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During slow-roll inflation, nonperturbative transitions can produce bubbles of metastable vacuum. These
bubbles expand exponentially during inflation to superhorizon size, and later collapse into black holes
when the expansion of the Universe is decelerating. Estimating the rate for these transitions during a time-
dependent slow-roll phase requires the development of new techniques. Our results show that in a broad
class of models, the inflationary fine-tuning that gives rise to small density fluctuations causes these
bubbles to appear only during a time interval that is short compared to the inflationary Hubble time. As a
result, despite the fact that the final mass of the black hole is exponentially sensitive to the moment bubbles
form during inflation, the resulting primordial black hole mass spectrum can be nearly monochromatic. If
the transition occurs near the middle of inflation, the mass can fall in the “asteroid” range 1017–1022 g in
which all known observations are compatible with black holes comprising 100% of dark matter.
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I. INTRODUCTION

One of the greatest mysteries in modern physics is the
nature of dark matter. Decades of searches for weakly
interacting massive particles have so far failed to find any
conclusive signal [1]. Axion dark matter is another inter-
esting possibility, as these are well motivated beyond the
Standard Model particles [2] and can simultaneously
account for other features of our Universe [3]. A different
possibility is that dark matter is composed of primordial
black holes (PBHs) that formed in the early Universe [4,5].
PBHs could be formed from Standard Model matter and
radiation without any exotic particle that survives until
today, although the primordial mechanism that produced
them in sufficient abundance likely requires new physics.
Current observational constraints leave a 5 order of
magnitude window of “asteroid”mass black holes in which
a monochromatic spectrum of PBHs could account for all
of dark matter [4,6].

Various PBH productionmechanisms have been proposed
in literature (see Ref. [6] for a review). These include a peak
in the spectrum of primordial density fluctuations [7], first-
order phase transitions [8], second-order phase transitions
[9], crossovers [10,11], and collapse of cosmic strings [12].
Here we present a variation of the mechanism proposed

in [13] and followed up in [14] and [15], in which the

quantum nucleation and expansion of vacuum bubbles or
domain walls during inflation creates regions that collapse
later in the evolution of the universe, forming black holes.
Because the vacuum bubbles form during inflation, their
size and abundance at the end of inflation—and the masses
and quantity of black holes that eventually form—is
exponentially sensitive to when during inflation the tran-
sition occurred. These previous works assumed that the rate
of production of these objects was approximately constant
during inflation, and hence predicted a very broad, power-
law spectrum of PBH masses [16].
By contrast, according to our analysis the transition takes

place over a fraction of an inflationary e-fold, so the
resulting PBH mass spectrum is nearly a delta function.
If the peak of the mass distribution lies in the “asteroid”
mass range, the abundance can be such that PBHs con-
stituting all of dark matter is consistent with observational
constraints.
A delta functionlike mass distribution was also found in

[17], though this paper focused on domain walls with time-
varying tension instead of vacuum bubbles.
Another variation was studied in [18], where a qualita-

tively different potential led to an approximately constant
tunneling rate and a broad PBH mass spectrum. An
interesting alternative mechanism to produce PBHs from
single-field inflation that gives a fairly narrow mass
distribution was studied in [19].

II. BUBBLE NUCLEATION DURING INFLATION

The basic mechanism we are interested in is the
production of defects during inflation. If the defect expands
to the inflationary horizon size, it will be caught in the
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pseudo-de Sitter expansion and grow exponentially for the
remainder of the inflating phase. After reheating it will
eventually reenter the horizon, after which it can collapse
into a black hole. Vacuum bubbles or membranes are two
examples of such defects that can be produced by non-
perturbative quantum effects. If less than one such defect is
produced per Hubble volume per Hubble time, the tran-
sition will not percolate because the space expands fast
enough to dilute the number density exponentially.
To be definite, we will assume that during inflation two

scalar fields have a potential similar to the one shown in
Fig. 1, containing a “valley” with a small slope (vertical
direction), separated from a “lake” by a barrier

Vðχ;ϕÞ ¼ V tunðχÞ þ V inflðχ;ϕÞ; ð1Þ

V tunðχÞ ¼ αχ2ðχ − χ0Þ2 þM2
V; ð2Þ

V inflðχ;ϕÞ ¼
1

2
m2

ϕϕ
2 þ β

2
χ2ðϕ − ϕ0Þ2: ð3Þ

where α; χ0;MV;mϕ; β, and ϕ0 are parameters [20]. Slow-
roll inflation is driven by the field ϕ rolling vertically down

the valley in the figure, with a second scalar field χ acting as
a spectator. We further assume that the vacuum energy in
the lake ρb is lower than the inflationary energy density at
any time during inflation, but higher than the energy
density in the radiation dominated phase well after inflation
ends when the vacuum bubbles reenter the horizon [21].
Potentials of this form will generally admit a unique

instanton; a trajectory in field space that solves the field and
gravity equations in Euclidean signature, connecting a
point near the lake minimum to a point on the other side
of the barrier in the valley via a domain wall of radius R
[22]. Tunneling between the valley and lake corresponds to
the formation of a bubble. If the bubble has walls thin
compared to its radius, the fields inside and outside the wall
will take values approximating the two end points of the
trajectory [23].
Two-field models like this constitute effective descrip-

tions for a wide variety of microphysical models [24–27]
and provide a definite mechanism for a nonperturbative
transition during inflation. However as we will see, our
conclusion that the mass spectrum is monochromatic goes
beyond this large class of models. It applies whenever there
is a nonperturbative transition during inflation that produ-
ces a defect that grows beyond horizon size, and for which
the transition rate is non-negligible only for a range of
inflaton field Δϕ that is not too large.

A. Approximating the tunneling rate

Tunneling between two local minima in the presence of
gravity occurs via the Colemann-DeLuccia instanton [28].
In our case the initial state is an inflating universe, so
tunneling connects slow-roll down the valley into the lake.
This presents an interesting complication that has not been
previously studied (to our knowledge), where the initial
state is time-dependent and the field is not near a minimum.
Nevertheless, there is generally a unique instanton con-
necting a specific point in the valley to the lake. If the
potential were symmetric around ϕ ¼ 0 in Fig. 1, the
tunneling trajectory would lie along the line ϕ ¼ 0. Slow
roll breaks this symmetry slightly, but—absent special
features or other symmetries—there is still only a single
instanton trajectory. The instanton solution for a two-field
potential similar to this was found numerically in [29],
where the authors were interested in tunneling from lake
to valley.
We expect the tunneling rate to be maximized at the time

during inflation when the vacuum expectation value (vev)
of the inflaton coincides with the end point of the instanton
trajectory in the valley. Away from this time, when the field
vev differs by Δϕ from the end point of the trajectory, the
rate should be suppressed. It is essential for our analysis to
understand how quickly the tunneling rate goes to zero
away from this maximum. To our knowledge this question
has not been considered previously. We develop two
approaches to this question, described below.

FIG. 1. Schematic of the potential for a two-field inflationary
model. The inflaton ϕ is the vertical direction and slow-roll
inflation can occur as ϕ evolves downward along a gently sloping
“valley.” The valley is separated from a local minimum (a “lake”)
by an interval in the second scalar field χ. The line indicates the
(unique) instanton trajectory that connects the lake to the valley.
This instanton describes the formation of a bubble of radius R,
inside of which the fields take values corresponding to the
endpoint in the lake, and outside of which take values corre-
sponding to the endpoint in the valley. At a time during inflation
when the vacuum expectation value hϕi of the inflaton is
displaced from the valley endpoint of the instanton trajectory
by a distance Δϕ, the bubble can still appear but with probability
exponentially suppressed in ðΔϕÞ2.
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Numerically estimating the rate: One way to estimate the
tunneling rate from a point with Δϕ ≠ 0 is to deform the
potential slightly to create an infinitesimal potential mini-
mum at that point. This deformation creates another
instanton connecting the new minimum to the lake [30].
We can calculate the new instanton’s action and trajectory
numerically (for instance with the “anybubble” package
[31]). Because the deformation can be made arbitrarily
small we expect this method to give a good approximation
to the actual tunneling rate.
Analytically estimating the rate: To understand the

dependence on Δϕ more generally, consider a “two step”
analytic estimate. We approximate the actual tunneling
trajectory by a first step where the field fluctuates vertically
the distance Δϕ to the end point of the instanton trajectory,
and a second step where it tunnels across the barrier via the
standard instanton. The action for the full transition can be
approximated as the sum of the actions for these two steps.
In order to create the initial conditions for the Colemann-

DeLuccia (CdL) instanton, the first fluctuation must occur
in a region that is at least of size R, the radius of the CdL
bubble. The Euclidean action for such a fluctuation can be
estimated by dimensional analysis

S ∼
Z

d4xð∂ϕÞ2 ∼
Z

d4xðΔϕ=RÞ2 ∼ cðΔϕÞ2R2 ð4Þ

with associated probability ∼e−S. An estimation for this c is
shown in appendix, which gives c≳ 16π2=9.
We compare this approximation to numerical results for

a specific potential using the deformation technique men-
tioned above (Fig. 2). We find that the quadratic scaling of
ðΔϕÞ2 in the exponent provides an excellent fit to the
numerical estimates of the action made using the defor-
mation technique, and a best-fit coefficient c > 16π2

9
.

B. Slow roll

During inflation, an interval in the inflaton field Δϕ is
related to an interval in the number of inflationary e-folds
ΔN by

ΔN ¼ HiΔt ¼
HiΔϕ
ϕ̇

¼ H2
i

ϕ̇

Δϕ
Hi

¼ 2πΔR
Δϕ
Hi

: ð5Þ

Here Δ2
R is the power spectrum of the gauge-invariant

curvature perturbation, with Δ2
R ≈ 10−9 during the observ-

able period of inflation, and we approximate the Hubble
rate during inflation Hi as constant. Our analysis in the
previous subsection shows that the transition rate is unsup-
pressed relative to the maximum rate when

jΔϕj≲ 1ffiffiffi
c

p
R
≈

1

10R
: ð6Þ

where the last approximation uses our numerical estimate
c ≈ 94 (Fig. 2). This gives

ΔN ≲ π

5

ΔR

HiR
: ð7Þ

During or shortly after the observable part of inflation, the
numerator ΔR ≈ 10−4.5 and the spectral tilt is small and red
(so that ΔR decreases slowly with time). However, we will
see that for PBHs in the asteroid mass range the transitions
must take place after this phase of inflation, where we do
not have a direct measurement of (or strong constraints on)
ΔR. In the thin wall approximation the bubble radius R is
determined by the potential energy in the valley and lake,
and by the potential barrier separating the two. For high-
scale inflationHiR≳ 10−5 since the radius Rmust be larger
than the Planck length. For lower-scale inflation HiR could
be smaller, but (for ΔR ≪ 1) there is a large class of
potentials for which ΔN ≪ 1.
It is apparent from this analysis that ΔN ∝ ΔR ≪ 1 is a

generic feature of any model in which the transition takes
place over a range of inflaton field Δϕ that is not too large.
The two-field model we considered here is just one
example. In the opposite extreme where the decay rate is
close to constant during inflation, ΔN ≫ 1 and the results
of [13,14] would be recovered. This can occur in a two-
field model with an approximate symmetry, for instance the
one considered in [18].
Following the “step” Δϕ that creates the initial con-

ditions for the instanton, the field must tunnel through the

FIG. 2. Action for tunneling from a point displaced from the
valley endpoint of the instanton by a distance Δϕ. Blue points:
numerical approximation SnumðΔϕÞ calculated using [31] from
the potential given in (1) (with parameters α ¼ 800; β ¼
700; χ0 ¼ 2;MV ¼ 0.1; mϕ ¼ 1 and ϕ0 ¼ 0), with a small de-
formation added to create a local minimum when Δϕ ≠ 0. (The
asymmetry in Δϕ due to the slope of the valley is too small to be
visible.) Black line: Semianalytic approximation explained in the
text, S ≈ S0 þ cðΔϕÞ2R2, where S0 ¼ SnumðΔϕ ¼ 0Þ, R is the
radius of the bubble at Δϕ ¼ 0, and c ≈ 94 > 16π2=9 is the best
fit to the data points shown in blue.
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potential barrier. The tunneling rate is λ ∼ e−B, where B ¼
SI − SV is the action of the standard instanton minus the
action for the inflaton to stay in the valley. In the next
section we will calculate how large λ should be to give the
observed dark matter abundance.

III. VACUUM BUBBLES AND BLACK HOLES

After a vacuum bubble nucleates, pressure due to the
lower energy state on the inside causes it to expand to
horizon size, after which de Sitter expansion inflates it
exponentially to superhorizon scales. After inflation it
continues to grow, comoving with the expansion of the
universe, until eventually reentering the horizon. We are
assuming that at this horizon-crossing time the vacuum
energy inside the bubble is higher than the energy density
of the radiation-dominated universe around it. In that case
the bubble begins to collapse once it reenters the horizon.
The resulting black hole has a mass that is exponentially
sensitive to the time during inflation that the bubble
appeared [13,15].

The bubble’s radius grows exponentially during infla-
tion, and at reheating is approximately

Ri ≈ H−1
i expfNng; ð8Þ

where Nn ¼ Hiðti − tnÞ be the number of e-folds before
reheating that the bubble nucleates. After reheating, any
initial velocity of the bubble walls rapidly decreases due to
the pressure of the fluid around the bubble, so that it
expands at rest with respect to the cosmic comoving frame
until it reenters the horizon at time tH and subsequently
collapses. The mass of the resulting black hole is can be
approximated asGM ∼ tH, where tH is the horizon crossing
time of the comoving scale corresponding to Ri [32]. We
can find this by setting the Hubble radius equal to the radius

of the bubble after inflation, HðtHÞ ¼ aðtiÞ
aðtHÞ. Assuming

radiation domination aðtÞ ∼ ffiffi
t

p
, we have tH ∼ R2

i
ti
and the

mass of the black hole as a function of Nn is

M ∼
1

GHi
expf2Nng: ð9Þ

(Had we considered domain walls instead [13], the mass
would depend as M ∼ e4Nn .) Once the wall reenters the
horizon it will rapidly collapse into a black hole due to its
wall tension and the fact that the vacuum inside has higher
energy than the universe outside. A black hole of mass M
has a Schwarzschild radius (with c ¼ 1)

R ¼ 2GM ¼ 1.5 × 10−10 m

�
M

1020 g

�
ð10Þ

and horizon crossing time

2tH ¼ R ¼ 2.5 × 10−19 s

�
M

1020 g

�
: ð11Þ

The number of e-folds before the end of inflation when the
bubble nucleated is

Nn ≈ 24þ 1

2
ln

�
M

1020 g

�
þ 1

2
ln

�
Hi

1015 GeV

�
: ð12Þ

If the bubble expands for a time longer than its internal
inflationary Hubble time before it collapses, it will form a
baby universe connected to ours through a (nontraversible)
wormhole. There is a critical massMcr, above which a baby
universe is formed and below which an ordinary black hole
is formed. Following [13], GMcr ∼Minftσ; tbg, where tσ,
tb are the gravitational times associated with the wall
tension and vacuum energy inside the bubble. We assume

GMcr ∼ tb ¼ H−1
b ≡

ffiffiffiffiffiffiffi
3

8πρb

q
where ρb is the vacuum energy

in the lake, so that for a bubble to be supercritical it is
sufficient that

ρb >
3

8πG3M2
¼ ð3.3 × 106 GeVÞ4

�
M

1020 g

�
−2
; ð13Þ

well below the energy density in typical inflation models.
Hence, these hydrogen-atom sized PBHs contain baby
universes that undergo their own internal exponential
expansion and some form of decay or reheating, since
the lake is at best metastable to further transitions.
The mass distribution has a width due to the uncertainty

in the nucleation time, HΔt ¼ ΔN (7). From (9) we have

ΔM
M

≈ 2ΔN: ð14Þ

It is natural for ΔN ≪ 1, so the mass distribution can be
very close to monochromatic. (Later accretion roughly
doubles the mass [14], but given the homogeneity of the
early universe, we do not expect this to increase the width
of the black hole mass distribution significantly.)

A. Tunneling rate

The number density of vacuum bubbles at the time they
were produced is λΔtH3

i . This dilutes like the volume, so at
reheating the number density of bubbles is λΔtH3

i e
−3Nn .

Hence the mass density of PBH dark matter today is

ρPBH ≈ λΔtMH3
i e

−3NnðT0=TrhÞ3: ð15Þ

Equating this to the measured density of dark matter today
and using Eq. (9) gives

λΔt ≈ 1.3 × 10−16
�

Trhffiffiffiffiffiffiffiffiffiffiffiffiffi
HiMPl

p
�

3
�

M
1020 g

�
1=2

; ð16Þ
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where MPl is the Planck mass. This is the fraction of
Hubble volumes in which a bubble nucleates during the
transition. The maximum possible reheat temperature is
Trh;max ≈

ffiffiffiffiffiffiffiffiffiffiffiffiffi
HiMPl

p
, so this is small and collisions between

bubbles are rare. Because transitions are so rare, we expect
the effects on standard inflationary observables would be
negligible (even if it were possible to measure them on
these length scales).

IV. CONSTRAINTS AND DETECTION

Currently, there are no observations constraining PBHs
in the “asteroid” range 1017 g < M < 1023 g from con-
stituting 100% of dark matter [4,6]. Possible approaches to
detecting this form of dark matter include lensing, accu-
mulation of one or more PBHs inside stars that affect stellar
evolution over a long period of time, and stellar explosions
triggered by a transit of the PBH though a star.
The lower bound arises from Hawking radiation, which

for lighter PBHs produces gamma rays and energetic
electron/positron pairs [33] [35–38]. These bounds could
potentially be improved with future MeV telescopes or
21 cm observations [39–41]. A study of microlensing of
stars in M31 provides the upper bound on the mass range
[42]. The microscopic size of the PBHs in this range
relative to optical wavelengths, combined with finite-
source size effects, makes it very difficult to push theses
constraints to lower PBH mass. Lensing of gamma ray
bursts is of interest because their cosmological distance and
much shorter wavelength of electromagnetic radiation
makes lensing by PBHs in this mass range stronger, but
there are no current constraints from this effect [43].
If a PBH passes through a star, gravitational friction

heats the star and reduces the kinetic energy of the PBH.
This can lead to a bound orbit where the PBH repeatedly
passes through the star, eventually settling into the center.
The PBH will gradually accrete matter, eventually growing
to the point that it strongly affects stellar evolution.
The analysis in Ref. [43] shows that survival of stars does

not provide constraints on PBHs in the allowed mass
window because captures in galaxies are rare. A constraint
would arise only if globular clusters have high dark matter
densities and low PBH velocity dispersion. Observational
signatures from rare stellar destruction events present a
more promising avenue for future constraints. More mod-
eling is needed in order to better understand the evolution
and destruction of the star after the PBH is captured and
accretes a substantial amount of mass (see Ref. [44] for
some recent work on neutron stars).
Observations of white dwarfs in certain mass ranges

might have implications for PBH dark matter, as PBHs
could trigger an explosion via heating even in the case that
they are not dynamically captured by the white dwarf, and
most white dwarfs will experience at least one such transit.
While an initial analysis indicated this might occur for a
certain range of PBHs [45], a more detailed treatment

shows that this process does not provide any constraints in
this mass range [43].

V. CONCLUSION

It is remarkable that dark matter could be composed of
microscopic black holes produced in the earliest phase of
the universe [46]. The scenario considered here requires
physics not far removed from what is already needed to
drive inflation, without any new forces or particle species at
accessible energies.
There are a number of ways our analysis could be

extended or generalized. One is to study potentials in which
the transitions occur not at one time during inflation, but at
a discrete series of times. This can be natural in inflationary
models involving a pseudo-periodic potential such as
unwinding inflation [27,47,48].
We assumed that the vacuum energy in the “lake” was

well below the energy density at the end of inflation. It
would be interesting to analyze the situation where the
energy density instead falls below that of the lake before
inflation ends.
We focused on the “asteroid” mass range because of the

lack of constraints on PBHs in this range. There is another
range where the constraints are weak—the so-called stu-
pendously large BHs [49,50]. These black holes are larger
than galactic halos and cannot constitute all of dark matter,
but evidently current constraints allow them to form an
Oð1Þ fraction. It would also be of interest to extend our
treatment of tunneling from slow roll to a more general
analysis of tunneling from time-dependent initial states.
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APPENDIX: ANALYTICAL APPROXIMATION

To approximate the probability for the field to fluctuate
down the valley, we calculate the variance of the field ϕ
averaged over a sphere of radius R

ϕRð  x; tÞ≡ 1

V3

Z
R
d3yϕð  xþ  y; tÞ; ðA1Þ

where V3 ¼ 4
3
πR3. The averaged field is approximately a

Gaussian random variable because the inflaton is a nearly
free field. The probability therefore scales as

P ∼ exp

�
−
ðΔϕRÞ2
2σ2

�
; ðA2Þ

where σ is the variance of the field.
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Setting hϕRi ¼ 0, σ2 is given by the two point function
of ϕR,

σ2 ¼ hϕRð  x; tÞϕRð  x; tÞi

¼ 1

V2
3

Z
Rx

d3y
Z
Rx0

d3y0hϕð  xþ  y; tÞϕð  xþ  y0; tÞi: ðA3Þ

Evaluating the propagator for a massless field with spatially
separated vectors gives

hϕRð  x; tÞϕRð  x; tÞi ¼
1

V2
3

Z
Rx

d3y
Z
Rx

d3y0
1

4π2ð  y −  y0Þ2 :

ðA4Þ

Integrating this expression,

hϕRð  x; tÞϕRð  x; tÞi ¼
1

V2
3

R4

2
¼ 9

32π2
1

R2
: ðA5Þ

This gives that the dependence of the probability on
Δϕ is

P ∼ exp

�
−
16π2

9
ðΔϕÞ2R2

�
: ðA6Þ

Indeed, this is the same dependence on R2 and ðΔϕÞ2
that we obtained from dimensional analysis in the
main text.
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