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Abstract—With the explosion of proposed LEO satellite sys-
tems and constellation sizes, the potential benefits of spectrum
sharing for satellite-based systems has increased tremendously.
Our previous work has demonstrated that modifying the rim
scattering of a paraboloidal reflector antenna using reconfigurable
elements allows for interference cancellation [1], [2]. However,
for dynamic spectrum sharing there is a need for algorithms
with faster convergence and improved performance. Thus, in
this work we develop improved algorithms for determining the
weights of such a receiver system which could serve as the
basis of a spectrum sharing approach. We begin this work by
reviewing the unconstrained optimal weight values needed at
each reconfigurable element for interference mitigation as well
as the previously proposed approach for finding a unimodular
solution. We then show that near-optimal unimodular weights can
be found in closed form provided that the unconstrained optimal
weight vector has an infinite norm that does not exceed unity.
In such case, the near-optimal continuous phase unimodular
weights can be determined with significantly lower complexity
while still providing acceptable attenuation at the desired angles.
Next, in order to find weights with discrete phase values (to
simplify implementation), we transform the original problem
using a penalty method and solve it by leveraging the Majorize-
Minimization (MM) algorithm. It is shown that this algorithm
converges significantly faster and provides deeper nulls than
the previously proposed simulated annealing approach. Further,
based on empirical results, we provide a simple criterion for
the existence of unimodular weights which provide perfect nulls
for all desired angles. Finally, we numerically demonstrate the
convergence and gain values provided by the proposed algorithms
are superior to previously proposed algorithms.

Index Terms—Reconfigurable antennas, reconfigurable intel-
ligent surfaces, unit-modulus least squares, constant modulus
optimization.

I. INTRODUCTION

There has been a recent push for the expansion of the

use of Low Earth Orbit (LEO) satellites (including mega-

constellations) for communication systems and other purposes

[3]. New wireless systems lead to the need for spectrum, and

as a result, the investigation of spectrum sharing between

existing systems (e.g., Geosynchronous Earth Orbit (GEO)

satellite systems) and LEO systems [4]. In a spectrum shar-

ing scenario between existing GEO and new LEO networks,

This work was supported in part by the National Science Foundation under
Grant AST-2128506.

the LEO satellite systems will have to protect the existing

GEO systems, possibly by constructing protection areas [4].

However, given the expected growth in the size and number

of LEO satellite constellations it is not clear that such an

approach scales well. GEO satellites are used for various

purposes including communications, weather monitoring, earth

observation and navigation services [5]–[7]. Large reflector

antennas are often deployed at GEO earth stations in such

systems. Thus, interference mitigation approaches for these

antennas should prove to be beneficial for spectrum sharing

[8].

Recently, an approach for cancelling (or generally modify-

ing) the sidelobe(s) of a reflector antenna pattern has been

proposed that uses reconfigurable rim scattering [1]. In this

approach, the rim of a reflector antenna is equipped with

reconfigurable elements which are capable of introducing a

phase shift to the reflected signal. As a result, the sidelobes

of the pattern can be altered and even cancelled, which

can potentially improve the efficiency of spectrum sharing.

Such reconfigurable elements are nearly-passive devices made

of electromagnetic materials which can be reconfigured by

tuning the surface impedance through various mechanisms and

therefore can be deployed on the structures of the reflector

antenna at low-cost [9]. Moreover, the authors in [10] presented

a practical design for such a reconfigurable antenna and

demonstrated the efficacy of this concept through full-wave

simulation.

In the current work we build on the system model proposed

in [1], describe new algorithms for determining the complex

weights needed at each reconfigurable element to cancel side-

lobes at specific angles from the reflector axis and comparing

the results to those described in [2], [11]. We first derive the op-

timal weights needed to cancel sidelobes at an arbitrary angle

ψ. In order to reduce the implementation cost and complexity,

the weights are generally restricted to constant-modulus in

practice. For constant-modulus weights, the optimal weight

vector can be determined by formulating a unit-modulus

least squares (UMLS) problem. A UMLS problem is a non-

convex problem due to the unit-modulus constraint. When the

dimension of the problem is small, the problem can be solved
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using the semidefinite relaxation (SDR) algorithm [12]. SDR

converts the problem into a convex problem by dropping the

rank one constraint and the solution for the original problem

can be retrieved through randomization of the solution for the

relaxed problem. The author in [13] proposed a phase-only

conjugate gradient and phase-only Newton’s method which

optimize over the phase variable of the weight vector. On the

other hand, for large scale problem considered in this paper,

the projected gradient method is a promising solution due to its

low computational complexity and its convergence properties

which are discussed in [14] and [15]. Moreover, by utilizing

the properties specifically from our problem, a closed form

expression for approximately optimal unimodular weights is

derived. This solution provides excellent performance while

demonstrating significantly lower computational complexity

than any of the proposed iterative algorithms.

Further, we transform the problem using a penalty method

and employ a majorization minimization method which deter-

mines weights that are both unimodular and discrete phase.

This approach appears to be significantly superior (both in

complexity and performance) relative to previously proposed

approaches. While the existing literature dealing with the

unit-modulus least squares (UMLS) problems pays significant

attention to the minimization of the objective function, the

conditions under which there exists a unimodular solution that

minimizes the objective function to zero have not been fully

investigated. Using empirical results, we find a simple criterion

for determining the existence of unimodular weights which

strictly meet optimality criterion, and demonstrate the validity

of this criterion through simulations.

This paper is organized as follows: Section II describes

the system model used in this work. Section III presents the

methods for determining the optimal weights under various

constraints. In particular, we start with unconstrained weights

and then review the Gradient Projection algorithm for finding

the unimodular weights with continuous phase. Additionally,

we find a closed-form solution for unimodular weights that

are near-optimal, but only exist if the infinite norm of the

optimal weights is less than unity. We then transform the

problem through penalty method and deploy an algorithm

through majorization minimization method which determines

weights that are both unimodular and discrete phase. Section

IV presents the criterion for determining the existence of the

unimodular weights which strictly satisfy the linear equality.

Section V provides numerical results which characterize the

performance of the proposed algorithms. Subsequently, section

VI concludes the paper.

II. SYSTEM MODEL

The antenna system assumed in this paper is presented

in Fig. 1. Following the development in [1], we assume the

equivalence of transmit and receive patterns and calculate the

transmit patterns using physical optics (PO). The total electric

field intensity Es scattered by the reflector in the far-field

direction ψ is given by

Es(ψ) = Esf (ψ) +Esr(ψ), (1)

where Esf is the electric field intensity due to the fixed

portion of the dish in the direction ψ and Esr is due to the

reconfigurable portion of the dish. See the system settings

in [1], [11] for details. Due to the discrete nature of the

reconfigurable surface, we can write Esr(ψ) as

Esr(ψ) = −jωµ0
e−jβr

4πr

∑

n

J1

(

sin
)

ejβr̂(ψ)·s
i

n∆s, (2)

where the summation is made over all the reconfigurable

elements, j =
√
−1, ω is the operating frequency in rad/s, µ0

is the permeability of free space, β is the wavenumber, r̂(ψ)
points from the global origin towards the field point in the

direction ψ. J1

(

sin
)

= wnJ0

(

sin
)

is the current distribution

due to the n-th element with complex-valued weight wn, where

J0(s
i) is the PO equivalent surface current distribution. These

weights will be designed to cancel sidelobes in the H-plane

co-pol pattern. Thus, we are primarily concerned with the y-

component of the vector Esr(ψ) and define the complex scalar

Es,cor (ψ) to be the y-component of the vector Esr(ψ). Also,

for convenience, we can write Es,cor (ψ) in terms of two N×1
dimensional arrays eψ and w representing the co-pol portion of

the electric field intensity without the influence of the elements

and the complex-valued element gains respectively:

Es,cor (ψ) = eTψw, (3)

where xT is the transpose of the vector x and the n-th element

of eψ is

eψ,n =

(

−jωµ0
e−jβr

4πr
J0

(

sin
)

ejβr̂(ψ)·s
i

n∆s

)

· ŷ, (4)

where the operation (e) · ŷ selects the y-component of the

vector e. Note that both one-dimensional arrays are of length

N where N is equal to the number of reconfigurable elements

placed along the rim of the dish.

Now to cancel the sidelobe gainat angle ψ, we wish

Es,cof (ψ) + Es,cor (ψ) = 0. (5)

Thus, we wish to find the set of optimal weights w∗ such that

eTψw
∗ = −Es,cof (ψ). (6)

Similarly, if we consider the case of K desired nulls at K
different angles, we can re-write the problem as

Aw∗ = y, (7)

where

A = [eψ1
, · · · , eψK

]
T ∈ C

K×N ,

y = −
[

Es,cof (ψ1), . . . , E
s,co
f (ψK)

]T

∈ C
K×1.

(8)
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Fig. 1. On-axis ( top ) view of an electronically- reconfigurable rim scattering
system assumed in this paper. The global origin is defined as the bottom of
the dish. θf is the angle measured from the reflector axis of rotation toward
the rim with θf = θ1 at the rim of the fixed portion of the dish and θf = θ0
at the rim of the entire dish, φ is the angular coordinate orthogonal to both
θf and the reflector axis.

Moreover, if we want to avoid variation in the mainlobe,

we can include a constraint for the mainlobe. Specifically,

for ψ = 0◦, we require eT0 w
∗ = κ,, where κ is the target

constraint. Ideally, we could set κ = eT0 1, which provides the

same mainlobe gain as the 18m fixed reflector. However, with

weights restricted to unit modulus, satisfying both the mainlobe

constraint and side lobe constraints may not be possible. One

option is to ease the constraints by choosing κ = 0, which

equals to the mainlobe gain provided by a 17m fixed dish,

although this removes any contribution of the reconfigurable

portion of the reflector to the mainlobe. Alternatively, we could

choose κ = δEs,cof (0), for some small value δ to provide

some additional gain in the mainlobe from the perspective of

a 17m fixed dish. Experimentally we have found this latter

approach to be successful. Thus, we can modify the vector of

requirements to be

A = [eψ0
, eψ1

, · · · , eψK
]
T
,

y = −
[

−δEs,cof (0), Es,cof (ψ1), . . . , E
s,co
f (ψK)

]T

.
(9)

In the following section we describe techniques to determine

the optimal weights with different constraints.

III. WEIGHT SELECTION

As discussed in [2], the approach to find the appropriate

weights which satisfy (7) depends on the restrictions placed

on w∗. First, we describe how to determine the weights

with no restrictions placed on w∗. Second, we will describe

techniques for finding w∗ if the weights are restricted to unit-

modulus values (i.e., phase-shifting only). Finally, we describe

approaches to find the weight vector if we further restrict the

phase to be discrete (i.e., come from a finite set).

A. Unquantized Weights

If the weights are unconstrained, to form a null at all desired

angles, we can simply let w∗ be equal to

w∗ = AH
(

AAH
)−1

y. (10)

We will term this as the unconstrained optimal weights since

these weights guarantee that the response of the dish in

the direction ψ is zero. Unfortunately, w∗ in general has

elements with |wn| ≠ 1 which requires that the elements

have controllable gains (i.e., can provide attenuation or gain

to the scattered field). Such a requirement is undesirable from

a cost and complexity perspective. Thus, we seek to restrict

the weights such that |wn| = 1. This can be written as the

following minimization problem

min
w∈CN

f(w) = ||Aw − y||22
s.t. |wn| = 1, n = 1, . . . , N,

(11)

where ||·||2 denotes the Euclidean norm. This is a non-convex,

complex-valued, constant-modulus, least squares optimization

problem which is a special case of non-convex quadratically-

constrained quadratic programming [12]. An efficient solution

is the use of Gradient Projection [14]. The details are discussed

in [2] and summarized in Algorithm 1. Inside the algorithm,

λmax(·) denotes the largest eigenvalue and ∠(·) is the phase of

the element inside.

Algorithm 1 Gradient Projection.

Initialization: Set k = 0, α = 1
λmax(AAH)

, w(0) = 1.

Repeat:

η
(k+1) = wk − αAH

(

Aw(k) − y
)

;

w(k+1) = e∠(η
(k+1));

k = k + 1;

Until Convergence

B. Simplified method for unimodular unquantized weights

Any two complex numbers whose magnitudes sum to a

value less than 2 can be replaced by two unimodular complex

numbers. Additionally, in our problem the two neighboring

elements in each E-field vector are nearly identical. Therefore,

in cases where ||w∗||∞ ≤ 1, it is possible to replace the

optimal weights w∗ with approximately optimal unimodular

weights w̃∗
c which satisfy Aw̃∗

c ≈ Aw∗. To do this, first we
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replace every two adjacent columns of A with one column of

Ãn defined as

Ãn = (A2n−1 +A2n)/2, n = 1, . . . , N/2, (12)

where An represents the n-th column of matrix A. Now, we

require that

N

2
∑

n=1

Ãn(w̃
∗
c,2n−1 + w̃∗

c,2n) ≈
N
∑

n=1

Anw
∗
n, (13)

which means that for each pair of weight elements, we need

Ãn(w̃
∗
c,2n−1 + w̃∗

c,2n) ≈ A2n−1w
∗
2n−1 +A2nw

∗
2n. (14)

By defining w̃2n−1 = ejθ1 , w̃2n = ejθ2 , assuming the equality

can be met in equation (14), it can be re-written as

cos(θ1) + cos(θ2) = ℜ(yn),
sin(θ1) + sin(θ2) = ℑ(yn),

(15)

where yn = (A2n−1w
∗
2n−1+A2nw

∗
2n)⊘Ãn and ⊘ denotes the

Hadamard (element wise) division. Solving the above equation,

we get

θ1,2 = ∠(yn)± cos−1

( |yn|
2

)

. (16)

This simplified unimodular solution provides acceptable per-

formance when compared to the optimal continuous unimod-

ular weights w∗
c , as we will see in section V. Importantly,

since w̃∗
c can be written in closed form as a function of the

unconstrained optimal weights w∗, it is significantly more

computationally efficient than any iterative algorithm.

C. Quantized Weights

The weights described in the previous sections have one pri-

mary disadvantage: they presume continuously-variable phase

values. In a practical implementation, it is much more rea-

sonable that only a finite number of phase values would be

available on each reconfigurable element. Thus, we wish to

solve the problem (11) with a new constraint that

min
w∈CN

f(w) = ||Aw − y||22
s.t. wn ∈ W, n = 1, . . . , N,

(17)

where W = {w ∈ C|w = ej
2πk

M , k = 0, . . . ,M − 1} and M is

the number of possible phase values. In our previous work [2],

we solved this problem via simulated annealing. Specifically,

by randomly changing the phase of one weight element each

time, the algorithm accepts the new weight vector if the

cost is lower or accept the new weight vector with a certain

probability if the cost is higher. Although the implementation

is straightforward, such metaheuristic approaches have the

disadvantage that their convergence rate and optimality are

not guaranteed. Moreover, the lack of consistency can be

problematic in applications where reproducibility is important.

A more efficient solution is to use the negative square

penalty (NSP) or extreme point pursuit (EXPP) method re-

cently proposed in [16]. Specifically, re-writing problem (17)

min
w∈W̄N

Fc(w) = ||Aw − y||22 − c||w||22, (18)

where W̄ = conv(W) is the convex hull of W . The authors in

[17] prove that when the objective function f has a L-Lipschitz

continuous gradient (L-smooth) on a convex set, problem (18)

and problem (17) have the same optimal solution sets for any

c > L
2 , where L is defined as

||∇f(x)−∇f(y)||2 ≤ L||x− y||2, ∀x, y ∈ X . (19)

Since our objective function is a quadratic function, L is equal

to the maximum eigenvalue of AHA.

Given that problem (18) has a convex constraint but a non-

convex objective function, we can find the local optimum by

leveraging the Majorize-Minimization (MM) algorithm. An

optimization problem with a non-convex objective function

and a convex constraint like problem (18) can be solved

using algorithms that break the original problem into man-

ageable sub-problems. For a quadratic objective function, we

choose the Majorize-Minimization (MM) algorithm since it

has a strong monotonicity guarantee and is more flexible

in designing the surrogate function than other algorithms

such as sequential convex approximation (SCA) or sequential

convex programming (SCP) algorithms. Specifically, the MM

algorithm is an iterative method which minimizes a series of

surrogate functions of the objective function Fc. The surrogate

function g
(

w|w(k)
)

, which is also called a majorant at the

k-th step, has the properties that g
(

w
∣

∣w(k)
)

≥ Fc(w) and

g
(

w(k)
∣

∣w(k)
)

= Fc
(

w(k)
)

for all w. These properties imply

that optimizing the majorant will either minimize the value of

Fc or leave it unchanged, therefore guaranteeing monotonic de-

scent in the objective function at each iteration. Consequently,

the solution at (k + 1)-th step becomes

w(k+1) = argmin
w∈W̄N

g
(

w
∣

∣w(k)
)

, k = 0, 1, . . . . (20)

Using the fact that
∥

∥ w−w(k)
∥

∥

2

2
≥ 0 for all w and w(k). the

majorant for Fc can be expressed as

Fc(w) ≤ f(w)− 2c
(

w(k)
)H (

w −w(k)
)

− c
∥

∥ w(k)
∥

∥

2

2
,

= gc

(

w
∣

∣w(k)
)

,

(21)

which satisfies the properties of a majorant.

Since the problem (20) is a convex problem, it can be

handled by method such as the projected gradient similar to

Algorithm 1 discussed in the previous section. Since f(w) is

a simple quadratic function, we use the one-step accelerated

gradient projection (APG) algorithm proposed in [16]. For

computational efficiency, we omit the backtracking line search

step which is used to find the step size at each step k.

Specifically, at k-th step, we generate an extrapolated point
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z(k) which carries the “momentum” from w(k) and w(k−1),

then perform gradient descent at z(k) over the majorant

gc
(

z(k)
∣

∣w(k)
)

to find z(k+1). Finally, we obtain w(k+1) by

projecting z(k+1) back to the convex set W̄N . The projection

operation for the constraint of discrete phase is slightly more

complicated than the case of continuous phase. Instead of

solving the optimization problem of projection, the authors

in [16] proposed a closed form expression of the projection:

ΠW̄N (w) = ej
2πm

M

(

[ℜ(w̄)]cos(π/M)
0 + j[ℑ(w̄)]sin(π/M)

− sin(π/M)

)

,

(22)

where

m =

⌊

∠(w) + π/M

2π/M

⌋

, w̄ = we−j
2πm

M , (23)

and [w]ba denotes that for each element wn in w

wn = min{bn,max{wn, an}}. (24)

Based on our empirical results, we found that the algorithm

is more likely to be stuck in a poor local minimum if we

choose a large penalty parameter c at the beginning. Therefore,

given that our original objective function f(w) is convex,

we start with c = 0 and gradually increase the value to

cmax > λmax

(

AHA
)

/2. It turns out that this strategy pro-

vides good convergence while guaranteeing that the solution

will eventually lie on an extreme point which is a feasible

solution for the original problem. The implementation details

are provided in Algorithm 2.

Algorithm 2 Extreme Point Pursuit (EXPP).

Initialization: Set k = 0, w(−1) = w(0) = 1, ξ−1 = 0, c = 0
choose β > λmax

(

AHA
)

and cmax > λmax

(

AHA
)

/2.

Repeat:

ξk =
1+

√
1+4ξ2

k−1

2 , αk = ξk−1−1
ξk

;

z(k) = w(k) + αk
(

w(k) −w(k−1)
)

;

w(k+1) = ΠW̄N

(

z(k) − 1
β∇gc

(

z(k)
∣

∣w(k)
)

)

;

linearly increase the value of c towards cmax, k = k+1;

Until Convergence

A point w is ϵ-stationary if

dist(0,∇g(w) + ∂IW(w)) ≤ ϵ, (25)

where dist(w,W) = infv∈W ||v−w||2 and IW is the indicator

function of W . The authors in [16] show that the EXPP

algorithm is guaranteed to find an ϵ-stationary point in O(1/ϵ2)
iterations when 0 ≤ αk ≤ α̃, a1Lg ≤ β ≤ a2Lg for some

constants α̃ =
√

a1(1− µ)/a2 with µ ∈ (0, 1], a1 ∈ (0, 1)
and a2 ∈ (1,∞), where Lg is the Lipschitz constant of ∇g.

IV. LIMITATIONS OF UNIMODULAR WEIGHTS

While the iterative algorithms for finding the unimodular

solutions discussed above show good convergence properties,

we will see that the optimal solution doesn’t always provide

perfect nulls for each of the desired angles. Or in other words,

the unimodular solution which minimizes the squared error

does not always strictly satisfy the equality in equation (7).

Examining the required magnitude of the optimal weights, it’s

easy to show that when there is only one angle to null (K = 1),

the condition for the existence of a unimodular solution which

strictly satisfies the equality in (7) is

N
∑

n=1

|an| = ||A|| ≥ |y|, (26)

where an is the n-th element in the vector A, || · || denotes

the ℓ1 norm and y is a scalar since K = 1. This simply implies

that energy collected from the reconfigurable surface must be

larger than that obtained from the fixed portion of the surface at

the desired angle ψ, a requirement also noted in section III of

[1]. For the general case of K ≥ 2, it is challenging to strictly

prove the existence of a unimodular solution. However, using

empirical results, we found that the existence is related to the

magnitude of the elements in the unconstrained optimal weight

vector. Specifically, a unimodular solution which satisfies (7)

only exists when
∑

I

|w∗
I | ⪆

∑

J

|w∗
J |, (27)

where I =
{

n
∣

∣ |w∗
n| ≤ 1

}

and J =
{

n
∣

∣ |w∗
n| > 1

}

. Further,

if the elements of w∗ are sorted by increasing magnitude, with

a sufficient number of elements, we can approximate the sorted

vector as a linearly increasing set going from from zero to

||w∗||∞. Using this approximation, we can obtain a simpler

criterion for determining the existence of a unimodular solution

that meets the equality. Specifically, define ϵ = ||w∗||∞
meaning ϵ/N is the separation of magnitudes. By making

equation (27) an equality, we obtain

⌊N/ϵ⌋
∑

n=1

ϵ

N
n =

N
∑

n=⌊N/ϵ⌋+1

ϵ

N
n, (28)

where ⌊·⌋ denotes the floor operation. Solving and taking the

non-negative solution results in

ϵ =

√
2N2 + 2N + 1 + 1

N + 1
,

lim
N→∞

ϵ =
√
2.

(29)

We will show in the next section that even though the sorted

magnitude of w∗ is not strictly linearly increasing, this thresh-

old is accurate and allows us to quickly determine the existence

of a unimodular solution which gives perfect nulls.

V. RESULTS

To demonstrate the performance of the above algorithms,

in this section we provide numerical results. The parameters

of the paraboloidal reflector here are the same as those used

in the Section 4 of [2]. As one typical example, the pattern in

Fig. 2 is the H-plane co-pol pattern when a 2-bit discrete phase
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TABLE I
AVERAGE GAIN FOR DIFFERENT ANGLES WITH MAINLOBE CONSTRAINT (δ = 0.01)

Angles Average Gain (dBi)

(degrees) Unconstrained w
∗

Unimodular Continuous

Phase w
∗

c

Approx. Unimodular

Continuous w̃
∗

c

Unimodular Discrete

Phase w
∗

d
(M = 4)

||w∗||∞

EXPP Simulated Annealing

1.85 -315 -307 -48.77 -47.13 -48.86 0.7747
1.85, 2.05 -297 -295 -53.39 -40.56 2.96 0.8479

1.85, 2.05, 2.25 -298 -286 -22.21 -42.89 -5.80 1.1378
1.85, 2.125, 2.4, 2.675 -300 -287 -5.93 -28.15 1.10 1.3923

1.85, 2.1, 2.35, 2.6 -292 -28 -1.80 -22.92 -4.29 1.5682
1.85, 2.05, 2.25, 2.45 -296 -23 2.27 -22.17 -14.11 1.9420

Fig. 2. H-plane co-pol pattern for traditional (fixed) 17/18m dish and
reconfigurable 18m dish with 0.5m reconfigurable rim (ψ = 1.85◦, 2.05◦).
The mainlobe constraint is set to δ = 0.01. Discrete phase unimodular weights
with M = 4 quantization level is applied.

weight vector determined by the EXPP algorithm are used to

place nulls at ψ = 1.85◦ and 2.05◦ with a mainlobe constraint

(within 0.01dB) applied. We can see that the gains at two the

desired null angles are significantly reduced (relative to the

fixed dish) and the mainlobe gain is well-maintained.

Fig. 3 compares the rate of the convergence for the EXPP

algorithm as compared to the simulated annealing algorithm

given in [2]. The y-axis represents the average gain at the two

angles to be nulled. Note that the x-axis uses a log scale. We

can see the EXPP algorithm converges to a good stationary

point within 103 iterations while the simulated annealing

algorithm takes more than 104 iterations to converge and does

not provide a satisfactory solution. In order to achieve the same

convergence rate using the metaheuristic simulated annealing

algorithm, we also tried using grouped elements and updated

the phase of the elements in clusters. Doing so does result in

an improved convergence rate. However, the convergence rate

improvement is achieved at a sacrifice in the the achievable

gain. It was found that this result is representative of the

behavior at other angles.

Table I presents the achievable gain at various sets of angles

Fig. 3. Convergence rate of three different algorithms for finding the discrete
phase unimodular solution. We group 2756 elements into 100 clusters for the
clustered simulated annealing algorithm. The angles to be nulled are ψ =

1.85◦, 2.05◦ (solid lines) and ψ = 1.85◦, 2.05◦, 2.25◦ (dashed lines). The
mainlobe constraint is set to δ = 0.01. Quantization level M = 4.

(rows) with different constraints (columns). As can be seen, the

unconstrained optimal weights always give the perfect nulls for

all desired angles. However, the continuous phase unimodular

weights (found using the Gradient Projection algorithm) cannot

provide perfect nulls when the number of angles is large, and

the spacing between nulls is small. Referring to the last column

of the table, we notice that the unimodular weights begin to

provide degraded performance when the infinite norm of the

unconstrained optimal weights is larger than approximately√
2, which confirms the validity of our conclusion in section

IV. The third column of gains corresponds to the weights gen-

erated from the approximate solution for unimodular weights

given in Section III-B. In scenarios where ||w∗||∞ ≤ 1, the ap-

proximated continuous phase unimodular solution guarantees a

near -50dBi gain. Given that such a gain is typically sufficient

and we don’t typically require perfect nulls in practice, the ap-

proximate unimodular weights deliver solid performance while

possessing significantly better computational efficiency than

any of the proposed iterative algorithms. Additionally, for the

weights with discrete phase values, the fifth and sixth columns
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provide the comparison between the achievable gain obtained

by the EXPP and simulated annealing. The performance of the

metaheuristic algorithm is significantly reduced as we increase

the number of angles to null while the EXPP algorithm still

yields consistent performance.

VI. CONCLUSION

Motivated by the need for spectrum sharing in satellite

systems, we have described multiple techniques for determin-

ing optimal or near-optimal weights for creating nulls in the

pattern of a prime focus-fed circular axisymmetric paraboloidal

reflector antenna equipped with a reconfigurable elements on

the rim. It was shown that if the elements placed on the

rim of the reflector are controlled with practical unit-modulus

weights, the required weights can be found using a least-

squares approach based on the projected gradient algorithm.

Additionally, a closed-form solution for unimodular weights

can also be found for cases where the optimal weights have

an infinite norm less than or equal to unity. Further, for the case

of discrete phase, a MM-based algorithm was applied to solve

the transformed problem which significantly outperforms the

previously proposed metaheuristic method in both the conver-

gence rate and final gain. Finally, we explored the conditions

under which a unimodular solution which strictly satisfies

the linear equality exists. Specifically, unimodular weights

provide excellent performance provided that the infinite norm

of the optimal unconstrained weights is less than
√
2. This

criterion also allows us to determine when a unimodular weight

solution which provides nearly perfect nulls can be found using

straightforward algorithms.
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