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Abstract—With the explosion of proposed LEO satellite sys-
tems and constellation sizes, the potential benefits of spectrum
sharing for satellite-based systems has increased tremendously.
Our previous work has demonstrated that modifying the rim
scattering of a paraboloidal reflector antenna using reconfigurable
elements allows for interference cancellation [1], [2]. However,
for dynamic spectrum sharing there is a need for algorithms
with faster convergence and improved performance. Thus, in
this work we develop improved algorithms for determining the
weights of such a receiver system which could serve as the
basis of a spectrum sharing approach. We begin this work by
reviewing the unconstrained optimal weight values needed at
each reconfigurable element for interference mitigation as well
as the previously proposed approach for finding a unimodular
solution. We then show that near-optimal unimodular weights can
be found in closed form provided that the unconstrained optimal
weight vector has an infinite norm that does not exceed unity.
In such case, the near-optimal continuous phase unimodular
weights can be determined with significantly lower complexity
while still providing acceptable attenuation at the desired angles.
Next, in order to find weights with discrete phase values (to
simplify implementation), we transform the original problem
using a penalty method and solve it by leveraging the Majorize-
Minimization (MM) algorithm. It is shown that this algorithm
converges significantly faster and provides deeper nulls than
the previously proposed simulated annealing approach. Further,
based on empirical results, we provide a simple criterion for
the existence of unimodular weights which provide perfect nulls
for all desired angles. Finally, we numerically demonstrate the
convergence and gain values provided by the proposed algorithms
are superior to previously proposed algorithms.

Index Terms—Reconfigurable antennas, reconfigurable intel-
ligent surfaces, unit-modulus least squares, constant modulus
optimization.

I. INTRODUCTION

There has been a recent push for the expansion of the
use of Low Earth Orbit (LEO) satellites (including mega-
constellations) for communication systems and other purposes
[3]. New wireless systems lead to the need for spectrum, and
as a result, the investigation of spectrum sharing between
existing systems (e.g., Geosynchronous Earth Orbit (GEO)
satellite systems) and LEO systems [4]. In a spectrum shar-
ing scenario between existing GEO and new LEO networks,
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the LEO satellite systems will have to protect the existing
GEO systems, possibly by constructing protection areas [4].
However, given the expected growth in the size and number
of LEO satellite constellations it is not clear that such an
approach scales well. GEO satellites are used for various
purposes including communications, weather monitoring, earth
observation and navigation services [S]-[7]. Large reflector
antennas are often deployed at GEO earth stations in such
systems. Thus, interference mitigation approaches for these
antennas should prove to be beneficial for spectrum sharing

[8].

Recently, an approach for cancelling (or generally modify-
ing) the sidelobe(s) of a reflector antenna pattern has been
proposed that uses reconfigurable rim scattering [1]. In this
approach, the rim of a reflector antenna is equipped with
reconfigurable elements which are capable of introducing a
phase shift to the reflected signal. As a result, the sidelobes
of the pattern can be altered and even cancelled, which
can potentially improve the efficiency of spectrum sharing.
Such reconfigurable elements are nearly-passive devices made
of electromagnetic materials which can be reconfigured by
tuning the surface impedance through various mechanisms and
therefore can be deployed on the structures of the reflector
antenna at low-cost [9]. Moreover, the authors in [10] presented
a practical design for such a reconfigurable antenna and
demonstrated the efficacy of this concept through full-wave
simulation.

In the current work we build on the system model proposed
in [1], describe new algorithms for determining the complex
weights needed at each reconfigurable element to cancel side-
lobes at specific angles from the reflector axis and comparing
the results to those described in [2], [11]. We first derive the op-
timal weights needed to cancel sidelobes at an arbitrary angle
1. In order to reduce the implementation cost and complexity,
the weights are generally restricted to constant-modulus in
practice. For constant-modulus weights, the optimal weight
vector can be determined by formulating a unit-modulus
least squares (UMLS) problem. A UMLS problem is a non-
convex problem due to the unit-modulus constraint. When the
dimension of the problem is small, the problem can be solved
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using the semidefinite relaxation (SDR) algorithm [12]. SDR
converts the problem into a convex problem by dropping the
rank one constraint and the solution for the original problem
can be retrieved through randomization of the solution for the
relaxed problem. The author in [13] proposed a phase-only
conjugate gradient and phase-only Newton’s method which
optimize over the phase variable of the weight vector. On the
other hand, for large scale problem considered in this paper,
the projected gradient method is a promising solution due to its
low computational complexity and its convergence properties
which are discussed in [14] and [15]. Moreover, by utilizing
the properties specifically from our problem, a closed form
expression for approximately optimal unimodular weights is
derived. This solution provides excellent performance while
demonstrating significantly lower computational complexity
than any of the proposed iterative algorithms.

Further, we transform the problem using a penalty method
and employ a majorization minimization method which deter-
mines weights that are both unimodular and discrete phase.
This approach appears to be significantly superior (both in
complexity and performance) relative to previously proposed
approaches. While the existing literature dealing with the
unit-modulus least squares (UMLS) problems pays significant
attention to the minimization of the objective function, the
conditions under which there exists a unimodular solution that
minimizes the objective function to zero have not been fully
investigated. Using empirical results, we find a simple criterion
for determining the existence of unimodular weights which
strictly meet optimality criterion, and demonstrate the validity
of this criterion through simulations.

This paper is organized as follows: Section II describes
the system model used in this work. Section III presents the
methods for determining the optimal weights under various
constraints. In particular, we start with unconstrained weights
and then review the Gradient Projection algorithm for finding
the unimodular weights with continuous phase. Additionally,
we find a closed-form solution for unimodular weights that
are near-optimal, but only exist if the infinite norm of the
optimal weights is less than unity. We then transform the
problem through penalty method and deploy an algorithm
through majorization minimization method which determines
weights that are both unimodular and discrete phase. Section
IV presents the criterion for determining the existence of the
unimodular weights which strictly satisfy the linear equality.
Section V provides numerical results which characterize the
performance of the proposed algorithms. Subsequently, section
VI concludes the paper.

II. SYSTEM MODEL

The antenna system assumed in this paper is presented
in Fig. 1. Following the development in [1], we assume the
equivalence of transmit and receive patterns and calculate the
transmit patterns using physical optics (PO). The total electric

field intensity E° scattered by the reflector in the far-field
direction ¢ is given by

E*(¢) = EF(¢) + EX(¢), (D

where Ej is the electric field intensity due to the fixed

portion of the dish in the direction v and E; is due to the

reconfigurable portion of the dish. See the system settings

in [1], [11] for details. Due to the discrete nature of the
reconfigurable surface, we can write E2(¢) as

e—JBr L ;

El(¢Y) = —jwug ZJl (S:L) ejﬁr(w)'S"As, 2)

4mr

where the summation is made over all the reconfigurable
elements, j = v/—1, w is the operating frequency in rad/s, o
is the permeability of free space, § is the wavenumber, (1))
points from the global origin towards the field point in the
direction 1. J; (sg) = wypdp (s;) is the current distribution
due to the n-th element with complex-valued weight w,,, where
Jo(s?) is the PO equivalent surface current distribution. These
weights will be designed to cancel sidelobes in the H-plane
co-pol pattern. Thus, we are primarily concerned with the y-
component of the vector E£ (1)) and define the complex scalar
E#c°(3)) to be the y-component of the vector E2(v). Also,
for convenience, we can write E2°°(1)) in terms of two N x 1
dimensional arrays e,, and w representing the co-pol portion of
the electric field intensity without the influence of the elements
and the complex-valued element gains respectively:

EP(y) = ehw, 3)

where x”' is the transpose of the vector x and the n-th element
of ey is

e—Jbr

Cpm = (—jwuo 0 (s0) eﬂ'”““‘sms> "y, @)

where the operation (e) - y selects the y-component of the
vector e. Note that both one-dimensional arrays are of length
N where N is equal to the number of reconfigurable elements
placed along the rim of the dish.

Now to cancel the sidelobe gainat angle v, we wish

EF©(p) + Ey*°(w) =0. 5)
Thus, we wish to find the set of optimal weights w* such that
e,w' = —Ey()). (6)

Similarly, if we consider the case of K desired nulls at K
different angles, we can re-write the problem as

Aw" =y, )

where

A= [ediw' o 7e¢K}T € (CKXNV

T ()
y=-— [E;’co(w1)7 ... ,E;’Co(z/zK) e CKx1,
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feed O

traditional (non-reconfigurable)
surface
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reconfigurable

Fig. 1. On-axis ( top ) view of an electronically- reconfigurable rim scattering
system assumed in this paper. The global origin is defined as the bottom of
the dish. 6 is the angle measured from the reflector axis of rotation toward
the rim with 6 = 61 at the rim of the fixed portion of the dish and 67 = 6o
at the rim of the entire dish, ¢ is the angular coordinate orthogonal to both
0 and the reflector axis.

Moreover, if we want to avoid variation in the mainlobe,
we can include a constraint for the mainlobe. Specifically,
for ¢ = 0°, we require eOTw* = k,, where k is the target
constraint. Ideally, we could set x = el 1, which provides the
same mainlobe gain as the 18m fixed reflector. However, with
weights restricted to unit modulus, satisfying both the mainlobe
constraint and side lobe constraints may not be possible. One
option is to ease the constraints by choosing x = 0, which
equals to the mainlobe gain provided by a 17m fixed dish,
although this removes any contribution of the reconfigurable
portion of the reflector to the mainlobe. Alternatively, we could
choose 1 = 0Ey%(0), for some small value § to provide
some additional gain in the mainlobe from the perspective of
a 17m fixed dish. Experimentally we have found this latter
approach to be successful. Thus, we can modify the vector of
requirements to be

T
>e’L/JK} )
y =~ [0EF(0), EY (W), ..., By (YK )

In the following section we describe techniques to determine
the optimal weights with different constraints.

A:[ewoﬂewn"' ©
T

III. WEIGHT SELECTION

As discussed in [2], the approach to find the appropriate
weights which satisfy (7) depends on the restrictions placed
on w*. First, we describe how to determine the weights
with no restrictions placed on w*. Second, we will describe
techniques for finding w* if the weights are restricted to unit-
modulus values (i.e., phase-shifting only). Finally, we describe
approaches to find the weight vector if we further restrict the
phase to be discrete (i.e., come from a finite set).

A. Unquantized Weights

If the weights are unconstrained, to form a null at all desired
angles, we can simply let w* be equal to

w* = AH (AAH) oy (10)

We will term this as the unconstrained optimal weights since
these weights guarantee that the response of the dish in
the direction ¢/ is zero. Unfortunately, w* in general has
elements with |w,| # 1 which requires that the elements
have controllable gains (i.e., can provide attenuation or gain
to the scattered field). Such a requirement is undesirable from
a cost and complexity perspective. Thus, we seek to restrict
the weights such that |w,| = 1. This can be written as the
following minimization problem

. — 1A . 2
Juin - f(w) = [|Aw —yll; an

st.  Jw,|=1, n=1,...,N,

where ||-||2 denotes the Euclidean norm. This is a non-convex,
complex-valued, constant-modulus, least squares optimization
problem which is a special case of non-convex quadratically-
constrained quadratic programming [12]. An efficient solution
is the use of Gradient Projection [14]. The details are discussed
in [2] and summarized in Algorithm 1. Inside the algorithm,
Amax(+) denotes the largest eigenvalue and Z(-) is the phase of
the element inside.

Algorithm 1 Gradient Projection.

Initialization: Set k =0, a = w® =1,
Repeat:
nthtl) = whk — q A (Aw(k) - y);
wk+D) — eé("“"“));
k=k+1,
Until Convergence

1
Amax (AAH)

B. Simplified method for unimodular unquantized weights

Any two complex numbers whose magnitudes sum to a
value less than 2 can be replaced by two unimodular complex
numbers. Additionally, in our problem the two neighboring
elements in each E-field vector are nearly identical. Therefore,
in cases where ||[W*||oc < 1, it is possible to replace the
optimal weights w* with approximately optimal unimodular
weights w* which satisfy Aw* ~ Aw”. To do this, first we
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replace every two adjacent columns of A with one column of
A, defined as

A, =(Ag_1+A2,)/2, n=1,...,N/2, (12)

where A,, represents the n-th column of matrix A. Now, we
require that

M vz

N
AH(UN]:,%L—I + wZ,Qn) ~ Z Anw":m (13)
n=1

n=1

which means that for each pair of weight elements, we need
An(d}:,anl + w:,2n) ~ A2n*1w;n71 + A2nw;n (14)

By defining s, _1 = €79, 1y, = €792, assuming the equality
can be met in equation (14), it can be re-written as

COS(Gl) + COS(HQ) = §R(yn)v

15
sin(61) + sin(f2) = S(yn), ()

where y,, = (Agn_1w3, | +As,wi,)@A, and @ denotes the
Hadamard (element wise) division. Solving the above equation,
we get

010 = Z(yn) £cos™! ('%”') . (16)
This simplified unimodular solution provides acceptable per-
formance when compared to the optimal continuous unimod-
ular weights w, as we will see in section V. Importantly,
since w;, can be written in closed form as a function of the
unconstrained optimal weights w*, it is significantly more
computationally efficient than any iterative algorithm.

C. Quantized Weights

The weights described in the previous sections have one pri-
mary disadvantage: they presume continuously-variable phase
values. In a practical implementation, it is much more rea-
sonable that only a finite number of phase values would be
available on each reconfigurable element. Thus, we wish to
solve the problem (11) with a new constraint that

: 2
min f(w) = [Aw -]} -
st.  w, €W, n=1,...,N,
where W = {w € Clw = /%  k =0,...,M —1} and M is
the number of possible phase values. In our previous work [2],
we solved this problem via simulated annealing. Specifically,
by randomly changing the phase of one weight element each
time, the algorithm accepts the new weight vector if the
cost is lower or accept the new weight vector with a certain
probability if the cost is higher. Although the implementation
is straightforward, such metaheuristic approaches have the
disadvantage that their convergence rate and optimality are
not guaranteed. Moreover, the lack of consistency can be
problematic in applications where reproducibility is important.

A more efficient solution is to use the negative square
penalty (NSP) or extreme point pursuit (EXPP) method re-
cently proposed in [16]. Specifically, re-writing problem (17)

min F.(w) = ||Aw — y||2 — ¢||w]|?, 18

min - F(w) = [[Aw -yl —cllw]}. (8

where W = conv(W) is the convex hull of W. The authors in

[17] prove that when the objective function f has a L-Lipschitz

continuous gradient (L-smooth) on a convex set, problem (18)

and problem (17) have the same optimal solution sets for any
c > %, where L is defined as

IVf(2) = VIW)ll2 < Lllx = yll2,

Since our objective function is a quadratic function, L is equal
to the maximum eigenvalue of A7 A.

Given that problem (18) has a convex constraint but a non-
convex objective function, we can find the local optimum by
leveraging the Majorize-Minimization (MM) algorithm. An
optimization problem with a non-convex objective function
and a convex constraint like problem (18) can be solved
using algorithms that break the original problem into man-
ageable sub-problems. For a quadratic objective function, we
choose the Majorize-Minimization (MM) algorithm since it
has a strong monotonicity guarantee and is more flexible
in designing the surrogate function than other algorithms
such as sequential convex approximation (SCA) or sequential
convex programming (SCP) algorithms. Specifically, the MM
algorithm is an iterative method which minimizes a series of
surrogate functions of the objective function F,.. The surrogate
function g¢ (w|w(k)), which is also called a majorant at the
k-th step, has the properties that g (w|w¥)) > F_(w) and
g (W(k) |w(k)) =F, (w(k)) for all w. These properties imply
that optimizing the majorant will either minimize the value of
F. or leave it unchanged, therefore guaranteeing monotonic de-
scent in the objective function at each iteration. Consequently,
the solution at (k + 1)-th step becomes

Vr,y € X. (19)

wkth) = argmin g (W|W(k)) , k=0,1,.... (20)
weWN
Using the fact that H w—wk) sz 0 for all w and w(® . the
majorant for F, can be expressed as

2
2

Few) < f(w) =2 (w®) " (w - w®) e ]| w |

= e (wlw®),
1)

which satisfies the properties of a majorant.

Since the problem (20) is a convex problem, it can be
handled by method such as the projected gradient similar to
Algorithm 1 discussed in the previous section. Since f(w) is
a simple quadratic function, we use the one-step accelerated
gradient projection (APG) algorithm proposed in [16]. For
computational efficiency, we omit the backtracking line search
step which is used to find the step size at each step k.
Specifically, at k-th step, we generate an extrapolated point
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z*) which carries the “momentum” from w*) and w(*~1),
then perform gradient descent at z(*) over the majorant
ge (z®|w®) to find z*+1. Finally, we obtain w*+1) by
projecting z*+1) back to the convex set WW. The projection
operation for the constraint of discrete phase is slightly more
complicated than the case of continuous phase. Instead of
solving the optimization problem of projection, the authors
in [16] proposed a closed form expression of the projection:

Iy~ (w) = ej27]{4m ([?R('[D)](C)OS(’T/JV[) _'_j[%(ﬂ))}sin(ﬂ-/k[) )’

— sin(w /M)
(22)
where
Z M 2mm
B A
and [w]P denotes that for each element w,, in w
wy, = min{b,, max{wy,, a, }}. (24)

Based on our empirical results, we found that the algorithm
is more likely to be stuck in a poor local minimum if we
choose a large penalty parameter c at the beginning. Therefore,
given that our original objective function f(w) is convex,
we start with ¢ = 0 and gradually increase the value to
Cmax > Amax (AH A) /2. Tt turns out that this strategy pro-
vides good convergence while guaranteeing that the solution
will eventually lie on an extreme point which is a feasible
solution for the original problem. The implementation details
are provided in Algorithm 2.

Algorithm 2 Extreme Point Pursuit (EXPP).

Initialization: Set k =0, w1 =w(®) =1,¢6_, =0,¢=0
choose 3> Amax (A A) and cpmax > Amax (AT A) /2.

Repeat:

_ /1M _ &k—a1—1,
k= —"—5—", ap = >7—

[
Z(k) — W(k) _|_ ak (W(k) — W(k_l))’
wlh+1) =TT, n gjzuw ~ 1V, (Z<k>|w<k>)>;
linearly increase the value of ¢ towards cpax, kK = k+1;
Until Convergence

A point w is e-stationary if
dist(0, Vg(w) + 0y (w)) <, (25)

where dist(w, W) = infy ey ||[v—wl||2 and L)y is the indicator
function of W. The authors in [16] show that the EXPP
algorithm is guaranteed to find an e-stationary point in O(1/¢2)
iterations when 0 < ap, < &, a1Ly < B < azL, for some

constants & = /a1(1 — p)/az with p € (0,1], a; € (0,1)

and as € (1,00), where L, is the Lipschitz constant of Vg.

IV. LIMITATIONS OF UNIMODULAR WEIGHTS

While the iterative algorithms for finding the unimodular
solutions discussed above show good convergence properties,
we will see that the optimal solution doesn’t always provide

perfect nulls for each of the desired angles. Or in other words,
the unimodular solution which minimizes the squared error
does not always strictly satisfy the equality in equation (7).
Examining the required magnitude of the optimal weights, it’s
easy to show that when there is only one angle to null (K = 1),
the condition for the existence of a unimodular solution which
strictly satisfies the equality in (7) is

N
> lan] = lIA]l > yl, (26)
n=1

where a,, is the n-th element in the vector A, || - || denotes
the #; norm and y is a scalar since K = 1. This simply implies
that energy collected from the reconfigurable surface must be
larger than that obtained from the fixed portion of the surface at
the desired angle v, a requirement also noted in section III of
[1]. For the general case of K > 2, it is challenging to strictly
prove the existence of a unimodular solution. However, using
empirical results, we found that the existence is related to the
magnitude of the elements in the unconstrained optimal weight
vector. Specifically, a unimodular solution which satisfies (7)

only exists when
o lwil 2wyl 27)
z J

where Z = {n | |w}| <1} and 7 = {n | |w}| > 1}. Further,
if the elements of w* are sorted by increasing magnitude, with
a sufficient number of elements, we can approximate the sorted
vector as a linearly increasing set going from from zero to
||W*||co. Using this approximation, we can obtain a simpler
criterion for determining the existence of a unimodular solution
that meets the equality. Specifically, define ¢ = ||w*||o
meaning ¢/N is the separation of magnitudes. By making
equation (27) an equality, we obtain

[N/e] c N c
n=1 n=[N/e|+1

where |-| denotes the floor operation. Solving and taking the
non-negative solution results in

V2NZ+2N +1+1
N+1 ’ (29)

lim €= V2.

N—o0

We will show in the next section that even though the sorted
magnitude of w* is not strictly linearly increasing, this thresh-
old is accurate and allows us to quickly determine the existence
of a unimodular solution which gives perfect nulls.

V. RESULTS

To demonstrate the performance of the above algorithms,
in this section we provide numerical results. The parameters
of the paraboloidal reflector here are the same as those used
in the Section 4 of [2]. As one typical example, the pattern in
Fig. 2 is the H-plane co-pol pattern when a 2-bit discrete phase
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TABLE I
AVERAGE GAIN FOR DIFFERENT ANGLES WITH MAINLOBE CONSTRAINT (6 = 0.01)

Angles Average Gain (dBi)
« ) U trained w* Unimodular Continuous | Approx. Unimodular Unimodular Discrete ||
egrees neonstramec w Phase w Continuous W Phase w* (M = 4) Wlleo
EXPP | Simulated Annealing
1.85 -315 -307 -48.77 -47.13 -48.86 0.7747
1.85, 2.05 -297 -295 -53.39 -40.56 2.96 0.8479
1.85, 2.05, 2.25 -298 -286 -22.21 -42.89 -5.80 1.1378
1.85, 2.125, 2.4, 2.675 -300 -287 -5.93 -28.15 1.10 1.3923
1.85, 2.1, 2.35, 2.6 -292 -28 -1.80 -22.92 -4.29 1.5682
1.85, 2.05, 2.25, 2.45 -296 -23 2.27 -22.17 -14.11 1.9420
50 : : 20
10 Reconfigurable 18m dish —
’ Fixed 17m dish | = 1
30k - - =Fixed 18m dish
20 & S
= 10 —— Simulated Annealing (2]
"m: 10r o ~ ——— Clustered Simulated Annealing
= g 5 RS — EXPP
= [ % el \\ — — —Simulated Annealing [2]
< - —— 5 1 ate ali
U 10k %} 30l Clustered Simulated Annealing
20} :
= 0} ]
30k
-40 + -50F i
50 I I I I I -60 L L L L
0 05 1 L5 2 2.5 3 10° 10! 102 10° 104 10°
Angle (degrees) Number of Iterations
Fig. 2. H-plane co-pol pattern for traditional (fixed) 17/18m dish and Fig. 3. Convergence rate of three different algorithms for finding the discrete

reconfigurable 18m dish with 0.5m reconfigurable rim (¢ = 1.85°,2.05°).
The mainlobe constraint is set to 6 = 0.01. Discrete phase unimodular weights
with M = 4 quantization level is applied.

weight vector determined by the EXPP algorithm are used to
place nulls at ¥ = 1.85° and 2.05° with a mainlobe constraint
(within 0.01dB) applied. We can see that the gains at two the
desired null angles are significantly reduced (relative to the
fixed dish) and the mainlobe gain is well-maintained.

Fig. 3 compares the rate of the convergence for the EXPP
algorithm as compared to the simulated annealing algorithm
given in [2]. The y-axis represents the average gain at the two
angles to be nulled. Note that the z-axis uses a log scale. We
can see the EXPP algorithm converges to a good stationary
point within 103 iterations while the simulated annealing
algorithm takes more than 10* iterations to converge and does
not provide a satisfactory solution. In order to achieve the same
convergence rate using the metaheuristic simulated annealing
algorithm, we also tried using grouped elements and updated
the phase of the elements in clusters. Doing so does result in
an improved convergence rate. However, the convergence rate
improvement is achieved at a sacrifice in the the achievable
gain. It was found that this result is representative of the
behavior at other angles.

Table I presents the achievable gain at various sets of angles

phase unimodular solution. We group 2756 elements into 100 clusters for the
clustered simulated annealing algorithm. The angles to be nulled are ¢ =
1.85°, 2.05° (solid lines) and ¥ = 1.85°, 2.05°, 2.25° (dashed lines). The
mainlobe constraint is set to 6 = 0.01. Quantization level M = 4.

(rows) with different constraints (columns). As can be seen, the
unconstrained optimal weights always give the perfect nulls for
all desired angles. However, the continuous phase unimodular
weights (found using the Gradient Projection algorithm) cannot
provide perfect nulls when the number of angles is large, and
the spacing between nulls is small. Referring to the last column
of the table, we notice that the unimodular weights begin to
provide degraded performance when the infinite norm of the
unconstrained optimal weights is larger than approximately
v/2, which confirms the validity of our conclusion in section
IV. The third column of gains corresponds to the weights gen-
erated from the approximate solution for unimodular weights
given in Section III-B. In scenarios where ||w*||», < 1, the ap-
proximated continuous phase unimodular solution guarantees a
near -50dBi gain. Given that such a gain is typically sufficient
and we don’t typically require perfect nulls in practice, the ap-
proximate unimodular weights deliver solid performance while
possessing significantly better computational efficiency than
any of the proposed iterative algorithms. Additionally, for the
weights with discrete phase values, the fifth and sixth columns

Authorized licensed use limited to: to IEEExplore provided by University Libraries | Virginia Tech. Downloaded on December 22,2025 at 18:18:00 UTC from IEEE Xplore. Restrictions apply.



Spectrum Workshop: Pioneering the Future of Spectrum Sharing 2024

provide the comparison between the achievable gain obtained
by the EXPP and simulated annealing. The performance of the
metaheuristic algorithm is significantly reduced as we increase
the number of angles to null while the EXPP algorithm still
yields consistent performance.

VI. CONCLUSION

Motivated by the need for spectrum sharing in satellite
systems, we have described multiple techniques for determin-
ing optimal or near-optimal weights for creating nulls in the
pattern of a prime focus-fed circular axisymmetric paraboloidal
reflector antenna equipped with a reconfigurable elements on
the rim. It was shown that if the elements placed on the
rim of the reflector are controlled with practical unit-modulus
weights, the required weights can be found using a least-
squares approach based on the projected gradient algorithm.
Additionally, a closed-form solution for unimodular weights
can also be found for cases where the optimal weights have
an infinite norm less than or equal to unity. Further, for the case
of discrete phase, a MM-based algorithm was applied to solve
the transformed problem which significantly outperforms the
previously proposed metaheuristic method in both the conver-
gence rate and final gain. Finally, we explored the conditions
under which a unimodular solution which strictly satisfies
the linear equality exists. Specifically, unimodular weights
provide excellent performance provided that the infinite norm
of the optimal unconstrained weights is less than /2. This
criterion also allows us to determine when a unimodular weight
solution which provides nearly perfect nulls can be found using
straightforward algorithms.
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