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ABSTRACT
In this paper, we ask, “Canmillimeter-wave (mmWave) radars
sense objects not directly illuminated by the radar – for
instance, objects located outside the transmit beamwidth,
behind occlusions, or placed fully behind the radar?" Tradi-
tionally, mmWave radars are limited to sense objects that
are directly illuminated by the radar and scatter its signals
directly back. In practice, however, radar signals scatter to
other intermediate objects in the environment and undergo
multiple bounces before being received back at the radar. In
this paper, we present Hydra, a framework to explicitlymodel
and exploit multi-bounce paths for sensing. Hydra enables
standalone mmWave radars to sense beyond-!eld-of-view
objects without prior knowledge of the environment. We
extensively evaluate the localization performance of Hydra
with an o"-the-shelf mmWave radar in !ve di"erent environ-
ments with everyday objects. Exploiting multi-bounce via
Hydra provides 2→-10→ improvement in the median beyond-
!eld-of-view localization error over baselines.

CCS CONCEPTS
• Hardware↑ Digital signal processing; Sensor appli-
cations and deployments; • Computer systems organi-
zation↑ Sensor networks.
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Figure 1: Hydra utilizes multi-bounce scattering for
mmWave sensing of objects that are otherwise not de-
tected by conventional single-bounce sensingmethods.
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1 INTRODUCTION
Millimeter-wave (mmWave) radars are an emerging sens-
ing modality being used in various applications such as au-
tonomous driving [13, 36], security [30, 37], non-destructive
evaluation [31, 33], spatial computing [23], indoor naviga-
tion [26], and beyond. Their larger bandwidths enable better
ranging accuracy, and their unique depth penetration abili-
ties enable sensing through visible light occlusions, such as
fog [13] and smoke [26], as well as in the dark [30].
However, traditional radar processing is limited to sense

objects that are directly illuminated by the radar and that scat-
ter radar illumination directly back. We call such methods

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://orcid.org/0000-0003-2801-2938
https://orcid.org/0000-0001-7556-2946
https://orcid.org/0000-0003-3689-3261
https://orcid.org/0000-0003-2038-9968
https://orcid.org/0000-0002-5398-5347
https://orcid.org/0000-0003-1898-5787
https://doi.org/10.1145/3636534.3690710
https://doi.org/10.1145/3636534.3690710
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3636534.3690710&domain=pdf&date_stamp=2024-12-04


ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA Mehrotra et al.

single-bounce sensing, and a large class of the literature [13–
15, 26, 32, 34, 48, 51–53] falls under this category. In practice,
however, a large fraction of incident illumination is scattered
to other intermediate objects in the environment, and radar
signals undergo multiple bounces before being received back
at the radar. This leads us to ask, “Is it possible to exploit
such multi-bounce scattering paths to sense objects that are
not directly illuminated by the radar?"

In this paper, we propose Hydra1, a novel framework that
exploits multi-bounce scattering to enable mmWave sens-
ing of objects that are not directly illuminated by the radar,
and hence not are detected by conventional single-bounce
methods. An example scenario is depicted in Fig. 1, where
only the sofa is directly illuminated by the radar and hence is
detected via single-bounce, but all other objects (dining fur-
niture, trashcan and behind-radar human) are not detected.
In the sequel, we refer to all objects not directly illuminated
by the radar as beyond !eld-of-view objects, since they lie
outside the radar’s !eld-of-view (FoV), i.e., transmit beam.
Sensing beyond-FoV objects, e.g., behind the radar or

around corners, is crucial in scenarios such as navigation
and tra#c scheduling at intersections, intrusion detection in
smart homes, etc. Prior solutions to sense beyond-FoV objects
leverage system mobility [26, 32, 34, 45, 51, 52] and/or mul-
tiple modules - 2+ radars [42, 49] or radar + lidar [36, 46, 50]
(see Section 2 for a review of related work). Hydra is a com-
plementary solution that enables standalonemmWave radars
to sense beyond-FoV objects purely purely using computa-
tional resources at no additional cost - making Hydra attrac-
tive in scenarios where hardware size/cost is at a premium,
e.g., low form factor drones, roadside infrastructure units,
etc. Moreover, Hydra requires no prior knowledge of the
environment unlike prior beyond-FoV sensing solutions that
require knowledge of key re$ectors.

There are two main challenges associated with the design
of Hydra. First, with no prior knowledge of objects in the
environment, it is unclear how the radar should transform
its measurements to spatial locations in the environment.
Second, it is well-known that the received power of multi-
bounce decays with each additional bounce [1]. Hence, de-
tecting beyond-FoV objects from the combination of single-
, double- and triple-bounce paths received at the radar is
challenging because single-bounce paths typically greatly
dominate in power over double- and triple-bounce paths.

As a key intermediate step towards solving the !rst chal-
lenge, we mathematically model di"use multi-bounce scat-
tering from objects. Our modeling insights lead to a matched
!ltering algorithm that directly localizes objects to their
ground-truth locations along speci!c multi-bounce paths.
To solve the second challenge, we perform matched !ltering

1named after the multi-headed Greek mythological monster

and object detection separately & sequentially along single-
, double- and triple-bounce. For each multi-bounce order,
object detection is performed via a custom ordered statis-
tics constant false alarm rate detector (OS-CFAR) [35], and
objects detected in lower multi-bounce orders are used as
anchors to localize objects in undetected regions of the envi-
ronment with higher-order multi-bounce. For example, in the
context of Fig. 1, the sofa is !rst localized via single-bounce,
and is used to subsequently localize the dining furniture via
double-bounce. The process is repeated to sense the behind-
radar human and occluded trashcan via triple-bounce paths.
We do not utilize fourth- and higher-order bounces since em-
pirically we !nd the power of such paths too low to exploit.
We implement Hydra on a commercial digital mmWave

multiple-input multiple-output (MIMO) radar testbed (TI
AWR2243 cascade radar [18]), and extensively evaluate its
performance in !ve di"erent indoor and outdoor scenar-
ios, and exploit multi-bounce paths from a wide variety of
everyday objects and surfaces, including human bodies, in-
door furniture, and extended room and building features.
We demonstrate that even with no prior knowledge of the
environment, modeling and exploiting double-bounce and
triple-bounce paths can improve the median localization
error for human targets standing outside the radar’s !eld-of-
view by 2→-10→ over traditional single-bounce methods.

In summary, our main contributions are as follows:

• We propose Hydra, a framework that models and ex-
ploits di"usemulti-bounce scattering to enable beyond-
!eld-of-view sensing with a single mmWave radar
without prior knowledge of the environment.

• We propose a sequential procedure that: (i) performs
matched !ltering and target detection separately and
sequentially over di"erent orders of multi-bounce, and
(ii) uses target detections from previous iterations as
anchors to localize objects along multiple possible
multi-bounce paths of a given order.

• Our implementation on a commercial digital mmWave
MIMO radar (TI AWR2243 cascade radar [18]) demon-
strates 2→-10→ improvement in themedian localization
error for humans standing outside the radar’s !eld-of-
view across 5 di"erent indoor and outdoor scenarios,
exploiting multi-bounce from a wide variety of every-
day objects and surfaces, such as human bodies, indoor
furniture, and extended room and building features.

We note that our design is limited to sensing static objects
in the range-azimuth plane, and is not fully optimized in
terms of its computational complexity. Our objective in this
paper is to experimentally demonstrate and benchmark the
underlying principles of beyond-!eld-of-view sensing with
standalone mmWave radars. We discuss the limitations of
our design and describe potential extensions in Section 6.
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Reference Environment Additional Hardware Multi-Bounce Order

Knowledge Lidar Re$ector Single Double Triple

[36, 46, 50] ↭ ↭ → → → ↭
[2, 39, 44] ↭ → ↭ → → ↭

[6, 12, 16, 21, 22] ↭ → → ↭ ↭ ↭
This Work → → → ↭ ↭ ↭

Table 1: Hydra exploits multi-bounce scattering to enable a single mmWave radar to sense beyond its !eld-of-view
without prior knowledge of the environment or additional hardware such as dedicated re"ectors or lidars.

The next section summarizes related work. Section 3 de-
scribes the limitations of single-bounce sensing, which in-
form Hydra’s design in Section 4. Section 5 evaluates Hydra’s
performance across 5 di"erent indoor and outdoor settings.
We conclude the paper in Section 7 after discussing the limi-
tations of our design and future work in Section 6.

2 RELATEDWORK
Table 1 summarizes the related work discussed below.
Single-bounce sensing: Traditional mmWave sensing al-
gorithms only model single-bounce re$ections from the en-
vironment [13–15, 26, 32, 34, 48, 51–53]. However, mmWave
signal directionality limits the single-bounce FoV to non-
occluded objects within the transmit beam. Existing solutions
sense in a wider FoV via: (i) beam scanning [11, 14, 15, 53], (ii)
multiple radars to span the entire 360↓ FoV around the sys-
tem [42, 49], or (iii) system rotation and mobility [26, 32, 34,
45, 51, 52]. Hydra complements these methods by enabling
standalone mmWave radars to sense beyond-FoV objects
without additional hardware, even when the radar is static.
Around-corner sensing: There exists rich literature on
around-corner radar sensing [2, 36, 39, 44, 46, 50], inspired
from similar ideas in visible light and acoustic imaging [9,
24, 25, 41]. However, the scenarios considered only con-
sist of triple-bounce paths. Traditional around-corner ap-
proaches process the triple-bounce data with single-bounce
algorithms, resulting in “ghosts” (mirror images) of objects
about re$ectors in the environment (walls, etc.). Subsequently,
prior knowledge of the environment – via dedicated re$ec-
tors [2, 39, 44] or lidar-based environment mapping [36,
46, 50] – is used to “remap” the ghosts to their ground-
truth locations. However, such approaches are environment-
speci!c and increase the overall hardware complexity and
cost. Hydra explores the general problem of beyond-FoV
sensing with a single mmWave radar via double-bounce and
triple-bounce paths without prior environment knowledge.
Multi-bounce exploitation: The general problem of sens-
ing with arbitrarymulti-bounce has been considered in [6, 10,
12, 16, 20–22, 27, 28]. Similar to around-corner sensing, the
common approach is to use single-bounce sensing models,

resulting in the formation of multipath “ghosts”, which must
!rst be identi!ed, e.g., via range-Doppler characteristics [10],
and subsequently suppressed [6, 10, 21] or remapped to their
ground-truth locations [5, 12, 20]. By modeling multi-bounce
scattering, Hydra avoids the need for “ghost” identi!cation
and suppression/remapping.
Channel estimation & localization: Our work is also
broadly related toWiFi/mmWave channel estimation [19, 45],
which is used to localize devices [4, 7, 22, 40, 43]. The major
di"erences of [4, 7, 19, 22, 40, 43, 45] with Hydra are: (i) they
localize RF-enabled radios or RFID tags whereas Hydra local-
izes non-RF enabled objects, (ii) they are limited to exploiting
single-bounce paths that bounce once in the environment,
whereas Hydra uses 𝐿-bounce scattering, for 𝐿 ↔ 1.
Programmable surfaces to aid sensing: Finally, recent
work [3, 29, 47] explores deploying programmable surfaces
to improve sensing performance. Since Hydra focuses on ex-
ploiting natural multi-bounce in the environment, such sys-
tems are beyond the scope of this present work but present
an interesting exploration space for future work.

3 SINGLE-BOUNCE FOV LIMITATIONS
We begin by modeling single-bounce sensing with MIMO
radars, and show that the single-bounce !eld-of-view is in-
herently limited to the transmit beampattern of the system.
The FoV limitations of single-bounce are subsequently used
to inform the multi-bounce design of Hydra in Section 4.

3.1 MIMO Radar System Model
Consider a digital mmWave MIMO radar equipped with T
transmit and R receive elements. The radar remains static,
transmit beamforms in a !xed direction with T → 1 transmit
beamforming weights wTX , and captures re$ections from
the surrounding static environment. For simplicity, we only
model the range and azimuth angles, and not elevation.
The time-domain transmitted signals can be written as a

T → 1 vector, x(𝑀) = wTX𝑁 (𝑀), for a complex scalar transmit
waveform 𝑁 (𝑀). The R → 1 vector of time-domain received
signals is given by the sum of attenuated and delayed copies
of x(𝑀) along di"erent paths 𝑂 , weighted by T → 1 transmit
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Figure 2: Experiment to evaluate sensing FoV with single-bounce. (a) Setup. (b)-(d): Normalized single-bounce
re"ectivity magnitudes from (4) show that single-bounce FoV is limited to main- and side-lobes of transmit array.

and R → 1 receive steering vectors, aTX (𝑃 𝐿TX) and aRX (𝑃 𝐿RX),
corresponding to each path’s angle-of-departure and arrival,

y(𝑀) =
∑
𝐿

𝑄𝐿aRX (𝑃 𝐿RX )a
↗
TX
(𝑃 𝐿

TX
)wTX𝑁 (𝑀 ↘ 𝑅𝐿 ), (1)

where 𝑄𝐿 and 𝑅𝐿 model attenuation and time delay of path 𝑂 ,
(·)↗ denotes transpose, and we have ignored noise and the
frequency dependence of the steering vectors.
Consider single-bounce paths of the form: radar ↑ p ↑

radar, for locations p ≃ R2 in the environment. The angles-of-
departure and arrival are equal for such paths, i.e.,𝑃 𝐿

TX
= 𝑃 𝐿

RX
=

𝑃p, where 𝑃p denotes the azimuth angle of p with respect to
the radar (assumed at origin). The time delay corresponds
to the round-trip delay to location p, i.e., 𝑅𝐿 = 2⇐p⇐2

c , for
speed of light c. Furthermore, 𝑄𝐿 = 𝑆p is the path attenuation
due to the combined e"ect of the re$ectivity and path loss
to-and-from p. Hence, (1) for single-bounce paths is

ySB (𝑀) =
∑
p
𝑆paRX (𝑃p)a↗TX (𝑃p)wTX𝑁

(
𝑀 ↘ 2⇐p⇐2

c

)
. (2)

3.2 Single-Bounce Sensing Pipeline
The goal of sensing is to estimate re$ectivities 𝑆p given the
measurements ySB (𝑀) and transmit signal 𝑁 (𝑀) (known to the
radar); non-zero magnitudes of 𝑆p indicate presence of an
object at location p. After matched !ltering with 𝑁 (𝑀), the
system model may be expressed in the frequency domain as

ỹSB (𝑇) =
∑
p
𝑆paRX (𝑃p)a↗TX (𝑃p)wTX𝑈

↘ 𝑀𝑁 2⇐p⇐2
c . (3)

A common approach to estimate 𝑆p from ỹSB (𝑇) in (3) is
via adjoint inversion (also called back-projection) [8, 38],

𝑆̂p =
1
W

∑
𝑁

(
a↗
TX
(𝑃p)wTX

)⇒𝑈 𝑀𝑁 2⇐p⇐2
c aH

RX
(𝑃p)ỹSB (𝑇), (4)

where (·)⇒ and (·)H denote the complex conjugate and Her-
mitian operations, and W is the total number of frequencies
considered. The estimator in (4) has a simple interpretation:

receive beamform to locations p (via aH
RX
(𝑃p)ỹSB (𝑇)), followed

by matched !ltering to kernel a↗
TX
(𝑃p)wTX𝑈

↘ 𝑀𝑁 2⇐p⇐2
c , which is

known since a co-located receiver knows the transmit beam-
former wTX and distances ⇐p⇐2 to locations p.

3.3 Single-Bounce Limits Sensing FoV
We now theoretically and experimentally demonstrate that
the sensing FoV with single-bounce-only processing is lim-
ited to the main- and side-lobes of the transmit array. To
that end, note that as per (2), single-bounce scattering from
a location p is non-zero if the following condition holds:

⇐aRX (𝑃p)a↗TX (𝑃p)wTX ⇐2 > 0. (5)

Assuming the receive array steering vector aRX (𝑃p) has
unit-norm, (5) simpli!es to |a↗

TX
(𝑃p)wTX | > 0, where | · | indi-

cates magnitude. The condition holds for all locations within
the main- and side-lobes of the radar’s transmit beampattern.

We illustrate the above concept via a simple range-azimuth
domain simulation and experimentwith a TImmWaveMIMO
radar [18], with 9- and 16-element transmit and receive uni-
form linear arrays (per-element spacing: 2𝑉 (transmit), 0.5𝑉
(receive), for wavelength 𝑉). The simulated and experimental
setup is shown in Fig. 2(a). We con!gure the radar to transmit
beamform towards an azimuth angle 𝑃 ≃ [↘30↓, +30↓], hence
wTX = aTX (𝑃 ). For each transmit angle, we capture re$ections
for di"erent azimuth angle locations 𝑊 ≃ [↘80↓, +80↓] of a
metallic cylinder2 at 2.5 m range in front of the radar. Subse-
quently, the magnitude of the re$ectivity estimate 𝑆̂p(𝑂 ) at
the cylinder’s ground-truth location p(𝑊) is visualized across
all combinations of (𝑊, 𝑃 ) as a 2D matrix. Each element of
the matrix (derivation in Appendix A) corresponds to:

|𝑆̂p(𝑂 ) | = |𝑆p(𝑂 ) | |a↗TX (𝑊)aTX (𝑃 ) |2, (6)

i.e., squared left-hand side of (5) with 𝑃p = 𝑊 , wTX = aTX (𝑃 ),
scaled by the ground-truth cylinder re$ectivity |𝑆p(𝑂 ) |.
2acts as a highly re$ective omnidirectional (di"use) scatterer
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Figure 3: System overview of Hydra.
Figs. 2(b)-(c) show the simulated and experimental ma-

trices, with each row normalized to its maximum value to
remove the scaling factor |𝑆p(𝑂 ) |. We observe that matrix en-
tries have a high magnitude roughly when 𝑊 = 𝑃 ±𝑋 → 30↓,
for any positive integer𝑋, which correspond to the main-
and side-lobes of the transmit beampattern, also shown in
Fig. 2(d) for𝑃 = 0↓. Note that the side-lobes arise due to the 2𝑉
spacing at the transmit array. The good match between the-
ory and experiment validates our claim that single-bounce
limits the sensing FoV to the system’s transmit beampattern.

4 SYSTEM DESIGN: HYDRA
With the understanding that single-bounce limits the sensing
FoV, we design Hydra to enable a single mmWave radar to
sense beyond its single-bounce FoV via natural multi-bounce
scattering, without prior knowledge of the environment.

The design of Hydra consists of two main components.
First, we mathematically model di"use multi-bounce scat-

tering, which provides the basis for multi-bounce spatial
domain matched !ltering to localize beyond-FoV objects.
Second, we design a sequential detection and localiza-

tion pipeline that (i) separately detects objects along single-,
double- and triple-bounce paths, and (ii) then uses prior de-
tections as anchors to localize objects using multi-bounce
despite their weaker power. We note that no prior environ-
ment knowledge is assumed in any of the steps.

Hydra’s overall algorithmic $ow is depicted in Fig. 3.

4.1 Modeling Multi-Bounce Paths
We begin by extending (1) and (2) to model multi-bounce.

Consider double-bounce paths of the form: radar ↑ p ↑
p⇑ ↑ radar, for pairs of locations p ω p⇑ ≃ R2 in the envi-
ronment, as illustrated in Fig. 4(a). The angles-of-departure
and arrival are di"erent for such paths, i.e., 𝑃 𝐿

TX
ω 𝑃 𝐿

RX
, and

given by 𝑃 𝐿
TX

= 𝑃p, 𝑃 𝐿RX = 𝑃p⇑ . The time delay is the com-
bined delay of the path through p & p⇑, i.e., 𝑅𝐿 =

dp;p⇑
c , where

dp;p⇑ = ⇐p⇐2 + ⇐p ↘ p⇑ ⇐2 + ⇐p⇑ ⇐2. Furthermore, the path at-
tenuation can be modeled as the combined re$ectivity and
path loss of the path through p & p⇑, 𝑄𝐿 = 𝑆p;p⇑ . Hence, the
double-bounce system model is

yDB (𝑀) =
∑
p,p⇑
p⇑ωp

𝑆p;p⇑aRX (𝑃p⇑ )a↗TX (𝑃p)wTX𝑁

(
𝑀 ↘

dp;p⇑
c

)
. (7)

p p’

(a) Double-bounce paths

p p’

p’’

(b) Triple-bounce paths

Figure 4: Modeling double- and triple-bounce paths.

Note that valid locations of points p⇑ in the above equation
and Fig. 4(a) are limited to locations in front of the radar, for
the radar to be able to capture re$ections from p⇑.
Next, consider triple-bounce paths of the form: radar ↑

p ↑ p⇑⇑ ↑ p⇑ ↑ radar, for triplets of locations p ω p⇑⇑ ω
p⇑ ≃ R2 in the environment, as illustrated in Fig. 4(b). Note
that we have not enforced any relationship between p & p⇑
to include the special case p = p⇑, when triple-bounce occurs
between only two locations. The angles-of-departure and
arrival are given by 𝑃 𝐿

TX
= 𝑃p, 𝑃 𝐿RX = 𝑃p⇑ . The time delay is

the combined delay of the path through p, p⇑⇑ & p⇑, i.e., 𝑅𝐿 =
dp;p⇑⇑ ;p⇑

c , where dp;p⇑⇑ ;p⇑ = ⇐p⇐2+ ⇐p↘p⇑⇑ ⇐2+ ⇐p⇑⇑ ↘p⇑ ⇐2+ ⇐p⇑ ⇐2.
The path attenuation is the combined re$ectivity and path
loss of the path through p, p⇑⇑ & p⇑, 𝑄𝐿 = 𝑆p;p⇑⇑ ;p⇑ . Hence, the
triple-bounce system model is

yTB (𝑀)=
∑

p,p⇑,p⇑⇑
pωp⇑⇑ωp⇑

𝑆p;p⇑⇑ ;p⇑ aRX
(𝑃p⇑ ) a↗TX (𝑃p)wTX𝑁

(
𝑀↘
dp;p⇑⇑ ;p⇑

c

)
. (8)

We note that valid locations of points p⇑⇑ in the above
equation and Fig. 4(b) are not only limited to locations in
front of the radar, but can also include locations behind the
radar, as long as locations p⇑ are in front of the radar.

Arbitrary 𝐿th-bounce can be modeled similarly:

yn↘B (𝑀)=
∑

p1 ,· · · ,p𝐿
p1ω· · ·ωp𝐿

𝑆p1· · ·𝐿 a
RX
(𝑃p𝐿 ) a

↗
TX
(𝑃p1 ) wTX𝑁

(
𝑀↘

dp1· · ·𝐿
c

)
,

where 𝑆p1· · ·𝐿 and dp1· · ·𝐿 denote the combined re$ectivity and
path length of 𝐿th-bounce through locations p1 , · · · , p𝐿 . The
overall system model in (1) is then the sum of all multi-
bounce components, y(𝑀) = ySB (𝑀) + yDB (𝑀) + yTB (𝑀) + · · · .
We note that the above model is valid only for di"use

multi-bounce scattering, which assumes that all objects in the
environment scatter incoming waves omni-directionally. Our
primary motivation for using a di"use scattering model is to
meet our overall goal of sensing without requiring any prior
knowledge of the material properties of the environment.
Despite its limitations, our model and subsequent approach
yield good performance across a wide variety of specular
and di"use objects, as detailed in our evaluation (Section 5).
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4.2 Multi-Bounce Spatial Matched Filtering
4.2.1 Motivation: Multipath “Ghosts”. We !rst motivate the
need for developing amulti-bouncematched !lteringmethod.
Consider two point objects at ranges X and Y, and azimuth an-
gles 𝑊 and ↘𝑃 . For simplicity, assume an occluded direct path
to Object 2; hence, the radar receives signals along single-
bounce (radar ↑ Object1 ↑ radar) and triple-bounce
(radar ↑ Object1 ↑ Object2 ↑ Object1 ↑ radar) paths:

y(𝑀) = 𝑆1aRX
(𝑃 ) a↗

TX
(𝑃 ) wTX

[
𝑁

(
𝑀↘ 2Y

c

)
+ 𝑆1𝑆2𝑁

(
𝑀↘ 2dTB

c

)]
,

where dTB = Y +
√
X2 + Y2 ↘ 2XY cos(𝑃 + 𝑊) is the one-way

length of the triple-bounce path. Directly applying the single-
bounce matched !lter from (4) yields two locations with high
re$ectivity values: (i) the actual target location at range Y
and angle ↘𝑃 , and (ii) a “ghost” of Object 2 about Object 1,
at range dTB and angle ↘𝑃 . Without prior knowledge about
Object 1’s location, it is challenging to di"erentiate between
actual objects and “ghosts”, and in case of the latter, remap
them to their ground-truth locations. Therefore, we develop
an approach to automatically localize objects sensed along
multi-bounce paths to their ground-truth location, without
“ghost” detection and remapping.

4.2.2 Proposed Approach. To avoid “ghost” remapping, we
propose to directly estimate the multi-bounce re$ectivities
of objects via a multi-bounce extension of the single-bounce
adjoint inversion (matched !ltering) approach from (4).
Let ỹDB (𝑇), ỹTB (𝑇), · · · denote the multi-bounce system

models from (7)-(8) in the frequency domain after matched
!ltering with transmit signal 𝑁 (𝑀). In the case of double-
bounce, we directly estimate the double-bounce re$ectivity,
𝑆p;p⇑ , at location p⇑ due to re$ection from location p as

𝑆̂p;p⇑ =
1
W

∑
𝑁

(
a↗
TX
(𝑃p)wTX

)⇒𝑈 𝑀𝑁 dp;p⇑
c aH

RX
(𝑃p⇑ )ỹDB (𝑇). (9)

Intuition: (9) may be understood as: receive beamforming to
locations p⇑ (via aH

RX
(𝑃p⇑ )ỹSB (𝑇)), while transmit beamform-

ing towards p and compensating for the double-bounce path

length via a↗
TX
(𝑃p)wTX𝑈

↘ 𝑀𝑁
dp;p⇑
c . Since only the receive beam-

forming term depends on p⇑, the angular resolution of (9) is
limited to the angular resolution of the receive array, as also
illustrated in Fig. 5(a). In contrast, virtual array formation
due to same transmit and receive beamforming directions in
single-bounce enable higher angular resolution.

In triple-bounce, we estimate the triple-bounce re$ectivity,
𝑆p;p⇑⇑ ;p⇑ , at location p⇑⇑ due to re$ections from locations p, p⇑,

𝑆̂p;p⇑⇑ ;p⇑ =
1
W

∑
𝑁

(
a↗
TX
(𝑃p)wTX

)⇒𝑈 𝑀𝑁 dp;p⇑⇑ ;p⇑
c aH

RX
(𝑃p⇑ )ỹTB (𝑇). (10)

p p’

(a) Double-bounce

p p’

(b) Triple-bounce

Figure 5: Intuitive understanding of double- and triple-
bounce adjoint inversion (matched !ltering) in (9)-(10).

Intuition: The dependence on the triple-bounce object p⇑⇑
is only in the distance term dp;p⇑⇑ ;p⇑ . Hence, a single triple-
bounce path from points p, p⇑, (10) can only result in an arc at
point p⇑⇑, as shown in Fig. 5(b) for p⇑ = p, p⇑⇑ = p⇑. Reducing
the uncertainty from an arc to a unique point requires at
least three distinct triple-bounce paths passing through p⇑⇑.

Extensions to arbitrary 𝐿th-bounce follow similarly:

𝑆̂p1· · ·𝐿 =
1
W

∑
𝑁

(
a↗
TX
(𝑃p1 )wTX

)⇒𝑈 𝑀𝑁 dp1· · ·𝐿
c aH

RX
(𝑃p𝐿 )ỹn↘B (𝑇).

In the next subsection, we demonstrate how the developed
matched !ltering approach is used to detect and localize
beyond-FoV objects via multi-bounce.

4.3 Sequential Detection & Localization
Extending the matched !ltering approach from Section 4.2
to solve the general problem of beyond-FoV target detection
requires contending with two fundamental challenges: (i)
the power of single-bounce greatly dominates over higher-
order bounces, and (ii) lack of prior environment knowledge.
To tackle these challenges, we propose a sequential detec-
tion and localization approach, wherein objects in the envi-
ronment are !rst detected via single-bounce, then double-
bounce, followed by triple-bounce, and so on. We describe
our procedure sequentially, beginning with single-bounce.
Throughout, we assume the transmit beamforming weights
wTX are !xed and known to the radar.

4.3.1 Stage 1: Single-Bounce. The procedure begins with
single-bounce sensing. The radar !rst forms a spatial map
of its surroundings {𝑆̂p} via the single-bounce adjoint in-
version in (4). To detect key objects in the environment, we
use 2D ordered statistics (OS) CFAR [35]. In brief, OS-CFAR
computes the target-to-clutter ratio (TCR) corresponding to
each location p in the environment, where the target power
at p is de!ned as the re$ectivity intensity, |𝑆̂p |2, and the clut-
ter power is the median value of re$ectivity intensities of
points in a local neighborhood around p. The computed TCR
is then compared to a threshold, empirically chosen as 0.5→
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Figure 6: Fourth-bounce power too weak to be used.

the maximum TCR amongst all single-bounce re$ectivities.
The output corresponds to the set of objects detected via
single-bounce. If an object is detected at a higher range but
same angle as another detection, the higher range object is
zeroed out since such a detection can only correspond to a
“ghost” and not a physical object. We denote the !nal set of
locations of single-bounce object detections by S1.

4.3.2 Stage 2: Double-Bounce. Next, the radar uses double-
bounce to localize beyond-FoV objects. For each single-bounce
detected point p ≃ S1, the radar estimates the double-bounce
re$ectivity 𝑆̂p;p⇑ via (9) for locations p⇑ in the environment.
We ensure that locations p⇑ do not coincide with detected
single-bounce objects p ≃ S1 (for zero interference between
bounces), and moreover lie outside the radar’s transmit main-
lobe. The double-bounce re$ectivity magnitude of the indi-
vidual point p⇑ is found by averagingmagnitudes of 𝑆̂p;p⇑ over
all single-bounce detections p ≃ S1, |𝑆̂

DB

p⇑ | = 1
|S1 |

∑
p≃S1 |𝑆̂p;p⇑ |.

OS-CFAR is then used to update the set of double-bounce
object detections S2, with threshold 0.5→ the maximum TCR
of all double-bounce re$ectivities.

4.3.3 Stage 3: Triple-Bounce. The above procedure is then
repeated for higher-order multi-bounce orders. For triple-
bounce, 𝑆̂p;p⇑⇑ ;p⇑ is estimated via (10) for each single- and
double-bounce pair (p, p⇑) ≃ S1→S2, for locations p⇑⇑ ε S1⇓S2.
Triple-bounce re$ectivity magnitudes of points p⇑⇑ are found
via averaging, |𝑆̂TB

p⇑⇑ | = 1
|S1→S2 |

∑
(p,p⇑ )≃S1→S2 |𝑆̂p;p⇑⇑ ;p⇑ |, and OS-

CFAR is used to update the triple-bounce set S3 as before.
The procedure can be similarly extended to 𝐿th-bounce.

4.3.4 Stopping Criteria. While the above procedure can be
performed up to arbitrary multi-bounce orders 𝐿, empirically
we observe that the received power of fourth- and higher-
order bounces is too low to be exploited. Fig. 6(b) plots the
range pro!le (power normalized to single-bounce path) for
a toy experiment conducted with three metallic cylinders,
with the radar transmitting towards C1, and C2 occluding

|𝛼| = 6

|𝛼| = 0.8

, |𝛼|

Figure 7: Error propagation analysis (Lemma 4.1).
C3 outside the transmit beam. We observe that the power
of fourth-bounce paths (e.g., radar ↑ C1 ↑ C3 ↑ C1 ↑
C2 ↑ radar) is much weaker than triple-bounce, with peaks
buried within the clutter and noise levels. Hence, in our
evaluation, we do not process beyond triple-bounce.

4.3.5 Computational Complexity. The computational com-
plexity of each adjoint inversion step, e.g., (4), (9) or (10),
is 𝑌 (TRW), where T/R is the number of transmit/receive
elements and W is the number of considered frequencies.
Hence, in single-bounce, for P locations p over which (4)
is evaluated, the total complexity is 𝑌 (TRWP). The target
detection steps (OS-CFAR and thresholding) are also 𝑌 (P);
hence the total complexity of single-bounce is 𝑌 (TRWP).
Given |S1 | single-bounce detections, the complexity of run-
ning the double-bounce adjoint inversion step (9) over |S1 |
locations p and P locations p⇑ is 𝑌 (TRW|S1 |P). Analogously,
the complexity of triple-bounce via (10) is𝑌 (TRW|S1→S2 |P).
In our evaluation, |S𝑃 | ⇔ 6, ↖𝐿 ≃ {1, 2}, and each iteration
takes 11.98 s on average (with 0.25 s standard deviation) for
our MATLAB Intel i5 CPU-based implementation (which can
be further optimized via GPU implementation).

4.3.6 Error Propagation. Given the iterative nature of our
algorithm, one may expect errors in previous iterations to
propagate into the current iteration. To quantify potential
error propagation, we study the simple double-bounce con-
!guration depicted in Fig. 4(a) with two point objects at p
and p⇑, and quantify the error in localizing p⇑ as a function
of the error in localizing p.

L!""# 4.1. Let !SB = p̂ ↘ p be the location error vector for
localizing p via single-bounce adjoint inversion in (4). Then,
the location error vector !DB = p̂⇑ ↘ p⇑ for localizing p⇑ via
double-bounce adjoint inversion in (9) is given by:

!DB = 𝑄!SB =

〈
!SB ,

p↘p⇑
⇐p↘p⇑ ⇐2 +

p
⇐p⇐2

〉
〈
!SB ,

p↘p⇑
⇐p↘p⇑ ⇐2 ↘

p⇑
⇐p⇑ ⇐2

〉!SB .

The above result is proved in Appendix B. Fig. 7 plots the
cumulative distribution function (CDF) of the magnitude of
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Figure 8: Indoor & outdoor experiment scenarios.

the scaling factor |𝑄 | relating !DB and !SB over 1000 inde-
pendent trials with randomly generated locations p ω p⇑.
The median value of |𝑄 | is 0.8 and its 90th-percentile value
is 6; hence the impact of single-bounce localization error on
double-bounce error would be at most 6→ (with 90% proba-
bility). Hence, lower error in single-bounce localization will
yield lower localization errors in double-bounce with Hydra.

4.3.7 Compatibility with Beam Steering. The proposed pro-
cedure can be easily extended to a beam steering radar. Given
a set of transmit beamforming weights wTX ≃ WTX , the pro-
cedure in each of the above stages can be performed for each
wTX ≃ WTX to yield an object detection set S𝑃 (wTX ). Subse-
quently, the union of sets S𝑃 = ⇓WTX

S𝑃 (wTX ) can be passed
to the (𝐿 + 1)th stage of our procedure.

5 PERFORMANCE EVALUATION
5.1 Implementation & Methodology
Implementation: We implement Hydra on a commercial
digital mmWave MIMO radar, AWR2243 cascade radar [18]
from Texas Instruments, which supports up to 12 transmit
and 16 receive elements and operates in the 76 ↘ 81 GHz
band. We only use 9 of the 12 total transmit elements since
we only sense in azimuth and not elevation. We con!gure
the radar to transmit beamforming mode; each transmission
consists of 10 frames3 with 64 FMCW chirps of duration 40𝑍s
and slope 79MHz/𝑍s per frame. A laptop with Intel i5 CPU
and 12 GB RAM is used to control the radar and process data.
All processing is performed via custom MATLAB functions.
In our results, we discretize the range-azimuth plane into 6
cm → 1↓ resolution bins. We use a 2D OS-CFAR detector with
a sliding window of size 17→17 bins, with the cell-under-test
and guard window occupying the middle 7 → 7 bins.
Experiment Scenarios: We collect data in !ve indoor and
outdoor scenarios (Fig. 8) - a large indoor hall (S1), an indoor
lobby (S2), an indoor U-shaped staircase bend (S3), an out-
door building corridor (S4), and an outdoor terrace (S5). In
all cases, the radar is at a height of 1 m above the ground.
Data Collection:We con!gure the radar to transmit in an
experiment-speci!c azimuth angle set ω ↙ [↘60↓, +60↓] and
capture re$ections from the surrounding environment in

3we average data across frames to boost received signal-to-noise ratio

the presence of di"erent objects (room furniture, humans4,
etc.). We ensure the radar and the environment remain static
during our experiments; mobility is left for future work.
GroundTruth:We establish ground truth object locations in
the environment with respect to the radar via measurements
with a measuring tape and laser distance range !nder.
Baseline: We compare Hydra with single-bounce sensing
via (4) utilizing both main- and side-lobes of the radar’s trans-
mit beampattern, and also proposed in [48]. We note that
our choice of baseline is equivalent to methods that iden-
tify and suppress multipath “ghosts” observed at the output
of single-bounce processing [6, 10, 21]. In contrast, Hydra
incorporates multi-bounce into the radar signal processing
pipeline and does not require explicit “ghost” identi!cation.
PerformanceMetrics:We evaluate the overall performance
of Hydra via the localization error for a beyond-FoV human.
Since the output of Hydra is generally a collection of points,
we de!ne the localization error as the minimum distance
between the human’s ground truth location and the set of
locations outputted by Hydra. We also use the received signal
strength (RSS) along multi-bounce paths, with appropriate
normalization, in our microbenchmark evaluation.

5.2 Qualitative System Demonstration
First, we demonstrate double-bounce sensing of humans out-
side the radar’s transmit beam. Fig. 9(a) shows the experiment
setup in Scenario S1 with two humans, Human 1 (H1) at 2.5
m, ↘15↓ and Human 2 (H2) at 2.5m, +30↓. Figs. 9(b)-(c) show
the single-bounce and double-bounce target-to-clutter ra-
tio (TCR) maps outputted by Hydra. We observe that H2
is not detected in the single-bounce output (Fig. 9(b)), be-
cause its TCR is below the single-bounce detection threshold.
However, with appropriate double-bounce processing, H2
is detected near its ground-truth location in Fig. 9(c), albeit
with lower TCR as compared to the single-bounce detec-
tion of H1. We further present double-bounce outputs for
di"erent choices of re$ectors in place of H1 - a whiteboard
in Fig. 9(d) and a brick pillar in Fig. 9(e). Besides localizing
the human near its ground-truth location, we also observe
that the double-bounce TCR is material dependent - low-
est for brick pillar (21 dB), followed by whiteboard (25 dB)
and human (26 dB). We exhaustively quantify the impact of
re$ector material on performance later in Section 5.4.

Next, we demonstrate sensing around-corners and behind-
the-radar using triple-bounce. Fig. 10(a) shows the around-
corner experiment setup in Scenario S3, with a radar and
human on opposite ends of the U-shaped staircase bend. The
radar transmits in [↘30↓, 30↓] to capture multiple points on
the staircase bend via single-bounce, which are subsequently

4all our experiments involving human subjects have been performed with
Institutional Review Board (IRB) approval
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Figure 9: Double-bounce sensing of a human standing outside the radar’s transmit beam. (a): Setup in S1, with radar
con!gured to transmit towards Human 1 (H1). (b)-(c): H1 detected via single-bounce, H2 detected via double-bounce.
(d)-(e): Double-bounce outputs for similar setup as in (a) but with whiteboard and brick pillar in place of Human 1.
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H
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Figure 10: Triple-bounce around-corner sensing of a
human standing on the opposite end of a U-shaped
staircase bend, with radar transmitting in [↘30↓, 30↓].
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Figure 11: Triple-bounce behind-radar sensing of a
metallic cylinder C3 at 𝑊 = 30↓, with radar transmit
beamforming to C1 at 𝑃1 = 75↓, and C2 kept at 𝑃2 = 30↓.

used to localize the beyond-FoV human via triple-bounce.
We ensure triple-bounce from only the human and not the
staircase via background subtraction, i.e., capturing two mea-
surements - one with the human and the other without - and
subtracting the two to remove intra-staircase multi-bounce.
Fig. 10(b) shows successful human localization in this case.

Finally, Fig. 11(a) shows the behind-radar experiment setup
in Scenario S1, with a radar transmitting towards a metallic
cylinder C1, aiming to localize C2 outside the transmit beam
via double-bounce and C3 behind the radar via triple-bounce.

2.9 m1.1 m 11.25°

Human

Human 
Locations

Radar

(a) Setup 1 (S3)

Reflector

Walls
45°

Radar

(b) Setup 2 (S5)

Reflector

Radar

Reflector
26°

(c) Setup 3 (S2)

Figure 12: Experiment setups to evaluate overall local-
ization error of Hydra for a human target standing in
various grid locationsmarkedwith!lled black/blue cir-
cles. The radar transmit beamforms towards [↘30↓, 30↓]
in (a), and towards the re"ectors at 0↓ in (b) and (c).

Since only C1 is illuminated directly, there are only two possi-
ble triple-bounce paths: radar ↑ C1 ↑ C3 ↑ C1 ↑ radar
and radar ↑ C1 ↑ C3 ↑ C2 ↑ radar. Fig. 11(a) shows the
triple-bounce output of Hydra, showing two arcs correspond-
ing to the triple-bounce paths intersecting with maximum
TCR at the ground-truth location of C3. Fig. 11(b) is signi!-
cantly “noisier” and has lower TCRs compared to Fig. 10(b)
due to lower number of paths (2) to average over in Stage 3
of Hydra’s processing (Section 4.3.3).

5.3 Overall System Performance
We quantify the overall system performance via exhaustive
human localization experiments in Scenarios S2, S3 and S5. In
each experiment, a human stands in di"erent locations on a
2D grid, as shown in Figs. 12(a)-(c). Figs. 12(a)-(b) correspond
to around-corner scenarios, where the radar uses re$ections
from either the U-shaped staircase bend in Fig. 12(a) or a
small re$ector (metal trashcan) in Fig. 12(b) to localize the
human. The grid in Fig. 12(c) includes locations in front of
and behind the radar, and the radar uses re$ections from the
re$ector (metal trashcan) to localize the human.
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Figure 13: Overall system performance. (a)-(c): Human localization error for setup in Fig. 12(a) across di#erent grid
locations. As higher orders of multi-bounce are exploited, the human is localized with sub-0.5m error in more
grid locations. (d): Statistics of human localization error across Setups 1-3 from Fig. 12. Adding double-bounce and
triple-bounce decreases the median localization error by 2→ and 10→ respectively as compared to single-bounce.
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Figure 14: Experiment setups for single-re"ector microbenchmark evaluation of Hydra’s beyond-FoV localization.

Figs. 13(a)-(c) visualize the localization error across di"er-
ent human locations in Setup 1 from Fig. 12(a). As higher
orders of multi-bounce beyond single-bounce are exploited,
the human is localized with sub-0.5 m error in more grid
locations; e"ectively increasing the sensing FoV of the radar.
Fig. 13(d) shows the overall statistics of the beyond-FoV

human localization errors across all three setups from Fig. 12.
Compared to single-bounce only processing, the median
error decreases by 2→ on adding double-bounce, and by 10→
on further adding triple-bounce. We observe similar 1.5→-5→
reduction in the 90th-percentile errors on adding double- and
triple-bounce, showing the bene!t of using multi-bounce.

Note that the ground-truth locations used in our localiza-
tion error calculations are based on the 2D grid locations
where a human stands. Given that human bodies have !nite
diameters, in practice, re$ections may occur from a slightly
o"set point on the body compared to its centroid, explaining
why our best median errors are in the order of 0.1 ↘ 0.2 m.

5.4 Microbenchmark Evaluation
Finally, we evaluate the impact of various system parameters
on the beyond-FoV human localization performance. For
ease of evaluation, we only process up to double-bounce.
Throughout our evaluation, we label the objects within the
radar’s transmit beam as “re$ectors”.
Impact of Re"ector Material: We begin by quantifying
the impact of the material properties of a single re$ector
placed within the radar’s transmit beam. We perform exhaus-
tive experiments in three di"erent con!gurations shown in
Figs. 14(a)-(c) for di"erent re$ector choices. In Fig. 14(a), the
radar transmits towards a re$ector at 0↓ while the human
stands still at range 2

∝
2 m and angle ↘45↓ from the radar.

Three di"erent re$ectors (metal trashcan, another human
and a plastic chair) are moved from range X = 1.22 m to
X = 6.1 m in steps of 0.61 m. Note that the double-bounce
range as per Fig. 14(a) is dDB = 0.5(X + Y + 2

∝
2) m. As

our !rst evaluation metric, we use the double-bounce RSS,
which is normalized by the single-bounce RSS for a human
standing at a single-bounce range of dDB in order to cancel
out the distance dependence and only retain the impact of
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Figure 15: Impact of re"ector material on double-
bounce RSS and localization error (microbenchmark).

re$ector material. Fig. 15(a) shows that the RSS of the metal
trashcan and human is roughly similar, with median values
of ↘23 dB and ↘22 dB respectively. However, the RSS of the
plastic chair is much lower than both, with median value ↘27
dB. Therefore, we expect better system performance with
highly re$ective objects, such as metals or human bodies, as
compared to lower re$ectivity objects made of plastic.
Next, we quantify the impact of the re$ector material on

the overall localization error for the setups in Figs. 14(b)-(c).
In Fig. 14(b), the radar transmits towards di"erent small re-
$ectors (metal trashcan, another human and plastic chair)
kept !xed at range 2.5 m and 0↓, while the human stands
at di"erent locations on the marked 2D grid. In Fig. 14(c),
the radar transmit beam sweeps from [↘30↓, 30↓] to sample
di"erent points on di"erent extended re$ectors (wooden
cabinet and glass wall), while the human stands at di"erent
locations on the marked 2D grid. Fig. 15(b) plots the local-
ization error statistics for di"erent materials. As expected
from our conclusion from Fig. 15(a), we observe that the
median localization error is lowest for the metal trashcan,
followed by that of the human (with similar variance), and
then the plastic chair (largest median error and variance).
However, counter-intuitively, the wooden cabinet has lower
localization error than the glass wall. We believe the high
re$ectivity of glass and metallic features on the wall degrade
Hydra’s localization performance. However, exploiting multi-
ple double-bounce paths from di"erent points on the surface
of extended re$ectors reduces the localization error variance
as compared to small re$ectors.
Impact of Range: To quantify the impact of range, we con-
sider the variation of the double-bounce RSS as a function
of the double-bounce range dDB = 0.5(X + Y + 2

∝
2) m in the

setup in Fig. 14(a). As per the well-known radar range equa-
tion, we expect the double-bounce RSS to vary as follows:

PRX,DB =
𝑄𝑆SB𝑆DB

d4DB
,

where 𝑄 is a constant term collecting the e"ect of transmit
and receive array gain, wavelength dependence, etc., and 𝑆SB
and 𝑆DB are material-dependent re$ectivities of the single-
bounce re$ector and double-bounce human. In Fig. 16(a),
we plot the double-bounce RSS, with appropriate normal-
ization to cancel out the constant 𝑄 and material-dependent
terms 𝑆SB, 𝑆DB (by using the mean material loss values ob-
tained from Fig. 15(a)). We observe that the overall trend of
the double-bounce RSS across all three considered materials
matches theory (d↘4DB) quite well. The discrepancies at close-
by re$ector ranges X = 1.22 m and X = 1.83 m for the metal
trashcan possibly stem from the non-point object behavior
of the trashcan at these distances, i.e., a larger portion of its
surface contributes to double-bounce, boosting the RSS.
Impact of Re"ector Orientation:We also quantify the de-
pendence on re$ector orientation by considering the double-
bounce RSS as a function of the orientation angle 𝑎 of the
re$ector’s surface normal, for the setup shown in Fig. 14(d).
We consider three re$ectors: human body, whiteboard and
plywood board. Fig. 16(b) shows that human body and ply-
wood act as di"use re$ectors, scattering incoming signals
omnidirectionally regardless of orientation. On the other
hand, the whiteboard is strongly specular, with maximum
RSS at𝑎 = 45↓ - the optimal orientation for double-bounce
re$ections towards the human according to the law of re-
$ection. We also observe a second-largest peak at 𝑎 = 90↓
due to re$ections from the whiteboard’s metallic edges that
become oriented towards the radar at this angle.
Impact of Transmit Beam Direction: We further eval-
uate the impact of the radar’s transmit beam direction on
subsequent localization performance. We consider the setup
shown in Fig. 14(e) with two metallic cylinders; the radar
transmits towards Cylinder 1 at range Y m and angle 𝑃 ,
whereas Cylinder 2 is kept at di"erent angles𝑊 ≃ [↘80↓, 80↓],
in steps of 10↓. We consider three di"erent locations of Cylin-
der 1 - (Y = 3.5 m, 𝑃 = ↘10↓), (Y = 2.5 m, 𝑃 = 0↓), and
(Y = 1.5 m, 𝑃 = 20↓). Fig. 16(c) shows that the localization er-
ror statistics for the three cases are similar, implying similar
performance regardless of transmit beam direction. How-
ever, we note that the localization error variance is largest
when (Y = 2.5 m, 𝑃 = 0↓) and smallest when (Y = 3.5 m,
𝑃 = ↘10↓). We explain this result on the basis of the transmit
beampattern matrices from Fig. 2, where the beampattern
has only two side-lobes within 𝑊 ≃ [↘80↓, 80↓] when 𝑃 = 0↓,
but four side-lobes otherwise. Thus, we expect single-bounce
to be useful slightly less often when 𝑃 = 0↓ than otherwise,
explaining the result. Moreover, (Y = 3.5m, 𝑃 = ↘10↓) seems
to perform best because the metallic cylinders are not exactly
point objects; hence we expect the Cylinder 1 to scatter more
energy towards Cylinder 2 when placed behind the latter.
Impact of Multiple Re"ectors: Next, we evaluate the im-
pact of exploiting double-bounce from multiple re$ectors.
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(a) RSS vs range (b) RSS vs orientation

θ = -10°
Y = 3.5 m

θ = 0°
Y = 2.5 m

θ = +20°
Y = 1.5 m

(c) Loc. error vs TX direction

Figure 16: Single-re"ectormicrobenchmarks. (a) RSS decays as R↘4 with double-bounce range. (b) RSS of whiteboard
depends on orientation, but not of human or plywood. (c) Transmit beam direction does not impact performance.

Sample Reflector Positions

Radar

60°

TX angle set 
ϴ ⊆ [-60°, 60°] 

(1.5 m, -45°)

(1 m, 30°)

(a) Setup 9 (S2) (b) Loc. error vs # re"ectors (c) Loc. error vs TX angle set ω

Figure 17: Multi-re"ector microbenchmarks. (a) Setup with multiple metallic cylinders (re"ectors) in [↘60↓, +60↓].
(b)-(c) Localization error improves withmore number of re"ectors and as a larger setω ↙ [↘60↓, +60↓] is illuminated.

We place multiple metallic cylinders (re$ectors) and quantify
the localization error statistics for a human standing on a
grid of 18 locations outside [↘60↓, 60↓], as shown in Fig. 17(a).
We con!gure the radar to beam sweep in ω = [↘40↓, 40↓]
and place an increasing number of re$ectors in [↘40↓, 40↓]
at various locations in {(2 m, 0↓), (1 m, 30↓), (2 m, 30↓), (2
m, ↘15↓), (3 m, ↘15↓), (2 m, 15↓)}. Fig. 17(b) shows the CDF
of localization errors across multiple scenarios with 1 to
4 re$ectors. Overall, we observe that Hydra’s performance
improves as a higher number of re$ectors are illuminated.
Impact of Radar Beam Sweep: Finally, we evaluate the
impact of the beam sweep intervalω ↙ [↘60↓, 60↓]. We place
4 re$ectors at locations (2 m, 0↓), (2 m, 30↓), (2 m, ↘15↓), (2 m,
↘45↓) and con!gure the radar to beam sweep in di"erent sets
ω ≃ {[↘10↓, 10↓], [↘20↓, 20↓], [↘40↓, 40↓, [↘60↓, 60↓]]}, such
that di"erent subsets of those 4 re$ectors are illuminated.
Fig. 17(c) shows that the CDF of localization errors improves
with larger sets ω, i.e., as more re$ectors are illuminated.

6 DISCUSSION & LIMITATIONS
Multiple beyond-FoV & occluded targets:While we have
evaluated Hydra’s performance for single target (human)
localization, in practice one may want to jointly localize
multiple beyond-FoV targets, some of whichmay be occluded
by other targets. Fig. 18 shows the double-bounce outputs
corresponding to two possible multi-target scenarios. Hydra
can localize two targets via double-bounce on opposite sides
(Fig. 18(a)) or the same side (Fig. 18(b)) of a re$ector, provided
the targets do not occlude one another and are separated by
↔ 20↓. However, Hydra cannot localize objects occluded by
other objects, e.g., H4 in Fig. 18(a), using double- and triple-
bounce, and experimentally we did not observe signi!cant
fourth-bounce to use for such purposes. Future extensions
to 3D object imaging could overcome this limitation.
Non-detections in single-bounce: A drawback of Hydra’s
sequential processing is that it relies on single-bounce de-
tections in order to exploit further multi-bounce. Without
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H2
via DB

H4
via DB

H3

H1

(a) Opposite sides of H1

C1
C3

C2

(b) Same side of C1

Figure 18: Multiple beyond-FoV & occluded targets. (a)
When radar transmits towards H1, H2 and H4 on oppo-
site sides of H1 are detectable through double-bounce,
but not H3 (occluded by H1). (b) When radar transmits
towards C1, double-bounce detects C2 and C3 (sepa-
rated by 20↓), with a “target masking” e#ect on C3.

su#cient single-bounce detections on the re$ector surface,
e.g., when a small planar surface is oriented away from the
radar, Hydra performs slightly worse than methods with per-
fect re$ector knowledge [2, 44]. Table 2 shows the average
localization errors in the around-corner setup from Fig. 12(b),
for three di"erent planar re$ectors of length 0.5m at a range
of 3 m. Only center points on the re$ectors are detected by
Hydra, hence Hydra is outperformed by [2, 44].
Di#use modeling:We assumed a di"use model in Hydra

to enable beyond-FoV sensing without prior environment
knowledge. Future work will explore incorporating limited
additional prior knowledge of the environment, e.g., material
properties and surface normals, for !ner-grained modeling.
Single-chip radars: We evaluated Hydra using a four-chip
cascade MIMO radar [18] with 9 transmit and 16 receive
elements (in azimuth). While the main concepts and model-
ing remain applicable to even single-chip radars, e.g., TI’s
AWR1843BOOST [17], adapting Hydra to such radars would
require developing super-resolution routines in order to over-
come their poorer azimuth resolution (′ 15↓).
Imaging extended objects:Although our evaluation in this
paper is largely limited to localizing objects, we believe our
techniques can also be adapted for imaging extended objects.
3D sensing with mobility: Hydra is limited to 2D range-
azimuth sensing of static objects. Future work will also ex-
plore extensions to 3D sensing of mobile beyond-FoV objects.
Optimal re"ector design: Finally, building upon Hydra

which exploits natural multi-bounce in the environment, an
interesting avenue for future work is the design of optimal
re$ectors, e.g., using metasurfaces, for beyond-FoV sensing.

7 CONCLUSION
In this paper, we described the design and evaluation of
Hydra, a framework that uses multi-bounce scattering to

Method Plywood board Metal board Whiteboard
Known re$. 0.24 m 0.16 m 0.11 m

Hydra 0.34 m 0.24 m 0.25 m
Table 2: Hydra has larger localization errors compared
to methods with perfect re"ector knowledge when the
entire re"ector surface is notmapped in single-bounce.

enable beyond-!eld-of-view sensing with a single mmWave
radar without prior knowledge of the environment. Our
implementation on a commercial MIMO radar demonstrated
the possibility of localizing humans outside the transmit
beam, behind-the-radar and around-corners, with 2→-10→
improvement in the median localization error in real-world
scenarios even with no prior knowledge of the environment.
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A DERIVATION OF (6)
For an object at location p(𝑊), the single-bounce system
model as per (3) is

ỹSB (𝑇) = 𝑆p(𝑂 )aRX (𝑊)a↗TX (𝑊)wTX𝑈
↘ 𝑀𝑁 2⇐p(𝑀 ) ⇐2

c .

Substituting the above expression into (4) results in

𝑆̂p(𝑂 ) =
1
W

∑
𝑁

(
a↗
TX
(𝑊)wTX

)⇒𝑈 𝑀𝑁 2⇐p(𝑀 ) ⇐2
c aH

RX
(𝑊)ỹSB (𝑇)

= 𝑆p(𝑂 ) |a↗TX (𝑊)wTX |2,

which results in (6) on substituting wTX = aTX (𝑃 ) and assum-
ing unit-norm receive array steering vector aRX (𝑊).

B PROOF OF LEMMA 4.1
Let p̂ = p + !SB be the estimated location of the object at
p via single-bounce adjoint inversion in (4). As per (9), the
double-bounce location estimate p̂⇑ satis!es:

⇐p̂⇐2 + ⇐p̂ ↘ p̂⇑ ⇐2 + ⇐p̂⇑ ⇐2 = ⇐p⇐2 + ⇐p ↘ p⇑ ⇐2 + ⇐p⇑ ⇐2 .

Substituting p̂⇑ = p⇑ + !DB and assuming ⇐p⇐2 ∞ ⇐!SB ⇐2,
⇐p⇑ ⇐2 ∞ ⇐!DB ⇐2, ⇐p ↘ p⇑ ⇐2 ∞ ⇐!SB ↘ !DB ⇐2, we obtain:〈
!SB ↘ !DB ,

p ↘ p⇑

⇐p ↘ p⇑ ⇐2

〉
+
〈
!SB ,

p
⇐p⇐2

〉
+
〈
!DB ,

p⇑

⇐p⇑ ⇐2

〉
= 0,

which on rearranging yields Lemma 4.1.
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