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Abstract

We study the asymptotic convergence as ¢ — oo of solutions of diu = —f(u) + [ f(u), a nonlocal
differential equation that is formally a gradient flow in a constant-mass subspace of L? arising from
simplified models of phase transitions. In case the solution takes finitely many values, we provide a
new proof of stabilization that uses a Lojasiewicz-type gradient inequality near a degenerate curve of
equilibria. Solutions with infinitely many values in general need not converge to equilibrium, however,
which we demonstrate by providing counterexamples for piecewise linear and cubic functions f. Curiously,
the exponential rate of convergence in the finite-value case can jump from order O(1) to arbitrarily small
values upon perturbation of parameters.
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1 Introduction

Let (2, F,v) be a probability space, and assume f: R — R is locally Lipschitz and piecewise C'*. This paper
investigates the asymptotic behavior as t — oo of bounded solutions to the nonlocal differential equation

Opu(z,t) = —f(u(z,t)) + /Q flu(y,t)dv(y), z=e€Q, t>0. (1.1)

While our main concern involves general nonlinear functions f, key examples to bear in mind are nonmono-
tonic polynomials and piecewise-linear functions.

The initial-value problem for (1.1) is well-posed locally in time in B(2), the Banach space of bounded
measurable functions on €2 equipped with the supremum norm. The solution exists globally in time and
remains uniformly bounded if, for example, the initial data u(z,0) = ug(x) lies in an interval [a,b] with the
property that f(a) < f(s) < f(b) for all s € [a,b], as will be seen below.

The nonlocal term in (1.1) ensures that the mean of the solution is conserved, as

—/ u(zx, t) dv(z / (—flu(z,t) + f(t)) dv(z) =0, (1.2)
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where

ft) = ; fu(z, 1)) dv (). (1.3)

We can view (1.1) formally as the equation of L?-gradient flow constrained by fixing the mean: Let F' denote
the antiderivative of f — i.e.,

F@) = [ f)dy, (14)
0
and define the energy £ by
u(z)

s = [ Py = [ [ ) dydvia) (15)

Q aJo

Then the equation (1.1) can be written formally in the form
Ou = —QVE(u), (1.6)
where VE(u) = f o u is formally the L2-gradient of £ at u, and Q is the L2-orthogonal projection on the

space of functions with mean zero.
Due to this constrained gradient structure, the energy is dissipated along solutions of (1.1), with

d _
%S(u) = /Qf(u)(“)tudu = /Q(f(u) — f(t))Oudr = —/Q |Opu)? dv .

Hence for a bounded solution the limit o, = lim; o0 £(u(t)) exists, and we have
£ +/ / Oul? dv dt = € (uo).- (1.7)
o Ja
By (1.1), Opu is uniformly Lipschitz in ¢, so fQ |0yu|? dvis as well, whence it follows that
/ |Ou?dv — 0 ast — oo. (1.8)
Q

Then it follows any limit point of the orbit {u(-,¢)};>0 (in the L? sense) must be an equilibrium, a (possibly
discontinuous) function @ such that f(u(x)) is a.e. a constant.
The main question that we resolve herein is this:

Does u(+, t) necessarily converge to a single equilibrium as t — oo? (1.9)

It is well-known that solutions of gradient systems need not converge in general, even in R? [27, p. 13]. But
in the paper [29], the second author proved that for solutions of (1.1) the answer is yes, assuming the initial

data ug has finite range, taking only finitely many values u?,...,u%. In that case (1.1) is equivalent to a
finite-dimensional system for w(t) = (uy(t),...,un(t)) in RY. In [29], the solution’s w-limit set is shown to

contain points in a normally hyperbolic curve of equilibria, and a theorem of Hale and Massat [14] is invoked
to conclude convergence as t — oo.

As pointed out by Sengiil [32], the theorem of Hale and Massat used in [29] was improved by Hale and
Raugel [15], and this could also improve the convergence proof in [29] in the finite range case. One thing we
provide in the present paper is a different and considerably simpler proof of convergence in the finite range
case, based on a gradient inequality of the form

clé() — @) <|Qve], (1.10)
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which is proved valid for u on the orbit near a “regular” equilibrium 4 in the w-limit set, which is guaranteed to
exist under the assumption that f(¢) fails to converge. The use of gradient inequalities to analyze convergence
of gradient flows was pioneered by Lojasiewicz [23] and Simon [33], and has since expanded greatly in the
the field of optimization [2] and in the analysis of dynamics in PDE [18]. The proof of such inequalities in
general involves a deep study of objects such as subanalytic sets and o-minimal structures [5,8]. But in our
case, a proof based on simple Taylor approximation works, since we use (1.10) not for arbitrarily degenerate
equilibria 4, but only for curves of equilibria that, although they are not isolated, correspond to regular
values of f. This is similar to proofs of gradient estimates near nondegenerate manifolds of equilibria by
Simon [34, Lemma 1, p. 80] and Haraux and Jendoubi [17, Thm. 2.1]. Such arguments were generalized by
Chill to reduce verification of gradient estimates to a “critical manifold,” see [7, Thm. 3.10].

Our main result, however, is that the general answer to the main question (1.9) is no/ — It is possible
that u fails to converge if ug takes infinitely many values. We construct counterexamples to convergence
in cases when f is piecewise-linear or a cubic polynomial, having an “N-shaped” graph. Our constructions
are motivated by the observation that perturbations (arbitrarily small in L?) of certain degenerate unstable
equilibria can cause the value of f(t) to eventually drift a finite distance either up or down. An infinite
number of such perturbations can then be superimposed to cause f(t) to oscillate, slower and slower, with
no limit.

1.1 Related works

Equation (1.1) is a simplified model for dissipative dynamics in a number of models of phase transitions
that are related to each other. These include models of viscoelastic materials [1,3,28], models of formation
of material microstructure [4,11,12], regularized forward-backward diffusion models [26], and shear flows in
non-Newtonian fluids [24,25]. Sengiil has recently reviewed work on nonlinear viscoelastic models of strain
rate type [32].

In order to ensure convergence of solutions in a problem of viscoelasticity, Andrews and Ball [1] introduced
a hypothesis that they called a nondegeneracy condition, which works also for solutions of (1.1). To explain,
suppose for simplicity that f is piecewise monotone, so that for z in any bounded set of R, the equation
f(z) = s has a finite number M = M(s) of roots z1(s) < za2(s) < ... < zp(s), where M is piecewise
continuous jumping a finite number of times. Then the nondegeneracy condition requires that no nonzero
linear combination of z1, ..., zp; is constant on any common interval of definition. For counterexamples to
convergence as constructed in this paper, it is important that the nondegeneracy condition be violated. This
is indeed the case however if, e.g., f is any piecewise linear function, or a nonmonotonic cubic polynomial
(since then the sum of the roots z1 + 22 + 23 is constant).

In 2015, Ball and Sengiil published an in-depth study [3] of an equation of the form exactly as in (1.1)
in the context of quasistatic nonlinear viscoelasticity in one space dimension. In this context, the variable u
represents the material strain and should remain positive. For the measure space 2 = [0,1] with Lebesgue
measure (or any Borel-isomorphic space), they establish that (1.1) is well-posed in the positive cone of L?(€2)
when F' is A-convex (i.e., F(u) + $Au? is convex) and f(u) — —oc as u | 0, by making use of a one-sided
Lipschitz condition on f to obviate the problem that the Nemytskii operator u — f o w is not Lipschitz on
L?. Ball and Sengiil then make rigorous the interpretation of these solutions as a gradient flow of £ in a
constant-mass subset of L?(£). Further, they prove the L? compactness of positive orbits using monotone
rearrangement and Helly’s theorem, and they improve the convergence analysis in the studies [1,26] in several
ways. They prove that solutions converge to equilibrium under a weakened nondegeneracy condition. For

the cubic case f(u) = u® — u in particular, convergence is proved under the hypothesis that

/ u(z,0)dv(xz) #0. (1.11)
Q

A nearly contemporaneous study by Hilhorst et al. [20] was motivated by study of a singularly per-
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turbed Allen-Cahn equation with mass conservation [31]. These authors studied existence and uniqueness of
solutions of (1.1) taking values in L>°(£2) for multistable nonlinearities [20, Theorem 1.4], and proved stabi-
lization for bistable nonlinearities f when the initial data have no flat portions [20, Theorem 1.6], having the
property that all level sets {z € Q | u(z,0) = ¢} have measure zero. Based on the asymptotic behavior of
solution to of the nonlocal ODE, they study the generation of interfaces for solutions of the mass-conserved
Allen-Cahn equation [21].

1.2 Discussion and plan

Gradient flows are generally important in many areas in mathematics, including in optimization for purposes
such as training artificial neural networks [6, 10, 22,30] and improving methods of statistical sampling [13].
The Lojasiewicz gradient estimates provide a powerful tool to conclude convergence of finite-dimensional
gradient flows with analytic and also nonsmooth subanalytic nonlinearities [5]. Simon’s extensions have
allowed the handling of some infinite-dimensional flows, particularly for partial differential equations of
parabolic type in which the infinite-dimensional dynamics can be slaved to some finite-dimensional part by
a kind of Lyapunov-Schmidt reduction [18]. More recently, Lojasiewicz-type inequalities have been extended
to general metric spaces [19].

In light of these strong results from gradient-estimate theory, our counterexamples for solutions of (1.1)
are puzzling insofar as they work for the simplest kinds of probability spaces and nonlinearities. For example,
non-convergent solutions can be found on the one-dimensional domain Q = [0, 1] which are monotone in x and
have compact trajectories in L?, and which have finite-dimensional (actually one-dimensional) w-limit sets.
Moreover, the nonlinear function f can be polynomial (cubic), both as a real function and as a Nemytskii
operator on B(f2) (although the latter is not even once Fréchet differentiable on the space L*(Q)).

So despite the rather benign nature of nonlocally coupled differential equations from the point of view
of nonlinear analysis, having a very regular nonlinear structure and having essentially finite-dimensional
long-time dynamics appears insufficient to ensure gradient-flow convergence. For finite-dimensional flows,
solutions converge, but our constructions indicate that the rate of convergence can be arbitrarily slow,
even for fixed nonlinearity and fixed dimension as small as 3. The appearance of arbitrarily slow rates of
convergence is a curious phenomenon, in fact—it happens by perturbation from a situation in which the rate
of convergence is O(1) and a Lojasiewicz inequality applies.

Our non-convergent examples are all non-generic and highly unstable. To emphasize how delicate non-
convergence has to be for the cubic nonlinearity, we present the following criterion that is necessary (but far
from sufficient) for non-convergence, which shows that non-convergence is far more unlikely to arrange than
the codimension-1 necessary condition [, u = 0 from (1.11) might suggest.

Proposition 1 (Unstable nature of non-convergence). Let f(u) = u® — u, and suppose u(-,t) is a bounded

solution of (1.1) that fails to converge in L* to a limit as t — co. Then [, u(x,0)dv(z) =0, and moreover,
there exists ¢ such that the three sets, consisting of all x € Q where u(zx,0) = ¢, where u(x,0) > ¢, and where
u(zx,0) < ¢ respectively, each have measure exactly equal to %

The plan of this paper is as follows. We develop a few basic properties of solutions of (1.1) in Section 2,
regarding well-posedness, the relative preservation of order at different values of x, and invariant sets for
solutions (a kind of maximum principle). In Section 3 we re-prove long-time convergence for solutions with
finite range, in a simpler way than in [29] using gradient estimates. Our construction of non-convergent solu-
tions for piecewise-linear bistable f appears in Section 4. Subsection 4.6 contains an L? gradient inequality
that is valid in this case (Lemma 7) which is curiously similar to the one used to prove convergence in the
finite-range case with arbitrary nonlinearity (Lemma 3). In Section 5 we construct non-convergent examples
for cubic f, and also complete the proof of Proposition 1.

Finally we discuss in Section 6 a phenomenon of instability of convergence rates under perturbation
around degenerate equilibria. For suitable three-valued initial data, parameter perturbations of order O(g)
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leads to slow exponential convergence at rate O(e), whereas a rate of order O(1) is guaranteed by the gradient
inequality in Lemma 3 when € = 0.

2 Basic properties of solutions

We begin our analysis with a brief discussion of the well-posedness of the initial value problem for (1.1), and
some basic properties that solutions have regarding preservation of order and positively invariant sets.

We choose to work with solutions taking values wu(-,¢) in the space of bounded measurable functions
B(f2), as it is convenient to interpret them as pointwise satisfying the nonlocal differential equation in (1.1),
without having to take the trouble of selecting representatives from equivalence classes as was done in [26] for
elements of C'([0,T], L*°(?)). Local-time well-posedness (existence, uniqueness, and continuous dependence
on initial data) follows by the standard Picard iteration method. This use of B(f2) makes well-posedness
and the study of pointwise properties rather easy, as solutions u(x,t) are C! in ¢ for every x, but some other
things become more difficult. E.g., even in case = [0,1] with Lebesgue measure, it does not seem easy
to determine whether, say, measurable monotone reordering is possible pointwise everywhere for all initial
data.

We will make considerable use of the pointwise properties that solutions enjoy according to the two
following results. The first lemma was established in the proof of [3, Theorem 2]. The second one is similar
to results observed in [20, Lemma 2.5] and [3, Corollary 2] and previously for viscous diffusion equations
in [26, Proposition 2.7].

Lemma 1 (Preservation of order). Let u solve the nonlocal ODE (1.1). If u(x,0) < u(y,0), then for all
t > 0 we have u(x,t) < u(y,t). Further, equality is also preserved.

Proof. This is a simple consequence of the fact that if we regard f(t) as given, then u(z,t) and u(y, t) satisfy
the same scalar ODE with locally Lipschitz nonlinearity. O

We call a set S C R positively invariant for (1.1) if the condition u(x 0) € S for all z € Q implies that
u(x,t) € S for all z € Q and ¢ > 0. For a given solution u, we call a set S C R pointwise stable if u(z,0) € S
implies u(Z,t) € S for all ¢ > 0, for any (particular) & € Q.

Lemma 2. (i) (Positively invariant sets) Let [a,b] be a closed interval such that
fla) < f(s) < f(b) forallsé€a,b].

Then [a,b] is positively invariant.

(ii) (Pointwise stable subsets) If further [a,b] C [a,b] with f(a) = f(a) and f(b) = f(b), then |a,b] is
pointwise stable for any solution with u(x,0) € [a,b] for all x € Q.

Proof. Let u(0,z) € [a,b] for all x € Q. If f(u(-,0)) is a.e. constant, then f(0) € [f(a), f(b)] is this same
constant. So u is at equilibrium a.e., and trivially the invariance properties in parts (i) and (ii) hold.

s (1) )
Suppose f(u(-,0)) is not a.e. constant Then u is not a.e. at equilibrium, and f(0) € (f(a), f(b)). Define

te =inf{t > 0: f(t) € {f(a), f(b)}}.

This is the first exit time of f(¢) from the interval (f(a), f(b)). By continuity of f, we know t, > 0.
Next note that for any « € Q and ¢ € [0, ¢.),

—flu(@, 1) + f(a) < —f(u(z,t)) + f(t) = Spu(,t) < —f(u(x,1)) + f(D).
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By consequence, dyu(z,t) is positive if u(z,t) = a (or a) and negative if u(z,t) = b (or b). It follows
u(x,t) € (a,b) for all t € (0,t,), and all z. Moreover if u(z,0) is in [a,b] then u(z,t) remains there for all
te€[0,ts).

Now we claim ¢, = oco. If £, < oo, then by continuity u(x,t.) € [a,b] and f(a) < f(u(z,t.)) < f(b) for all
x. But then f(u(z,t,)) must a.e. equal f(a) if f(t.) = f(a), and must a.e. equal f(b) if f(t.) = f(b). This
contradicts our hypothesis and establishes t, = co. The invariance properties follow. O

By this result, if [a,b] is an interval with the property stated and the initial data u(z,0) belong to this
interval, then the solution to (1.1) exists globally with u(x,t) € [a,b] for all ¢ > 0 and all x € Q2 (cf. [3, Section

3]).

3 The case of finite range: convergence via gradient inequalities
Let u take finitely many values u; on sets Q; C Q of measure p;, j = 1,...,N, with >, pp = 1. Our
equation is then equivalent to the following system in RV:

Dot = —FsO) 4 T, T=1 N, ()= mef ) (3.1)
k

We define a reduced energy for vectors u = (u;) € RV by restricting € to functions u = >, uxlg, , writing

Zuk]lgk = Z,ukF(uk)
k k

With respect to the reduced L?-inner product (u,v) = >, urukvg, we obtain the gradient VE(u) = (f(u;)),
and we may write (3.1) in the vector form

%:_QVE(“@))7 Qu=v—1(l,v) = Uj_;,ukvk . 1=(1,...,1).

Here @ is the orthogonal projection on the subspace where (1,v) = >, purvr = 0.
Recall that we assume f is locally Lipschitz and piecewise C'. Our goal in this section is to provide a
simplified proof of the following theorem from [29].

Theorem 1. If u: [0,00) — RY is a bounded solution of (3.1), then lim; o, u(t) exists.

Our simplified proof avoids a spectral analysis of curves of equilibria of (3.1) and the use of the Hale-
Massat theorem. Instead we rely on the gradient inequality contained in the following lemma. Its proof
involves a simple Taylor approximation argument near curves of “regular equilibria,” which stands in contrast
to general Lojasiewicz inequalities valid near arbitrary equilibria for energies that are analytic, semi-algebraic,
or more generally definable in an o-minimal structure [2].

We recall as in [29] that by Sard’s theorem, the set of regular values of f in any bounded interval of R is
open and dense. If § is a regular value of f, then the equatlon f(2) = s has a finite number of solutions z;(s)
at which f’(z;(s)) # 0, for all s in some neighborhood .J of 8. We will call & € RN a regular equilibrium for
(3.1) if § = f(4;) is independent of j and is a regular value of f. In this case, then for each j there exists i(j)
such that u] = 2;(jy(8). We define ¢(s) = (z;(;)(s)) for s € J; then s — ¢(s) is a curve of regular equilibria

and ¢(8) =

Lemma 3. Let 4 € RN be a regular equilibrium for (3.1) as above. Then in some neighborhood N of @, all
equilibria of (3.1) have the form ¢(s) for some s € J, and moreover:
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(i) all states w € N satisfy the gradient inequality

c|B(u) — B(¢(s)) = s(Lou— ¢(s)| < IQVE@)|*, 5= p;f(uy),

J
for some constant ¢ > 0 independent of u.

(i) If (1,¢(s) — @) = 0 for all s € J, then E(¢(s)) = E(@) and for all w € N with (1,u— ) = 0 we have
c|B(u) - E(4)| < [QVE(u)|?*.

Remark 1. The inequality in part (ii) of this Lemma can be interpreted as a Lojasiewicz inequality in the
constrained-mean hypersurface M = {u € RV : Zj pj(u; — a;) = 0}, since the gradient of E restricted to
this surface can be interpreted as the projection QVE on the tangent space. The proof we give below is
simple and direct. An alternative proof could be given by showing that the curve of equilibria ¢(s) satisfies
certain nondegeneracy properties within the hypersurface M, and applying, say, Theorem 2.1 of [17], or the
reduction methods of Simon [34] or Chill [7] mentioned in the introduction. The required nondegeneracy
properties are somewhat involved to establish, though, due to the fact that the eigenvalue A = 0 of the full
Jacobian matrix 0QV E/Ou at @ in RY is not algebraically simple [29, Lemma 2]. VAN
Proof. For any equilibrium w4 in a small enough neighborhood A of 4, s = f (ujq
near S, so necessarily ujq = 2;(j)(s) by the inverse function theorem. Taking A smaller if necessary, for any

) is independent of j and

u € N we may let

s=2 mf(u),  v=u-o()

and we may find constants 0 < A < X < oo such that A < [f’(u;)| < A for all w € N and all j. By Taylor’s
theorem we may write

F(uj) = F(¢;(s)) + f(¢5(s))v; + %%‘(U)vf s ) = F(05(5)) + £ (w)oy, (3-2)

where

0;(u) =2 / F(6i(s) +ro) (L —rydr,  B5(u) = / £(65(5) + rv)dr (3.3)

The bounds A < |¢;(u)|, |;(w)| < X hold for all w € A". Then since s = f(¢;(s)) we have
Bw) — B(s)) = 3 i (Flus) = F03) = 37wy (7056105 + 56 (w)e?)
=s Zuﬂj + % Z pils(uw)vy

Since also s = ), . f(ux), we find

hence [|QVE(u)|? = > il (u)?v3. Evidently we have the estimates

_ Y )
‘Z“J[i(“)“ﬂ <A wrf < ;ZN%(U)ZU?»
J j 4
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whence the result claimed in part (i) of the Lemma follows with ¢ = % A2/
If (1, ¢(s)) is constant in s, then because f(¢pr(s)) = s,

9 B = L B @) = 3 mef(Gu(s)0h(s) = s (1, 9(s)) = 0
k k

Hence E(¢(s)) = E(¢(8)) = E(@), and the rest of part (ii) follows from part (i). O

The next (and main) step in the proof of Theorem 1 is to show that f(t) converges. This is as in [29],
but now the proof is much simpler.

Lemma 4. If u: RY x [0,00) is a bounded solution of (3.1), then lim;_,, f(t) exists.

Proof. Suppose not. Then the interval (liminf f,limsup f) is nonempty and strictly contains some interval
J of regular values of f, by Sard’s theorem as above. Fixing some § € J, using the compactness of the
orbit we can find a sequence t,, — oo such that f(t,) = § and wu(t,) converges to some regular equilibrium
@ € w(u). Then because w(u) is connected and % cannot be isolated in w(u), by taking J smaller and on
one side of § if necessary, the curve of equilibria {¢(s) : s € J} provided by the Lemma will be entirely
contained in w(w).

By consequence, we infer that for all s € J,

E(¢(s)) = E. and ZM;‘%(S) =co= Zujug‘ (t), (3.4)

where F, = lim;_, E(u(t)). By the result of the Lemma, then, we have
0 <éVE(u(t)) — Ex < [|QVE(u(?))| (3.5)

whenever u(t) € N, a small enough neighborhood of 4. But then, by the classic argument of Lojasiewicz,
and because Q = Q? is self-adjoint,
d (VE(u(t), @*VE(u(t)) _ |QVEu®)|lllowull _

mg VW) - Ee= E(u(t) - E, 2 /Ew(t) — B, 2

[[Ovull. (3.6)
On any interval [t,,T] on which u(t) € A it follows

T
[w(T) — u(tn)] < / [0vu(r)| dT < CV/ E(u(t,) — E..

tn

For large enough n, the right-hand side becomes arbitrarily small and it follows w(t) remains inside A for
all t > t,,. This implies (liminf f,limsup f) C .J, a contradiction. Hence lim; ,, f(t) exists. O

The remainder of the proof of Theorem 1 goes as in [29], in principle. However, the proof in that paper
appears to have a gap (in Lemma 3 in particular), so we provide a full corrected proof here for the convenience
of the reader.

Proof of Theorem 1. Suppose for contradiction that some bounded solution w of (3.1) fails to converge.
Then a; < b; for some j, where

a; =liminfu;(t), b; =limsupu;(t), j=1,...,N.

Due to Lemma 4, by adding a constant to f we may assume f(t) — 0 as t — oo. By considering times
tn,; — oo such that u;(t, ;) takes given limits inside (ay,b;), we infer f(v) = 0 for all v € J,[a;, bj].
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The idea of the remainder of the proof is that mass conservation ), prur(t) = co must become violated,
due to the synchrony implied by the equations d;u; = f(t) = G;us, which must hold whenever u; and uy are
respectively inside any nonempty open intervals (a;,b;), (ak, bg).

Select a point v in w(u) such that v; € (a;,b;) for j in some mazimal set S of indices. With the notation
B(z,r) = [x — r,x + ], choose € > 0 so that B(vj,2¢) C (aj,b;) for all j € S, and select ¢, — oo such that

u(t,) = v as n — oo and u;(t,) € B(vj,¢) for all j and n. Now fix some i € S and define
T, = inf{t > t, : |u;(t) —wi(tn)| > e}, In = [tn,Tn].

Then for all n, t, < T,, < oo and u;(t) € B(v;,2¢) for all t € I,,. Moreover, for any j € S, by synchrony we
have
uj(t) —u;(tn) = wi(t) —ui(tsn) € [—e,¢] and wu,;(t) € B(v;,2¢)

for all t € I,,. In particular, when t = T;, it follows there is a fixed sign o € {—1,+1} such that
ui(Ty) — uj(tn) = ui(Th) — wi(tn) = oe. (3.7)

By passing to a subsequence we may presume this holds for all n with ¢ independent of n.
We claim next that for all indices k ¢ S,

oscup =0 asn — oo, (3.8)
where osc is the oscillation—supremum minus infimum on the indicated interval. Suppose not. Then for
some k, oscy, ux > € > 0 for infinitely many n. Hence by — ar > €, and by continuity there exist 7, € I,
such that ug(7,) = 0 for some 0 € (ag,br). We may extract a suitable subsequence such that wu;(7,)
converges to some 0; for all j. In particular we find 0; € (a;,b;) for all j € S U {k}. This contradicts the
maximality of S. Hence (3.8) holds.

From this it follows ug(T},) — uk(t,) — 0 for all k ¢ S. Along the appropriate subsequence then, mass
conservation together with (3.7) implies

Z,ujvj = 1imz,ujuj(tn) = limZujuj(Tn) = oe#S + Zujvj,
J J J J

where #5 is the cardinality of S. This contradiction implies u(t) tends to a limit. O

4 Non-convergence: the piecewise-linear case

In this section we describe solutions to (1.1) that do not converge as t — oo, for the case when f is piecewise
linear with N-shaped graph, given by

z4+1 z< %,
fe)=q-= |z <3, (4.1)
z—1 z>1

For |s| < %, the equation f(z) = s has the three solutions z(s) = =14 s, z,(s) = —s, and 2.(s) = 1 + s.
Since z; + 22z, + 2 = 0, we see f fails to satisfy the nondegeneracy condition of Andrews and Ball [1];
this will be crucial in our construction. We presume the probability measure v is nonatomic. This implies
that given any countable set (u;) with > p; = 1, there exists a measurable partition (€2;) of  such that
v(Q;) = p; for all j. (This follows since v has the “Darboux property,” see [9, p. 28] and [16, p. 174(2)].)
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4.1 Equilibria, and phase transition times

Equilibria. With f as in (4.1), equation (1.1) has a family of equilibria 4, satisfying f(is(x)) = s for any
constant s € (—3, 1), with @4(z) = 2z;(s) on sets €; of measure denoted fi; for j = I,m,r to indicate the
left, middle, and right phases, respectively. We fix the particular values

(4.2)

9

=

5 ﬂr =

=

= iv ﬂm =
so that all these equilibria have mean zero, i.e.,
/ Gs(x) dv(z) =0, independent of s.
Q
Our goal in this section is to describe a solution that has some nontrivial collection of these equilibria in its

w-limit set (in the L? topology).
Phases and transition times. In this section, we will only consider solutions taking values in the interval

[a,b] = [f%, %], which is positively invariant according to Lemma 2. For the remainder of this section we fix
the values
__3 p_ _1 A1 _ 3
a——§, b—_§, a—§7 b_ia

and define left, middle, and right phase intervals respectively by

& = [a,b], @, =(ba), @ =]ab]. (4.3)

For the solutions we consider, the left and right phase subintervals ®; and ®,. are each pointwise stable. We
define measures of sets corresponding to the left, middle, and right phases by

vi(t) = (A1), Ay(t) = fo € Q:ula,t) € By, (4.4)

for each symbol j = I, m, r respectively. Then by pointwise stability, the left and right phases A;(t) and A,.(t)
and their measures are nondecreasing, while the middle phase A,,(t) and its measure v, (t) are nonincreasing.
Consequently a transition time (exit time) from the middle phase exists at each point, as follows.

Lemma 5 (Phase transition times). For each x with u(x,0) € ®,,, there exists T(x) € (0,00] such that

D, 0<t<r(x),

u(z,t) €
P UP,, t> T(x)

Moreover, as long as two points u(z,t) and u(y,t) remain in the middle phase ®,,, the difference grows
exponentially, for we have
at(u($7 t) - U(y, t)) = U(Ia t) - U(y, t)

Corollary 1. If u(z,0),u(y,0) € ®,,, then for 0 <t < 7(x) A 7(y) we have
U(.%‘,t) - U(y,t) = et(u(xvo) - U(y,O)) .

4.2 Mean force and heuristics

Evolution of mean force. For the piecewise-linear nonlinearity in (4.1), it happens that f(t) evolves in a

10
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strikingly simple way. Due to the fact that

1 u<—%, u+1 u<—%,
flluy=9-1 Jul <3,  f@flw=qu+0 |u <3, (4.5)
1 u>%, u—1 u>%7

and f(t) is Lipschitz, hence differentiable a.e., we find using (4.4) that with 4 = Jqudv, for a.e. t,

IO = [ 71+ F0) do = —(@+ 1= )+ (4= v +2) 0. (16)

Heuristics. We can now explain the main idea behind our examples of non-convergence, by describing a
simple calculation that shows how tiny perturbations from certain (always unstable) degenerate equilibria
can produce slow, but eventually large, changes in f(¢). We will consider solutions with mean @ = 0. Desiring
some equilibrium % as above to be in the w-limit set, v, (), the measure of the middle phase, should approach
fim = 3 from above. Thus we will perturb by moving small bits of the (stable) left and right phases to be
in the (unstable) middle phase, close to but not exactly at the same value as @ takes.

Imagine then that the initial data takes values near —1 + s, —s, 1 4+ s on sets of measure

Vi = /lj — &‘j s (47)

for each symbol j = [, m, r respectively, with ¢;,&,, > 0 small and ¢,, = —¢; — €,.. Suppose no phase changes
occur over some interval of time during which the measures v; do not change. Then during this time interval,
(4.6) becomes

%f(t) =e—& —2(e1 + &) f(2). (4.8)

Regardless of what the original value of s was, f(t) is now forced to drift toward a particular equilibrium
value determined by ¢; and ¢,, namely

T 15l*5r 11
g _ ZSLTE (22 1.9
f 2¢e;+e&r 6( 2’2> (49)

This value can be of order 1 no matter how small ¢;, €, are.

Now the idea to obtain persistent oscillations is to use the exponential growth rate of perturbations in
the (unstable) middle phase to arrange that small bits of that phase will change alternately to the (stable)
left and right phases. The time gaps between these changes should be large enough so that f(¢) is attracted
near the prevailing value of f°4, and the pattern of changes should cause ¢;, ¢, to alternately decrease in
a way that forces the value of f¢9 to alternately drift toward distinctly different values. We will show this
can be done infinitely often, with the implication that f(t) will fail to converge as t — oo, and the same for

u(-,t).

4.3 Initial data and main result
With suitable initial data specified as follows, we can ensure that f(t) fails to converge. We consider initial

data taking infinitely many values, of the form u(x,0) = vg(x) — ¥y so that @ = 0, with

—1,0, 1 in Q, Q, Q, respectively,
vo(z) = _ (4.10)
(-1Y«a; inQy;, j=0,1,2....

11
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Here, (@j)j=0,1,2,- is a sequence of positive real numbers satisfying inequalities specified below. We write
i =v(Q) for j =1,m,r and 0,1,2,..., and assume

1 1 1
D S e T e S DY (4.11)

Jjodd jeven

Theorem 2 (Counterexample to convergence). Let f be given by (4.1) and consider initial data for (1.1)
of the form u(x,0) = vo(x) — Ty with vy given as above. Let 0 < n < 1, and assume 0 < pg < 1TT7’ and
wi = o’ (j=0,1,2,...).

Assume 0 < ap < i, and that

0<ojp1 <oypy  forj=0,1,2,.... (4.12)
Then:
(i) The phase transition times 7; = 7(Q;) satisfy T, = +oo and Tj41 > 7; for all j > 0.

(i1) If moreover for some positive sequence [3; decreasing to 0,
1 .
Qjp1 < aj/”'jﬁj/#J (4.13)
for all j sufficiently large, then

_ _ 1—
limsup f(t) — liminf f(¢) = ﬁ ,

and as t — oo the solution u fails to converge in LP for any p € [0,00]. Its w-limit set consists of all
the equilibria s for |s| < %;—Z
Observe that
Ho
1+n

s 0< Z(—l)jajuj < Qo lbo-
320

—Vo = pu — pr — Z(—l)jajuj ; = pr =
=0

Thus the hypotheses imply 0 < —7y < pg < 1 and it follows that u(x,0) € ®; for all z € Q; j = I,m,7.
Moreover fi, pi > 0 and u(z,0) € @, for all x € Q; with j > 0, since |(—=1)7a; — To| < 3.

Remark 2. In case 2 = [0,1] and v is the Lebesgue measure on [0, 1], we can ensure the initial data are
monotonically increasing by an explicit choice of the §2;, setting

L pon 13 3 o
O =10 >— U ===, LH=(-+—=1],
: [0’4 1—772)’ ' {4 4] <4+1—n2

and

3 po’t* 3 o ,
(4—}—1772,44—1”2 for even j > 0,

Q; =

L oo’ 1 pon™? )

- — - — for odd j > 1.
[4 L—g2d 1_q2 ) 0009 =
4.4 Ordering of phase transition times

In this subsection our goal is to prove part (i) of the theorem. The ideas for this part of the proof will also
apply to the case of cubic nonlinearity with few changes, see Section 5 below.

12
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To begin we set some notation. Let u;(t) denote the value of u(z,t) for z € Q;, j =1,m,r and 0,1,2,.. ..
Noting that u;(0) lies in the middle phase ®,, for j =m and 0,1,2,..., we let 7; = 7(£2;) denote the phase
transition time for all z € ;. For convenience we also write 7_; =0 and ov_; = 1.

First, we claim 7, = 7(,,) = +00. The proof is simple based on preservation of order, the invariance
of the interval [a,b] = [—32, 2], and mass conservation. Preservation of order (Lemma 1) and the invariance
of [a,b] implies that for all ¢ > 0,

a < uj(t) < um(t) <ug(t) <b for jodd or =1, and k even or = r. (4.14)

Supposing 7, < 0o, we have either u,, (7,,) = % or —%. Consider the first case. Then by mass conservation
and (4.14), at time t = 7y,

_ 31 1 3
0=u>a m+zuj + U (T um+ur+zuj =5 71T5 3=0 (4.15)
jodd jeven
a contradiction. A similar contradiction obtains if w,,(7,,) = —%. This proves the claim.

Because now ming<¢<r |tum () £ %\ > 0 for all T, and a; — 0 as j — oo, by simple continuity with respect
to initial data we can infer that 7; — oo as 7 — oo.

Next we claim the phase transition times 7; strictly increase with j for j > 0. The argument is based on
a refinement of the estimates above. By preservation of order we have

u;(t) < ujta(t) < um(t) < upga(t) < ur(t) for all j odd and k even.

Hence 749 > 7; for all j > 0.

Lemma 6. For anyt > 0, let
Ji(t) =min{j odd : 7; > t}, Jr(t) = min{j even : 7; > ¢}.

Then we have the bounds
1

1
U (t) < = = W, 1) » U (T) > ~3

2 +Mj7‘(t) :

Proof. The sets of points initially in the unstable phase that transition into the left and right stable phases
at time ¢ or later have measure respectively given by

() =v({z: b <ulz,t) < um(®)}), er(t) =v({x tun(t) <u(z,t) <al), (4.16)
which here satisfy

X 11, X 1),
a(t)=u—-wt)= ) Nj:i]’n ert) = e —m(t) = ) “k:ﬁ'

11—
odd j>7; even k>j,

Using these quantities we can obtain a bound on w,,(t) with inequalities similar to (4.15). Namely, preser-
vation of order and invariance imply

0=1u>a(y — &) — ag; + um () (fm + ) + alfr — &), (4.17)
0 b(fi — €1) + U () (€1 + fim) + a&p + b(fir — £,.). (4.18)

13



S. Park and R. L. Pego Nonlocal gradient flow

Recalling a = —b = —% and b= —a = —% it follows
-1
1 1 1 1 2¢; 1 24,
m t < — r — —&p — = - — ==, 4.19
um(t) (2“) <4+2E El) 2 1+2, 2 1-n2+2u, (4.19)
1 1 1 2, 1 21
m t > — _— = = r = —— = —— 7JT . 420
U (1) <2+€z) ( 1 2€z+€> 2+1+251 2+1_7]2+2sz (4.20)
Since 2 > 1 —n? 4 2u; for all j, this finishes the proof of the lemma. O

Now we finish the proof of part (i) of the theorem, considering even and odd cases separately. Let k > 0
be even. Then by Corollary 1, at t = 7, we have
1

are™ = up(t) —un(t) = - —

5 um (t) < 1.

We claim 741 > 7. If not, then for ¢ = 711 we have ug41(t) = —%, Ji(t) = k+1 and j,.(t) < k, hence by
Lemma 6 and Corollary 1 we have

1 - o Ok+1
pr < ) < U (Trg) + 3 = 1€ S appe™ < a: : (4.21)

This contradicts (4.12), proving Tx41 > 7%. Similarly, for j odd, at t = 7; we have oje™ = up,(t) + % <1,

and if 7;11 < 7; then for ¢t = 7;11 we have u;1(t) = 3, j-(t) = j + 1 and ji(¢) < j, hence

a

. j+1

Hi<g— Um (Tj41) = o€t < ———.
Qj

Thus we conclude 7j41 > 7; for all j = 0,1,2,.... This finishes the proof of part (i) of the Theorem.

4.5 Proof of non-convergence

For times ¢ in any interval (7,_1,7;) between transition times (k > 0), f(t) evolves according to (4.6), which
can be written using (4.16) as

—f(t) = —2ex(f(t) = i), ex=ate = 1'%77, fidl=+——— (4.22)

because for k even we have ji(t) = k + 1, j,(t) = k, and for k£ odd we have j;(t) = k, j,(t) = k+ 1. Then
because € > g,
[F(7i) = F9 = [ (mior) = Frdle v (emmion) < gmpbmemmims) (4.23)

Since age™ = 1 — u,,(7%) for k even and age™ = wp,(13) + & for k odd, by Lemma 6 we infer age™ > pip41

and ai_1e™-1 < 1 in both cases. Hence for k sufficiently large,

Te-Tho1 5 A —1Hk+1
073

—1/pk—1

2
e > n kal 9

due to the hypothesis (4.13), and it follows
pk (T — Te—1) > logn2 —nlogBx_1 — o0 as k — co.

Thus |f(7) — fr4 — 0 as k — oo, and this entails the result in part (ii) of the Theorem.

14
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4.6 A gradient inequality, insufficient for convergence

It is curious to note that for the piecewise-linear nonlinearity in (4.1), a gradient inequality holds that is
very similar to the one from Lemma 3 that holds generally in the case of finite range.

Lemma 7. Suppose u € B(Q) takes values u(z) € ®; for x € Q; for j =1,m,r, where QU Q,, U, = Q.
Let s = f(u) = fQ flw)dv and let ¢p(x) = =1+ s,—s,1 + s in Q;, Qp,, Q, respectively. Then

B~ E(0)~s [ (u-0)dv

Q

1 N2
<5 [ 170 - Fa dv

Proof. Since u(x) and ¢(x) belong to the same phase for all z, Taylor expansion of the piecewise-quadratic
primitive F of f, and the facts that f' = +1 and f(¢(x)) = s = f(u) everywhere, yield

F(u) = F(¢) = s(u—¢) = (f(¢) = s)(u— ) + 5 () (u—¢)* = £5(u— ¢)*
and L
[f(u) = F@)]* = |f(w) = f(O)I = u—¢|*.
Upon integration, the Lemma follows. O

The difference with the finite range case is that the equilibrium states ¢ in this Lemma are chosen with
values ¢(z) in the same phase as u(z) at each point, but here this means ¢ may not have the same average
as u, and may never be in the L? w-limit set of the solution.

5 Non-convergence for a cubic nonlinearity

In order to demonstrate that the possibility of non-convergence of solutions of (1.1) is not due to any lack
of analyticity of the nonlinear function f, we extend our analysis from the previous section to deal with the
case that f is cubic and nonmonotone, fixing

flu) =u® —u. (5.1)

It will be evident that our analysis can extend to other nonlinearities with N-shaped graph that admit a
linear relation between distinct roots of f(z) = s, but we fix f in the form (5.1) for simplicity.

Moreover, to show that non-convergence is not restricted to solutions having countable range or limited
regularity, we allow initial data of a more general type. When € is the interval [0,1] or a bounded domain
in R?, for example, our assumptions will permit initial data and solutions to be C*> smooth.

5.1 Phases, equilibria, and transition times

Our solutions will take values in the phase intervals given by

o, = [a,b], P, =(ba), P,.=]a,b], (5.2)
with
2 3 1 4 1 2
a = ) = ) = =) =
V3 V3 V3 V3
See Fig.1.

According to Lemma 2, the interval [a, b] is invariant and the phase intervals ®;, ®,. are pointwise stable.
Because of this, Lemma 5 holds in this context mutatis mutandi, and transition times 7(z) € (0, co] are well
defined for states u(z,t) initially in ®,, to exit into either ®; or ,.

15
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Q>
[~ ) PR

a b u

Figure 1: Cubic f and phases.

For each s in the interval .J := (f(a), f(b)), the equation f(z) = s has a solution z;(s) € ®;, j = I, m, .
These three roots of the cubic equation f(z) = s for s € .J satisfy the trace relation z;(s) 4 zm (s) + 2-(s) = 0.
Our solutions will have asymptotic limits among the degenerate family of equilibria 4, taking the values
zj(s) on sets Qj, j =1, m,r of measure fi;, with

(5.3)

B .1
Nl*,umfﬂr*?)-

By consequence of the trace relation, the equilibria 4, all have mean fQ s = 0 independent of s.

5.2 Heuristics: solutions with three values

The main idea for non-convergence with the cubic nonlinearity is similar to that for the piecewise linear
case: Perturbing the equilibria i by moving a tiny amount of mass from the stable phases into the unstable
phase can cause a slow drift by a large amount. The mean force does not appear to evolve in such a simple
way as before, so we provide a different motivation.

Consider a solution taking three values u;(t) € ®;, j =, m,r, on sets ; respectively having measures

Ml:%*i?h /Lm:%+5l+5ra Nr:%*é‘rv (5.4)
for small positive constants e, ¢,, and assume that 0 = @ = pyu; + tpmUm + e, which entails
F(u + U+ Ur) = (Up — Um) — €1(Un — wg) - (5.5)

Note that u, — u,, and u,, — u; are positive, and that z.(s) — z,(s) and z,(s) — z(s) change in opposite
directions as s increases. Thus we are motivated to examine the dynamics of the “phase ratio”

Uy — U,

R= (5.6)

Um — U

16
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as a proxy for the level of f(¢). We find that

&R =— (f(u» — flum)  f(um) — f(m)> R

Ur — Um Um — U

= _('U:l + ur + um)(ur - Ul)R, (57)

since u? — v3 = (u? + uwv + v?)(u — v). By (5.5) this becomes
OR = S(EZ(um —u) —&r(uy — um))(ur —w)R

€l

= 3¢, ( - R> (up — ug)(Up — Upy ). (5.8)
T

Thus the ratio R is driven to approach ¢;/¢, at a slow exponential rate. Similar to the piecewise linear case,

the key to obtain non-convergence will be to ensure that solutions behave like these three-value solutions over

long time intervals, with the ratio ¢; /e, effectively held close to constant, but forced to change substantially

infinitely many times.

5.3 Initial data and main result

We will consider initial data structured in a way roughly similar to the piecewise linear case, but will now
allow for small transition zones Qj C Q. In case Q = [0,1] or a bounded domain in R?, say, these transition
zones permit the initial data to be chosen to smoothly interpolate between locally constant values in the rest
of Q. The resulting solution is then a smooth function of x and ¢.

Similar to before, we write p; = v(€2;) for j =1, m,r and all j > 0, and suppose that

1 1 1 -
Mlzg_zuj7 /,Lng, MT:§_Z/J']7 szﬂon], ]:071u27"'a (59)

jodd jeven
where 1 > 0 is sufficiently small; it will suffice to suppose n < %. Further, we take Qj C Q; to satisfy
fij = v(€y) = 0u;, with 6 € [0,7%). (5.10)
Like before, we will assume the initial data satisfy u(z,0) = vo(x) — Dy, but where now

—1,0, 1 in Q;, Q, Q, respectively,
vo(x) = _ ~ (5.11)
(—1)]0(]‘ iHQj\Qj, ]2071,2,

Furthermore, setting a_s = a_1 = 1 we require that

0<a; <(=1)v(r)<aj—o inQ; j7=01,2.... (5.12)

This means vo(x) is between (—1)7a; and (—1)7a;_y whenever & € Q;, for all j > 0. Note that we recover
piecewise constant initial data by taking either # = 0 or u(x,0) = o for all x € Q;. The positive constants
a; must be small and decrease to zero sufficiently rapidly as described below.

Under the mild smallness conditions

1

n S ) Ho S 10° (%) S ) 0 S 7727 (513)

oo|—
[

we can ensure that the initial values are in the correct phases, with u(x,0) € ®; whenever z € ; for

17
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j=1,m,r, and (=1)7a; — 0y € @y, for all j > 0: Observe that

= o — fu + Z ( 1 e + / (vo(z) — (l)jaj)dz/(:r)> . (5.14)
7>0 Q;
We have that i, — f = —%, that 0 < 37~ (=1)7a;p; < aopo, and

>

Jj=20

2
£ S < 0
7>0 T]

[ (v0() — (~1) 0 )dv(x
2

Then (5.13) implies ay < 1+n’ hence |vg] < g (ﬁ + %2) < po. Noting b—1= Mﬁ > 1—10 > po, it

follows that —1 + 79 € ®;, that 1 + 99 € ®,, and that ap + [vp| < 75 < a@. This will ensure all the initial
values are in the correct phases as stated.
Our main result in this section may now be stated as follows.

Theorem 3 (Non-convergence with cubic f). Let the initial values u(x,0) = vo(x) — Uy as described above.
Assume (5.13) and assume (¢);j>0 s a positive decreasing sequence satisfying

it 1/
o < <j2> for all j > 1. (5.15)

Then: (i) The phase transition times 7 = 7(£; \ Qj) satisfy Ty, = +00 and Tj41 > 75 for all § > 0, with

. =1/pj41
e < (?) . (5.16)

(ii) If moreover for sufficiently large j we have

1/pj
1 i 7 3 18
o < — (a{, 1) e 2 where k= log , (5.17)
24\ 2 Hj+1 Hj+1

then u(-,t) does not converge ast — oo (in any L, 1 < p < o).

Remark 3. Note x; > 1 for all j >0, as pj41 < po < 1—10. Condition (5.17) is much stronger than (5.15) as

) 6/pj+1
e—2f€j _ (IU’J+1) < ;. A

18

Remark 4 (Smooth initial data). To construct smooth initial data satisfying the assumptions of Theorem 3,
first consider the case © = [0, 1] with intervals Q; of length 4, defined as in Remark 2, but with the numbers
1+ and 2 replaced by 1 and 2 respectively. Fix a smooth, nondecreasing “ramp” function © : R — R such

that ©(z) =0 for <1 —6 and ©(x) =1 for z > 1. Then set

-1, 0, 1 in €, Q, Q, respectively,

VolT) =
o) 7:(x) nQ, j=012...,

where ©; is a smooth function interpolating between (—1)7a; and (—1)7a;_o on €2, defined by

( ) Qg + (O(j_Q - Ozj')@ -
v(x) =
’ —0oj — (o2 — 0)O ==

for j even, with c¢; = inf ),

for j odd, with ¢; = sup €2;.
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Yo
Qjt2 _ Q;

Q42

Figure 2: Schematic illustration of smooth initial data near €2; for j even, with transition zones Qj and Qj+2.

Then 9;(z) = (—1)7a; on Q; \ Q;, where Q; C Q; is the closed interval of length 6y, at the right end of Q;
for j even (resp. at the left end for j odd). Clearly vy is smooth everywhere in [0, 1] except possibly at the
endpoints of £, = [%, %] However, vy is smooth at these endpoints also, as a consequence of the fact that
in Qj we have 9Fvy = O(uj_kaj_g) which approaches zero as j — oo for each fixed k£ > 1.

We can make a similar construction of smooth initial data on a domain Q = B(0,r) C R? for suitable
r > 0 using a radial construction. Further, such radial initial data v can be composed with any smooth
volume-preserving diffeomorphism from R? to R? to produce more general smooth initial data in R? with

the same distribution of values. A

5.4 Ordering of transition times

We prove part (i) of Theorem 3 in this subsection. Henceforth, for j = [,m,r we let u;(t) denote the

value of u(z,t) in Q;. For j = 0,1,2,..., we let u;(t) denote the value of u(z,t) in Q; \ €, and we define

7; = 7(Q; \ Q;) be the corresponding phase transition time.
Lemma 8. The transition time Ty, = 7(Qy) = +00. That is, um(t) € @, for all t > 0.

Proof. By preservation of order we have

({w i u(e,t) <un®P = =1 vz unt) < u@mH}) = i = L.
By invariance of [a, b], if u,,(t) escapes @, on the right at some finite time t,, then u,,(t.) = a = —%a and
0 =1a > ajiy + tm(t) (fom + fir) = 0,
a contradiction. Similarly, if wu, (t.) = b= — b,
0 =10 < U (t«)(fig + firn) + biir = 0.
Hence u,,(t) € ®,, for all ¢t > 0. O

Note now that by (5.12) and preservation of order, for any = € Q;, u(z,t) can exit @, only at b if 7 is
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odd, and only at a if j is even. Since (—1)7 (u(z,t) — u;(t)) > 0, the transition time
r(z) <7, foranyz €, j=0,1,2,... (5.18)

Let €,(t),e,(t) be as defined in (4.16). Equivalently we have

iy
—
~
=
I
N
—~
~
8
S

u(z,0) < um,(0) and 7(x) > t}),
w(z,0) > u, (0) and 7(x) > t}). (5.19)

—_
8
Q>
vV IA

These functions are left continuous in t. Because

~ > H.
v\ Q) =(1—0)p; and Y pjyo = : —Jn2’
k=0

by the assumption 6 < n? from (5.13) we have that whenever ¢t < 7; (so u;(t) € [b,a] = ®,,),

ei(t) for j odd 14
L=y < (1—0)p; < <. 5.20
(L=n ) < ( )uj_{er(t) for j oven [ = 112 (5.20)
Lemma 9 (Bounds on uy,). Let ji(t) and j.(t) be defined as in Lemma 6. Then
R (b—a)e - (b—a)e,
() > m(t) —b> O 5.21
G — um(t) > i e, Mo U (t) e He® (5.21)

Proof. We will proceed as in the proof of Lemma 6. Preservation of order and invariance imply that

> a(juy — 1) + bep + tum (t) (fim + &r) + aljir — 1),
< b(jir — 1) + U (t) (61 + fim) + Ggr + bty — &)

|

0=
0=

]

The first inequality implies

afim + &r) + alfu — 1) + bey + alfir — &) _ (b—a)e

a—u t) > N - = 9
m( ) Hm + € o, + Er

where we used afi; + Gfim, + aft, = 0. Similarly, using the second inequality and Bﬂl + Bﬂm + bii, = 0, we
obtain
7 _B(ﬂl —e1) —agp — b(fi, — &) — B(ﬂm + 1) (b—a)e,

U (£) — b > - = — .
Hm +5l Hm +€l

Finally, the remaining bounds in (5.21) follow by applying the first inequality in (5.20) in the numerators
and the bounds &, &, < po/(1 —n*) < } in the denominators. O

In order to obtain the proper ordering of transition times, we need to control the expansion rate of
|tm, () — u;(¢)| inside the unstable phase ®,,. For this purpose, note that

w,v € ®,, with (@ —v) A (v —b) > h, or
|f(u) — f(v)] > hlu —v| whenever < u,v € ®, with v —a > h, or (5.22)
u,v € O withl;—vzh.

To see this, suppose u,v € ®,, and h < @ —v < v — b. Then necessarily h < a, as (a—v)A(v—-20) <a.

IN
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Explicitly computing, since uv and v? are each less than a(a — h), and 3G = 1, we have

‘f(U) —f(v)

=1—-u?—w—v*>1-a>-2a(a—h)=2ah>h.
u—"v

By symmetry, we can deduce the same inequality when (v — b) < (& — v). Similarly, when u,v € ®, and
v—a > h,

f(u) = f(v)

—u?tuw+vP—1>(a+h)?+ala+h)+a>—1=v3h+h?>>h
u—v

and the case when u,v € ®; can be verified by analogous calculations.

Proof of Theorem 3 part (i). By preservation of order we have 71 > 7; for all j > 0. Supposing that
Tj+1 < 7; for some j, we may take j minimal. Then for 0 < ¢ < 7,41 < 75, both ji(t),7,(t) < j+ 1, so the
bounds in Lemma 9 apply to yield

(G = um) A (U —b) > pj41.
In case j is odd, we infer that for all t < 744,
Op(wm — ug) = f(u;) — f(um) = pja(wm — uj),

whence at t = 711,
a—b> |um —uj| > ajetitiTir (5.23)

In case j is even, the same inequality follows in similar fashion by computing 0;(u; — ). Now in either
case, since |f'| <1in ®,, and u;j41(7j41) = @ or b, use of Gronwall’s inequality yields

fi+1 < um(Tj41) — wj1(7j41)| < ajpre™ (5.24)

The inequalities (5.23)—(5.24) imply

s 1/pj41
> —Ti+1 . J
Qj+1 2 Hjt1€ > Myt | 2 i )
& —

which contradicts the assumption (5.15) since @ —b < 2. Hence Tj+1 > 7 for all j. The bound (5.16) follows
because in (5.23) we can now replace 7j41 by 7;. O

5.5 Analysis of non-convergence

By the result of part (i) of Theorem 3, we have 7,41 > 7; for all j. Then it follows that |j;(t) — j-(t)| = 1 for
all t, and whenever ¢ < 7;, necessarily both j;(¢),j,(¢t) < j + 1. Thus by Lemma 9,

b+ i1 < Upm(t) < a—pjp1  whenever t < 7j. (5.25)

In this section our goal is to prove part (ii) of Theorem 3. The proof is more involved than in the
piecewise-linear case. We proceed by examining the evolution of the phase ratio, then establish estimates
involving exponential contraction in the stable phases, and finish by an argument by contradiction.
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5.5.1 Evolution of the phase ratio

Our strategy to obtain non-convergence is to study the evolution of the phase ratio R defined exactly as in
subsection 5.2, by
Up — U,

R= (5.26)

Um — U
The evolution equation (5.7) continues to hold in the present context. In order to obtain an analog of (5.8),
we need to express the sum wu; + u,, + u, differently using conservation of mass. For this purpose we alter
the definition of &;(t), e, (t) to always include whole pieces, as follows:
For any ¢ > 0, let j,,(t) indicate the index of the next value u; to change phase (by leaving ®,, = [b, a)),
so
() = minj s 75 > £} = ju(t) A i (D).

Then t € (75,,_1,7j,]. This means that if j = j,, or j,, + 1, then u;(t) € ®,, but w4 o(t) ¢ ®p, so u(€Y,t)
may be split between phases. For all other j, the sets u(€);,t) are entirely in one phase—the unstable phase
®,, if t < 75, and one of the stable phases ®; or ®,. if ¢ > 7, for j odd or even respectively. Accounting only
for those j for which u; lies in (the closure of) the unstable phase, define

&(t) =v (U {Qj b <uy(t) < um(t)}> = >, (5.27)

odd j>jm (t)

5(t) = v (U (9 £ um(t) < u;(t) < a}) = Y . (5.28)

even j > jm (t)
Remark 5. The relation with ¢;, ¢, is as follows. Let us denote the part of 2; outside ®,, by
vi(t) = v({x € Q; :u(x,t) < bor u(x,t) > a}),
and note 0 < v;(t) < Ou; for j > ju(t) because u; € [b,a]. Then

j = jm<t) odd = gl = 5:2[ —Vjn s Ep = EAT —Vjn+1,

=7 ! : (5.29)
Jj=Jm(t)even = e, =&, —v;, , =& -V, +1-

Recall that
U = Uy + o Um + ety + Z <(1 —0)pju; 4—/~ u> . (5.30)
Q

§>0 i

Since v(€2;) = 0u;, for any constant v € R we can write

(1—9)ujuj+/ uz(l—@),uj(uj—v)—l—/ (u—v)dv+ p,v.

Q; &y
In view of (5.9) and (5.27)—(5.28) then, we find that

w= w(fu— &)+ Um(fim + & + &) +ur(fir —&r) + H(t), (5.31)
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where H(t) = H;(t) + Hy,(t) + H.(t), with

Hi(t) = Z ((1 — ) (uj —up) +/ (u(z,t) —w) du(ac)) , (5.32)
odd j <jm (t) Q;
Hp(t) = Z ((1 - e)ﬂj(uj - Um) +/ (u(z,t) — um) dy(x)) ) (5.33)
Zm (1) %
H.(t)= Z ((1 —0)pj(u; — uy) +[ (u(z,t) — uy) du(m)) . (5.34)
even j<jm (t) Q2
Since @ = 0 and by (5.3) we obtain our desired relation,
%(ul F U ) = En(Up — Up) — Er(Um — wy) — H(1). (5.35)

Now, by using (5.35) in the evolution equation (5.7) for the phase ratio R, we infer that
&R:BGAmn—m)—éﬁw—umy+H@D&w—u0R, (5.36)

which can be compared to equation (5.8) for solutions with three values. As this comparison suggests, our
aim is show that H(t) is tiny enough over large enough time intervals that non-convergence follows.

5.5.2 Estimates in the stable phases

Lemma 10 (Estimates on f,u;,u,). Let h; = %Mj+1 for all j. Then whenever t < 7; we have

w(t) <b—h;, () >a+h;,  flathy) < f(t) < fb—hy). (5.37)

Proof. We prove the bounds on f(t) first. Observe

f@) > fla)(fu — &) + f(um)(fu + e1) + f(@)fir
= f(@) + (f (um) — f(@))(fu + €1)
> f(a) + (f(@ = pje1) = £(@) (fr + pj41) 5

f(t) < f(i))ﬂl + f(um)(fom + &) + f(0)(ftr — &r)
= £(b) + (f (um) — (D) (jim + 1)
< )+ (Fb+ pjgn) = F(B)) (frm + pj41) -

Since 0 = f/(b) = f'(a), Taylor expansion gives, for 0 < h < 1/v/3 = a = —b,

f(a—h) — f(a) = 3ah? — h® > 2ah? > h?,
F(b+h) — f(b) = 3bh> + h® < —2ah* < —h?,
Hence
f(t) > f(a) + N?H(% + 1) > fla+ %Mjﬂ) ) (5.38)
F@t) < F(b) = 1241 (3 + pya1) < (0 — Fpjin)- (5.39)

This proves the claimed bounds on f.
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Note that initially u;(0) = —1 — 9y < b — ho and ur(0) = 1 — 99 > a+ hyg, since || < po < % and
ho < 2%0. Then the claimed bounds on u; and u, follow from the bounds on f, the evolution equation (1.1),

and the monotonicity of f on the invariant intervals [a, ] and [a, b]. O
Lemma 11. Whenever 7; < t < 73, we have:

—hk(t—Tj)

ur —u; <e for j, k even, uj —uy < e~ M=) for ik odd.

Proof. Suppose 7; <t < 7. In case j, k are both even, we know u, > a + hj by Lemma 10, so

flur) = fluy) _ fla+he) — f(a)

— > e = 3ahy + hi > hy, .
It follows
O(ur —uj) = —(up — uj)w < —hg(upr —uy),
hence
up (t) — ui(t) < (up(ry) —uj(15))e” ") < (b — a)emlt=mi) < e=hrlt=mi) (5.40)

In case j, k are odd, we know u; < b— hi, hence

Flug) = flw) _ f(b) — f(b— hy)

p— > ™ = —3bhy + h2 > hy.
It follows
Or(uj —wy) = —(uj — ul)w < —hgk(uj —w),
thus
wj(t) — ui(t) < (uj(rj) = wi(r;))e =7 < (b — a)e ™) < emhult=m) (5.41)

Lemma 12 (Bounds for H(¢)). For 0 < 1,_1 <t < 7, we have
|Hop(8)] < 2un(cwel +6),  [Hy(t) + Ho(t)] < 2uge” =1
Proof. For the given range of ¢t we have j,,(t) = k. To prove the bound on H,,(t) defined by (5.33), we use

the bound |f'| < 1 in ®,, to infer |u,, — u;| < aze' for all j > k, and the bound |u — u, (t)] < b—b=+/3 in
2. Then since n < % we infer

[Hin ()] <Y (1= 0)pjaze’ + 0p;(b— b)) < 1‘fn(aket +V30) < 2ui(arel +6). (5.42)
jzk
By Lemma 11 we find
|H(t) + H-(t)] < Zuje_h’“(t_Tf) < 2uge” e t=mr-1) O
Jj<k

Note that H,,(t) can be kept small for any specified time by forcing the «j, to decay faster, whereas the
exponential contraction in the stable phase will force H;(t), H,-(t) to be small for ¢ — 7,1 large enough. We
will see that smallness of H(t) implies lower bounds on the drift of the phase ratio R in (5.36), leading to
non-convergence.
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5.5.3 Proof of non-convergence

In this subsection we complete the proof of part (ii) of Theorem 3. For use below, recall hy = % Wi+1, and
note that x; satisfies

6 1
K = —log hpet ™ =6, Qe Err < — k41 - (5.43)

Proof of Theorem 3 part (ii). 1. We argue by contradiction. Supposing that lim; ,o, u(-,t) exists, there is
some § € [f(a), f(b)] such that as t — oo,

ft) =3 and w;(t) — 2;(8) for j=1m,r.

We will consider the cases § < 0 and § > 0 separately. First consider the case § < 0. Then necessarily
21(8) < =1 and 0 < 2,,(8) < 2.(8) <1, and as t — oo we have

R(t) —» R := z (? € [0,1]. (5.44)

(8
zm(8) —
In particular, if T is large enough, then for all ¢ > T we have

w(t) < =1+ 20 un(t)>—-3n% and R(t) <2. (5.45)

We will contradict the last conclusion by showing that for any sufficiently large odd k, necessarily R(ty) > 12
for some ty € (Tp—1, k).
2. We claim that for any sufficiently large odd k with 7,1 > T,

T > Th—1 + 2K . (546)

Indeed, since k is odd and 7 < %,

—_

- 1
are™ = U (Tk) — uk(T) = U (7)) —b> —=n* + —= > —.

2 V3 4

But in light of (5.16) and the condition (5.17), we get that for all ¢ < 7,1 + 2Ky,

. 2 1/Hk 2 1
< Fe < .
are’ < ay (ak-1> <91 (5.47)

Thus (5.46) holds.
3. For kodd and T < 7,1 <t < 7%, we have

and equation (5.36) takes the form

—u H(t
A
1—n? ke

O R = 3uy ((1 - nR) ) (up —up)R. (5.48)

Now we can deduce from Lemma 12, (5.13), (5.47) and (5.43) that for m,_1 + ki <t < Tp—1 + 25k,

—hk}{k
O] gy <L, O+ HO]  2poe e

1
=, < (5.49)
ke 6 e e

O =
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It follows from (5.45), (5.48), the fact u, —u; > a —b> 1 and nR < 1 that for all ¢ in this range,

3tR Z /LkR .
Using (5.25) and Lemma 10 we can ensure u, — ,, > 4hg, hence for t = 7,1 + K,

Uy — Uy, 4hy,
R(kal'i_fik):u _UZZ&_aZ2hk.
m

Using (5.43), we infer that at time ¢y := 7x_1 + 2Kk,
R(tk) 2 Qhkeukﬁk 2 12.

This contradicts R(t) < 2 for all ¢ > T, and concludes the analysis in the case § < 0.

4. The treatment in the case § > 0 is broadly similar. In this case, we can say that

and find T large enough so that for all t > T,
u(t) >1—3n% u,(t) <3in’, and R(t)™' <2

Now taking k even and sufficiently large, such that 7,1 > T,

o1 1
ager, = up(TE) — U (1) > @ — 5772 > 7

while (5.47), and hence (5.46), follow as before. For k even and T' < 73,1 < t < Ty,

Jm(t) =k, &(t) = nér, éT(t) = 1 ﬁkn27
and we find (5.36) equivalent to
_ _ - H{(t) _
QR =3 ((1—pR™ Y2 »— )R
: ik (( nk™") 1= I (up — )

As before, for 7,—1 + Kk <t < Tp—1 + 2Kk, the bounds (5.49) hold, and we can infer
R > R

for all ¢ in this interval. At the time ¢t = 7,_1 + k; we have

m — 4h
Ry +ry) = 2 > 2 2,

and infer R(7y_1 + 2k;) % > 12 like before, obtaining a contradiction. This finishes the proof.

5.6 Unstable nature of non-convergence

Now we present a proof of Proposition 1.

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

Proof of Proposition 1. 1. Suppose u does not converge in L?(Q) as t — co. As f = u® — u is not constant

on any open interval, we deduce f(t) does not converge either; see [26, Lemma 3.4]. Hence we may choose
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an open interval J such that
liminf f(¢) < inf J < sup J < limsup f(t), (5.57)

and such that .J contains only regular values of f, omitting both critical values f(a) and f(b). Moreover,
due to the fact from (1.8) that ||OsulL2 — 0 as t — oo, we infer by differentiating (1.3) that the Lipschitz
function f(¢) has derivative 9;f(t) — 0 as t — oo in its set of differentiability. If we let J,, denote the
“middle third” of J, then it follows there exist sequences Ty — oo and 7, — oo such that

f(t)e J,, foraltel =TT+ and all k € N. (5.58)

Letting 0 = |J,,| denote the length of .J,,, we have |s — §| > ¢ whenever s € J,,, and § ¢ J.

2. We first dispose of the possibility that sup J < f(a) or f(b) < inf J. In this case f has a unique local
inverse z(s) defined for s € J satisfying f(z(s)) = s, and f is strictly monotone increasing on z(.J). Thus
the interval z(J) is pointwise stable during each interval I, (cf. Lemma 2), for when f(t) € .J,,, we have

—fW)+ft) < =6<0 ifv>supz(J), and —f(v)+ f(t)>6>0 ifv <infz(J). (5.59)
Moreover, whenever k is so large that 7, = |I)| > 7 := 2M/§ where M := sup |u| + 1, then
u(z, Ty +7) € 2(J) for all z € Q. (5.60)

The reason is that |u(z, Tx)| < M, and the quantity u(z,t), if not initially in z(J), must monotonically move
toward it with speed exceeding 0, by (5.59). Since 76 = 2M, u(z,t) must enter z(J) before time T}, + 7, and
cannot escape as long as t € Ij,.

But now, since (5.60) holds, Lemma 2 implies the interval z(.J) becomes positively invariant and therefore
u(x,t) € z(J) for all large t. This forces f(t) € J ever after, contradicting the choice of J in (5.57). By
consequence we must have

JCJ=(f(a), f(b)).

In particular, a < f~1(J) < b, i.e., a < v < b whenever f(v) € J.

3. By the invariance arguments of Lemma 2, the phase intervals [—M, b] and [@, M] are pointwise stable
during the intervals I when f(t) € J,,. Supposing k is so large that 7, > 7, for a similar reason as in step 2 it
follows that if u(z, Ty) € [—M, b] then u(z, Ty, +7) € z(J), and if u(z, Ty) € [a, M] then u(x, Ty, +7) € z.(J).
In particular this implies that there exists some T, = T}, + 7 such that u(x, Tk) € [a,b] for all .

For t > T, [a,b] is positively invariant and the phase intervals ®; and ®, are pointwise stable.

Then the sets defined for ¢t > T, by

Q(t) ={x: u(z,t) € ®;} forj=1m,r,

are monotonic for ¢t > T,. Indeed, the set Q,,(t) decreases in time whereas the sets () and Q. (¢) increase
in time. Thus, for each j = I, m,r, the quantities

Q7 =lim Q;(t) and p5° =v(Q°)

tToo J

exist. Let Q(t) = Qo () \ Q5 denote the “bad set” where u(z,t) is not in the phase it eventually enters.
4. We next claim that
Zp;?ozj(s) =au forallseJ. (5.61)
J

Fix s € J, and define ¢(z) = 2;(s) for z € Q3°, j = I, m,r, so that f(¢(x)) = s for all x and = > 152 25(s).
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Note that for some 5 > 0 we have
lv—z;(s)| < Blf(v) —s| forallve®;, j=1Im,r,

hence for t > T,
fule,t) — 6(@)| < Blf (ule,t)) — 5| for all & ¢ (1),

Taking t along any sequence ¢, — oo such that f(t;) = s and t; > T\, we deduce that

a—¢|* < /S2 u(z, ) — a(x)|* dv < BQ/S |f(u(z,t)) = f(tr)|? dv +2Mv(Q(t)) — 0

N Q)
as k — oo, since [, |f(u) — f|*dv = ||8yul|2, — 0. Hence @& = ¢, and this proves (5.61).

Property (5.61) implies that pe = % for each j = I, m, r, by Proposition 12 of [3], which concerns relations
between roots of cubic-like analytic functions. Then it follows % = 0, since the z; are the three roots of the
cubic u3 — u — s.

5. For the remainder of the proof, fix some & € Q5° and let ¢ = u(Z,0). We claim that

Q° =F where E = {z € Q:u(z,0) = c}. (5.62)

Here E denotes the level set where u(z,0) = ¢ = u(&,0). We can then infer that v(E) = u2° = %, and this
will almost finish the proof.

By (1.1), u(z,t) = u(Z,t) for all « € Fandalt>0 s0FEC Q°. Suppose then that some z exists in
Q2 \ E. Then u(z,0) # u(,0), yet both u(z,t) and u(z, t) lie in ®,, for all ¢ > T,. It remains to show this
leads to a contradiction.

Because f is decreasing on ®,,, and

O(u(z,t) —u(2, 1)) = —f(u(z,t)) + f(u(2,1)),

the difference h(t) = |u(x,t) — u(Z,t)| is increasing for all ¢ > T,. Moreover, 9;h(t) > n for some n > 0,
such that f(v) — f(w) > 1 whenever v,w € ®,, with v + h(T,) < w. This forces h(t) > a — b after time
T, + (@ — b)/n, which contradicts that both u(z,t) and u(Z,t) lie in ®,, = (b, a).

Hence Q° = E. For each point z € B := {z € Q : u(x,0) > ¢}, preservation of order and the argument
just made imply that u(z,t) € ®, for ¢ large enough, and for each point z € E_ := {a € Q : u(z,0) < c},
necessarily u(x, t) € ®; for t large enough. Then it follows E; = Q>° and E_ = Q°, whence v(E, ) = puf® =
and v(E_) = pu° = % This completes the proof.

[ col—

6 Sensitivity of convergence rates

In this section we comment on the possibility of curiously high sensitivity of convergence rates of solutions
of the finite-dimensional system (3.1) to perturbations of parameters involving degenerate equilibria. This
connects with the gradient inequality in Lemma 3(ii), which holds under the hypothesis that the state @ € RY
lies on a curve {¢(s)}, . ; of regular equilibria with constant average (1, ¢(s)). In this situation, provided we
happen to know that 4 lies in the w-limit set of some solution w(t) of (3.1), the gradient inequality implies,
by a simple and classical calculation, that w(t) converges to @ as t — oo at an exponential rate.

A small perturbation of parameters can drastically alter the asymptotic rate of convergence, however,
even if the asymptotic limit is not changed much. Consider the three-value case for piecewise-linear f,
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recalling from Section 4.2 that, upon fixing v; = fi; —¢; for j = [, m,r with ,, = —¢; — &, (4.6) implies

d - _
/O =2 +e)f(t) + (e —er — ).
When ¢, +¢; > 0 and —2¢, < u < 2¢y,

El—Ep— U

d - _ _ .
/) =2 +a) (fO) =)y, o= 2er + 1)

)

and f(t) contracts towards f°4 € (—3,1) at an O(e, + £;)-exponential rate.

On the other hand, setting ¢; = ¢, = 0, we see

f(t) = f(0) for all t > 0.

Thus, when u,,(0) = f(0), u,, is stationary and we observe an O(1) exponential convergence rate of the
solution, as

O (t) = —(u;(t) — £(0))  for j=1,7.

In fact, this can also be seen via the gradient inequality in Lemma 3; letting ¢;(s) = =1+ s,—s,1 + s for
j=1lLmrforse (-1 1) we see >.;vi¢;(s) = 0= u. Thus the gradient inequality in Lemma 3(ii) holds
and becomes a Lojasiewicz inequality with O(1) constant, implying exponential convergence at a rate that
is O(1).

Similar sensitivity can be observed for the cubic nonlinearity. Considering again the three-valued case
and setting R = == recall from (5.7) that

R = —(u; + uyr + upm) (u, — uy)R.

As

we have

atR = _S(ET’(UT‘ — Um) — El(um - ul) + 'l_L)('LLr - ul)Ra
3t371 = =3(e1(um — w) — er(Up — W) — ) (U — ul)Ril'

N

For 4 = 0 and for small ¢,,&; > 0, the ratio R evolves toward the equilibrium ¢;/e, at a slow exponential
rate that is O(e,). And for €, = g = 0, when @ > 0 (resp. —@ > 0), the ratio R (resp. R™!) contracts
exponentially toward zero at a rate that is O(a).

In case & = g; = €, = 0, however, the ratio R is invariant in time, and O(1) exponential convergence can
be observed. For instance, if

f(0) = um(0),  w(0) = —ur(0),
we see U, remains constant at 0 and u; = —u,., as R(t) = R(0) = 1 implies 34 = u, + u; + uy, = 3u,, = 0.
As f is symmetric about 0, this means f(¢) = 0 for all ¢ > 0, and thus
Owuj = —uj(uj; +1)(u; —1)  for j =17

Then u, and u; converge exponentially towards 1 and —1 respectively with O(1) rate.

In summary, even for finite-dimensional dynamics where convergence to equilibrium always occurs, the
exponential rate of convergence for the gradient system (1.1) can suddenly jump from O(1) to arbitrarily
small values upon perturbation of parameters, despite the “nondegenerate” nature of the curve of equilibria
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which enables a gradient inequality to hold with O(1) constants. Whether this phenomenon can occur more
broadly in other kinds of gradient systems remains to be seen.
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