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Abstract

We study all the ways that a given convex body in d dimensions can
break into countably many pieces that move away from each other rigidly
at constant velocity, with no rotation or shearing. The initial velocity
field is locally constant a.e., but may be continuous and/or fail to be
integrable. For any choice of mass-velocity pairs for the pieces, such a
motion can be generated by the gradient of a convex potential that is
affine on each piece. We classify such potentials in terms of a countable
version of a theorem of Alexandrov for convex polytopes, and prove a
stability theorem. For bounded velocities, there is a bijection between the
mass-velocity data and optimal transport flows (Wasserstein geodesics)
that are locally incompressible.

Given any rigidly breaking velocity field that is the gradient of a con-
tinuous potential, the convexity of the potential is established under any
of several conditions, such as the velocity field being continuous, the po-
tential being semi-convex, the mass measure generated by a convexified
transport potential being absolutely continuous, or there being a finite
number of pieces. Also we describe a number of curious and paradoxical
examples having fractal structure.
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1 Introduction

Imagine that a brittle body, such as a crystal ball, shatters instantaneously into
pieces which fly apart from each other with constant velocities. Experience tells
us to expect a large number of shards that may be extremely small.

To model this in a simple way mathematically, we represent the body by a
bounded convex open set Q < R?, and suppose its mass density is constant and
normalized to unity. We suppose that the body shatters into pieces represented
by a countable collection of pairwise disjoint open subsets A; whose union A =
LI, A; has full Lebesgue measure in . For simplicity we presume the pieces
travel by rigid translation with no rotation. This means that any point z in A
at time ¢ = 0 is transported to the point

Xi(2) = z + tv(2) (1.1)

at time ¢t > 0, where the velocity field v: @ — R? is a constant v; on A4;. It
is natural to require the pieces to remain pairwise disjoint, thus we require the
transport map X; to be injective on A for every t > 0. Given such a velocity
field v, we will say that v rigidly breaks Q into A;, i = 1,2,.... The number of
pieces A; may be finite or countably infinite.

We imagine that by observations around some time ¢ > 0 after shattering
occurs, we can determine the mass m; and the velocity v; for each piece. Our
first result shows that these data suffice to determine all the pieces (and thus
the entire flow) in an essentially unique way, provided we happen to know that
the velocity is a gradient of a convex potential.

Below, we call any function ¢: Q — R locally affine a.e. if it is affine on
some neighborhood of z, for a.e. x € . Given such a function we associate the
set

A ={xeQ:pis affine on a neighborhood of z}. (1.2)
This is an open subset of  with full Lebesgue measure A(4) = A(Q2). The
set A has countably many components A;, i = 1,2,3,..., which are open and

path-connected. For each i, ¢ is smooth on A; and its gradient ¢ is constant in
a neighborhood of each point of A;, so by path-connectedness there must exist
v; € R% and h; € R such that

p(z) =vi-z+h; forall ze A;. (1.3)
The following characterizes functions that are locally affine a.e. and convex.

Theorem 1.1. Let Q < R? be a bounded convex open set, let vi,vs,... be
distinct in R, and let m1, mo, ... be positive so that ., m; = X\(Q). Then there
is a function ¢ on Q (unique up to adding a constant) that is locally affine a.e.
and convez, so Vi = v; on an open convex set A; with A(4;) = m;.

Theorem 1.1 extends a geometric theorem of Alexandrov on unbounded con-
vex polytopes [1] to the case of a countably infinite number of faces. Later in
this introduction we will discuss this further.
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As a consequence of Theorem 1.1, for any given mass-velocity data m;,v;,
1 =1,2,... as described, there exists a velocity potential ¢ that is locally affine
a.e. and convex and induces a partition of €2 as the data require. Importantly,
this map X; is injective on A for all ¢ > 0, due to a simple lemma:

Lemma 1.2. Let Q < RY be open and convex, let ¢ : Q — R be convez, and let
Xi(2) = z+ tV(2) for all z € Q. If ¢ is differentiable at z,y € Q, then

| Xe(z) — Xi(y)| = |z —y| forallt =0. (1.4)

It is natural to wonder about a few things at this point. First, under what
sort of conditions can we ensure that a rigidly breaking velocity field is a gradient
of a convex potential? Second, what is there to say about the difference between
having infinitely many pieces versus finitely many? And further, is there a sense
in which the flows depend continuously on the mass-velocity data, justifying
finite approximation? This paper is aimed at addressing these issues.
Conditions for convexity. Our motivation for considering the first of these
questions stems from our work [22] with Dejan Slepcev. Certain results in
that paper imply, roughly speaking, that any incompressible least-action mass
transport flow must have initial velocity which is locally constant on an open
set of full measure, equal to the gradient of a potential ¢ which is locally affine
a.e. and semi-conver. Saying  is semi-convex is equivalent to saying that the
function

9u(2) = 3lel + t() (15

is convex for some ¢ > 0. In the immediate context, i; is the potential for
the transport map X; = Vi, and the convexity of v¢; follows from Brenier’s
theorem in optimal transport theory. (Below, we assume 1; = 400 outside .)

In the present paper, we work in a somewhat more general situation. We
study flows produced by a.e.-locally affine potentials that start from a convex
source domain but need not have least action or even finite action. In this situ-
ation, a result of McCann [24], used to prove uniqueness of energy minimizers,
directly implies that for any potential that is locally affine a.e., convexity is
equivalent to semi-convexity. From [24, Lemma 3.2] we immediately find the
following.

Theorem 1.3. Let Q = R? be a bounded open convex set, and assume p: 8 — R
18 locally affine a.e. Then ¢ is convez if and only if it is semi-convex.

Note that this result holds even without requiring the transport maps X;
determined by v = V¢ to be injective a priori. We can list three conditions,
different from semi-convexity however, under which the injectivity suffices to
entail the convexity of ¢ (and becomes equivalent to it, due to Lemma 1.2).

Theorem 1.4. Let Q < R? be a bounded open convex set. Let ¢: @ — R be
continuous and locally affine a.e., and define A by (1.2). Further, assume any
one of the following:
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(i) The dimension d = 1.
(i) The number of components of A is finite.
(iii) ¢ is C*.

Then ¢ is convex if and only if the map z — X¢(2) = z + tV(z) is injective
on A for all sufficiently small t > 0.

Under condition (i), the conclusion is easy to establish, of course. Condition
(ii) and the local representation (1.3) together will imply that adjacent pieces
must meet along flat faces where both convexity and injectivity reduce to a
local monotonicity property for V. For the case of condition (iii) we employ
the Hopf-Lax formula which formally provides a solution to the initial-value
problem for a Hamilton-Jacobi equation with convex Hamiltonian, namely

Oru + %|Vu|2 =0, u(z,0) = p(x). (1.6)

The maps X; provide characteristics for this problem.

Our last condition for convexity of ¢ is related to mass transport associated
with the convexification of ;. Below, we let 9 denote the Legendre transform
of 1, for t = 0, taking 1; to be defined by (1.5) in the convex domain € and
+0o0 outside. Then the convexification of 1, is the double transform ;*.

Theorem 1.5. Let Q < R? be a bounded open convex set. Let ¢: Q — R be
continuous and locally affine. Then ¢ is convex if and only if for some t > 0,
the push-forward of Lebesgue measure under the (a.e.-defined) gradient of the
convexification of 1y, written

ke = (V)
is absolutely continuous with respect to Lebesque measure X on RY.

The proof of this theorem involves the second Hopf formula for solutions of
the initial-value problem for a different Hamilton-Jacobi equation which formally
also has characteristics given by X;. Namely, for the following initial-value
problem with convex initial data,

o+ o(Vw) =0, w(a,0) = ¥ (x), (L.7)

with ¢ extended continuously to R?, the Legendre transform w = % is the
unique viscosity solution of (1.7), according to a result of Bardi and Evans [5].

The push-forward measure x; in Theorem 1.5 is also described as the Monge-
Ampére measure determined by 1, as we discuss in Section 6 below. In space
dimension d = 1, the measure k; reduces to a mass measure induced by sticky
particle flow, due to results of Brenier and Grenier [8]. When the velocity
potential is non-convex, the velocity is not monotonically increasing, and the
sticky particle flow is sure to form mass concentrations. When the dimension
d > 1, our use of concentrations in x; to characterize non-convexity for locally
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affine potentials ¢ is partly motivated by works of Brenier et al. [7] and Frisch et
al. [16] in the scientific literature. These works describe links between a Monge-
Ampere equation, optimal transport, and mass density in the “adhesion model”
in cosmology. The adhesion model is used to approximate the formation of
mass-concentrating structures in the universe such as sheets and filaments, see
e.g. [32, 30, 18].

Remark 1.6. It seems reasonable to conjecture that Theorem 1.4 should remain
valid in general, without assuming any of the additional conditions (i)—(iii), only
imposing some mild regularity assumption such as local Lipschitz regularity,
perhaps. That is, non-convexity of ¢ should imply non-injectivity of X;. We
have been unable to prove or disprove such a result. Thus it appears interesting
to investigate various criteria under which injectivity suffices to ensure convexity.
Theorem 1.5 shows that non-convexity yields a measure-theoretic version of non-
injectivity, however, insofar as concentrations form instantaneously in k.

Incompressible least-action flows with convex source. Combined with
our results from [22], Theorems 1.1 and 1.3 provide a classification of action-
minimizing mass-transport flows that are incompressible and transport Lebesgue
measure in a given bounded open convex set Qg in R? to Lebesgue measure in
some other bounded open set. A precise description of such flows is provided
in Theorem 8.2 of Section 8 below. There we will show that they correspond in
one-to-one fashion with countable sets {(m;, v;)} of pairs consisting of positive
masses m; and distinct velocities v; bounded in R?, such that Y, m; = A(Qo).

Infinitely many vs. finitely many pieces. Characterizing convex and piece-
wise affine functions by volume and slope data relates to a classic geometric
problem. In 1897, Minkowski [26, 1] proved that any compact convex polytope
is uniquely determined, up to translation, by the list of face normals and areas,
subject to a natural compatibility condition saying that the integral of the unit
outward normal field over all faces must vanish. Alexandrov solved a version
of this problem for unbounded convex polytopes whose unbounded edges are
parallel, and he presented his solution in his 1950 book Convex Polyhedra [1]
(see sections 7.3.2 and 6.4.2). We quote Alexandrov’s result essentially as re-
formulated by Gu et al. [17] in terms of convex, piecewise affine functions, as
follows.

Theorem 1.7 (Alexandrov). Let Q be a compact convex polytope with nonempty
interior in R?, let vq,...,vp € R? be distinct and let mq,...,my > 0 so that
Zle m; = A(Q). Then there is convez, piecewise affine function ¢ on Q (unique
up to adding a constant) so Vi = v; on a convex set A; with volume A(A;) = m;.

Alexandrov’s unbounded polyhedra correspond to the supergraph sets
{(zy) eRIxR:z€eQ, y=>o(2)},

whose unbounded edges are parallel to the last coordinate axis.
We remark that in [17], Gu et al. provided an elementary self-contained proof
for a generalization of Theorem 1.7, essentially equivalent here to minimizing
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§, © dX as a function of the constants h; in the representation (1.3) subject to the
given volume constraints on A;. This is a variant of Minkowski’s original proof
(presented in [1, sec. 7.2]) of the existence of bounded polyhedra with prescribed
face areas and normals through a constrained maximization of volume. But this
technique does not appear to work in the countably infinite case of Theorem 1.1.

In the case of finitely many pieces, in addition to the conclusions stated in
Alexandrov’s theorem it is known that:

(i) The velocity field v = Vg is discontinuous on Q if 1 < k < o0.
(ii) Each piece A; is the interior of a convex polytope.

Of course, property (i) is trivial since € is connected. Property (ii) is due to
the affineness from (1.3) and the convexity of ¢, which imply ¢(z) = v;-z + h;
for all z € Q. It follows z € A; if and only if z € Q and

V-2 + hy >Uj'2,’+hj for allj # 1. (18)

Equality is not possible since the v; are distinct and A; is open. By consequence
A; is the intersection of a finite number of half-spaces, i.e., a polytope.

In the case of infinitely many pieces, it turns out that neither (i) nor (ii) is
necessarily true. A rigidly breaking velocity field can be continuous on 2, and a
piece (shard) may assume any convex shape. As the reader may suspect, exam-
ples involve fractal structure. We will explore constructions involving Cantor
sets, Vitali coverings, and Apollonian gaskets. Figure 1 illustrates the latter:
The shaded circles indicate the sets A; + tx;, where the A; are Apollonian disks
in the unit circle , z; is the center of A;, and ¢ = 0.5. See Section 9.2 for
details.

Actually, continuity of the velocity is a highly paradoxical property, since
it immediately implies that the flow images X;(§2) are connected, so seemingly
not “broken” at alll As we will show, this phenomenon generates fat Cantor
sets by “expanding” the standard Cantor set in a simple way.

Plan of the paper. Following this introduction, we first provide the proof
of Theorem 1.1 and Lemma 1.2 in Section 2. In Section 3 we study and classify
rigidly breaking flows in the case of one space dimension, d = 1. There we also
discuss a paradoxical example with rigidly breaking but continuous velocity
given by the Cantor function.

We complete the proof of Theorem 1.4 in Sections 4 and 5. We handle case
(ii) in Section 4, where we assume the flow rigidly breaks the convex domain into
finitely many pieces. The case (iii), with C* potential, is handled in Section 5,
making use of the Hopf-Lax formula for the solution of the Hamilton-Jacobi
equation (1.6).

We carry out the proof of Theorem 1.5 in Section 6. In particular, in case ¢ :
) — R s continuous, locally affine a.e. and non-convez, Theorem 6.5 shows that
the Monge-Ampere measure x; in Theorem 1.4 has a Lebesgue decomposition
with a non-trivial singular part.
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Figure 1: Breaking of an Apollonian gasket at ¢t = 0.5

We next investigate the stability of rigidly breaking flows with respect to the
mass-velocity data, in Section 7. There we show that weak-star convergence of
transported Lebesgue measure follows from weak-star convergence of pure point
measures naturally associated with the mass-velocity data.

In Section 8 we complete our treatment of incompressible least-action flows
with convex source from [22], establishing in Theorem 8.2 that these flows are
characterized uniquely by their mass-velocity data {(m;, v;)}.

We study the possible shapes that the convex “pieces” A; may take in Sec-
tion 9. In particular, we show that all the A; may be round balls, corresponding
to a full packing of 2 (e.g., any Apollonian or osculatory packing), and we show
that an individual component A; can assume any convex shape.

The paper concludes with a discussion that addresses three points. We dis-
cuss how the continuity assumption on the potential ¢ in Theorem 1.4 is ensured
by the absence of shear (i.e., symmetry of the distributional gradient Vv) and a
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local integrability condition. We complete our Cantor-function example in Sec-
tion 3 showing how fat Cantor sets are produced in a uniformly expanded way.
Finally, although we lack any characterization of rigidly breaking velocity fields
that are continuous when the dimension d > 1, we discuss some constraints on

such fields.

2 Proof of a countable Alexandrov theorem

Here we provide the proofs of Theorem 1.1 and Lemma 1.2. We prove Theo-
rem 1.1 by a straightforward application of a theorem of McCann [23] which
improved Brenier’s theorem in optimal transport theory.

Proof of Theorem 1.1. Let the measure p be given by AL €0, Lebesgue measure
restricted to the bounded convex open set €2, and let the measure v given as a
combination of Dirac delta masses concentrated at the distinct points v;,

v = Zmiévi, where Zmi = A(Q). (2.1)

With no moment assumptions, the main theorem in [23] produces a convex
function ¢ on R? whose gradient T = V¢ is determined uniquely a.e. in € and
pushes p forward to v. The push-forward property Tju = v has the consequence
that the pre-image A; of {v;} under the (a.e.-defined) gradient of ¢ is a Borel
set A; < Q with )\(flz) =m; and Vi = v; on A;. Because ( is connected, this
determines ¢ up to a constant.

Since ¢ is convex it is not difficult to deduce that ¢ is affine on the closure
of the convex hull of A;; see the lemma below. Thus since )\(flz) > 0, the closed
convex hull has convex interior A4; /12 c A; which is convex and has the same

measure A(4;) = AM(A4;) = m;. O

Lemma 2.1. Assume Q < R? is an open convex set and f: Q — R is conver.
(i) If f is differentiable at points x,y € Q with V f(x) = V f(y) then [ is affine
on the line segment connecting x and y. (i) If Vf is constant on a set B, then
f is affine on the closed convex hull of B in 2.

Proof. To prove (i), restrict f to the line segment connecting = to y, defining
g9(7) = f(z + 7(y — z)). Then g is differentiable at 7 = 0 and 1, with

g'(0) =Vf@)(y—=2) =V (y—=2) =4 ).
Then g is affine since it is convex. This proves (i), and we further note that
f@) = fy) = Vi) (z—-y). (2.2)

To prove (ii), by continuity it suffices to show f is affine on the convex hull of
B. By Carathéodory’s theorem on convex functions, each point in the convex
hull is a convex combination of at most d + 1 points in B. Consider a convex
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combination z = 2?21 tjy; with y; € B and t; > 0 for all j and > t; = 1.
Invoking convexity and using (2.2), we find that

k
2 tif ) = £(@) = flyn) + V) (@ = 1)

=2t (f(y1) + V() (y; - yl)) = 2 tif (),

Hence f is affine on the closed convex hull of B. O

Remark 2.2. Evidently, any arbitrary pure point measure v on R? having
total mass v(R?) = A(Q) can be expressed in the form (2.1) for countable
mass-velocity data that satisfy the assumptions of Theorem 1.1. Reordering the
data yield the same measure, hence there is a bijection between countable sets
{(mi, v;)} of such mass-velocity data and such pure point measures. McCann’s
main theorem from [23] associates a convex potential with any Radon measure
v on R? having v(RY) = A(Q). The association of mass-velocity data with
potentials in Theorem 1 is obtained by restricting this to pure point measures.

Remark 2.3. In Section 7 we will prove a stability (or continuity) theorem
for the flows X; = id + tVp determined by mass-velocity data as in the proof
of Theorem 1.1 above. In Theorem 7.1 we show that for any sequence of pure
point measures v, defined as in (2.1), weak-star convergence of v, implies weak-
star convergence of Lebesgue measure restricted to the transported sets X;*(A™)
where A™ is the open set defined as in (1.2) on which ¢,, is locally affine.

Proof of Lemma 1.2. Let Q < R? be open and convex, let ¢: © — R be convex,
define X;(z) = z + tVep(z) for z € Q, and suppose ¢ is differentiable at two
points z,y € Q). Convexity implies the graph of ¢ lies above the tangent planes
at x and y, hence the well-known monotonicity condition follows:

(Ve(z) = Ve(y)-(x—y) = 0. (2.3)
Thence
(Xe(2) = Xi(y) - (x —y) = |z —y[* + t(Vo(z) — Vo)) - (z —y) = |z —y|?,

and we infer | X;(z) — X;(y)| = |x — y| by the Cauchy-Schwarz inequality. O

3 One space dimension

In order to develop understanding of rigidly breaking flows with a countably
infinite number of components, we consider the case of one space dimension.
We provide the easy proof of Theorem 1.4 for this case, and we illustrate and
characterize the paradoxical possibility that a rigidly breaking velocity field may
be continuous.
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3.1 Convexity in 1D

Proof of Theorem 1.4(i). Make the assumptions of the theorem, including that
(i) the dimension d = 1. By Lemma 1.2 we know convexity of ¢ implies in-
jectivity of X; on A for all ¢ > 0. Supposing that X; is injective on A for all
small enough t > 0, we claim V¢ is necessarily increasing on A. Each of the
countably many components A; of the open set A is an open interval. Let v;
be the constant value of Vo on A;. The images X¢(A4;) = A; + tv; then remain
disjoint and preserve their initial order for all small ¢ > 0. Let A;, A; be any
two component intervals of A and assume A; < A;, meaning x < y whenever
rz e A;and y € A;. If A; and A; are adjacent, then clearly v; < v;. If they
are not adjacent, then the union of all intervals Ay + tv, with A; < Ay < A;
preserves its initial Lebesgue measure, hence the interval between A; + tv; and
Aj + tv; cannot shrink, and so v; < vj;. It follows ¢ is convex. O

3.2 Example: “Cantor’s elastic band”

Take 2 = (0,1) < R, and consider the velocity field given by v = ¢ in 2, where
c¢: [0,1] — [0,1] is the standard Cantor function. The function c is increasing
yet continuous on [0, 1] with ¢(0) = 0 and ¢(1) = 1, and ¢ is locally constant on
the open set A = (0,1)\C, where C denotes the standard Cantor set.

For each component interval A; of A, let v; denote the value of ¢ on A;.
Then the flow in (1.1) is given by rigid transport in A;, with

Xi(z) =z+tv;, ze€A.

Note that the distance between X;(A;) and X;(A4;) increases linearly with ¢,
since v; < v; for A; < A;. Thus v rigidly breaks  into the A;, according to
our definition at the beginning of the introduction.

Indeed, the velocity potential ¢(z) = SS c(r)dr is convex and locally affine
a.e. Yet v = Vy is continuous. This seems paradoxical, for it implies the image
X:(Q) remains connected under the flow of the “rigidly breaking” velocity field
v, and must comprise the full interval (0,1 + ¢)!

Evidently, the injective maps X; “stretch” the interval [0,1] to cover the
longer interval [0,1 + ¢] by countably many rigidly translated images X;(A;)
together with the image of the Cantor set X;(C). The union of the rigid images
is the set X;(A), which is open and dense in (0,1 + ¢). Of course the Lebesgue
measure A((0,1+ 1)) = 1 + ¢, yet evidently

AMX(A)) = Z)\(Xt(Ai)) = Z)‘(Ai) =A4) =1

What we infer from this is that the image C; := X;(C) is a fat Cantor set. It
is closed and nowhere dense in (0,1 + t), and has Lebesgue measure A(C;) = t.
The map X; has “stretched” the Cantor set C with Lebesgue measure zero to a
set with positive Lebesgue measure.

In terms of physical intuition, we might fancifully imagine C as consisting
of an ephemeral kind of matter having zero mass and always nowhere dense,
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but infinitely stretchable so it can cover a set of positive Lebesgue measure.
The body © = (0,1) might be considered to model an elastic band made of a
mixture of such stretchy stuff and ordinary rigid matter. In this interpretation,
deforming €2 to X;(Q2) stretches the band but it does not disconnect it.

Less fancifully, we wish to describe what is “broken” in a mathematically
natural way. For this we can focus on matter that has positive mass density.
The rigid translation of the connected open pieces A; induces a mass measure
v¢ on the image domain X;(Q2) that is not the restriction of Lebesgue measure
to X;(€). Instead, v; is the restriction of Lebesgue measure to the disconnected
open (yet dense) set X;(A) = | |, X¢+(Ai). We can say the body €2 is broken into
the disconnected components X;(A;) that carry all the mass. This induced mass
measure v; is nothing but the push-forward under X; of AL €2, Lebesgue measure
restricted to €. We have (X;)s(AL Q) = AL X;(A) in the present example, and
this differs from AL X;(€2). While one can make different choices of the set A
with this property, it seems natural to take A to be the open set in (1.2) on
which the velocity potential is locally affine.

In Fig. 2 we illustrate this example by plotting the velocity v = ¢ as a function
of transported position = X;(z) = z + tc(z). The transported pieces X;(4;)
are (non-singleton) level sets of the transported velocity v = f(z,t), which is
constant along the flow lines x = z +tc(z). As a side remark, it is interesting to
note that while the partial derivative 0f/0x = 0 in every translated component
X:(4;), it turns out that 0f/dx = 1/t a.e. in the fat Cantor set C;, meaning
these sets expand uniformly in time. We defer proof to the Discussion below,
see Proposition 10.2.

3.3 Characterization of continuity in one dimension

The Cantor-function example generalizes to provide necessary and sufficient
conditions for a rigidly breaking velocity field to be continuous when d = 1.
Recall that by Theorem 1.4(i), such a velocity field must be the derivative of a
C' potential ¢ that is convex and locally affine a.e.

Proposition 3.1. Let Q < R be a bounded open interval, and let ¢ be convex
and locally affine a.e. on Q, with ¢ taking the distinct values {v;} on an open
set of full measure in 2. Then ¢ is C if and only if the sequence {v;} is dense
in an interval.

Proof. Suppose ¢ is convex and locally affine a.e., so ¢’ is defined and constant
on each component of an open set A of full measure in . If ¢ is C!, then the
continuous image ¢'(£2) must be connected, hence an interval, and ¢'(A) = {v;}
must be dense in it. On the other hand, if ¢’(A) is dense in an interval I, then
because ¢’ is increasing on A, we have ¢ = {vdz where the function given by

v(z) = lim ¢'(2), z€Q,

ztx, z€A

is increasing with no jump discontinuities. So v is continuous, and ¢ is Ct. O
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Figure 2: Cantor expansion wave: v = ¢(z) vs. © = z + tc(z) at t = 0 and 1.

Remark 3.2. By Theorem 1.1, for any sequence {v;} of distinct values dense in
an interval, such C! potentials exist and are specified uniquely by any positive
sequence {m;} with }}, m; = A(€2). In this case v = ¢’ is a Cantor-like function,
continuous and increasing on € and constant on an interval A; with A(4;) = m;.

4 Finitely many pieces

In this section we prove Theorem 1.4 under condition (ii) which states that the
number of components A; of A is finite. Recall that convexity of ¢ implies
injectivity of X; by Lemma 1.2. Briefly, our strategy for proving the converse
will be to show that if ¢ is non-convex, then two adjacent components must
have velocities that force their images under the flow X; to overlap immediately
for t > 0. We do this by finding a line segment along which the restriction of
 is non-convex and intersects 0A only at finitely many points on flat “faces”
between adjacent components.

Throughout this section we work under the basic assumptions of Theo-
rem 1.4, and assume the dimension d > 1. Recall we assume A is given by
(1.2) and its components A; are open and connected and their number N is
finite. The case N = 1 is trivial, so assume N > 1. Given that ¢ is locally affine
on A and continuous on 2, there exist v, ..., vy € R? and hq, ..., hy such that
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the representation (1.3) extends by continuity to say
o(z)=vi-z+h;, z€A;, ie[N]={1,...,N}. (4.1)

Repeated values are possible. By (4.1) and (1.2), each point in the interior of
A; must be in A. Since 4; is disjoint from A; for j # i, the interior of A; is A;
and A; is the disjoint union of A; and JA;.

4.1 Geometry of the pieces

We begin by precisely describing some of the geometric structure of the dense
open set A and its boundary (or complement) in Q. Define an “adjacency
function” by

I(z) = {ie [N]: z€ A;} for each z € Q. (4.2)

Evidently the cardinality #Z(z) = 1 if z € A. Define “face” and “edge” sets
respectively by

F={2eQ:#I(z) =2}, E={2eQ:#I(z) =3} (4.3)

Lemma 4.1. Make the assumptions of Theorem 1.4 including condition (ii).
Let A° = Q\A. Then A° = 0A n Q and we have

A={zeQ:#I(2) =1}, A°={2eQ:#I(2)=2}=FUE.

Proof. Because A is open and dense, A n Q = A°. The finite union [, A; is
closed and contains A, hence A = Q, so necessarily #Z(z) > 1 for all z € ).
Now, let z € A°. It remains to show #Z(z) > 2. Fix i with z € A;.
Necessarily z € 0A; since z ¢ A;. For any k > 0 there exists y, € Q\A; with
|yr — 2| < 1/k. Then since N is finite, some subsequence of the yj, lie in A; for
some fixed j # 4. It follows z € A;, hence #Z(z) > 2 as required. O

Next, for all 4, j € [N] with ¢ # j we define
Hij:{ZERd:Ui'Z-i—hi:Uj'Z-‘rhj}. (44)

Provided v; # v; this set is a hyperplane of codimension 1. Let H denote the
collection of these co-dimension—1 sets.

Proposition 4.2. Make the assumptions of Theorem 1.4 including condition
(ii). Then:

(a) The set A€ is contained in a finite union of codimension—1 hyperplanes.

(b) For any z € A°, z € F if and only if z lies in H;; n B for some hyperplane
H;; in H and some open ball B with B < A; u A; U Hy;.

(c) The set E is contained in a finite union of codimension—2 hyperplanes.
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Proof. (a) Let z € A°. Then #Z(z) > 2. For each pair of indices 4, j € Z(z), we
must have
U,"Z-Fhi:l}j'z-i-hj. (45)

Some such pair exists with v; # v;, for ¢ is not affine in any neighborhood of z
since z ¢ A. Then z lies in the codimension-1 hyperplane H;;. This proves (a).

(b) Let z € A° and assume z € F. Then Z(z) = {i,j} with v; # v, so
z € H;j, and the distance from z to Ay is positive for any k ¢ Z(z). Since A
has only finitely many components by (ii), there are only finitely many such k.
Then for any small enough open ball B containing z, B = A; U A;, while both
Bn 8A1 and B n (3A] lie in HZ] Hence B c Ai U Aj ) sz

Conversely, suppose z € A° and z € H;; n B for some hyperplane H;; in
the finite collection H and some open ball B < A; U A; U H;;. Then for each
k € Z(z), B n Ag is a non-empty open set. Whenever k ¢ {i, j}, however, since
Ap N A; and A 0 A; are empty, necessarily B n Ay = B n H;;. This set must
be empty since it is open and H;; has co-dimension 1. It follows Z(z) = {1, j}
since #Z(z) = 2. Hence z € F.

(c) If z€ E, then z € A° but z ¢ F. It follows from part (a) that z must lie
in some hyperplane H;; of H, and from part (b) that B\H;; intersects A° for
every sufficiently small ball B. Then since H is finite, necessarily z must lie in
the intersection of two different (i.e., non-coinciding) hyperplanes of H. Such
intersections form a finite collection of hyperplanes of co-dimension 2. O

4.2 Convexity for finitely many pieces

If the transport map X:(z) = z + tVp(z) is injective on A for small ¢ > 0,
Proposition 4.2 allows us to prove the following local monotonicity property.

Lemma 4.3. Assume Xy is injective on A for all sufficiently small t > 0.
Suppose A; N A; contains a point z € F'. Then in any sufficiently small open
ball containing z,

(Vo(z) = Veo(y)(x —y) >0 forallze A; and ye Aj.

Proof. Necessarily Z(z) = {i,j} and z € H;;. Let B be an open ball as given
by Proposition 4.2(b). Let u be a unit vector orthogonal to the hyperplane H;;
pointing from A; toward A;. By the definition of H, v; # v; and v; —v; = au
for some nonzero a € R. For all small enough b > 0, z; := z + bu € A; and
zj = z —bu € A;. The injectivity hypothesis on X, implies

0 # Xi(z:) — Xi(25) = 2 — zj + t(v; — vj) = (2b + ta)u,
for all sufficiently small positive b and ¢. This necessitates a > 0, and implies
(vi —vj)-(2; — z;) = 2ab > 0. This entails the result, since both u-(z; — z;) and

u-(z — y) are positive for z,y € B with z € 4;, y € A;. O

Now we are able to complete the proof of Theorem 1.4 under condition (ii).
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Proof of Theorem 1.4(ii). 1. Assume X; is injective on A for all sufficiently
small ¢ > 0, but ¢ is not convex. Then there must exist distinct z,y € £ and
7 € (0,1) such that

a7 +y(1—17)) > p()7 + @(y)(1 — 7). (4.6)

We may take x,y € A, since ¢ is continuous and A is dense. Let u = x — y and
let u* be the hyperplane of co-dimension 1 through the origin and orthogonal
to u. The orthogonal projection P, of R? onto u maps the line segment Z7 to
a point, where

Ty ={ar+y(l—7):7€(0,1]}.

The same projection maps the set E of Proposition 4.2 into a finite union
of hyperplanes of relative codimension 1 in u'. The same is true for any co-
dimension—1 hyperplanes H;; in H that happen to have u in their tangent space.
There exist arbitrarily small v € ut such that P,z + v = P,(z + v) does not lie
on any of these projected hyperplanes. Since P,(z + v) = P,(y + v), we may
then replace x,y by =z + v,y + v and ensure that the line Ty is disjoint from F
and transverse to every hyperplane H;; € H that it intersects, and (4.6) still
holds. The line Ty then intersects A€ only at points of F', and only at finitely
many of those. As the line Ty cannot be contained in a single component of A,
at least one such intersection point exists.
2. The function ¢(7) = @(x7 + y(1 — 7)) defined for 7 € [0, 1] satisfies
d
= = Vet +y(l = 7)) (z —y)
-

whenever 7 + y(1 — 7) € A. Then dg¢/dr is locally constant on (0,1), with a
jump at any value of 7 where z = z7 +y(1 — 7) € A°. Necessarily z € F' by step
1, and by applying Lemma 4.3 we can conclude that dg/dr makes a positive
jump at such a value of 7. This implies ¢ is convex on (0, 1), contradicting
(4.6). Hence ¢ is convex in €. This finishes the proof of Theorem 1.4 under
condition (ii). O

5 Continuously differentiable potentials

In order to prove Theorem 1.4 under condition (iii), it suffices to prove the
following proposition. The proof is motivated by the idea that the transport
maps X; are related to characteristic curves for the Hamilton-Jacobi initial-value
problem

oyu + 3|Vul*> =0, u(z,0) = p(z),

whose solution, under suitable conditions, is given by the Hopf-Lax formula

u(z,t) = min ('x —yl go(y)) . (5.1)

y 2t

The proof will make use of Theorem 1.3 in order to ensure that a certain needed
minimizer exists inside (2.
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Proposition 5.1. Let Q be a bounded open convex set in RY. Let p: Q — R
be C' on Q and locally affine a.e. Let A be the open set in (1.2). Suppose ¢ is
not convex. Then X, is non-injective on A for all sufficiently small t > 0.

Proof. 1. Suppose ¢ is not convex. Then it is not convex in some nonempty

subset
0. = {x e Q: dist(x,00) > e},

for some € > 0 (fixed). The set Q. is convex itself, as is easily shown. Let
L = supg-[Vy| and M = supm|<p|. Fix t > 0 so Lt < ¢/2 and Mt < £2/64.

2. By Theorem 1.3, ¢ is not semi-convex on €., hence 1 (2) = |z[? + tp(2)
is not convex on )., and cannot coincide with its convexification *. Since
A is dense in €, there exists zg € Q. N A such that ¥,(z0) > ¥f*(20). Then
vg = V(z) is constant for all z in some small neighborhood of 2y contained in
A. Let x = zo + tvg. Then [z — 20| < tL < ¢/2, 50 v € Q5.

3. Taking the min over y € m in the Hopf-Lax formula (5.1), we have
u(z,t) < M by taking y = x. When y € Q.4 we have |z — y| > £/4, whence

|z —yf? e?
5 + o(y) = 397 M > M.

Hence any minimizer y; in €./, lies in the open set €2, , and it follows
x =1y +tVo(y1) = 20 + tVp(20), ie., Xi(y1) = X¢(20).

Moreover, with h = tu(z,t) — %MQ, we have h + z-y < ¢y (y) for all y € Qy,
with equality at y;. Since the affine function h + z-y < ¥F*(y) < ¢ (y) for all
y, we infer (1) — ¢F*(y). Hence yy # 7.

4. Note z9 = z—tvg = X;(y1)—tvg. Because A is dense and X, is continuous,
we can find §; € A such that 2y := Xy(g1) — tvg € A with Zy # ¢1. Yet vg =
V(%) and & := X¢(Z9) = X¢(91). This contradicts the assumed injectivity of
X; on A, and concludes the proof. O

Remark 5.2. This Proposition handles locally affine functions ¢ that resemble
the Cantor expansion example in 1D in that they have continuous gradient.

Remark 5.3. We suspect that if ¢ is C!, locally affine and non-convex then
X is non-injective for every t > 0. But we leave this issue aside for the present.

6 Mass concentrations in convexified transport

The main goal of this section is to prove Theorem 1.5. As mentioned in the
Introduction, the measure k; is related to the second Hopf formula for the
solution to the following initial value problem with convex initial data:

ow + p(Vw) =0, w(z,0) =Y . (6.1)
Here f*(z) = sup,epa -2 — f(z) denotes the Legendre transform of f, and

Yo(y) = slyl* + Ia(y), (6.2)
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where Ig is the indicator function of the set S: Ig(z) =0if z€ S, +0 if z ¢ S.
Since ¥¢(x) = sup,.qx-z — |z|? and this is Lipschitz, results of Bardi and
Evans [5] imply that (regarding ¢ as extended continuously to all of R?) the
unique viscosity solution of (6.1) is given by the second Hopf formula, which
states

wy = P where 1, = g + tp. (6.3)

We will make no direct use of this fact. Instead, we will focus attention on
what is known as the Monge-Ampére measure for the convex function 9. This
is the Borel measure whose value on each Borel set B in R? is given by

ke(B) = 097 (B)) = A (U 0%*(@“)) : (6.4)

zeB

See [14, p. 7]. Results to be quoted below show that this agrees with the
pushforward formula for x; stated in Theorem 1.5.

Remark 6.1. For fixed t, the fact that the function w; has Monge-Ampeére
measure given by k; simply means that u = wy is the Alezandrov solution to
the Monge-Ampere equation

det D%y = k.

6.1 Convex mass transport

First, we establish that absolute continuity of x; is a necessary consequence
when ¢ is convex. Indeed, x; is given by locally rigid transport in this case.

Proposition 6.2. Let Q be a bounded open conver set in R?, and let ¢: 0 — R
be continuous. Assume @ is locally affine a.e., and let A be the open set defined
in (1.2). Further assume ¢ is convex. Then for all t > 0, the Monge-Ampére
measure in (6.4) is given by

Ry = Al Xt (A) y
Lebesgue measure on the set X (A) whose each component is translated rigidly.

Proof. To begin we note that for each ¢t > 0, ¢y : R? — (—o0, 0] is convex,
lower semicontinuous, and finite on €. Then ¢; = 1}* by the Fenchel-Moreau
theorem; see [9, §1.4]. Several further basic facts regarding the subgradients o
in this context are the following (see [22, Appendix A] for simple proofs of (2)
and (3)):

(1) The inverse (0v;)~! = du¥, according to Rockafellar [27, Thm 23.5].
(2) x e d(y) iff x =y + z with z € d(Ig +tp)(y).

(3) 04y has range R,
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Let B be a Borel set in R and let 2 € B, y € (0¢f)(x). Then x € diby(y)
by (1), whence necessarily y € €, for otherwise 0i;(y) is empty. As the set Q\A
has Lebesgue measure zero, by (1) it follows

ke(B) = A (A n (0) 1 (B)).

Let the components of A be denoted A; and let v; be the value of v = Vg
in A;. We claim that for each 7,

Ai N ((%/)t)il(B) = A7 N (B - t’l}i).

Indeed, if y € A; N () "1 (B), there exists x € B with x € dyy(y) = {y + tv;}
soy € B—tv;. Andify e A;n (B —ty), ¢ :=y+tv; = Vi(y) € B so
y € (0vy)1(B).

Recalling that X;(y) = y + tVe(y) is injective on A by Lemma 1.2, by
translation invariance of Lebesgue measure it follows

ki(B) = ZA(Ai A (B —tv;)) = Z)\(Xt(AZ-) n B) = A(X,(A) n B).

Hence k; = AL X((A). O

Remark 6.3. The situation in Proposition 6.2 provides a particularly simple
special solution of a Monge-Ampeére equation of the general form

p'(Vip(y)) det D>y (y) = p(y) (6.5)

in which ¢ = 14, p = 1g and p' = 1x,(4). In [24, Sec. 4], McCann proved
that for any convex 1, if p is the density of an absolutely continuous probability
measure also denoted p in the interior of the domain of v, and if p’ = Viyp
is absolutely continuous with density also denoted p’, then the Monge-Ampere
equation (6.5) holds a.e. in €2, where the Hessian D2 (y) is interpreted in the
Alexandrov sense.

6.2 Non-convex mass transport

Our next goal is to associate non-convexity of ¢ with formation of singular
concentrations in k;, as follows. Recall we assume ¢ is continuous on €, and
1y is given by (6.3), taking the value +c0 outside the convex set (2. Then 1; is
lower semicontinuous on R? and its convexification is 1j*, which is also finite
only on €. The Legendre transform of ¥* is ¢F** = ¥ by the Fenchel-Moreau
theorem, and by [27, Thm. 23.5] cited in (1) above we have the inverse relation

(us*) = vt

Hence the Monge-Ampere measure ¢ = (007 )s(AL ), for this simply means

ki(B) = A(0vf*) 1 (B)), (6.6)
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which is the same as (6.4). This is not different from the formula in Theorem 1.5,
saying k: = (VF*);\, because any set (0¢*)~1(B) is contained in  and can
differ from (V}*)~1(B) only at points where ;* is not differentiable, which
form a Lebesgue null set. (A similar point is made in [24, Lemma 4.1] in a more
general context.)

Our main result in this section is the following theorem which completes the
proof of Theorem 1.5 by establishing the sufficiency of the absolute continuity
of x; for the convexity of ¢. It shows that when ¢ is non-convex, the mass
evolution determined by the Monge-Ampere measure k; decomposes into a part
given by rigid translation z — V;(z) = z + tV(z) locally, and a nontrivial
remainder that instantaneously concentrates on a null set. We comment on the
relationship of this result with the adhesion model of cosmology at the end of
this section.

Definition 6.4. For each t > 0 we define the “touching set”

©r = 1{y e Q:uly) =)}, (6.7)
and for t = 0 we define ©g = Q. We let ©% denote the interior of O.

Theorem 6.5. Let Q be a bounded open convex set in R, and let ¢ : @ — R
be continuous. Assume @ is locally affine a.e., and let A be the open set defined
n (1.2). Also assume ¢ is non-convez. Let t > 0 and define the sets

By = Vi (An ©7), S = Vi (A\6y).
Then the Monge-Ampére measure k¢ for ¥f has the (Lebesgue) decomposition
Kt = [t + 1y where g = AL By, vy = kel St
In addition,
(i) The sets B, and Sy are disjoint,
(i) The map Vip, : A n ©Y — By is bijective and locally rigid translation,
(11i) A(S¢) =0 and x¢(St) > 0.

To proceed toward the proof of the Theorem 6.5 we relate 1 to the function
ug given by the Hopf-Lax formula (1st Hopf formula)

+ ¢(2). (6.8)

o —z2f?
U\ T ) = MIN ———
t( ) 2eQ 2t

We relate the touching sets to minimizers in this formula as follows. First, note
that by expanding the quadratic, we have

tug(z) + ¢f (z) = 2[z[* for all z e R% (6.9)

Lemma 6.6. Let t > 0 and x € R?. Then in the Hopf-Lax formula (6.8), a
point y € ) is a minimizer if and only if y € O N oY (x).
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Proof. Recall the Young inequality says
w2 SYF(2) + Ui (2) = glal? - tu(x) + 7 (2)

for all z and z, with equality when 2z € 0yf(z) or equivalently = € Jvf*(z).
Since ¥}* < by = 1| - |> + t, we find that for all z € €,

If z = y is a minimizer in (6.8) then equality holds in both inequalities here,

hence ¥f*(y) = ¥1(y) and y € 0y (x). And the converse holds: If z = y €

©; N dYf (x) then equality holds in the Young inequality above, and ¢;*(z) =
1

Yi(2) = §|2|? + to(z), and this implies that y is a minimizer in (6.8). O

Lemma 6.7. Lett > 0. If y € O, nQ and ¢ is differentiable at y then 0vf* (y)
is a singleton set containing only x =y + tVe(y).

Proof. Let y € ©; n Q. Then ¢1(z) = ¢f*(2) for all z with equality for z = y,
so given any x € 0¥f*(y), it follows

Vi(z) — 2z + la)? = du(y) — 2oy + S|z

for all z with equality for z = y. This means that |z — z|? + t¢(2) is minimized
at z = y. Since g is differentiable at y, necessarily © = y + tV(y). O

The touching set ©; is a closed subset of Q. Tts (relative) complement is the
non-touching set 0§ = Q\O,, which is (relatively) open. Then their common
boundary 00, = 00j is nowhere dense.

Proposition 6.8. Lett > 0, y € A and x € oYf*(y). Then there are three
cases:

(i) If y € ©F then 0y (x) is not a singleton.

(i1) y € ©% if and only if OVF*(y) is a singleton set containing x = y+tVe(y)
and Oy (x) is a singleton containing y.

(iii) If y € 00, then oUf*(y) is a singleton set containing x =y + tV(y) and
oY (x) is not a singleton.

Proof. 1. Suppose y € A n ©f and z € dv;*(y). Let y4x € Q be a minimizer in
the Hopf-Lax formula (6.8). Then by Lemma 6.6, yx € ©; n 0y (x). But since
y € 09 (z) also, 0vf (x) is not a singleton. This proves (i).

2. For both parts (ii) and (iii), note that if y € An©; then ¢ is differentiable
at y, so by Lemma 6.7 we have 0y}*(y) = {z} with z = y + tVp(y).

3. Suppose next that y € A n ©9. Note that in some neighborhood of y, ¢
is affine and we have that

F(2) = vule) = el + to() (6.10)
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which is strictly convex and quadratic. Thus hyperplanes with slope x that
support the graph of ¢* at y cannot touch it at any other point, so duf(x)
must be a singleton, and the singleton is {y}.

4. Now assuming that y € A; (so Vo(y) = v;), that 0vf*(y) = {x} where
x =y + tv;, and that 0y (v) = {y}, we wish to show y € ©9.

By part (i), necessarily y € O, and by Lemma 6.6, z = y is the unique
minimizer in the Hopf-Lax formula 6.8. For any p € R? given, define

_lp—zP

Hy(z) : 57

+ o(2).

Then z = y is the unique minimizer of H, in 2, and H,(y) = us(x). Choosing
d > 0 so that z € A; whenever |z—y| < 4, since H, is continuous on the compact
set Q with unique minimizer at y, we necessarily have

min{H,(z2) : |z —y| =0, 2€ Q} = ug(x) + v where v > 0. (6.11)

We claim that if |p| > 0 is sufficiently small then H,,(2) is globally mini-
mized at y + p. By Lemma 6.6 this means y + p € ©, and y € 09 will follow.
To prove the claim, note that for all z,

2
\r—z
pla=2)

H, =H, .
wo(2) = o) + 220 B

(6.12)

Note that ¢ takes the form ¢(z) = v;-z + h; in the open set A;. Thus we have
H,yp(2) = H(z) forall z€ A,
where we define H to be the quadratic function given by

. _|:177z+10|2

H(z): 57 +wi-z+h; for all z e RY.

The global minimum of H is at z = z — vt + p = y + p. Provided |p| < §, this
point lies in A;, so the minimum of H,,(z) within A; takes the value

min Herp(Z) = ﬁ(y +p) = Hyip(y +p) = Hy(y) +vip.

zEA;

Provided |vg||p| < 37 also, this value H,(y) + vi-p < uy(x) + 57. On the other
hand, since = y + tv;, from (6.12) and (6.11) we find that whenever z € Q\A;,

(y— =z
Hyp(2) 2 ) 47+ P2
Thus, if [p|diam Q2 < 34t also, then

Hyip(2) = wi(z) + 37 for all z € Q\A;.

This proves the claim, and finishes the proof of (ii).
5. Part (iii) follows from parts (i) and (ii) as the remaining case. O
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Before beginning the proof of Theorem 6.5 we recall that a function f, convex
on R? and finite at z, is differentiable at z if and only if Jf(z) is a singleton
[27, Thm. 25.1].

Proof of Theorem 6.5. 1. On each component A; of A, recall Vi), is given by
rigid translation, Vi (y) = y + tv;. Moreover, on A n OF, ¥F* = 1), is strictly
convex so Vif* = Vi, on this open set and is injective there. The set B; =
Vi (A N ©9) is then a disjoint union of open sets

By =| |Bi, where B;=Vi(4;n67) = (A;in©Y)+ tu;.

For each © € B;, x = y + tv; = Viof*(y) where y € A; n ©2. So by part (ii)
of Prop. 6.8, d¢f(x) is the singleton {y}, hence ¢f is differentiable at  with
VyF(z) = x — tv;. Given any Borel set B < By, then

ki(B) = Z NVYH(B n By)) = Z AB n B; — tv;) = A(B).

Thus h}tL Bt = Al Bt-

2. For each point z € S := dF*(A\O9) we have x € dYF*(y) for some
y € A\OY. By parts (i) and (iii) of Prop. 6.8, di; () is not a singleton. Thus
1f is not differentiable at any point of S;. As ¥ is convex, hence locally
Lipschitz, we must have A(S;) = 0 by Rademacher’s theorem.

3. By step 1, 0 is single-valued on B;. Since d¢f(x) cannot be both
singleton and non-singleton, B; and S; are disjoint. Moreover,

WF(B) =An©; and  0YF(S) > A\6Y.
Since dv(z) < Q for any = € R? and A has full measure in €,
ke (RY) < A(Q) = MA N ©9) + \(A\6Y)
< MOVF (By)) + MO (Sh)
= ke(By) + Ke(St) < ke (RY).
Hence equality holds throughout, whence we get the Lebesgue decomposition
Ky = kel By + kel 3,5.

4. Let B = §,\S; with S, = Vi¥*(A\09) and let A = (3¢F*)~1(B) = 0¥ (B).
By definition of S, ¥#* is not differentiable at any point of A~ (A\O9). Further,
by step 2, ¢ is not differentiable at any point of B, so An (A N ©Y) is empty
due to Prop. 6.8(ii). Hence An A = A~ (A\O?). Then each point of A is either
a point where ¢}* is not differentiable or is in A°. Hence by (6.6),

)\(A) = nt(gt\St) = 0,

whence kL S't = kel S B
Moreover, k:(S;) > 0 since the non-touching set ©f is relatively open in €
and so the open set A N OF < A\OY is non-empty. O
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Remark 6.9. Our results in this section can be compared with work in cosmol-
ogy by Frisch et al. [16] and Brenier et al. [7] that uses the adhesion model for
cosmological reconstruction. In these works the authors use optimal transporta-
tion to determine an initial velocity potential for matter flow in a large region
of the universe, from presumed mass distributions at two epochs of a time-like
variable. Without getting into details, the adhesion model takes the velocity
potential essentially as the viscosity solution u of (1.6), the zero-viscosity limit
of the potential Burgers equation, and the primordial mass density as uniform.
The present distribution of cold dark matter is inferred from observations and
exhibits concentrations such as mass sheets, filaments and nodes, and appears
to be taken to correspond to the Monge-Ampere measure K.

As discussed in [7], optimal transport in principle can determine only the
convexified potential (1){* here) whose gradient pushes the initial uniform dis-
tribution forward to k¢, and the original velocity can be inferred only at points
outside of mass concentrations at the present time.

In Theorem 1.5 above, this compares to points in By, the set where the
absolutely continuous part of k; is concentrated. Naturally, our assumption
that the initial velocity potential is locally affine is not suitable for cosmology.

Remark 6.10. A more general related result exists that describes rigorously
how the Lebesgue decomposition of Monge-Ampere-like measures is determined
in terms of the Alexandrov Hessian of the transport potential. See Remark 7.4 in
the lecture notes of Ambrosio et al. [2]. One can alternatively prove Theorem 6.5
by using the result of that Remark together with the results of Proposition 6.8
above, but we retain the arguments above for simplicity.

7 Stability and approximation of rigidly break-
ing flows

For the rigidly breaking potential flows provided by Theorem 1.1, the countable
Alexandrov theorem, a natural question that arises is whether and in what sense
the flow produced depends continuously on the mass-velocity data, particularly
in the absence of a moment assumption. In this section we provide a stability
theorem that addresses this issue.

Recall from Remark 2.2 that sets of mass-velocity data {(m;,v;)} for which
Theorem 1.1 applies are in bijective correspondence with pure point measures v
on R having v(R?) = \(£2). A natural notion of stability of the flows determined
by such data involves weak-star convergence of measures in M(R%) = Cy(R%)*,
the space of finite signed Radon measures on R,

Theorem 7.1. Let Q < R be a bounded convex open set with A\(Q) = 1. For
each n € N U {00} let v, be a pure point probability measure on R%. Let ¢, be
the potential associated with vy in the proof of Theorem 1.1, and let A™ be the
open set in Q given by (1.2) with p, replacing . Let X[* = id + tVy,, be the
corresponding flow map, and also let K} = AL X[*(A™).
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If vy, = vy as n — o0 weak-+ in M(R?), then k' =~ k¥ weak-+ in M(R?)
for each t > 0.

The basis of the proof is the following result, which provides a stability
theorem for the transport maps provided by McCann’s main theorem in [23].
This result is unlikely to be new, but we were unable to locate a precise reference.
It is closely related to well-known stability results for transport maps in optimal
transport theory — see Corollary 5.23 in Villani’s book [31], e.g. The result of
that Corollary does not apply here, however, because we make no assumptions
regarding optimality or bounded moments for the measures v,,.

Theorem 7.2. Let i be a probability measure on R? absolutely continuous with
respect to Lebesgue measure A. For each n € N u {0}, let v, be a probability
measure on R, and let ¢, : R? — R U {00} be a convex function as given by
McCann’s main theorem in [253]. If v, X vy weak-x as n — o, then Vo,
converges to Vo, in p-measure on R?,

Proof. The coupling defined by 7, = (id x V¢, )su has marginals p and v,.
These couplings are probability measures on R? x R, so by the Banach-Alaoglu
theorem, any subsequence has a further subsequence that converges weak-x to
some measure v € M(R? x R?). Since we assume that v,, converges weak-# to
Vg, by Lemma 9(ii) of [23] we infer that the limit measure -y is a probability
measure coupling p and vy. Lemma 9(i) of [23] implies the support of 7 is
cyclically monotone in the sense of McCann’s Definition 3, hence, as McCann
states, a theorem of Rockafellar implies that the support of v is contained in
the subdifferential of some convex function 1 on R%. Next, by Proposition 10
of [23], the gradient of ) pushes p forward to vy, i.e., Viyu = vy.

By the uniqueness part of McCann’s main theorem in [23], it follows that
Vi) = Vg, prae. in R Thus we can say the coupling v = (id x Vi )sp.
Since this limit measure + is unique, the full sequence -, converges to it.

The last step of the proof is to invoke Theorem 6.12 on stability of transport
maps in [2], which states that in this situation, the weak-# convergence of =y, to
v is equivalent to the convergence of Vg, to Vi, in the sense of y-measure on
R?. This finishes the proof of Theorem 7.2. [

Proof of Theorem 7.1. Make the assumptions stated in the Theorem. For each
n € N u {00}, the transport map X' = id + tV,, is well-defined on the set A™.
Let p = AL, and recall from the proof of Theorem 1.1 that ¢,, is a potential
associated with v, by McCann’s main theorem in [23]. For any ¢ > 0 fixed,
evidently it follows from Theorem 7.2 that X;* converges to X{° in u-measure
as n — oo.

Next, recall from Proposition 6.2 that the pushforward measure

(X )ap = ALXT(A™) = i

In order to prove s converges to x° weak-* on R? we should prove that for
any continuous function f on R? that vanishes at oo,

f(z)dk}(z) — J f(x)dr(xz) asn— . (7.1)
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Since the measures k7 are uniformly bounded in the space M(R?), it suffices
to prove this for functions f of compact support. But in this case we have

@ ds(@) = [ FOTE) NG, neNU (o).

For any subsequence of these quantities, there is a further subsequence along
which X' converges to X/° a.e. in 2. We conclude that (7.1) holds by using
the dominated convergence theorem and the uniqueness of the limit. O

Remark 7.3. Consider a countably infinite set {(m;, v;)} of mass-velocity data
with }, m; = A(2) = 1 and arbitrary v;. A natural way to approximate the
pure point measure v = » . m;d,, is by truncating to a finite sum of Dirac masses
and normalizing, taking v,, = 7, /7, (R?), where 7, = > midy, are the partial
sums. The Alexandrov theorem (Theorem 1.7) then can be used to provide the
velocity potential ¢, instead of McCann’s theorem which is based on cyclic
monotonicity for couplings. Theorem 7.1 then implies that the piecewise-rigidly
breaking flows X' converge to X; in the sense that the restricted Lebesgue
measures AL X7*(A™) converge weak-* to AL X;(A).

Evidently this still relies on cyclic monotonicity and Rockafellar’s theorem,
however, through the proof of Theorem 7.1 above. It could be interesting to
seek a stability proof that avoids this reliance and proceeds completely in the
spirit of Minkowski and Alexandrov, perhaps using a standard stability theorem
for Monge-Ampere measures like Prop. 2.6 in [14].

8 Incompressible optimal transport flows with
convex source

In this section we complete our characterization of incompressible optimal trans-
port flows with convex source as was mentioned in the Introduction. Our paper
[22] with Dejan Slepcéev mainly concerned transport distance along volume-
preserving paths of set deformations. In terms of optimal transport, effectively
this means studying paths ¢t — p; = AL ; comprising Lebesgue measure on
a family of sets €, having the same measure. One of the main results of [22]
was that, given two bounded measurable sets 2y and €2y of equal measure, the
infimum of the Benamou-Brenier action

1
A=jj lof? dpy dt
0 JRd

subject to the transport equation dip + V - (pv) = 0, but further constrained by
the requirement that the measures p; have the form

Pt = Al Qt, te [0,1], (81)

is the same as dy (u,v)?, the squared Monge-Kantorovich (Wasserstein) dis-
tance between the measures

M:ALQ(), v=Al Ql. (82)
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The squared distance dyy (11, v)? is the infimum of A without the constraint (8.1),
and the minimum is achieved for a unique minimizing path (Mt)te[o,l] known as
the Wasserstein geodesic path.

Assume Qg and € are open, for the rest of this section. Let (it)sefo,1]
be the Wasserstein geodesic path connecting the measures p and v in (8.2).
Theorem 1.4 of [22] says that if the infimum of A is achieved as described above
at some path (p;)se[o,1] satisfying the constraint (8.1), then p; = p;. That is,
any minimizing path satisfying the incompressibility constraint (8.1) must be
the Wasserstein geodesic path.

We refer to such minimizers as incompressible optimal transport paths. Let
(pt) be such an incompressible optimal transport path. Let ¢ be the convex
Brenier potential whose gradient pushes p1 = pg to v = p1: Viyyu = v. Then
pr = (V4 )ypo for each t € (0,1), where

1 . 1
Yi(z) = 5o +tp(z) with (z) = v(z) — o2I% (33)
At points of differentiabilty of v, the transport flow is given by
Xi(2) = Vie(2) = z + tv(z) with v = V.

This velocity potential ¢ is semi-convex, by (8.3).

Because g, 7 are bounded open sets and the characteristic functions on
Qo and Qp are smooth, according to the regularity theory of Caffarelli [10],
Figalli [13] and Figalli and Kim [15], V) is a smooth diffeomorphism Vi : Ay —
Ay, where Ag c Qp and A; < Q; are open sets of full measure.

In this situation, we call the flow given by X; an incompressible optimal
transport flow taking Qg to Q. Corollary 5.8 of [22] states that necessarily the
velocity v of such a flow is constant on each component of the open set Ag of
full measure in Qy. Therefore ¢ is locally affine a.e. and semi-convex.

Then the range of v = Vi is a countable set {v;} of distinct vectors in
R?, v = v; on an open subset A; with positive measure m; = A(4;) > 0, and
i mi = A(Qo). Recall that we refer to the set {(m;,v;)} as the mass-velocity
data of the incompressible optimal transport flow.

Definition 8.1. Let MV (§) denote the collection of countable sets of pairs
(mg,v;) such that the v; are uniformly bounded and distinct in R4 (v; = v;
implies © = j), the m; are positive, and Y, m; = A(€p).

As we have just seen, each incompressible optimal transport flow determines
some set of mass-velocity data in MV (£)g). The result we are aiming at asserts
that this association is bijective if the source domain is convex.

Theorem 8.2. Let Qg be a convex bounded open set in R?. Given any incom-
pressible optimal transport flow taking Qo to some other bounded open set, let
{(mi,v;)} € MV (Qq) be the mass-velocity data of the flow as described above.
Then this map from flows to data is bijective.
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Proof. Let an incompressible optimal transport flow be given as above, taking
Qo to some bounded open set £2; with the same measure. Such a flow, and its
associated mass-velocity data {(m;,v;)} € MV (Qq), is determined uniquely by
the a.e.-locally affine and semi-convex velocity potential . Since )y is convex,
the potential ¢ is necessarily convex by Theorem 1.3. Then Theorem 1.1 applies.
Because of the invariance of ¢ under reordering of the data as discussed in
Remark 2.2, the set of pairs {(m;,v;)} determines ¢ (up to a constant), and
hence the flow, uniquely.

Conversely, given any countable set {(m;,v;)} in MV (€p), Theorem 1.1
provides velocity potential ¢ that is convex and locally affine a.e. on Q =
The velocity field v = Vi defined a.e. is bounded, rigidly breaks €y, and the
ensuing flow is an incompressible optimal transport flow. O

9 Shapes of shards

In Section 4, we have seen that when the number of pieces A; is finite, the pieces
are bounded by hyperplanes, like polytopes. And in general, with infinitely
many pieces possible, the pieces are convex. It is interesting to investigate what
shapes the pieces may have. In this section we will discuss constructions that
show a given piece may take an arbitrary convex shape, for example, or that all
pieces can be round balls.

9.1 Power diagrams

Recall that in the case of finitely many pieces, the A; are determined by the
condition (6). This means that, with ¢(z) = v;-x + h; in A; as in (1.3),

Ai={$EQZ’Ui~$+hZ‘>’Uj'.’E+hj forallj;éi}. (91)
Through completing the square, this provides the equivalent description
Ai={zeQ:|z— v —w <|z—v;|> —w; for all i # j}, (9.2)

where w; = 2h;+ |v;|?. This realizes the decomposition of € into the pieces A; as
a power diagram determined by the points v; and weights w;. Power diagrams
are a generalization of Voronoi tesselations (for which the w; = 0) and which
have many uses in computational geometry and other subjects, see [3, 4].

In the general case here, when ¢ is convex and locally affine a.e. with count-
ably many pieces possible, the pieces A; satisfy

A; =imt{ﬂceQ:vi-ac—i-hi>Supvj-nc+hj}7 (9.3)
J#i
(int denotes the interior) or with w; = 2h; + |v;|? as before,
Ai:int{meQ:|x—vi|2—wi<i§f|x—vj\2—wj}. (9.4)
JF

Thus the decomposition of 2 into the A; can be considered as a countable power
diagram determined by the countably many points v; and weights w;.
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9.2 Full packings by balls

The power-diagram description motivates the possibility that with countably
many pieces, the pieces can assume some convex shape different from a polytope,
such as a ball. We will describe three ways that optimal breaking can produce
pieces that are all ball-shaped.

Take Q — R? as any bounded open convex set. By a full packing of Q by balls
we mean a countable collection of disjoint open balls B; = {z : |z — x;| < r;} in
2 with centers z; and radii r;, such that the union B = | |, B; is an open set of
full measure in 2.

Lemma 9.1. Given any full packing {B;} of 2 by balls, there exists a function
p convex and locally affine a.e., with pieces A; = By, such that V¢ maps B; to
the center of B;.

Proof. Since | J;; Bj is dense in Q\B;, we can say

Bi={zxeQ: |z —z]>—r] <inflz—x;|* —r3}. (9.5)
J#i
Comparing this with (9.4), we see that the B; constitute a power diagram de-
termined by the ball centers z; and squared radii w; = r%. We infer that the
convex function defined by

1
p(z) =supv;-x +h;  with v; =z, h; = i(rf — |z:]?), (9.6)

is locally affine a.e., with pieces A; = B; and Vo = x; in A;. O

Any velocity potential ¢ produced by this lemma cannot be C!, for each
point in the set of ball centers {x;} is isolated, so V(€2) cannot be connected.

Full packings by balls can be produced in a variety of ways. Three that
are interesting to discuss are (i) using Vitali’s covering theorem; (ii) so-called
osculatory packing; (iii) Apollonian packing.

(i) Using Vitali’s covering theorem

The collection of all open balls in §2 constitutes a Vitali covering of €2, so a full
packing of Q by balls exists by the Vitali covering theorem [11, Thm. I11.12.3].
Actually, one can specify a finite number of the balls at will: Take By, ..., By
to be given disjoint balls in 2. Then apply the Vitali covering theorem to the
collection of open balls in 0\ Ule B;.

(ii) Osculatory packings

A sequence {B,} of disjoi_nt balls in €2 is called osculatory if B; is a ball of largest
possible radius in Q\ U;._llBj whenever i is greater than some k. Boyd [6]

elegantly proved that an osculatory sequence in any open set  — R? of finite
measure is a full packing. Earlier, Melzak [25] had proved this for the case of

dimension d = 2 and when (Q itself is a disk.
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Figure 3: Apollonian bowl: graph of velocity potential locally affine a.e.

(iii) Apollonian packings of disks

A classic and beautiful tree construction that produces an osculatory packing
in case  is the unit disk in R? is associated with the name of Apollonius of
Perga, who in antiquity classified all configurations of circles tangent to three
given ones.

Start with two circles bounding disjoint disks By, By in €, tangent to each
other and tangent to the unit circle. These circles determine two curvilinear
triangles. At stage 1, inscribe a circle in each of the curvilinear triangles. These
circles bound new disks B3, B4 and divide each curvilinear triangle into three
smaller ones. At each subsequent stage we continue by inscribing a circle in
each of the curvilinear triangles created at the previous stage, adding the disks
they bound to the collection, and subdividing the curvilinear ‘parent’ triangle
into three ‘children.” From the two triangles and disks we start with at stage 1,
upon completing stage k we have 2 - 3% disks at stage k.

Rearranged in order of decreasing radii, the sequence of disks produced in
this way is osculatory. A proof that this Apollonian sequence produces a full
packing of Q was provided by Kasner & Supnick in 1943 [19]. The closed set
O\ \J; Bi, determined by removing the open disks in an Apollonian packing
from the unit disk, is known as an Apollonian gasket. It has measure zero and
is nowhere dense.
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Apollonian packings can be generated algorithmically using the generalized
Descartes circle theorem due to Lagarias et al. [21]. If parent circles Cy, Ca, Cs
(possibly including the unit circle) are mutually tangent and tangent to children
Cy and Cj, and C; has complex center z; and curvature b; = 1/r; (with b; = —1
for the outer unit circle), this theorem implies

by + b5 = 2(b1 + by + b3),
byzg + bszg = 2(b121 + bazo + b323).

From the data b; and z; for three parent circles and one child, these equations
determine the entire packing. Famously, all curvatures b; are integers if the
initial four are. Possibly, this property was first noticed only in the 20th century
by the chemist Soddy [28]. In Fig. 3 we plot the graph of the convex and a.e.-
locally affine velocity potential generated by Lemma 9.1 in this case. Recall that
Fig. 1 illustrates the rigidly separated disks X;(B;) at time ¢t = 0.5 as shaded
in blue.

9.3 Shards with arbitrary convex shape

As promised, we will show here that it is possible for some piece to assume an
arbitrary convex shape. Let Q — R¢ be a bounded open convex set, and let U
be any convex open subset of 2. Without loss of generality, for convenience we
translate and scale coordinates so that 0 € U and 2 is contained in the unit ball
{z:|z] <1}

To begin, we construct a sequence of approximations to the distance function

O(x) :=dist(z,U) = inf{|lx —y| : y € U}.

The function ® is convex, and of course, U = {x € Q : ®(z) = 0}. Let {0;}ien
be a sequence of unit vectors in R? dense in the sphere S41 and for each i
choose z; € 0U to maximize o;-x on U. Then it is simple to show that
O(z) =0 vsupo;-(x — ;). (9.7)
ieN
For each n € N, put

D,(x)=0v max oi-(x — x;).

Then &, (z) increases as n — oo to the limit ®(x) for all x, with
0<®,(x) < P(x) <1 (9.8)

Moreover, ®,, is convex and piecewise affine, and since |[V®,| < 1 a.e. we have
|D,(2) — @ (y)| < |z — gyl for all 2,y € Q. Invoking the Arzela-Ascoli theorem
we can conclude that ®,, converges uniformly to ®. Thus, for any k£ € N there
exists Vg such that for all n > Ny,

1
sup | @, (x) — O(z)| < 7 (9.9)
e
With these preliminaries, we can construct a convex function, locally affine

a.e., having U as one of its pieces, as follows.
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Proposition 9.2. Let {ax}reny be a decreasing sequence of positive numbers
satisfying apy1 < %ak for all k. Let

p(z) =supar®n,(z), e (9.10)
K

Then ¢ is nonnegative, conver, and locally affine a.e., with o(z) = 0 if and only
ifrxelU.

Proof. Let ¢ (x) = maxi<i<k a;Pn, (x). Then ¢ is nonnegative and piecewise
affine, and it vanishes on a polytope containing U. If dist(z,U) = ®(z) > %
and z € Q, then by (9.9) and (9.8),

or(r) = ar®n, () > == = apr1 = ap1®Pn,,, (@),

ag
k
hence pr1(z) = Pk (). By consequence, ¢ is piecewise affine outside any open
neighborhood of U. We can conclude it is locally affine a.e. in 2 and vanishes
only on U. O

10 Discussion

In this paper we have focused attention on flows that rigidly break a convex do-
main, flows of a type that permits a classification in terms of mass-velocity data
for the pieces. In particular, we have investigated conditions under which rigidly
breaking potential flows must arise from a convex potential. As mentioned in
Remark 1.6, it may be reasonable to conjecture that the conditions (i)-(ii) in
Theorem 1.4 which ensure the potential’s convexity may be weakened or dis-
carded. We have also investigated and illustrated several differences between
flows that break a domain into finitely many vs. infinitely many pieces.

We conclude this paper with a discussion of a few points, concerning: (a)
conditions that ensure the velocity field can be realized as the gradient of a
continuous potential; (b) in our one-dimensional example of subsection 3.2, the
fat Cantor sets expand uniformly in time; (c) some necessary criteria for a rigidly
breaking velocity field to be continuous in dimensions d > 1.

10.1 Sufficient conditions for continuity of the potential

In Theorem 1.4 we assume the velocity field is the gradient of a potential ¢
that is locally affine a.e. in the convex set ), and we assume a priori that ¢
is continuous. In this subsection we briefly investigate conditions on v that are
sufficient to ensure these properties.

In order that some ¢ € Li () should exist with v = V¢ in the sense of
distributions, it is simple to check that necessarily the distributional Jacobian
matrix (0jvx) should be symmetric. In physical terms, this means that the
velocity field should generate no shear.

Some integrability condition on v appears needed as well. Note, however,
that Theorem 1.1, our countable Alexandrov theorem, provides a rigidly break-
ing velocity field v that fails to be in L(£2) if the mass-velocity data is such that
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> m;|v;| = co. However, since v = Vo with ¢ convex, necessarily v is locally
bounded a.e. in Q.

In order to ensure that a velocity field v = Vi with ¢ continuous, then, we
should require v is curl-free and it is reasonable to require some local bounded-
ness or integrability in 2. We find the following conditions are indeed sufficient.

Proposition 10.1. Let Q c R? be bounded, open and convex. Suppose that for
some p>d, ve L} (,R?) and its (matriz-valued) distributional derivative is
symmetric. Then v =V a.e. in Q, for some locally Hélder continuous function

p:Q—R.

Proof. By a standard cutoff and mollification argument we find a sequence of
smooth velocity fields v* converging to v in LY (). Fix zp € Q. Inside any
convex subdomain ' <  with compact closure in 2 and containing zg, we
can ensure that for k sufficiently large, the v* are curl-free, having symmetric
Jacobian matrices V¥ inside €. By path integration along line segments from
29, we can define smooth ©* on Q such that ¢*(z5) = 0 and on Q' we have
Ve = v*. Then the sequence (V¢*) is bounded in LP(€)') and by Morrey’s
inequality, (©*) is bounded in C® norm on ' for a = 1 — d/p. Then it follows
that ©* converges locally uniformly in Q to a Hélder continuous limit ¢. O

Finally, we comment on what might happen with rigidly breaking flows if
shear is allowed. Without the potential flow assumption, it is easy to imagine a
great variety of rigidly breaking flows that appear difficult to classify. E.g., as a
simple example consider €2 to be the unit ball in R?, let f be any function whose
graph x5 = f(x1) disconnects Q in two pieces, and let v be the velocity field that
sends the upper piece moving rigidly upward and the lower piece downward at
speed 1. If the graph is not a horizontal line, however, then the distributional
curl of v will be concentrated on the graph and nonzero.

10.2 Uniform expansion of the Cantor set

Here we provide a proof of our comment in subsection 3.2 regarding the uniform
expansion of the Cantor set under the transported velocity field plotted in Fig. 2.
This figure plots the Cantor-function velocity v = ¢(z) vs. the transported
location = z + te(z) = Xi(z), which is a continuous and strictly increasing
function of z for t > 0. Define this velocity as a function of x € R and ¢ = 0 by

f(z,t) = c(2), where x =z + te(z). (10.1)

(Here ¢(z) = 0for z < 0 and = 1 for z > 1.) This is the Lax implicit formula for a
solution of the inviscid Burgers equation 0 f + 01(%]”2) = (0. The function f(-,t)
is increasing. As discussed in section 3.2, f(-,¢) is constant on each component
interval of the complement of the “expanded” set C; = {z +tc(z) : z € C}, which
is a fat Cantor set of Lebesgue measure A\(C;) = A(C;) = t. Indeed, this set
expands Lebesgue measure uniformly, as we now show.
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Proposition 10.2. Fort > 0, the function in (10.1) is given by

flz,t) = % Jﬂ” Le,(s) dA(s).

0
Thus 0f /0x =0 on C¢, and 0f /dx = 1/t at each Lesbegue point of C;.

Proof. Fix t > 0. The function  — f(z,t) satisfies a one-sided Lipschitz bound
(Oleinik inequality), with a simple proof: Say & = X;(2) > = = X;(2). Then

hence

f@,t) = f(z,t)  c(2)—c(z) 1 1_2—2 1
T—x t
Since f is increasing in z, it is Lipschitz, hence differentiable a.e., whence
0 < 0f/0x < 1/t. We infer from Lebesgue’s version of the fundamental theorem
of calculus that
of
1=c(l)=f(1+1t,1) = a—(s,t) dA(s) <

1
-A =1.
Cy X t (Ct)

Then indeed 0f/dz(-,t) = 1/t a.e. in Cy, and

flz,t) = % Jw Le,(s) dA(s).

0

Moreover this shows 0f/dx = 1/t at every Lebesgue point of C;. O

Remark 10.3. The function f is in fact the entropy solution to the inviscid
Burgers equation with initial data f(z,0) = c¢(x), see [12, Sec. 3.4].

10.3 On continuous velocities in multidimensions

We lack any characterization like the one in Proposition 3.1 for describing rigidly
breaking velocity fields that are continuous when d > 1. So here we confine
ourselves to discuss some necessary constraints.

Suppose v = Vi is rigidly breaking and continuous, where ¢ is C!, convex
and locally affine a.e. on a bounded open convex set Q < R%. Let {v;} be the
distinct values of v on the open set A in (1.2) where ¢ is locally affine. Since
A is dense in 2, necessarily the set {v;} is dense in the continuous image v(2),
which must be connected, as in the case d = 1 treated in Proposition 3.1.

Recall that for all ¢ > 0, the flow map X; is a continuous injection from
Q onto X;(€2). Indeed, it is a homeomorphism, since the inequality proved in
Lemma 1.2,

1X,(2) — Xu)] > I — g,

implies the inverse is a contraction. Brouwer’s domain invariance theorem (see
[20] or [29, Sec. 1.6.2]) implies X;(Q2) is open in R?. Topologically X;(f2) is
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the same as €2, not disconnected in any way nor having “holes.” Instead it
is contractible to a point. Moreover we can deform €2 into v(€2) through the
homotopy defined by

S(z,7)=(1—-7)x+ Tv(),

noting S is continuous on € x [0,1]. Thus the image v(£2) is a limit of homeo-
morphic images S, (Q) = Xy (Q)/(1 +1¢), 7 =t/(1 +1).

But we have been unable to determine whether v(€2) must be homotopy
equivalent to €2, or whether this property, say, would suffice to ensure ¢ be
C!. The monotonicity of the velocity (as in (2.3)) should be relevant, since for
example, the smooth but non-monotone map v(z1,x2) = (cos 8z, sin 8z1) maps
the square 2 = (0,1)? surjectively onto the unit circle.

Acknowledgements

We thank Robert McCann for pointing out that Theorem 1.3 follows from [24,
Lemma 3.2]. We are very grateful to an anonymous referee for corrections and
many detailed suggestions for clarification. Thanks go also to the Isaac Newton
Institute for Mathematical Sciences, Cambridge, for support and hospitality
during the programme Frontiers in Kinetic Theory, where work on this paper
was undertaken. This work was supported by EPSRC grant no EP/R014604/1.
This material is based upon work supported by the National Science Foundation
under grants DMS 2106988 (JGL) and 2106534 (RLP).

References

[1] A. D. ALEXANDROV, Convex polyhedra, Springer Monographs in Mathe-
matics, Springer-Verlag, Berlin, 2005. Translated from the 1950 Russian
edition by N. S. Dairbekov, S. S. Kutateladze and A. B. Sossinsky, With
comments and bibliography by V. A. Zalgaller and appendices by L. A.
Shor and Yu. A. Volkov. 3, 6, 7

[2] L. AMBROsIO, E. BRUE, AND D. SEMOLA, Lectures on optimal transport,
vol. 130 of Unitext, Springer, Cham, [2021] (©)2021. La Matematica per il
342. 24, 25

[3] F. AURENHAMMER, Power diagrams: properties, algorithms and applica-
tions, SIAM J. Comput., 16 (1987), pp. 78-96. 28

[4] F. AURENHAMMER, R. KLEIN, AND D.-T. LEE, Voronoi diagrams and
Delaunay triangulations, World Scientific Publishing Co. Pte. Ltd., Hack-
ensack, NJ, 2013. 28

[5) M. BarDI AND L. C. EvaNs, On Hopf’s formulas for solutions of
Hamilton-Jacobi equations, Nonlinear Anal., 8 (1984), pp. 1373-1381. 5,
18



36

[6]

[7]

Rigidly breaking potential flows

D. W. BoyD, Osculatory packings by spheres, Canad. Math. Bull., 13
(1970), pp. 59-64. 29

Y. BRENIER, U. FriscH, M. HENON, G. LOEPER, S. MATARRESE,
R. MOHAYAEE, AND A. SOBOLEVSKII, Reconstruction of the early universe
as a conver optimization problem, Monthly Notices of the Royal Astronom-
ical Society, 346 (2003), pp. 501-524. 6, 24

Y. BRENIER AND E. GRENIER, Sticky particles and scalar conservation
laws, STAM journal on numerical analysis, 35 (1998), pp. 2317-2328. 5

H. BREzIS, Functional analysis, Sobolev spaces and partial differential
equations, Universitext, Springer, New York, 2011. 18

L. A. CAFFARELLI, Some regularity properties of solutions of Monge
Ampére equation, Comm. Pure Appl. Math., 44 (1991), pp. 965-969. 27

N. DUNFORD AND J. T. SCHWARTZ, Linear Operators. I. General Theory,
With the assistance of W. G. Bade and R. G. Bartle. Pure and Applied
Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience
Publishers, Ltd., London, 1958. 29

L. C. EVANS, Partial differential equations, vol. 19 of Graduate Studies in
Mathematics, American Mathematical Society, Providence, RI, second ed.,
2010. 34

A. FiGALLI, Regularity properties of optimal maps between monconvexr
domains in the plane, Comm. Partial Differential Equations, 35 (2010),
pp. 465-479. 27

[14] ——, The Monge-Ampére equation and its applications, Zurich Lectures

[15]

[16]

in Advanced Mathematics, European Mathematical Society (EMS), Ziirich,
2017. 18, 26

A. F1cALLI AND Y.-H. KM, Partial reqularity of Brenier solutions of the
Monge-Ampére equation, Discrete Contin. Dyn. Syst., 28 (2010), pp. 559—
565. 27

U. FRrRISCH, S. MATARRESE, R. MOHAYAEE, AND A. SOBOLEVSKI, A
reconstruction of the initial conditions of the universe by optimal mass
transportation, Nature, 417 (2002), pp. 260-262. 6, 24

X. Gu, F. Luo, J. SuN, AND S.-T. YAu, Variational principles for
Minkowski type problems, discrete optimal transport, and discrete Monge-
Ampere equations, Asian J. Math., 20 (2016), pp. 383-398. 6

S. N. GURBATOV, A. I. SAICHEV, AND S. F. SHANDARIN, Large-scale

structure of the universe. the Zeldovich approximation and the adhesion
model, Physics-Uspekhi, 55 (2012), p. 223. 6



J.-G. Liu and R. L. Pego 37

[19]

[20]

[21]

[22]

[23]

E. KASNER AND F. SUPNICK, The Apollonian packing of circles, Proc.
Nat. Acad. Sci. U.S.A., 29 (1943), pp. 378-384. 30

W. KuLprA, Poincaré and domain invariance theorem, Acta Univ. Carolin.
Math. Phys., 39 (1998), pp. 127-136. 35

J. C. LAGARIAs, C. L. MaLrLows, AND A. R. WILKS, Beyond the
Descartes circle theorem, Amer. Math. Monthly, 109 (2002), pp. 338-361.
31

J.-G. Liu, R. L. PEGO, AND D. SLEPCEV, Least action principles for

incompressible flows and geodesics between shapes, Calc. Var. Partial Dif-
ferential Equations, 58 (2019). Paper No. 179, 43. 4, 6, 8, 18, 26, 27

R. J. McCANN, Ezistence and uniqueness of monotone measure-preserving
maps, Duke Math. J., 80 (1995), pp. 309-323. 9, 10, 25

[24] ——, A convezity principle for interacting gases, Adv. Math., 128 (1997),

[25]

[26]

pp. 153-179. 4, 19, 20, 35

Z. A. MELzAK, Infinite packings of disks, Canadian J. Math., 18 (1966),
pp. 838 852. 29

H. MINKOWSKI, Allgemeine lehrsdtze tiber die konvexen polyeder, in Aus-
gewéhlte Arbeiten zur Zahlentheorie und zur Geometrie: Mit D. Hilberts
Gedéchtnisrede auf H. Minkowski, Gottingen 1909, Springer Vienna, Vi-
enna, 1989, pp. 121-139. 6

R. T. ROCKAFELLAR, Convex analysis, vol. No. 28 of Princeton Mathe-
matical Series, Princeton University Press, Princeton, NJ, 1970. 18, 19,
23

F. Soppy, The bowl of integers and the hezlet, Nature, 139 (1937), pp. 77—
79. 31

T. TAo, Hilbert’s fifth problem and related topics, vol. 153 of Graduate
Studies in Mathematics, American Mathematical Society, Providence, RI,
2014. 35

M. VERGASSOLA, B. DUBRULLE, U. FRISCH, AND A. NOULLEZ, Burgers’
equation, devil’s staircases and the mass distribution for large-scale struc-
tures, Astronomy and Astrophysics (ISSN 0004-6361), vol. 289, no. 2, p.
325-356, 289 (1994), pp. 325-356. 6

C. VILLANI, Optimal transport, vol. 338 of Grundlehren der mathematis-
chen Wissenschaften [Fundamental Principles of Mathematical Sciences],
Springer-Verlag, Berlin, 2009. Old and new. 25

D. WEINBERG AND J. E. GUNN, Largescale structure and the adhesion
approximation, Monthly Notices of the Royal Astronomical Society, Vol.
247, NO. 2/NOV15, P. 260, 1990, 247 (1990), p. 260. 6



	Introduction
	Proof of a countable Alexandrov theorem
	One space dimension
	Convexity in 1D
	Example: ``Cantor's elastic band''
	Characterization of continuity in one dimension

	Finitely many pieces
	Geometry of the pieces
	Convexity for finitely many pieces

	Continuously differentiable potentials
	Mass concentrations in convexified transport
	Convex mass transport
	Non-convex mass transport

	Stability and approximation of rigidly breaking flows
	Incompressible optimal transport flows with convex source
	Shapes of shards
	Power diagrams
	Full packings by balls
	Shards with arbitrary convex shape

	Discussion
	Sufficient conditions for continuity of the potential
	Uniform expansion of the Cantor set
	On continuous velocities in multidimensions


