 
showed that the overlap between angiosperm data and gymnosperm 
data was small (38% of the full range, as compared with 53–63% for 
SLA or leaf P), suggesting that the general effect observed for leaf 
nitrogen was induced by the comparison of two functionally differ-
ent clades. As a whole we conclude that, in agreement with the lit-
erature124,150,151, whereas the angiosperm–gymnosperm dichotomy 
strengthens existing function–trait relationships by enlarging the 
ranges of trait values, these relationships generally remain relevant 
within a spermatophyte group.

Sensitivity of results to the retained threshold values. We tested the 
extent to which changing the threshold values retained for classifying 
tree species (acquisitive species versus conservative species, based on 
Amax, SLA or leaf N content) would change our results. First, for each of 
these three traits, we quantified the difference between the percentile 
40% and the percentile 60%, which represents the part of a normal dis-
tribution where values change most (maximum change range, MCR). In 
a second step, we defined the ranges of sensitivity analyses by adding or 
subtracting the MCR value to the threshold value initially retained. This 
resulted in large changes to the population size of the species classes 
(up to 3.0-fold; n = 250–747 stands of conservative tree species). These 
results explain why we did not use larger ranges of sensitivity analyses 
because the compared classes would have been extremely unbalanced 
in size, with deleterious effects on the stability of the results. The large 
changes to the population size of the species classes also highlight that 
the acquisitive–conservative status of the tree species of the present 
study should not be used alone for management decisions. Indeed, if 
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a dichotomous classification was useful for data analyses, tree species 
are distributed along ecological and functional gradients, with many 
species having intermediate positions.

We finally performed the sensitivity analyses by testing the difference 
between tree species (acquisitive species versus conservative spe-
cies) with varying threshold values (n = 5, including the value initially 
retained as median value). The results showed that the results were 
satisfactory, with quite stable slope values (Supplementary Table 4a) 
and a constant difference of growth rate between acquisitive species 
and conservative species (Supplementary Table 4b).

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The datasets generated in this study (EAN, TDN, SBD, TED) have been 
deposited in the https://entrepot.recherche.data.gouv.fr database 
(https://doi.org/10.57745/3OIGHB; Etalab Open License 2.0, compatible 
CC-BY 2.0). Data supporting Figs. 1–4 and Table 1 are provided in the 
Article and its Supplementary Information. There is no restriction on 
data availability. Source data are provided with this paper.

Code availability
Data were analysed using code developed by authors (R language, 
v.9.4 and v.4.2.3) and common statistical methods: random forest 
(randomForest R package, v.4.7-1.1), linear models (olsrr R package, 
v.0.5.3), mixed models (lme4 R package, v.1.1-32), Kruskal–Wallis test 
(R core). All analyses are fully described in the Methods. The main R 
procedures that were used have been deposited in the https://entrepot.
recherche.data.gouv.fr database (https://doi.org/10.57745/3OIGHB). 
Complementary information is available from the authors on  
request.
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Extended Data Fig. 1 | Effect of specific leaf area (SLA) on seedling growth 
under favourable conditions. Data were collected from 10 independent 
publications that reported seedling growth representing 263 species- 
experiments combinations and 212 distinct plant species (a), different forest 
biomes (b), plant types (c), and forested continents (d). A subset of values 
representing the tree species shared by the 10 publications about seedling 

growth and by the present study about trees is shown (e). Data are standardized 
to enable comparisons among sites (see Methods). Linear regressions were 
fitted by class of values. The SLA trait was chosen because it was studied in all 
the 10 publications (Supplementary Note 1) and because SLA is a key trait in the 
plant economics spectrum (ref. 24).



Extended Data Fig. 2 | Context, rationale and hypothesis of the present study.



Article

Extended Data Fig. 3 | Effect of functional traits on tree growth. Data were 
standardized to enable comparisons among sites (see Methods). Linear 
regressions were fitted (level of confidence of the error band = 0.95) by 
latitudinal class (limit values = 23° and 45°). P values of correlations are 

symbolized as follows: *** (P < 0.001), ** (P < 0.010), * (P < 0.050), (*) (P < 0.100), 
ns (P ≥ 0.100). For the scope of readability, a regression line and its data points 
are not presented together when several lines are shown in a given panel.



Extended Data Fig. 4 | Effect of fine root traits on tree growth in the European 
Atlantic Network. Fine roots are roots with a diameter ≤ 2 mm. Data are 
standardized to enable comparisons among sites (see Methods). For panels 
from a to h, the statistics of the regressions (level of confidence of the error 

band = 0.95) were: t = −1.3, +3.6, +9.6, −2.6, +0.7, −1.3, −5.2 and −3.6; df = 617 and 
n = 619 in all cases. Specific root length (SRL) results are presented in Extended 
Data Fig. 3. Original units: fine root content in carbon and nutrients (mg g−1), 
fine root dry matter content (g g−1), and fine root length density (cm−root cm−3

−soil).
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Extended Data Fig. 5 | Relationships between photosynthetic capacity and 
growth at different latitudes. Tree growth was quantified based on several 
metrics and values were standardized (see Methods). A linear regression was 
fitted (level of confidence of the error band = 0.95). Results are presented by 
latitude class: high-latitudes sites: |latitude| ≥ 45° (a); intermediate sites:  
23° <|latitude| <45° (b); tropical sites: |latitude| ≤ 23° (c). For panels a, b, and c, 
the statistics of the regressions were respectively: t = −3.79, −2.83, and +0.88; 
df = 499, 434, and 135; n = 501, 436, and 137.



Extended Data Fig. 6 | Examples of relationships between a functional  
trait and tree species growth. Each panel presents the relationship between 
the Specific Leaf Area (SLA) value and the growth rate value of different tree 
species growing in a given common garden. Scatter plots present three sites  
of the European Atlantic Network (a, b, c) and three sites of the Tree Diversity 

Network (d, e, f). These sites are also identified in Fig. 2b. For panels from a-f, 
the statistics of the regressions (level of confidence of the error band = 0.95) 
were respectively: t = −2.13, −0.55, +1.85, −2.05, +1.33, and +3.40; df = 17, 18, 21, 
10, 8, and 10; n = 19, 20, 23, 12, 10, and 12.
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Extended Data Fig. 7 | Influence of soil and climate on growth-trait 
relationships in the European Atlantic Network. Linear regressions between 
growth rate and trait value were fitted for each site of the European Atlantic 
Network (see panels abc of Extended Data Fig. 6 for three examples of 
SLA-growth relationships). The correlation values (r) were then regressed to 
site productivity (i.e. the mean value of growth per site; Fig. 2). The fitted linear 
regression between site productivity and r values was finally used to draw the 
graph: for instance, the correlation between growth and trait value was 

systematically negative for wood density (WD; fitted linear regression in 
Fig. 2a), but switched from being negative at low productivity sites to positive 
at high productivity sites for SRL (Fig. 2d). Functional traits: Max height = tree 
species maximum height (m); Amax = maximum photosynthetic capacity (µmol 
g−1 s−1); SLA = specific leaf area (mm2 mg−1); SRL = specific root length (m g−1);  
WD = wood density (mg cm-3); Leaf N, Leaf P, and Root P = organ content in 
nitrogen or phosphorus (mg g−1).



Extended Data Table 1 | Site drivers of tree growth in the European Atlantic Network (EAN)

MAT = Mean Annual Temperature, fclimate = climatic factor (concomitant sufficient moisture and temperature for biological activity; see Methods), N dep. = nitrogen atmospheric deposition, soil 
C:N = soil C:N ratio, soil P = soil phosphorus content (Olsen method), soil pH = soil pH value, soil clay = soil clay content. Data were first analysed using random forest modelling, enabling to 
identify the site drivers of tree growth with a backward elimination approach (see Methods). The percentage increase of Mean Squared Error (%IncMSE) was used as metric for this identification, 
with four levels of confidence: low (2% ≤ %IncMSE <5%; noted as “(↗)” in case of positive relationship; see below), moderate (5% ≤ %IncMSE <10%; noted as “↗”), high (10% ≤ %IncMSE <20%; 
“↗↗”), and very high (%IncMSE ≥ 20%; “↗↗↗”). When the %IncMSE value was less than 2%, the relationship was considered as negligible (noted as “.”). In a second step, for the relationships 
that were selected by the random forest models (i.e. %IncMSE ≥ 2%), the direction of these effects was identified based on Spearman correlation values: the symbols “↗”, “?” and “↘” indicate 
positive (r ≥ +0.20), unclear ( | r | <0.20) and negative (r ≤ −0.20) effects on tree growth, respectively. Results are presented for all species pooled together, and per tree species. No results are 
presented for Fagus sylvatica (lack of data in several sites).
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Extended Data Table 2 | Influence of functional traits on tree growth in the European Atlantic Network (EAN)

Hmax = Plant maximum height; Amax = photosynthetic maximum capacity; SLA = specific leaf area; LC, LN and LP = leaf carbon (C), nitrogen (N) and phosphorus (P) content, respectively; WD = 
wood density; SRL = specific root length; RC, RN and RP = root C, N and P content. Data were first analysed using random forest modelling, enabling to identify the site drivers of tree growth with 
a backward elimination approach (see Methods). The percentage increase of Mean Squared Error (%IncMSE) was used as metric for this identification, with four levels of confidence (notes as 
from “(↗)” to “↗↗↗”; see Extended Data Table 1). When the %IncMSE value was less than 2%, the relationship was considered as negligible (noted as “.”). In a second step, for the relationships 
that were selected by the random forest models, the direction of these effects was identified based on Spearman correlation values: the symbols “↗”, “?” and “↘” indicate positive (r ≥ +0.20), 
unclear ( | r | <0.20) and negative (r ≤ −0.20) effects on growth, respectively. Results are presented for all sites pooled together, and per site. Sites are presented from North to South (UK = United 
Kingdom, FR = France, SP = Spain, PT = continental Portugal, AI = Azores islands).



Extended Data Table 3 | Distribution of trait values between acquisitive species and conservative species

Tree species strategy (i.e. conservative or acquisitive) was a priori defined based on Amax (leaf photosynthetic maximum capacity) and to a lesser extent on SLA and leaf N content (see Methods). 
Leaf N, P, and Ca: leaf content of nitrogen, phosphorus and calcium; SLA and SRL: specific leaf area and specific root length. Seed mass values were log-transformed to avoid data skewness. 
Successional stage and shade tolerance are coded from 1 (pioneer species; shade intolerant species) to 5 (climax species; shade tolerant species). There were some non-determined values 
for several traits (e.g. n = 21 for seed mass). Categorical traits are presented in numbers (excluding species with missing trait values), whereas continuous traits are presented as mean values ± 1 
standard error, with the range between first quartile and third quartile in square brackets. Differences between acquisitive species and conservative species were tested with a chi2 test  
(categorical traits) or a Kruskal & Wallis two-sided test (continuous traits).
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Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No computer code was used for data collection.

Data analysis Data were analysed using code developed by authors (R language, version 9.4 and 4.2.3) and common statistical methods : random forest 
(randomForest R package, version 4.7-1.1), linear models (olsrr R package, version 0.5.3), mixed models (lme4 R package, version 1.1-32), 
Kruskall & Wallis test (R core).  All analyses are fully described in the Methods section. The main R procedures that were used have been 
deposited in the https://entrepot.recherche.data.gouv.fr database under accession link https://doi.org/10.57745/3OIGHB. Complementary 
information can be provided by authors on request.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and 
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The datasets generated in this study (EAN, TDN, SBD, TED) have been deposited in the https://entrepot.recherche.data.gouv.fr database under accession link 
https://doi.org/10.57745/3OIGHB (Etalab Open License 2.0, compatible CC-BY 2.0). Figures 1 to 4, and Table 1, have associated raw data that are available online 
along with the article files. There is no restriction on data availability. 
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Ecological, evolutionary & environmental sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description We evaluated to what extent the tree properties (known as functional traits) can explain tree growth, in interactions with local 
environment (soil properties, climate). 

Research sample To be able to study the influence of functional traits on tree growth, independently from variations of environmental conditions, we 
studied tree growth in common gardens. In such experimental sites, different tree species were growing in the same conditions, 
enabling us to explore any growth-trait relationship. To study the possible interactions with local environment, we included in our 
study as many common gardens as possible (n=160). Trait data were compiled, using published works and our own samplings.

Sampling strategy Data about tree growth were collected mainly by mobilising existing experimental networks: REINFFORCE (re-named EAN in this 
study) and TreeDivNet. We complemented these datasets with data from the literature and from individual common gardens (by 
contacting their PI). Data about traits were in majority already existing (see above). We complemented them by sampling 23 tree 
species in common gardens of the REINFFORCE network (see Methods).

Data collection The growth data was provided by all networks (or PIs in case of individual common gardens). The checking, structuration, 
homogeneisation and curation of all data were done by Laurent Augusto, Remi Borelle, Marie Charru, and Lucie Bon. Trait data were 
at first mobilised from a published work (Augusto & Boca, 2022). This dataset was complemented by specific bibliographic requests 
(WoS, Google Scholar), looking for trait values that were identified as missing. Finally, leaf, root, and wood samples were collected 
from on-going common gardens, brought to laboratory and measured/analysed.

Timing and spatial scale Data collection for tree growth and functional traits was carried out from January 2020 (beginning of the study) to June 2023 (date at 
which the last growth subsets of data were made available). Data analyses began as soon as 2021, and were regularly updated based 
on the arrival of new data. 
Data collection for plant traits was initiated in January 2020 and was closed in October 2021 (when the last chemical analyses were 
finished). 
Most trees were measured at age between 3 years-old and 90 years-old. 
The studied sites are distributed throughout the world, with a higher concentration in Western Europe. 

Data exclusions There was no data exclusion for functional traits. For tree growth, we excluded experimental plots that had not enough alive trees to 
avoid biasing the results.

Reproducibility The results can be reproduced as the core dataset of the study is available online (see Data availability in the manuscript). The 
numerous code scripts (in R) are available from the corresponding authors upon request.

Randomization Most of the TreeDivNet common gardens had randomised blocks. In the EAN common gardens, four tree species were in replicated 
plots, enabling the quantification of internal variability. Some of the SBD common gardens also had replicated blocks.

Blinding All data (tree growth, traits, site descriptors) were collected by many different operators, working independently. In addition, data 
were acquired in on-going common gardens led by different PIs. As such, it is very unlikely that all operators could influence each 
other while collecting data.

Did the study involve field work? Yes No

Field work, collection and transport
Field conditions Root and wood samples were collected at the end of the winter season in a EAN common garden (SW France; cold, rainy conditions). 

Leaf samples and measurements of photosynthetic capacity were carried out in early summer during a sunny and warm period (but 
not dry period; see Methods).

Location Two common gardens were used for samplings, both being in SW France (approx. 45°N, 1°W). They are charaterised by temperate 
conditions (MAT=12-8-12.9°C; MAP=904-930 mm/yr) and coarse-textured acidic soil conditions (podzol and cambisol).

Access & import/export Both sites are experimental sites, outside any protected area. Access was done by car, following existing roads and paths. No waste 
was left in situ

Disturbance Vegetation and soil were left as much as possible untouched. We collected the strictly necessary amount of matter to enable 
representativeness (see Methods).
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Materials & experimental systems
n/a Involved in the study
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Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms
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Clinical data

Dual use research of concern

Methods
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ChIP-seq
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MRI-based neuroimaging
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