

Experimental Results on Stability of Cylindrical Shells Under Combined Bending and Torsion

Victoria Ding¹, Shahab Torabian², Sandor Adany³, Xiang Yun⁴,
Anil Pervizaj⁵, Andrew T. Myers⁶, Benjamin W. Schafer⁷

¹Ph.D. Candidate, Johns Hopkins University, Baltimore, MD, USA (corresponding author). Email: vding1@jhu.edu

²Associate Research Scientist, Johns Hopkins University, Baltimore, MD, USA. Email: torabian@jhu.edu

³Visiting Faculty Scholar, Johns Hopkins University, Baltimore, MD, USA. Email: asandor2@jhu.edu

⁴Lecturer, University of Sheffield, Sheffield, UK. Email: x.yun@sheffield.ac.uk

⁵Lead Engineer - Tower Technology, Vestas, Aarhus, Denmark. Email: anpij@vestas.com

⁶Associate Professor, Northeastern University, Boston, MA, USA. Email: an.myers@northeastern.edu

⁷Professor, Johns Hopkins University, Baltimore, MD, USA. Email: schafer@jhu.edu

Abstract

Modern wind turbines are often supported by tubular steel towers, which are made from globally conical, locally cylindrical, shells with relatively large diameter-to-thickness ratios – roughly between 100 and 300 – to use the tower material as efficiently as possible. Wind turbine towers face complex loading resulting from both environmental and operational load cases and are sensitive to geometrical imperfections that inevitably arise during the fabrication process. While bending often controls at the base of turbine towers, the upper sections are controlled by combined bending and torsion. Though extensive studies have been conducted on the stability and design of cylinders subjected to isolated actions, investigations into the structural response of thin-walled cylinders under combined actions, such as bending and torsion, remain limited. To address this knowledge gap, an experimental program was carried out to study the structural behavior of thin-walled steel cylinders under combined bending and torsion. A total of 48 cylinders were tested

25 with varying diameter-to-thickness ratios and torsion-to-moment ratios found in wind turbine
26 towers. To gain insight into the imperfection sensitivity of these tests, a laser scanner was used to
27 measure geometric imperfections of each specimen before testing. The test setup, instrumentation,
28 loading procedures and structural response of the cylinders, including ultimate resistances, load-
29 deformation characteristics and failure modes are reported. The primary objective of this study is
30 to provide benchmark test data for the validation of numerical models and the development of
31 advanced design methodologies, such as Reference Resistance Design (RRD), for cylindrical
32 shells under combined bending and torsion. Future work will involve formulating guidelines for
33 using laser-scanned data to evaluate geometric imperfections, developing laboratory-scale and
34 full-scale wind turbine tower finite element models, and ultimately providing improved design
35 guidance on combined bending and torsion.

36 **Introduction**

37 The stability of thin shells is a longstanding problem in structural design. Today, one application
38 for thin shells is the use of thin steel cylindrical tubes as supporting towers for wind turbines.
39 While bending often controls at the base of turbine towers, the upper sections are controlled by
40 combined bending and torsion. Designing towers with large diameter-to-thickness (D/t) ratios is a
41 strategic approach to reduce material usage and create structurally efficient towers. Excess steel
42 material increases the carbon footprint of the tower, so sustainability goals push towards the most
43 efficient possible use of the material. However, nothing is more wasteful than a structural tower
44 failure, so structural efficiency must be balanced by structural reliability. Further complicating the
45 problem are some of the specifics of wind turbine tower design, including the balance between
46 fatigue and stability-driven failures, the relatively complex loading actions that can create unique

47 bending and torsion demands on the same segment of the tower, and additional considerations,
48 such as transportation and assembly limitations (Veritas 2002).

49
50 Existing research on slender cylindrical steel shells has focused primarily on isolated actions.
51 Historically, this has included foundational stability work for isolated compression (e.g.,
52 Timoshenko 1961), flexure (e.g., Seide and Weingarten 1961), and torsion (Donnell 1935) as well
53 as extensive physical testing, e.g. as recently summarized for compression of metallic shells by
54 (Sadowski et al. 2023) or in the recent tests on new potential solutions for wind turbine support
55 towers tested in compression (Ren et al. 2023) or flexure (Jay et al. 2016). For combined actions
56 the work of Teng and Rotter (1989) and later Sadowski and Rotter (2012) developed and
57 established the potential for numerical solutions for steel shells, while Winterstetter and Schmidt
58 (2002) provide the most comprehensive summary of experimental performance. Winterstetter and
59 Schmidt note a profound need for additional work under axial and shear forces, and provided
60 testing for stocky cylinders under this condition. Recently Ren et al. (2022) investigated a stiffened
61 shell under combined compression, bending and torsion.

62
63 Design codes and standards do cover the design of cylindrical shells subjected to combined actions.
64 For example, Eurocode 1993-1-6 (ECCS 2021) provides an interaction equation for cylinders
65 under combined actions, encompassing the axial, shear, and hoop stresses that develop in the
66 cylinders. Eurocode's expressions are of primary interest and are fully detailed in comparison to
67 the experimental results discussed later in this paper. In addition, the AISC Specification for the
68 Design of Steel Hollow Structural Sections (2000) also provides guidance on combined bending
69 and torsion. The AISC Specification presents two interaction equations for load combinations

70 involving both normal and shear stresses, based on the work of Felton and Dobbs (1967) and
71 Schilling (1965).

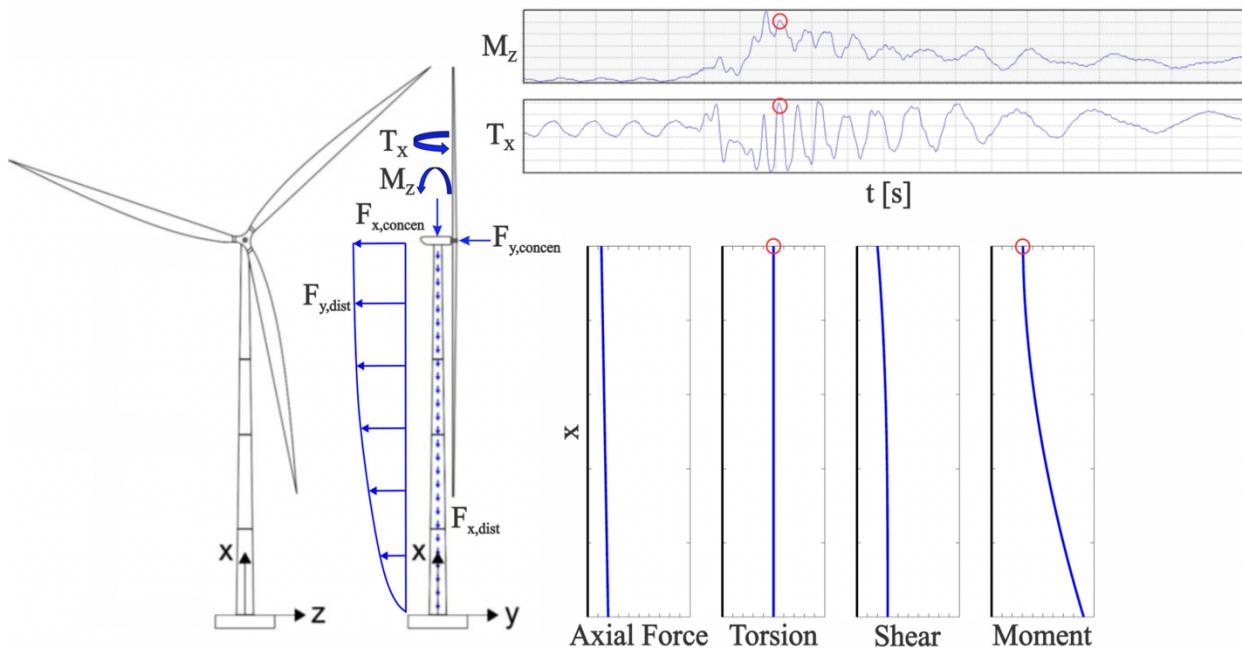
72

73 Another complication of thin shells is their high imperfection sensitivity, which means accurately
74 predicting their structural response is difficult. Any manufactured structure will inevitably have
75 imperfections, and the reduced failure loads of shells are largely correlated with these
76 imperfections. Standards of practice for a variety of structural engineering applications that utilize
77 thin shells have been successfully established and utilized by engineers, see (ECCS 2021) for
78 reference, and discussion in (Rotter and Schmidt 2014). However, each time engineers explore
79 new domains for thin shells, they are confronted with the imperfection sensitivity in the structural
80 response of these members, necessitating the development or updating adequate design
81 procedures. Studies on combined bending and torsion of thin cylindrical shells, or how their
82 imperfection sensitivity affects this load case, are scarce within the widely available literature.
83 Design of the upper segment of wind turbine support towers is often controlled by combined
84 bending and torsion, and minimal benchmark test data exists for slender steel cylinders in this
85 condition.

86

87 To address this substantial knowledge gap, an experimental study on the stability of cylinders with
88 large diameter-to-thickness ratios under combined bending and torsion has been conducted and is
89 presented in this paper. A total of 48 cylinders, with diameter-to-thickness ratios ranging from 127
90 to 320, were tested under varying bending and torsion combinations seen in wind turbine towers.
91 Given the sensitivity of the stability of thin-walled cylinders to geometric imperfections, 3D laser
92 scanning was used to precisely quantify the geometric imperfections of each test specimen prior

93 to testing. The experimental setup for the combined bending and torsion tests, alongside the
94 instrumentation, loading procedures and key test results, including ultimate resistances, load-
95 deformation characteristics and failure modes, are reported herein. The primary objective of this
96 study is to provide benchmark test data for the validation of numerical models and the development
97 of advanced design methodologies, such as Reference Resistance Design (RRD) (Wang et al.
98 2020), for cylindrical shells under combined bending and torsion. Future work will involve
99 creating guidelines on how to use laser-scanned data to classify imperfections, as well as
100 establishing high-fidelity finite element models capable of capturing the buckling strength and
101 failure mode of thin-walled cylinders under different loading scenarios, and developing reliable
102 and efficient design approaches for such structural elements.

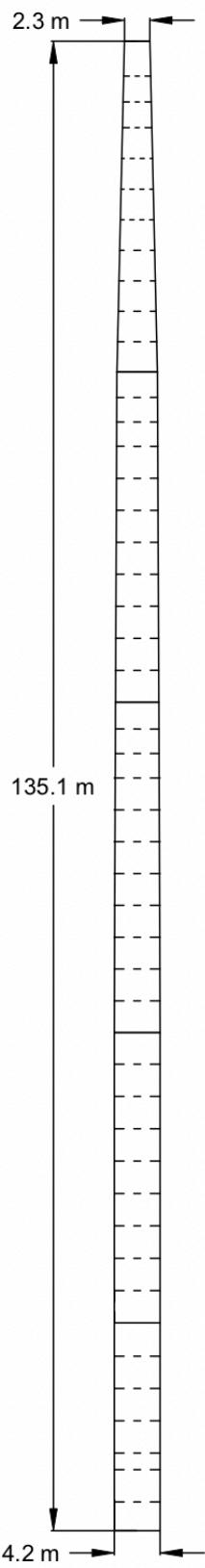

103 **Steel Monopole Wind Turbine Towers**

104 Steel wind turbine towers must be certified before use. Certification bodies, such as DNV, provide
105 certification and detailed design information for components of wind turbines, including support
106 towers (Veritas 2002). Here we focus only on stability and ignore fatigue and other details required
107 to fully design and certify a tower. Discussion is limited to three major issues; (1) the critical
108 loading actions experienced by wind turbine towers, (2) the typical slenderness of towers, and (3)
109 the tube geometries that are used for laboratory scale testing.

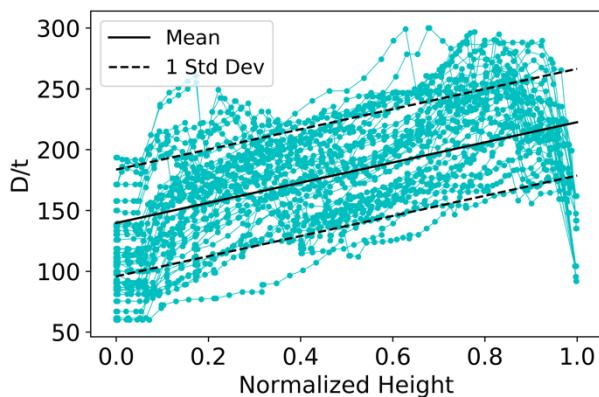
110 Critical loading actions

111 Fig. 1 illustrates the various loads that wind turbines encounter. A typical wind turbine tower under
112 wind load functions like a cantilever with some unique features at a particular time. Fig. 1 shows
113 time histories of bending moment and torsion at the top of a tower when the wind turbine is
114 operating and subjected to an extreme coherent wind gust with directional change. Under these
115 conditions, the interaction of bending moment, torsion, shear, and axial force along the tower is

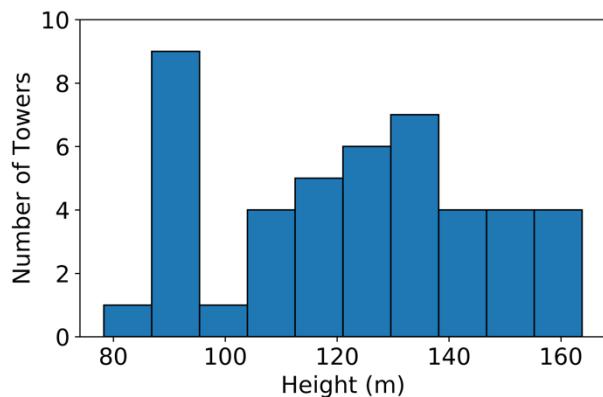
116 significant. The blades can yaw so that they are in line with the wind, but that does not happen
 117 instantly. This lack of alignment creates torsion. Wind on the blades and the tower result in large
 118 moment at the base, which controls design of the bottom portion of the tower. To better predict
 119 demand, load calculations were done in OpenFAST (Jonkman 2005), which is an open-source
 120 wind turbine simulation tool. When considering actual tower designs (Jonkman 2009, Gaertner
 121 2020), one can observe that the combination of torsion and moment controls the design of the top
 122 portion of the tower.

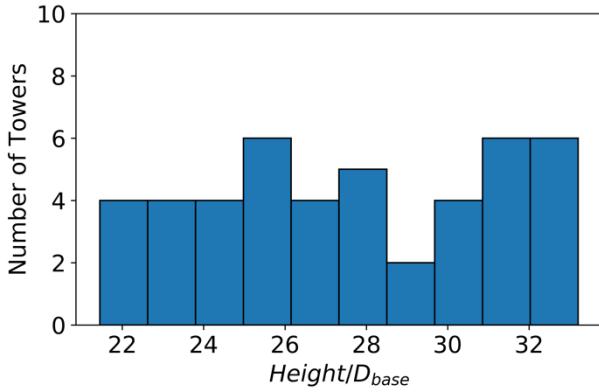

123

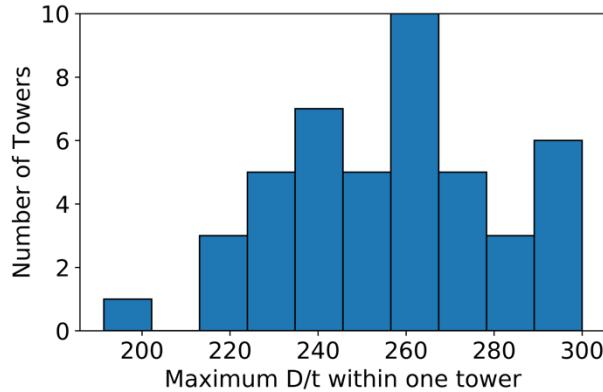
124 **Fig. 1.** Instantaneous distributions of axial force, torsion, shear, and moment


125 Slenderness of Wind Turbine Towers

126 Fig. 2 and 3 provide geometry for typical onshore turbine towers in use today by Vestas. Fig. 2
 127 provides a scaled drawing of a typical steel monopole wind turbine tower. Turbine towers are
 128 slender, with many over 100 meters tall and base diameters generally at least 4 meters wide. Wind
 129 turbine towers are not perfectly cylindrical. Towers are built up from cans welded together, and as
 130 height increases, the can diameter decreases (and thickness changes), providing an overall taper.


131 Typical cans are represented between dashed lines and are welded together to form segments
132 shown between solid lines in Fig. 2. Flanges are used for connecting segments and provide some
133 strength against ovalization. Fig. 3 shows data on 45 in-service onshore wind turbine towers from
134 Vestas. In Fig. 3a, each line represents diameter-to-thickness ratios, or D/t , of one turbine tower
135 along its normalized height. D/t ratios are low (i.e., the tower is “stockier”) at the base of the tower
136 to resist high moment demand. Moment demand decreases as elevation increases, so D/t ratios
137 increase (i.e., the cans become more slender) as height increases, excepting the top most sections
138 which are again stockier (low D/t) to accommodate localized demands. The mean D/t ratio of these
139 45 towers is 180. Fig. 3b provides a histogram of tower heights. The mean height in the sampled
140 towers is 123 m with a coefficient of variation (CV) of 0.19. Fig. 3c provides a histogram of height-
141 to-base-diameter ratios. The ratio for the height of a tower to its base diameter is typically around
142 28. Finally, Fig. 3d provides a histogram of the maximum D/t of each tower. The mean of the
143 maximum D/t ratio of each tower is 256, and the maximum observed across all 45 towers is 300.


Fig. 2. Scaled drawing of a typical onshore wind turbine tower


(a) D/t variation across tower height

(b) Histogram of tower heights

(c) Histogram of height-to-base diameter ratios

(d) Histogram of each tower's maximum D/t

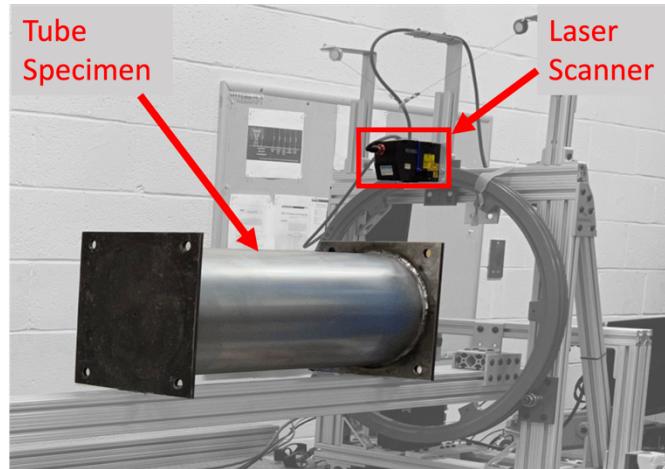
Fig. 3. Wind turbine tower statisticsTube geometries for laboratory scale testing

In accordance with current practice for wind turbine towers and with an eye towards potentially using even more slender sections, we selected steel cylinders with D/t from 127 to 320. Conveniently, and somewhat remarkably, Nordfab Ducting fabricates cylindrical steel members within this range at a scale suitable for laboratory-scale testing. Though D/t matches, D obviously is smaller in the lab; based on an average tower D of 3m the laboratory scale ranges from 30:1 at the smallest tube studied to 12:1 at the largest tube (see next section for complete dimensions).

160 **Experimental Tests on Cylindrical Shells Under Combined Bending and Torsion**

161 Experiments on cylindrical shells under combined bending and torsion were conducted in the Thin-
162 walled Structures Laboratory at Johns Hopkins University. Table 1 provides dimensions and
163 loading configurations for each tube. There are 48 tubes in total; 4 different sized tubes and 12 of
164 each size. Each size has 4 different torque-to-moment (T/M) loading ratios. In actual tower designs
165 (Jonkman 2009, Gaertner 2020), T/M is typically between 0 and 1. T/M = 0 means bending only
166 and T/M = 1 means the amount of torque and moment are equal.

167 **Table 1.** Nominal dimensions and geometry for experiments


Nominal Size (mm)	D ^a (mm)	t (mm)	L (mm)	D/t	L/D	Outrigger (mm)	Moment arm (mm)	T/M	Number of Specimens
100	100	0.79	300	127	3	149	449	1	3
100	100	0.79	300	127	3	149	449	0.66	3
100	100	0.79	300	127	3	149	449	0.33	3
100	100	0.79	300	127	3	149	449	0	3
150	151	0.79	453	191	3	149	602	1	3
150	151	0.79	453	191	3	149	602	0.66	3
150	151	0.79	453	191	3	149	602	0.33	3
150	151	0.79	453	191	3	149	602	0	3
200	202	0.79	606	256	3	149	755	1	3
200	202	0.79	606	256	3	149	755	0.66	3
200	202	0.79	606	256	3	149	755	0.33	3
200	202	0.79	606	256	3	149	755	0	3
250	253	0.79	759	320	3	149	908	1	3
250	253	0.79	759	320	3	149	908	0.66	3
250	253	0.79	759	320	3	149	908	0.33	3
250	253	0.79	759	320	3	149	908	0	3

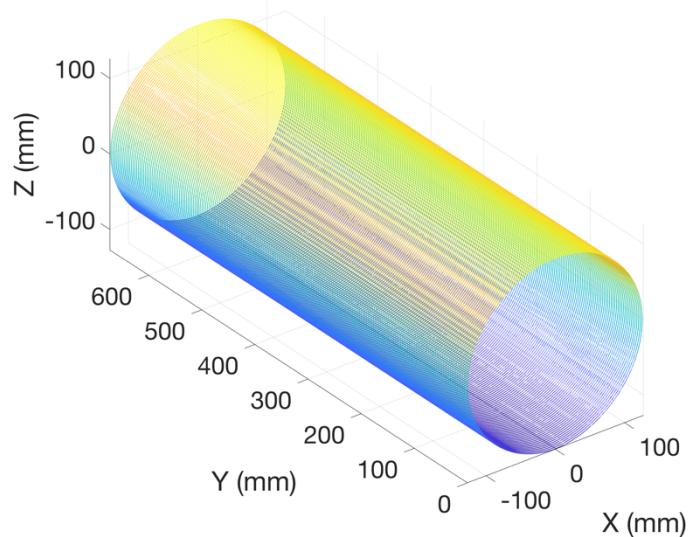
168 ^aD is outer diameter

169 Laser Scanning

170 All tubes were laser scanned to determine their precise initial geometry prior to being tested. Fig.
171 4 provides a photo of a 250mm diameter tube in the lab's laser scanning rig (Zhao et al. 2015).
172 The laser scanner is a line laser and the model is Keyence LJ-V7300. Accuracy ranges from 0.1mm
173 to 0.3mm depending on the distance from the specimen to the laser.

174

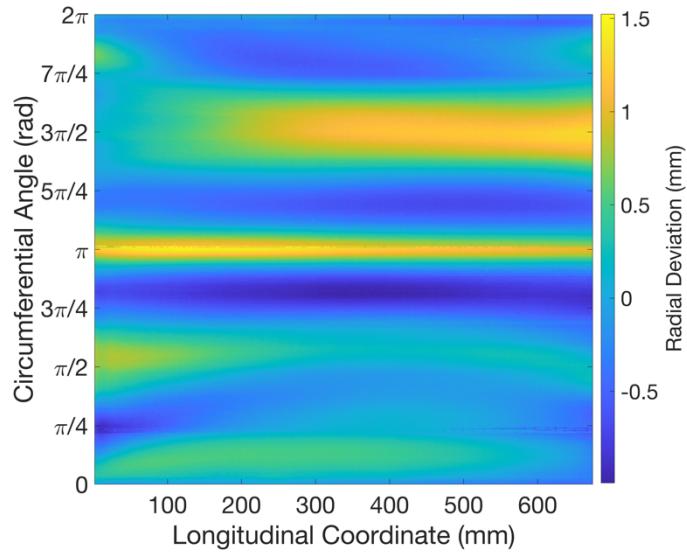
175


Fig. 4. Laser scanning rig with a 250mm diameter tube

176 Fig. 5 provides an example of a full scan point cloud of a 250mm tube after post-processing, and

177 Fig. 6 provides a representation of the scan showing the radial deviation as a contours from the

178 unwrapped tube with the seam weld located at 0 radians.


179

180

181

Fig. 5. Post-processed scanned data of a 250mm tube

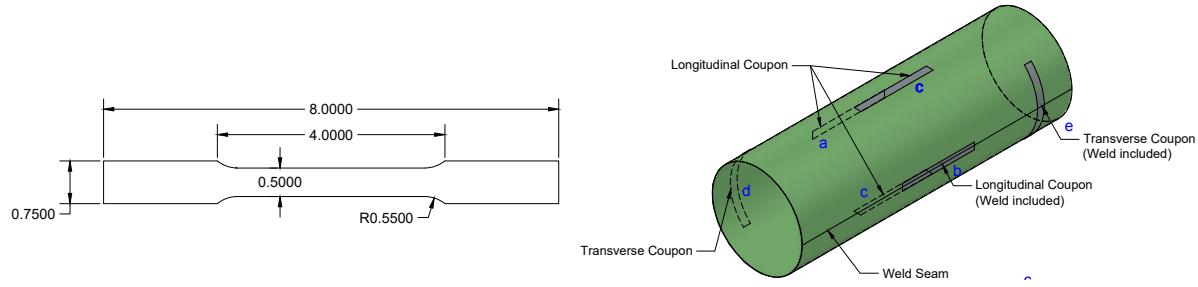
182

183

Fig. 6. Radial deviations of a 250mm tube

184 To predict design strength, Eurocode (ECCS 2021) uses fabrication quality classes (QC), which
 185 reflect the severity of geometric imperfections in a specimen. Class A is excellent quality, class B
 186 is high quality, and class C is normal quality. Eurocode's guidelines for assigning QC are for
 187 physical measurements. Currently there are no guidelines for how to assign QC with laser scanned
 188 imperfections. Table 2 provides the QCs of each tube using the laser scanned data at the 95th
 189 percentile, 99th percentile, and the worst data. Assigning QC using the worst of the worst data is
 190 one possible method for physical measurements, but doing the same for laser scanned data leads
 191 to overly conservative strength predictions because laser scans record much more data than
 192 physical measurements. If the worst laser scanned data is used to assign QC in this study, several
 193 tubes are class C, and the rest are worse than C. However, all tubes fall within classes A-C when
 194 comparing the experimental results to their predicted Eurocode strengths. The focus of the work
 195 of this paper is the experimental results themselves – future work will address how laser scanned
 196 data can best be utilized in predicting design strength.

197

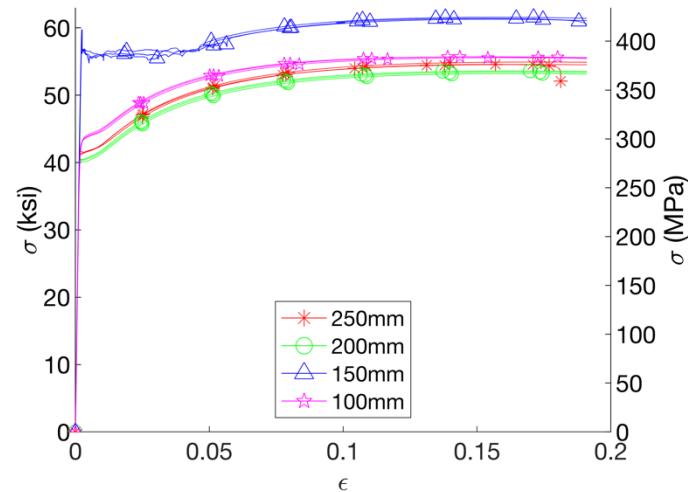

198

199 Table 2: Quality class of each tube specimen

Specimen	Quality Class			Specimen	Quality Class		
	95th %ile	99th %ile	Worst		95th %ile	99th %ile	Worst
250mm-1 ^a	B	C	WTC	150mm-1	C	C	WTC
250mm-2	C	C	WTC	150mm-2	B	C	WTC
250mm-3	B	C	C	150mm-3	A	B	WTC
250mm-4	C	C	WTC	150mm-4	A	A	WTC
250mm-5	B	C	WTC	150mm-5	A	B	WTC
250mm-6	C	C	WTC	150mm-6 ^a	C	C	WTC
250mm-7	WTC	WTC	WTC	150mm-7	A	B	WTC
250mm-8	C	C	WTC	150mm-8	A	B	WTC
250mm-9	C	C	WTC	150mm-9	A	B	WTC
250mm-10	C	WTC	WTC	150mm-10	B	C	WTC
250mm-11	C	C	WTC	150mm-11	A	B	WTC
250mm-12	C	WTC	WTC	150mm-12	B	B	WTC
200mm-1	C	C	WTC	100mm-1	C	C	WTC
200mm-2	WTC	WTC	WTC	100mm-2	B	B	WTC
200mm-3	C	C	WTC	100mm-3	C	C	WTC
200mm-4	B	C	C	100mm-4	A	B	WTC
200mm-5	B	B	WTC	100mm-5	C	WTC	WTC
200mm-6	C	WTC	WTC	100mm-6	C	C	WTC
200mm-7	C	C	WTC	100mm-7	WTC	WTC	WTC
200mm-8	B	C	WTC	100mm-8	B	B	WTC
200mm-9	B	C	WTC	100mm-9	C	C	WTC
200mm-10	C	C	WTC	100mm-10	C	C	WTC
200mm-11	C	C	WTC	100mm-11	B	WTC	WTC
200mm-12	WTC	WTC	WTC	100mm-12	B	B	WTC

200 ^aThese tubes were accidentally dented before testing201 Tensile Tests

202 Material properties were determined from tensile tests conducted to ASTM-E8 (2012). Coupon
 203 specimens were extracted from the cylinders in the longitudinal and transverse directions,
 204 including coupons that cross the longitudinal seam weld from fabrication, as shown in Fig. 7.



205

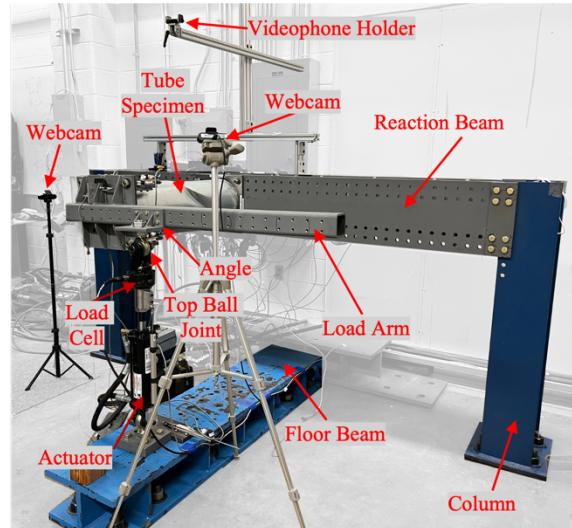
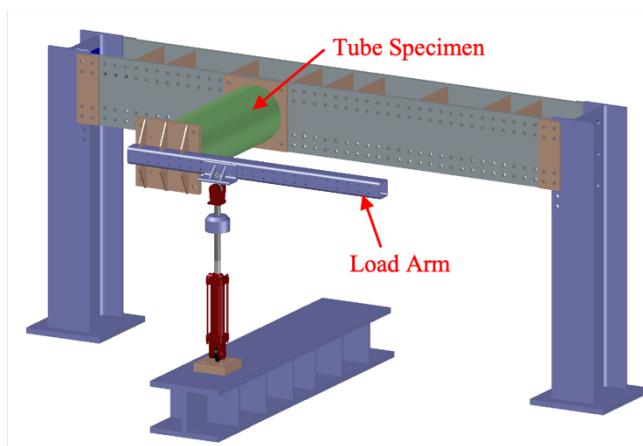
206 **Fig. 7.** Tensile coupon dimensions and locations from tube

207 Tensile tests were conducted using an MTS Criterion Model 43 testing machine and the MTS
 208 software TW Elite. Loading rate was 0.0254mm/sec (0.001 in/sec). An extensometer was attached
 209 to each coupon to measure elongation and no strain gauges were used. The elastic modulus of
 210 various steel grades was found to be consistently around 210 MPa (30500 ksi) in Yun and Gardner
 211 (2017), and this value is assumed for the purposes of this study. Tensile stress-strain response of
 212 longitudinal coupons without welds is provided in Fig. 8. These coupons have consistent yield
 213 strengths and behavior for a given tube size.

214

215

216 **Figure 8.** Stress-strain curves of longitudinal coupons without welds for each tube diameter



217 Measured thickness, calculated yield stress (F_y) based on the 0.2% offset, ultimate stress (F_u), and
 218 elongation at fracture for all coupons are summarized in Table 3. Note, different tube sizes are
 fabricated from different initial coils and thus have different yield strengths; however, all

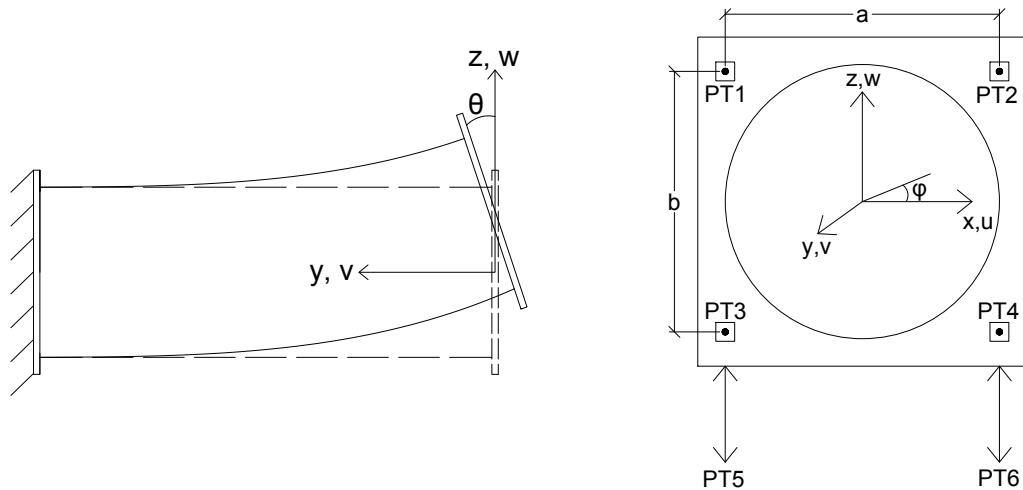
219 specimens for a given size are fabricated from the same coil. The F_y of longitudinal coupons
 220 without welds is used in modeling and calculations. Elongation at failure is around 20% for all
 221 coupons except for the 100mm coupon that was cut transverse across the weld. This was due to a
 222 dent in the gage section of that coupon.

223 **Table 3.** Tensile Test Results

Tube Size	Coupon Type	Thickness (mm)	F_y (MPa)	F_u (MPa)	Elongation (%)	Number of coupons
100mm	Longitudinal	0.72	301	384	19.7%	3
	Long. along weld	0.73	291	374	18.3%	1
	Transverse	0.72	277	383	18.5%	1
	Trans. across weld	0.73	248	374	10.8%	1
150mm	Longitudinal	0.72	390	424	18.7%	3
	Long. along weld	0.73	397	434	18.1%	1
	Transverse	0.73	365	420	21.2%	1
	Trans. across weld	0.72	350	424	18.4%	1
200mm	Longitudinal	0.73	278	368	20.6%	3
	Long. along weld	0.75	294	381	18.4%	1
	Transverse	0.73	265	361	23.9%	1
	Trans. across weld	0.74	263	370	19.6%	1
250mm	Longitudinal	0.73	287	377	21.7%	3
	Long. along weld	0.78	306	393	21.0%	1
	Transverse	0.73	296	385	23.7%	1
	Trans. across weld	0.73	277	377	21.0%	1

224
 225 Experimental Test Setup
 226 Fig. 9 shows the test rig for the cylindrical shells under combined bending and torsion with a
 227 250mm diameter tube loaded with $T/M = 0.33$ (Ding 2023).

228


(a) Drawing of test rig

(b) Photo of test rig

229 **Fig. 9.** Combined bending and torsion test rig with a 250mm tube loaded with $T/M=0.33$

230 The tubes were manufactured by Nordfab by rolling a thin sheet into a cylinder and then welding
 231 the seam. Nordfab cut the tubes to the specified length and shipped them to FABCO, a precision
 232 machine shop, which welded square plates to both ends so the specimens could be attached to the
 233 testing rig. The load arm is stiff and introduces eccentricity, providing torsion in addition to
 234 bending. The load is applied upward against gravity on the load arm so that self-weight can be
 235 eliminated. To apply different T/M ratios, the tube is installed at different locations along the
 236 reaction beam while the actuator stays in place. To accommodate different tube lengths, the
 237 actuator can be placed at different locations along the floor beam. Note, due to the end plate to
 238 accommodate the load arm the distance from the free end of the tube to where the load is applied
 239 is 149mm (6 in.) for all tests. The actuator is a 20.7MPa (3000 psi) hydraulic cylinder with a load
 240 capacity of 65500 N (14,720 pounds). A load cell and position transducer (PT) are attached to the
 241 actuator to record changes in load and control the crosshead displacement. Both ends of the
 242 actuator have clevis mounts attached to ball joints. The bottom ball joint is threaded into a plate
 243 which is bolted to the floor beam. The top ball joint is bolted to an angle which is bolted to the
 244 load arm. Three videos were recorded at different positions for each tube to capture the failure

245 response during testing. Fig. 10 provides the coordinate system, PT locations and angle
 246 definitions. Six PTs are attached to the end plate. These PTs are used to calculate displacement
 247 and angle changes of the end plate during loading. The PTs are “spring loaded” and can stroke in
 248 or out. PT1 to PT4 are attached to bolts that connect the load arm to the end plate and can stroke
 249 up to 28 mm (1.125 in.). PT5 and PT6 are placed on the floor and attached to heavy steel plates to
 250 prevent motion and can stroke up to 155 mm (6.125 in).

251

252 **Fig. 10.** Coordinate system and PT locations

253 Experimental Procedure

254 To conduct a test, the tube and the steel angle on the load arm need to be installed in the correct
 255 location for a given T/M load combination. All controls and data collection are completed through
 256 custom LabVIEW programming. LabVIEW is used to control the actuator's stroke in a PID loop
 257 and is utilized so that the actuator's top clevis can be attached to the top ball joint using a shoulder
 258 bolt. The actuator is then moved in fine control, increasing or decreasing the stroke, such that the
 259 load reading is zeroed. Then the tube is loaded by extending the stroke at 0.025 mm/second (0.001
 260 inch/second), pushing up on the load arm. Testing continues until the actuator displacement is
 261 approximately 2 times the displacement at failure (peak load). Unloading occurs at a rate of 0.25

262 mm/second (0.01 inch/second) until the load reading returned to zero. The load and readings from
263 the six PTs were continuously recorded. These data were used to determine the inward
264 displacement v , upward displacement w , in-plane rotation ϕ , and out-of-plane rotation θ of the end
265 plate of the test tube specimen using Eqs. 1-4 respectively,

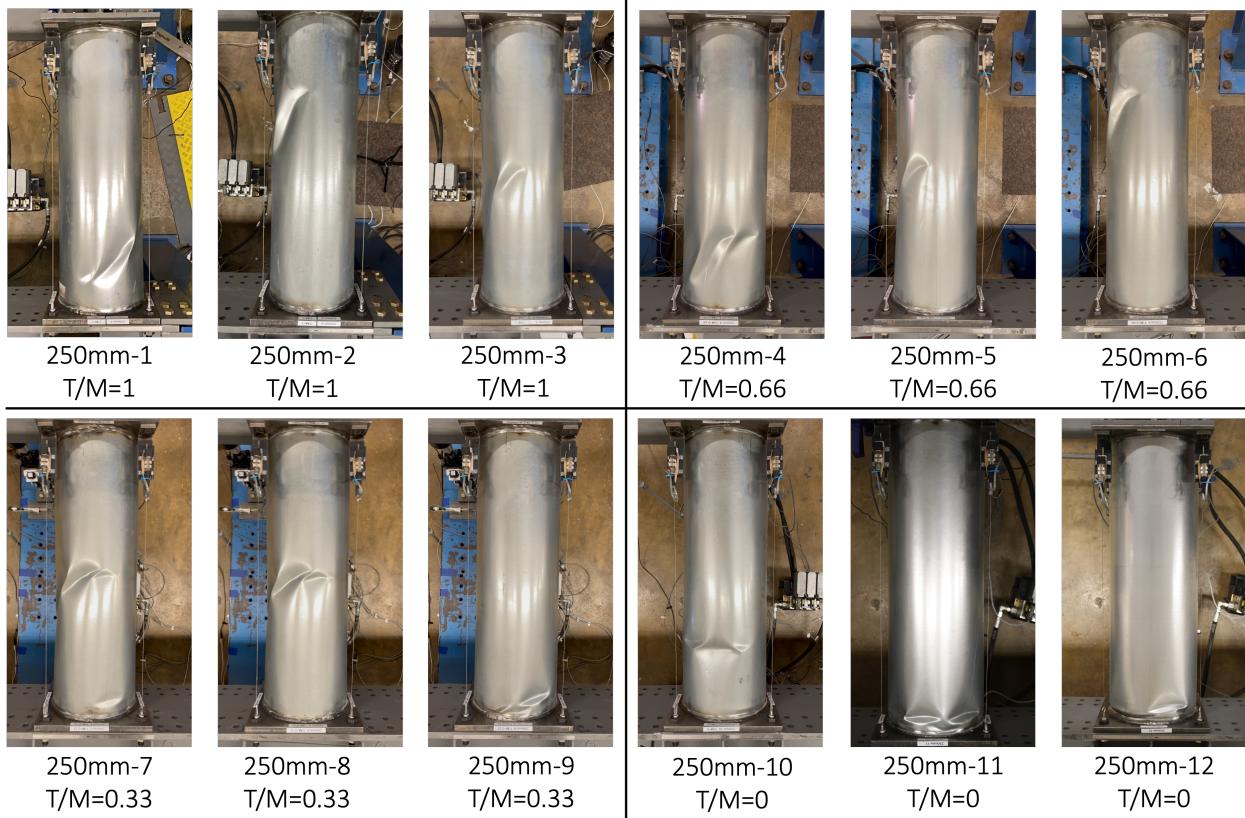
266
$$v = \frac{\delta_1 + \delta_2 + \delta_3 + \delta_4}{4} \quad (1)$$

267
$$w = \frac{\delta_5 + \delta_6}{2} \quad (2)$$

268
$$\theta = \frac{\frac{\delta_1 + \delta_2}{2} - \frac{\delta_3 + \delta_4}{2}}{b} \quad (3)$$

269
$$\phi = \frac{\delta_6 - \delta_5}{a} \quad (4)$$

270 where δ_1 through δ_6 represent PT1 through PT6 displacements.

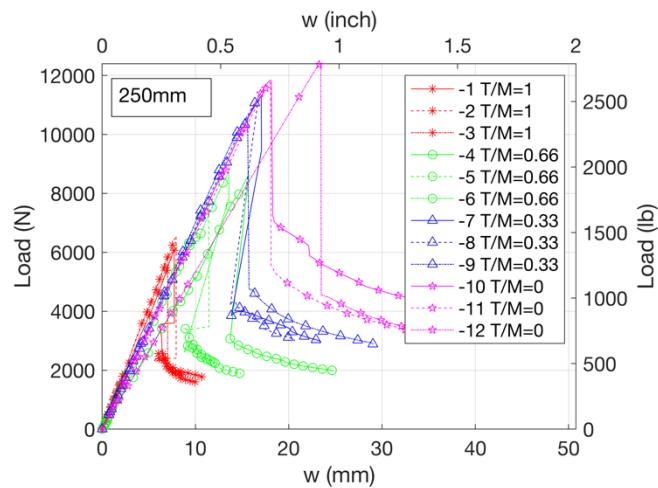

271 **Test Results**

272 This section provides a comprehensive overview of the key results obtained from the experiments,
273 including the failure modes and load-deformation histories. Table 1 provides nominal tube
274 dimensions and the test matrix. Three tubes were tested for each tube size and T/M combination.
275 Self-weight of the tube, end plates, and load arm were taken into account (removed) for these
276 results. Test results are compared with predictions from von Mises yield criterion and Eurocode-
277 based calculations in the subsequent section.

278 250mm Results

279 Fig. 11 provides photos of the 250mm tubes immediately after reaching peak load. The 250mm
280 tubes have a D/t of 320 and were the most slender tubes tested. The fixed end of each tube is
281 attached to the reaction beam, which is located at the bottom of each photo. The free end of each
282 tube is attached to the load arm, which is at the top of each photo. The failure modes for bending

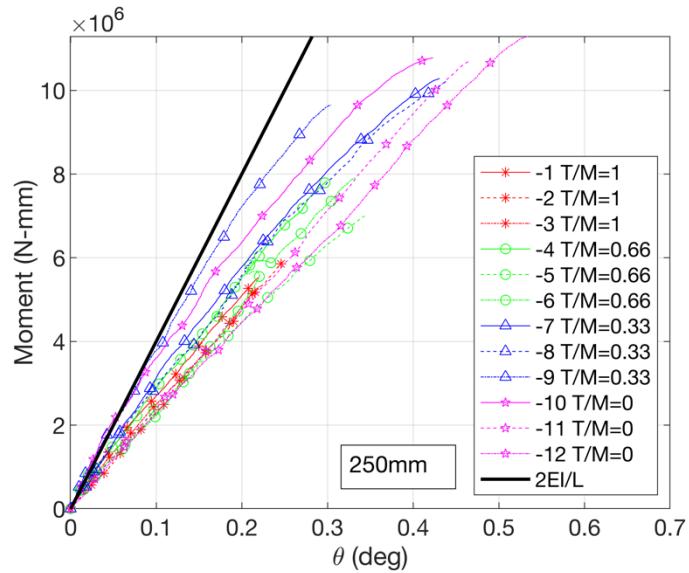
283 only are different from failure modes with torsion present. In bending only, the tubes buckle with
 284 relatively short half waves around a cross section at failure near the reaction beam end, which had
 285 the highest moment. If there is any torsion, buckling waves form over a significant length of the
 286 section and at an angle around the tube.



287

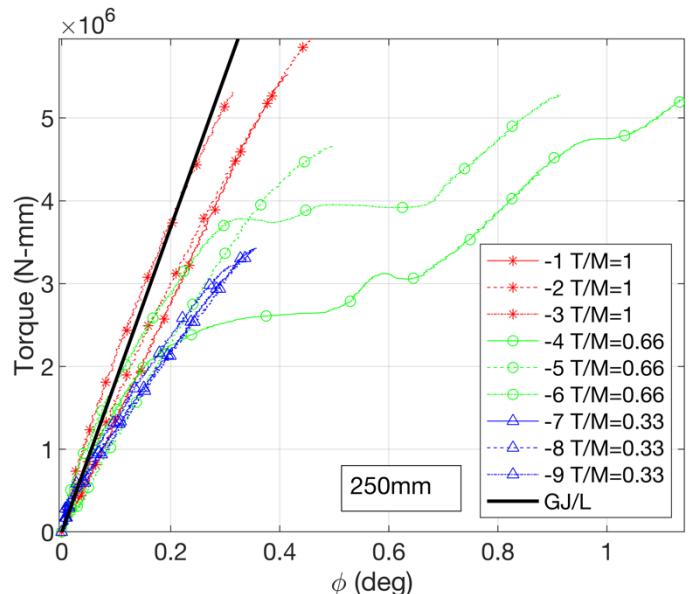
288 **Fig. 11.** Photos of buckled 250mm tubes

289 Fig. 12 provides load vs w , or upward plate displacement, of all 250mm tubes. Buckling typically
 290 occurred without prior indication for all tubes and usually produced a loud popping sound from
 291 the tube. The load-deformation response pattern is the same for each tube, except for 250mm-12,
 292 T/M=0, which was the first tube tested – though ultimate load is accurate for this specimen. The
 293 rig tie downs to the floor were not fully tensioned for the 250mm and 200mm tubes, causing an
 294 irregular initial response and introducing additional measured displacement. This initial deviation
 295 in the response was corrected by extrapolating the elastic linear region of the load-deformation


296 curves. The tie downs were fully tensioned for the 150mm and 100mm tubes. As expected, tubes
 297 tested in bending only ($T/M=0$) had the highest failure load. As more torsion (eccentricity in the
 298 load arm) is added, failure load decreases. Figs. 13 and 14 provide moment vs θ and torque vs ϕ
 299 of the data plotted until peak load, along with the theoretical bending stiffness and torsional
 300 stiffness for comparison, where E is the elastic modulus and assumed to be 210 MPa for all tubes,
 301 I is the moment of inertia, G is the shear modulus, and J is the polar moment of inertia. The
 302 theoretical bending stiffness is greater than the measured bending stiffness, which suggests some
 303 additional accommodations are still present in the test. However, the theoretical torsional stiffness
 304 matches well with the tests.

305

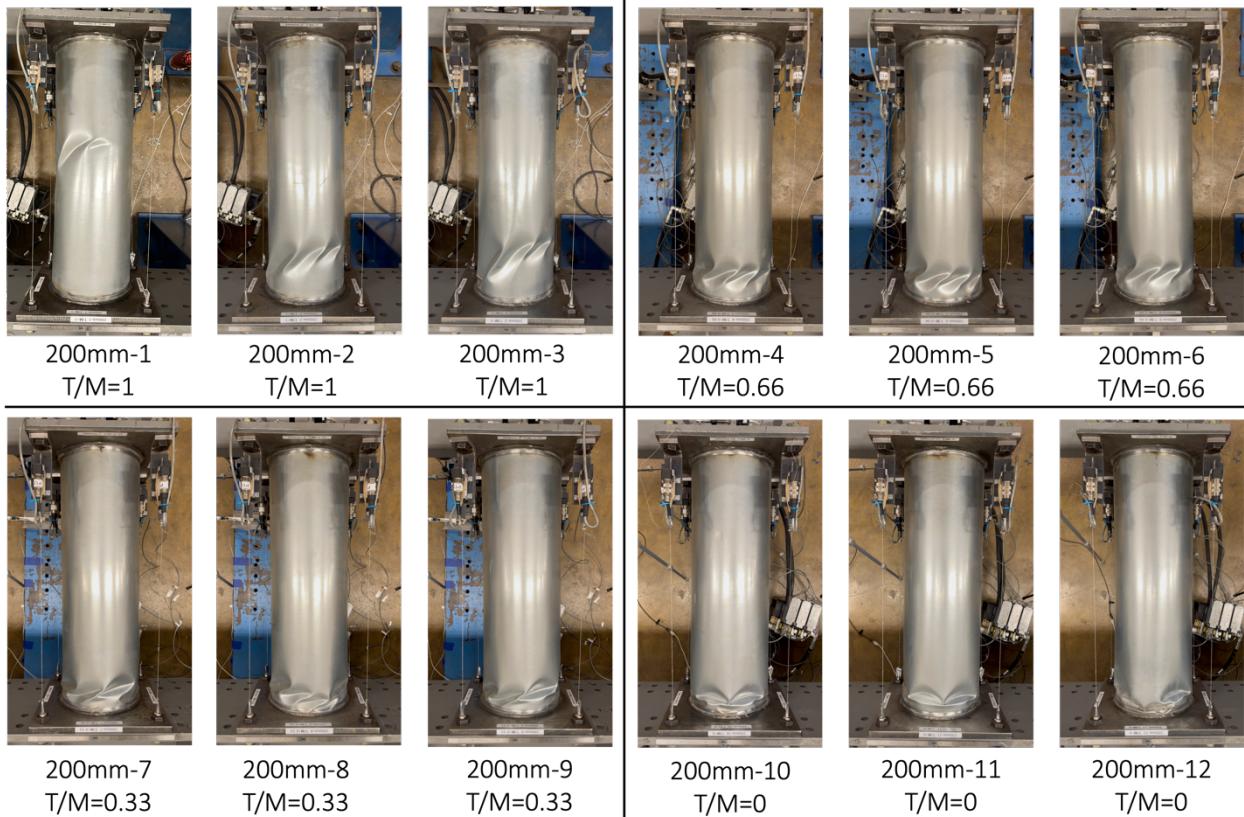
306


Fig. 12. Load vs w for 250mm tubes

307

308

Fig. 13. Moment vs θ for 250mm tubes

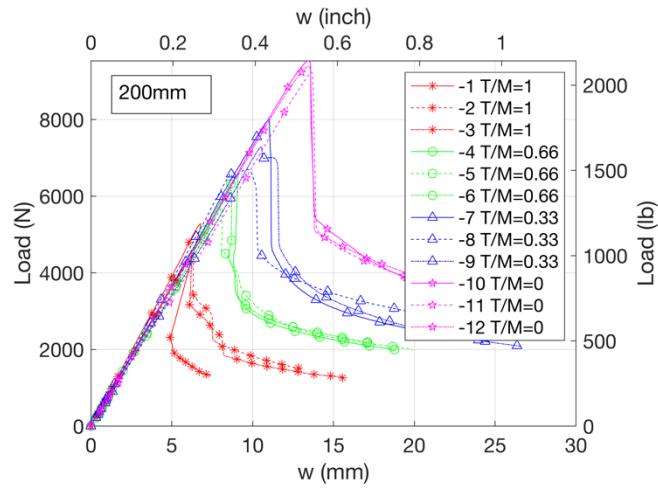

309

310

Fig. 14. Torque vs ϕ for 250mm tubes

311 200mm Results

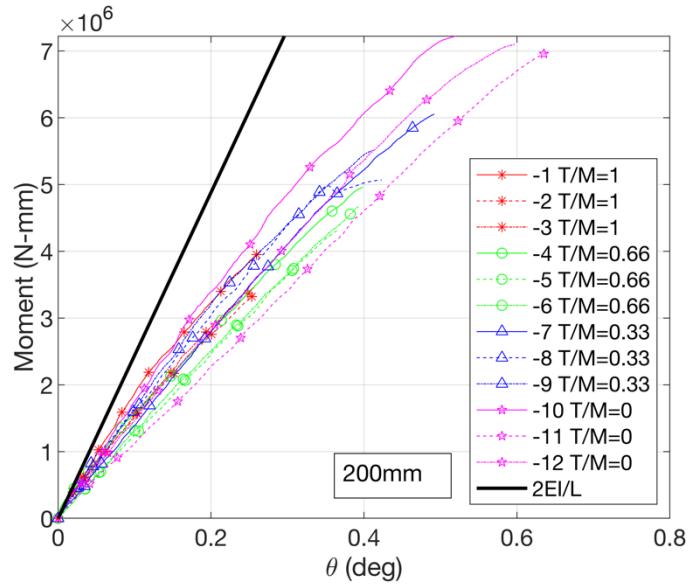
312 Fig. 15 provides photos of the 200mm diameter tubes after failure. The 200mm tubes have a D/t
 313 of 256. These tubes behaved similarly to the 250mm tubes. Like the 250mm tubes, the buckling
 314 shapes of the 200mm tubes under bending only ($T/M=0$) are different from tubes with any torsion.
 315 However, not all the 200mm tubes produced a loud popping sound.


Fig. 15. Photos of buckled 200mm tubes

316

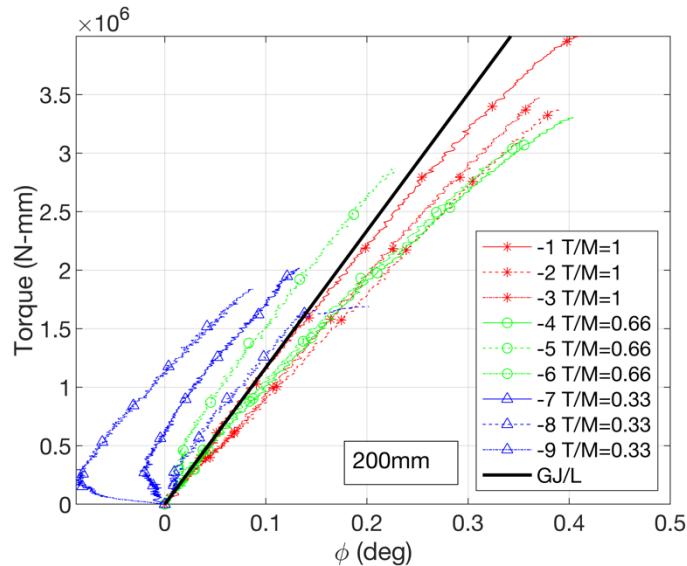
317

318 Figs. 16-18 provide results of the 200mm diameter tubes. Fig. 16 shows load vs displacement of
 319 the 200mm tubes. Like the 250mm tubes, buckling of the 200mm tubes occurred abruptly, but the
 320 drops in resistance after buckling are smaller than for the 250mm tubes. Again, tubes tested in
 321 bending only had the highest failure loads, with failure load decreasing as more torsion is added.
 322 The moment vs θ curves and torque vs ϕ curves for the 200mm tubes are depicted in Figs. 17 and
 323 18, respectively. Like the 250mm tubes, the theoretical bending stiffness for the 200mm tubes is
 324 greater than the measured bending stiffnesses, while the theoretical torsional stiffness matches well
 325 with the tests.


326

327

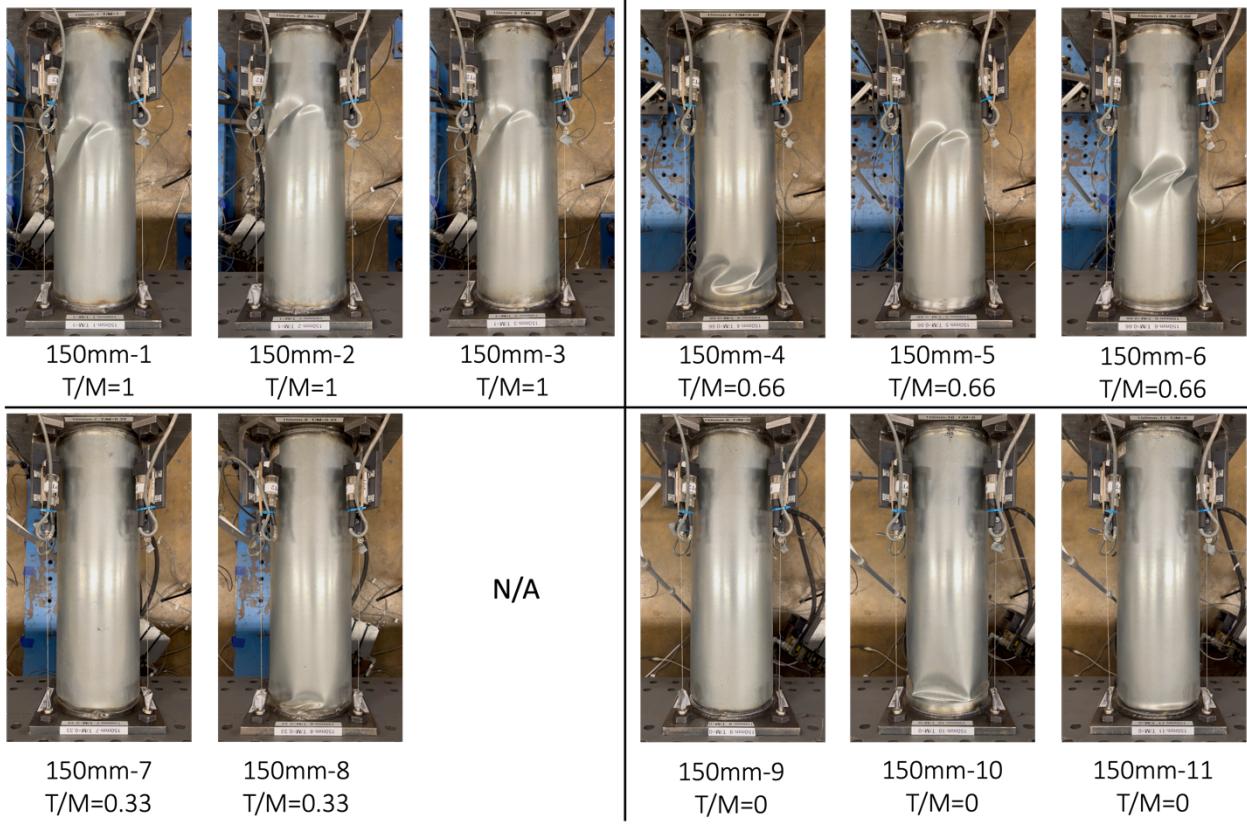
328


Fig. 16. Load vs w for 200mm tubes

329

330

Fig. 17. Moment vs θ for 200mm tubes


331

332

Fig. 18. Torque vs ϕ for 200mm tubes

333 150mm Results

334 Fig. 19 provides photos of the 150mm diameter tubes after failure. The 150mm tubes have a D/t
 335 of 191. One tube, 150mm-12, is excluded due an accidental stroke out of the actuator. Some of
 336 these tubes, specifically tubes 150mm-7, -9, and -11, have failure modes that were not observed in
 337 the larger tubes, where only one circumferential wave formed around a cross section near the fixed
 338 end.

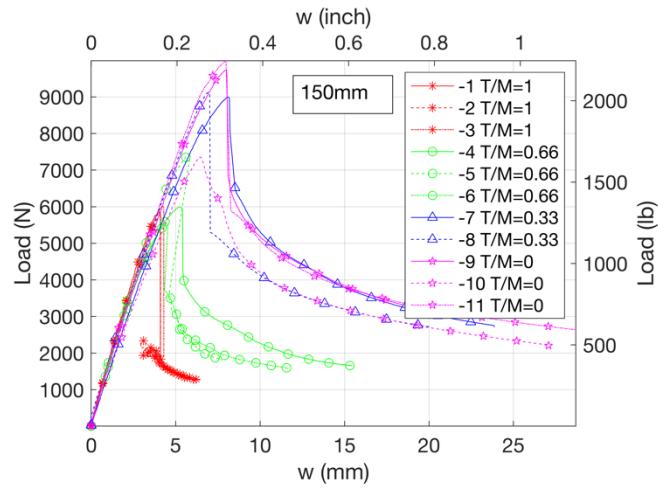
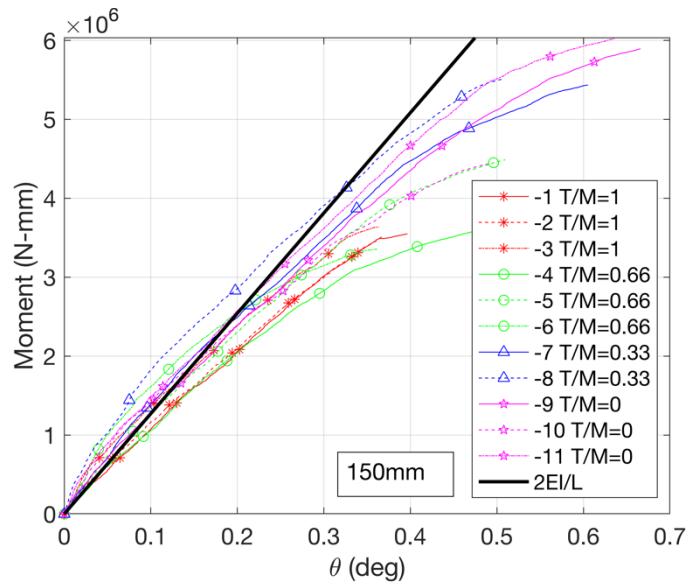


Fig. 19. Photos of buckled 150mm tubes

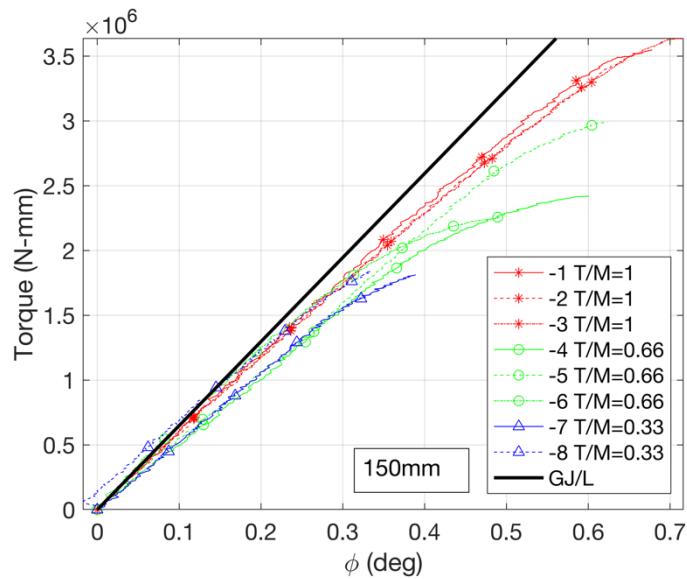
339

340


341 Figs. 20-22 provide the load vs displacement curves, moment vs θ curves, and torque vs ϕ curves
 342 of the 150mm tubes, respectively. In Fig. 20, the response softens shortly before buckling,
 343 providing some small warning before failure. However, the drops in load at failure remain
 344 substantial. As shown in Figs. 21 and 22, the theoretical bending and torsional stiffnesses match
 345 well with the tests.

346

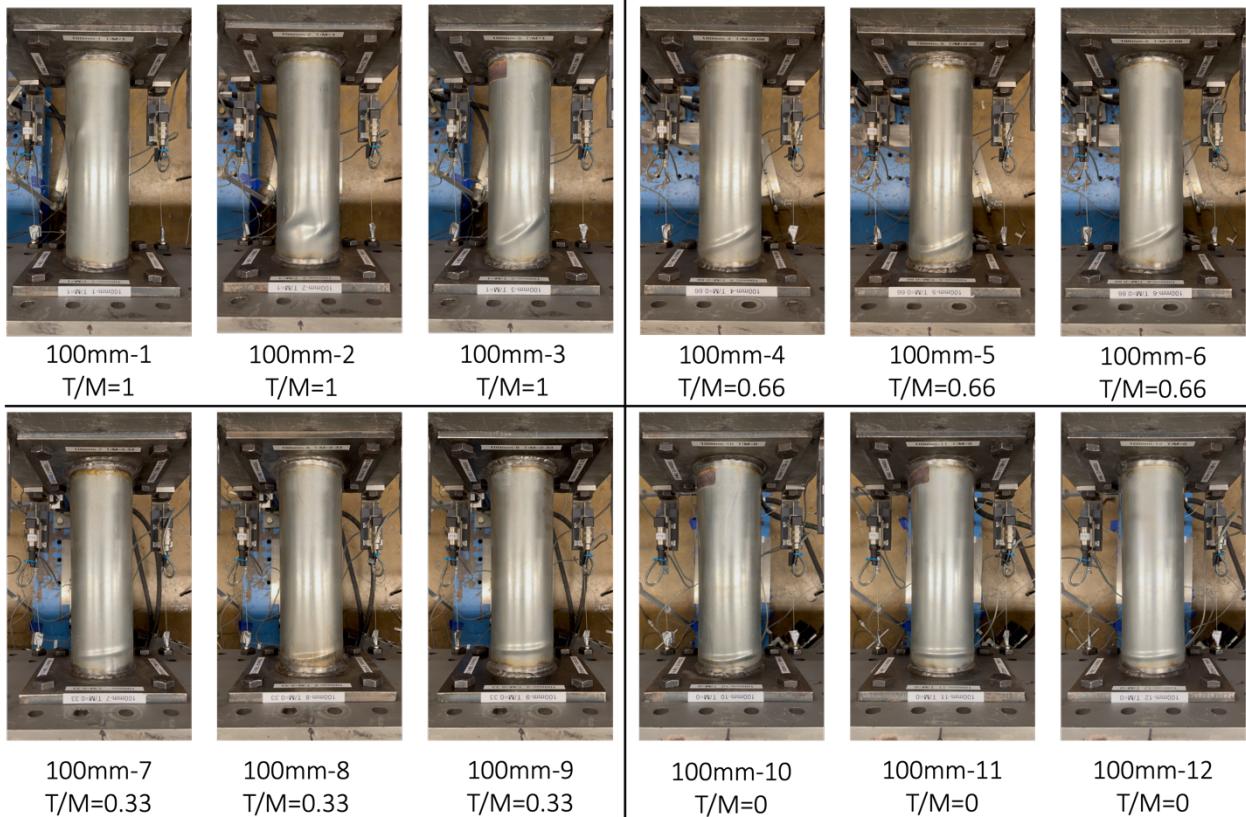
347


Fig. 20. Load vs w for 150mm tubes

348

349

Fig. 21. Moment vs θ for 150mm tubes

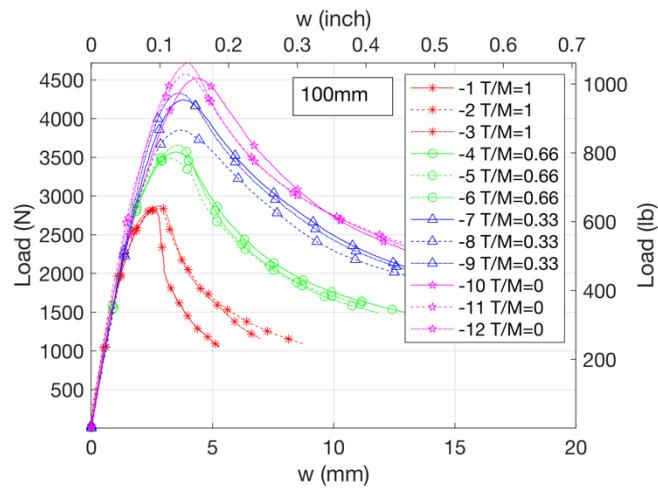

350

351

Fig. 22. Torque vs ϕ for 150mm tubes

352 100mm Results

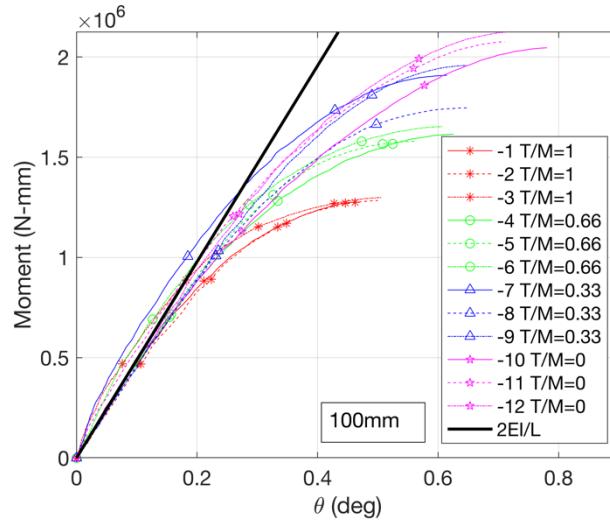
353 Fig. 23 provides photos of all 100mm diameter tubes after failure. These are the stockiest tubes
 354 tested, with a D/t of 127. The 100mm tubes usually failed with one buckling wave: a
 355 circumferential wave for tubes in bending only and waves at different angles for tubes subjected
 356 to combined bending and torsion.


Fig. 23. Photos of buckled 100mm tubes

357

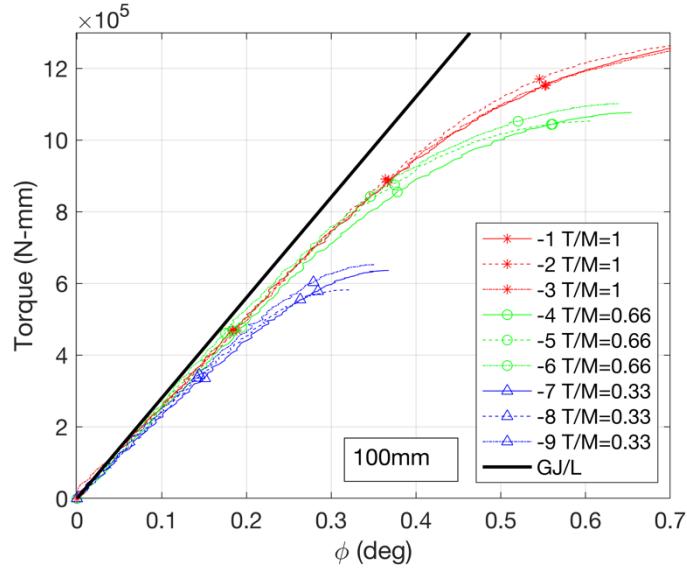
358

359 Figs. 24-26 provide the load vs displacement curves, moment vs θ curves, and torque vs ϕ curves
 360 of the 100mm tubes, respectively. As shown in Fig. 24, load drops slowly after reaching peak load,
 361 as opposed to the sudden drops observed in the larger more slender tubes. Failure occurs more
 362 slowly as D/t ratio decreases. As shown in Figs. 25 and 26, the theoretical bending and torsional
 363 stiffnesses match well with the tests.


364

365

366


Fig. 24. Load vs w for 100mm tubes

367

368

Fig. 25. Moment vs θ for 100mm tubes

369

370

Fig. 26. Torque vs ϕ for 100mm tubes

371 Table 4 summarizes each tube's maximum torque and bending moment (located at failure).

372 Three tubes were tested for each tube size and T/M combination.

Table 4. Summary of maximum torque and bending moment

Tube Size	T/M Ratio	M _{max} (N-mm)			T _{max} (N-mm)		
		Test 1	Test 2	Test 3	Test 1	Test 2	Test 3
250mm	1	5.530E+06	5.960E+06	5.317E+06	5.529E+06	5.960E+06	5.317E+06
	0.66	7.848E+06	6.992E+06	7.919E+06	5.232E+06	4.661E+06	5.279E+06
	0.33	1.029E+07	1.023E+07	9.657E+06	3.429E+06	3.411E+06	3.219E+06
	0	1.079E+07	1.129E+07	1.129E+07	0	0	0
200mm	1	4.002E+06	3.373E+06	3.482E+06	4.002E+06	3.373E+06	3.482E+06
	0.66	4.965E+06	4.309E+06	4.677E+06	3.310E+06	2.873E+06	3.118E+06
	0.33	6.062E+06	5.071E+06	5.516E+06	2.021E+06	1.690E+06	1.838E+06
	0	7.226E+06	6.998E+06	7.104E+06	0	0	0
150mm	1	3.553E+06	3.525E+06	3.636E+06	3.552E+06	3.525E+06	3.635E+06
	0.66	3.631E+06	4.488E+06	3.356E+06	2.421E+06	2.992E+06	2.237E+06
	0.33	5.439E+06	5.517E+06	N/A	1.813E+06	1.839E+06	N/A
	0	5.901E+06	4.437E+06	6.041E+06	0	0	0
100mm	1	1.276E+06	1.284E+06	1.299E+06	1.276E+06	1.284E+06	1.299E+06
	0.66	1.615E+06	1.580E+06	1.653E+06	1.077E+06	1.053E+06	1.102E+06
	0.33	1.909E+06	1.746E+06	1.958E+06	6.364E+05	5.821E+05	6.527E+05
	0	2.047E+06	2.076E+06	2.127E+06	0	0	0

374

375 **Strength comparisons and Eurocode-based calculations for combined bending and torsion**

376 *von Mises yield criterion*

377 A simplified form of the von Mises yield criterion considering only torsion and bending is provided

378 in Eq. 5,

379
$$\sigma_b^2 + 3\tau_T^2 = F_y^2 \quad (5)$$

380 where σ_b is bending stress, τ_T is torsional shear stress and F_y is yield stress. After converting from

381 stresses to actions (assuming bending moment and torsion only) using yield failure criteria for

382 torsion and bending, one arrives at the simplified interaction expression of Eq. 6,

383
$$\left(\frac{M}{M_y}\right)^2 + \left(\frac{T}{T_y}\right)^2 = 1 \quad (6)$$

384 where M is moment demand, T is torque demand, M_y is yield moment, and T_y is yield torque. The

385 test results were compared with this simplified von Mises yield criterion as a baseline for

386 comparison.

387 *Eurocode-based calculation*

388 To have a preliminary knowledge on how the test results compare to code-based capacity

389 predictions, we performed calculations using the relevant Eurocode, EN 1993-1-6 (2021).

390 Eurocode provides multiple design approaches for cylindrical shells, including analytical stress-

391 based design, semi-analytical methods such as reference resistance design, and purely

392 computational approaches. The simplest and most commonly employed method is the stress-based

393 design, which uses stress interaction equations. This approach is utilized herein for comparison.

394 The interaction equation for combined loads in Eurocode's format is provided in Eq. 7,

395
$$\left(\frac{\sigma_{x,Ed}}{\sigma_{x,Rd}}\right)^{k_{ix}} - k_i \left(\frac{\sigma_{x,Ed}}{\sigma_{x,Rd}}\right) \left(\frac{\sigma_{\theta,Ed}}{\sigma_{\theta,Rd}}\right) + \left(\frac{\sigma_{\theta,Ed}}{\sigma_{\theta,Rd}}\right)^{k_{i\theta}} + \left(\frac{\tau_{x\theta,Ed}}{\tau_{x\theta,Rd}}\right)^{k_{i\tau}} \leq 1 \quad (7)$$

396

397 where σ_x is axial stress, $\tau_{x\theta}$ is shear stress, σ_θ is hoop stress, subscript *Ed* means design action,
398 subscript *Rd* means design resistance, and $k_{ix}, k_i, k_{i\theta}, k_{it}$ are the buckling strength interaction
399 parameters. These interaction parameters for cylindrical shells have been established based on both
400 theoretical and experimental evidence (Rotter and Schmidt 2013). These parameters were derived
401 from simple interactions of basic load cases on cylindrical shells (Yamaki 1984; Schmidt and
402 Winterstetter, 2004). This interaction equation intends to account for elastic buckling of thin shells
403 and generally simplifies to von Mises yield criterion for thick shells. We did not have hoop stress
404 in these tests, so $\sigma_\theta = 0$. Herein, we have assumed σ_x applies to bending moment and not just
405 axial compression. We also assumed the effect of shear force is negligible, as is often true in typical
406 steel design scenarios. The influence of direct shear from bending is negligible for failure loads
407 and only slightly changes failure locations. Therefore, shear stress was calculated only from the
408 direct torque. Nominal strengths were used for comparison, meaning that material factors (partial
409 safety factors) were not considered.

410

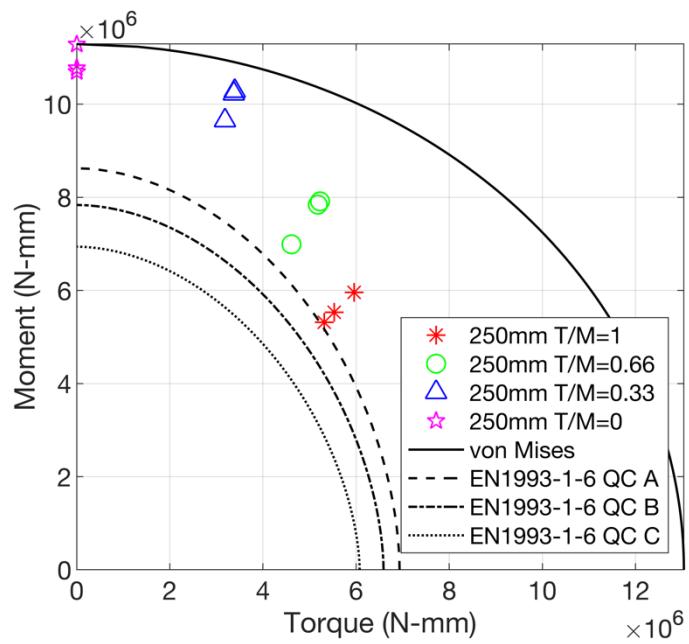
411 The buckling strength interaction parameters and design resistances can be determined following
412 guidelines outlined in Chapter 9.5 and Annex D of EN 1993-1-6 (2021). Substituting into Eq. 7
413 results in Eq. 8,

$$414 \quad \left(\frac{\sigma_{x,Ed}}{\chi_x F_y} \right)^{k_{ix}} + \left(\frac{\tau_{x\theta,Ed}}{\chi_\tau \tau_y} \right)^{k_{it}} \leq 1 \quad (8)$$

415 where χ_x and χ_τ are strength reduction factors, F_y is tensile yield stress, and τ_y is shear yield stress,
416 where $\tau_y = \frac{1}{\sqrt{3}} F_y$. The demands from testing are $\sigma_{x,Ed}$ and $\tau_{x\theta,Ed}$. Converting the stresses from
417 Eq. 8 into actions yields the interaction expression presented in Eq. 9.

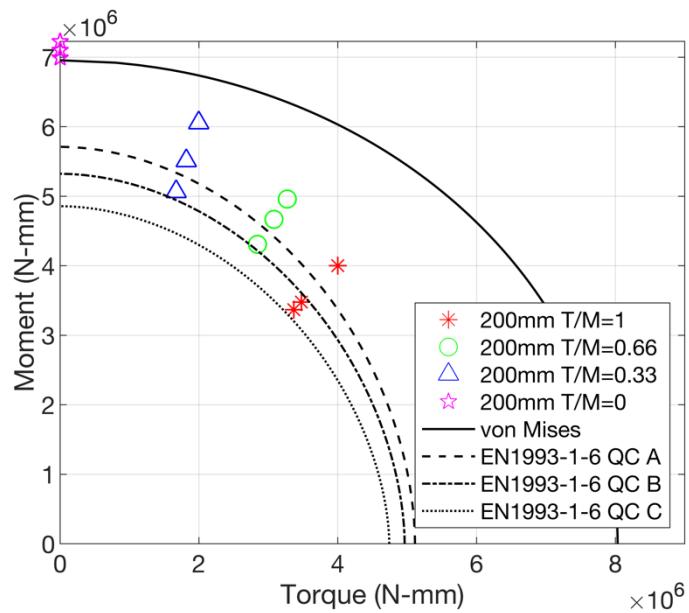
418

$$\left(\frac{M}{\chi_x M_y}\right)^{k_{ix}} + \left(\frac{T}{\chi_\tau T_y}\right)^{k_{it}} \leq 1 \quad (9)$$


419 Note, Eurocode's strength reduction factors are dependent on the fabrication quality class, which
 420 reflects the severity of geometric imperfections, where class A is excellent quality, class B is high
 421 quality, and class C is normal quality.

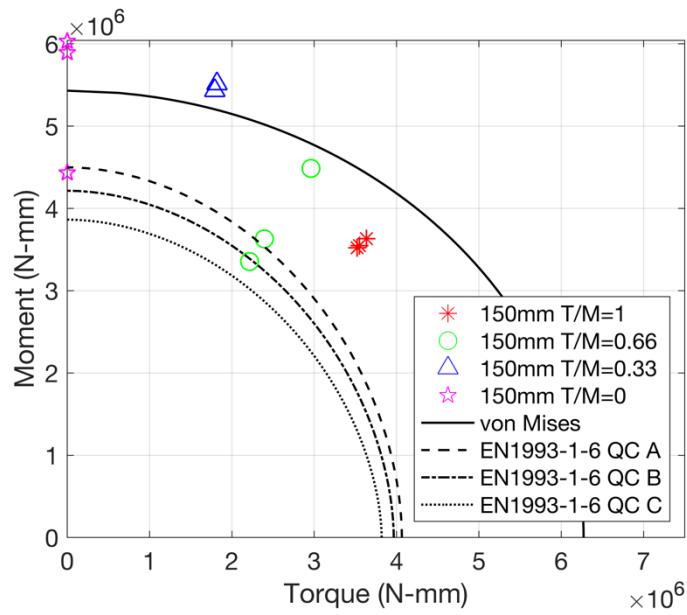
422 Comparison of Test Results with Eurocode and von Mises yield Criterion

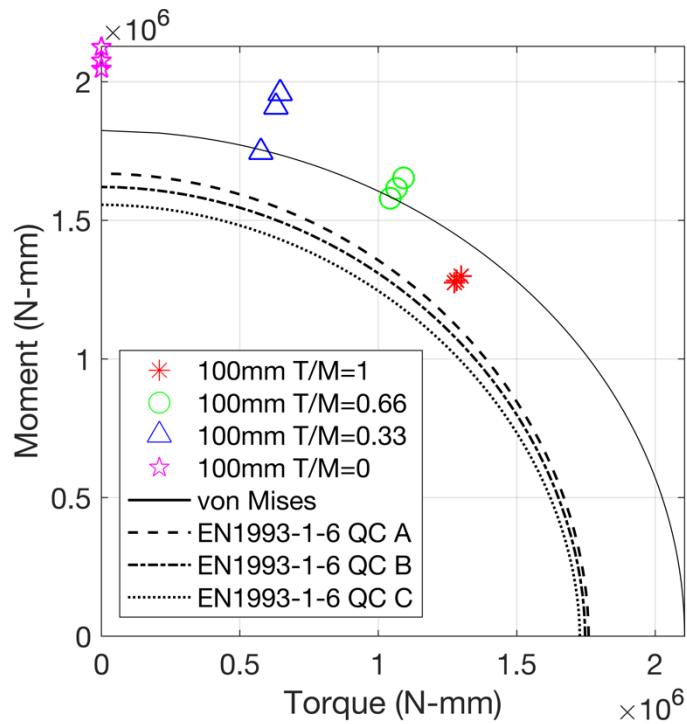
423 Figs. 27-30 present interaction diagrams of moment vs torque for each tube size. The markers are
 424 located at peak load from the test specimens. For a given tube size and T/M ratio, Eurocode
 425 provides three nominal resistance strengths, one for each fabrication quality class (Note that γ_{M1}
 426 is set to 1.0 in all comparisons provided herein). The dashed lines represent Eurocode calculations
 427 using fabrication quality classes A, B, and C. Solid lines represent the simplified von Mises yield
 428 criterion at first yield. Material factors were not considered in these calculations. Most of the test
 429 data points fall outside the Eurocode interaction curves, meaning the Eurocode stress-based
 430 predictions are generally conservative.


431

432 As shown in Fig. 27, the 250mm tubes, which are the most slender tubes, all buckled before
 433 yielding. As seen in Fig. 28, the 200mm tubes that were tested only in bending (T/M=0) are above
 434 the von Mises curve, implying some inelastic reserve in flexure. 200mm tubes subjected to
 435 combined bending and torsion all fall inside the von Mises interaction curve, implying buckling
 436 before yielding. As shown in Figs. 29 and 30, the stockier 150mm and 100mm tubes also
 437 demonstrate several test points with inelastic reserve in flexure for low T/M ratios.

438

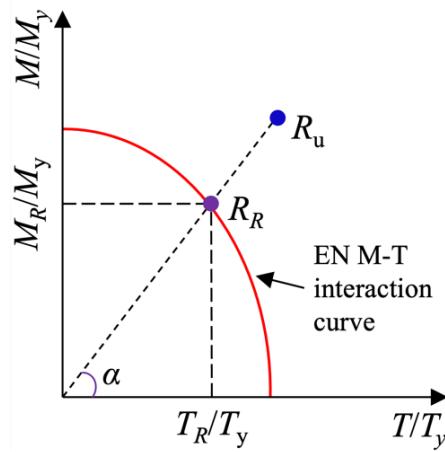

439 **Fig. 27.** Comparison of test results with M-T interaction curves for 250mm tubes, $D/t = 320$


440

441 **Fig. 28.** Comparison of test results with M-T interaction curves for 200mm tubes, $D/t = 256$

442

443



444

445

446 For a given tube size and T/M ratio, Eurocode provides three nominal resistance strengths, one for
447 each fabrication quality class. (Note that γ_{M1} is set to 1.0 in all comparisons provided herein). To

448 compare test-to-predicted performance in the normalized moment-torsion interaction space the
449 radial distance, R , in the space is utilized as defined in Fig. 31.

450

Fig. 31. Definitions of R_u and R_R

451 For a given quality class, test performance is greater than predicted nominal capacity when
452 $R_u/R_R > 1$. Tables 5 and 6 provide the test-to-predicted ratio statistics by tube size and by loading
453 ratio. According to the experimental results, all tubes fall within classes A-C as defined in EN
454 1993-1-6. These results show that Eurocode stress-based predictions are conservative for
455 combined moment and torsion, especially when the T/M ratio is low. As T/M decreases from 1 to
456 0, the mean test-to-predicted ratios increase from 1.08 to 1.24 for class A. On the contrary, there
457 does not appear to be a relationship between the D/t ratio and test-to-predicted ratio. The CV ranges
458 from 0.07 to 0.13, implying relatively low scatter in the test-to-predicted performance.

460

461 **Table 5.** Test-to-predicted ratios by tube size

Tube Specimen		R_u/R_R					
		Class A		Class B		Class C	
Size	D/t	Mean	CV	Mean	CV	Mean	CV
250mm	320	1.20	0.09	1.30	0.09	1.46	0.10
200mm	256	1.07	0.12	1.14	0.12	1.24	0.13
150mm	191	1.20	0.10	1.27	0.10	1.38	0.11
100mm	127	1.16	0.11	1.19	0.07	1.24	0.07
All		1.16	0.10	1.23	0.11	1.33	0.12

462

463 **Table 6.** Test-to-predicted ratios by T/M ratio

T/M Ratio	R_u/R_R					
	Class A		Class B		Class C	
	Mean	CV	Mean	CV	Mean	CV
1	1.08	0.09	1.13	0.09	1.21	0.10
0.66	1.12	0.08	1.18	0.08	1.28	0.10
0.33	1.19	0.10	1.27	0.11	1.38	0.13
0	1.24	0.07	1.33	0.08	1.45	0.09
All	1.16	0.10	1.23	0.11	1.33	0.12

464

465 **Discussion**

466 The scale model tests provided herein provide initial benchmarks for combined loading, but
 467 significant work remains. The initial Eurocode comparisons for the stress-based method show a
 468 fair amount of conservatism, but additional comparisons need to be made to fully assess
 469 Eurocode's various options; including: consideration of flexural inelastic reserve through the use
 470 of reference resistance design (RRD) for bending, application of the generalized linear buckling
 471 analysis – material nonlinear analysis (LBA-MNA) method, and evaluation of the use of
 472 computational geometric and material nonlinear models with initial imperfections (GMNIA). For
 473 all of these methods the evaluation of the geometric imperfections is critical, for the stress-based,
 474 RRD, and LBA-MNA the measured scans need to be converted into quality classes, while for the

475 GMNIA models the measured scans may potentially be utilized directly. Conversion of full-field
476 scan data to discrete classes has unique challenges, which also need to be addressed. Finally, with
477 the modeling protocol established and the performance under combined loads validated,
478 computational models of larger-scale and full-scale cylinders, fabricated consistent with wind
479 turbine support towers, is the natural next step. All the preceding work is underway and will be
480 reported out in the future.

481 **Conclusions**

482 Wind turbine towers are made from thin cylindrical shells, which have high imperfection
483 sensitivity, making predicting their structural response difficult. The combination of bending and
484 torsion at the top of wind turbine towers is often a controlling load case in design that has not seen
485 significant study to date. To address this knowledge gap, an experimental study was completed on
486 48 cylinders with diameter-to-thickness ratios and bending-to-torsion ratios observed in wind
487 turbine towers. These tests showed that higher diameter-to-thickness ratios result in sudden failures
488 with large drops in load capacity. Adding torsion to bending results in lower load capacities,
489 compared with bending only, and changes the observed buckling and collapse shape in the tube.
490 Eurocode stress-based predictions were fairly conservative for these tests, especially when torsion
491 is low. Future work will involve creating guidelines on how to use laser-scanned data to classify
492 imperfections, as well as establishing high-fidelity finite element models capable of capturing the
493 buckling strength and failure mode of thin-walled cylinders under different loading scenarios, and
494 developing reliable and efficient design approaches for such structural elements.

495 **Data Availability Statement**

496 Some or all data, models, or code that support the findings of this study are available from the
497 corresponding author upon reasonable request.

498 **Acknowledgments**

499 This study is supported by the National Science Foundation under Grant No. 1912481 and No.
500 1912354. The authors would like to acknowledge Nordfab who donated the specimens, and the
501 project team, including Dr. Michael Shields, Soren Madsen, Dehui Lin, Ziqi Tang, Xi Peng, and
502 Wei Chen who provided comments during various phases of the work. Finally, we would also like
503 to acknowledge Nick Logvinovsky, the lab manager at the Johns Hopkins Thin-Walled Structures
504 Lab, whose assistance was invaluable.

505 **References**

506 AISC (2000). "Load and Resistance Factor Design Specification for Steel Hollow Structural
507 Sections." Chicago, IL.

508 ASTM E8/E8M-11. (2012). Standard Test Methods for Tension Testing of Metallic Materials.
509 ASTM International, West Conshohocken, PA. Page 3

510 Ding, V., Torabian, S., Yun, X., Pervizaj, A., Madsen, S., Schafer, B.W., "Experimental
511 investigation of buckling of thin-walled cylindrical shells subjected to combined bending and
512 torsion." *Proceedings of the Annual Stability Conference, Structural Stability Research*
513 *Council*, Charlotte, North Carolina, USA, April 11-14, 2023.

514 DNV (2002). "Guidelines for Design of Wind Turbines", 2nd Ed. Det Norske Veritas and Risø
515 National Laboratory.

516 Donnell, L. H. (1933). "Stability of Thin-Walled Tubes Under Torsion." National Advisory
517 Committee for Aeronautics. Report No. 479,

518 ECCS (2021). Eurocode 3: Design of steel structures - Part 1-6: Strength and Stability of Shell
519 Structures.

520 Felton, L. P. and Dobbs, M. W. (1967). "Optimum design of tubes for bending and torsion."
521 *Journal of the Structural Division*, 93, (4) 185–200.

522 Jay, A., Myers, A. T., Mirzaie, F., Mahmoud, A., Torabian, S., Smith, E., & Schafer, B. W. (2016).
523 Large-scale bending tests of slender tapered spirally welded steel tubes. *Journal of Structural*
524 *Engineering*, 142(12), 04016136.

525 Jonkman, J. M., and Buhl, M. L. (2005). "FAST user's guide." Golden, CO: National Renewable
526 Energy Laboratory.

527 Jonkman, J., Butterfield S., Musial, W., Scott, G. (2009). "Definition of a 5-MW Reference Wind
528 Turbine for Offshore System Development." Golden, CO: National Renewable Energy
529 Laboratory.

530 Gaertner, E., Rinker, J., Sethuraman L., Zahle, F., Anderson, B., Barter, G., Abbas, N., Meng, F.,
531 Bortolotti, P., Skrzypinski, W., Scott, G., Feil, R., Bredmose, H., Dykes, K., Shields, M., Allen,
532 C., and Viselli, A. (2020) "Definition of the IEA 15-Megawatt Offshore Reference Wind
533 Turbine." Golden, CO: National Renewable Energy Laboratory.

534 Nordfab Ducting (2023). <https://nordfabductwork.com/>.

535 Ren, W., Zhou, X. H., Gao, Y., Deng, R., Wang, Y. H., & Cao, Y. Q. (2023). Compressive
536 behavior of stiffened steel tubes for wind turbine towers. *Thin-Walled Structures*, 183, 110372.

537 Rotter, J. M., Schmidt, H. (2013). Buckling of Steel Shells, European Design Recommendations.
538 ECCS - European Convention for Constructional Steelwork.

539 Sadowski, A. J., Morata, M. T., Kathirkamanathan, L., Seidel, M., & Rotter, J. M. (2023). On the
540 existing test dataset of isotropic cylindrical metal shells under axial compression and the design
541 of modern metal civil engineering shells. *Structural Safety*, 102, 102285.

542 Sadowski, A. J., & Rotter, J. M. (2012). Slender thin cylindrical shells under unsymmetrical strip
543 loads. *Thin-walled structures*, 61, 169-179.

544 Schilling, C. G. (1965). "Buckling strength of circular tubes." *Journal of the Structural Division*,
545 91 (5) 325–348.

546 Schmidt, H., Winterstetter, T.A. (2004) "Cylindrical shells under combined loading: axial
547 compression, external pressure and torsional shear", in Buckling of Thin Metal Shells, eds J.G.
548 Teng & J.M. Rotter, Spon, London, pp 261-285.

549 Seide, P., Weingarten, V.I. (1961). "On the Buckling of Circular Cylindrical Shells Under Pure
550 Bending." *Transactions of the ASME*, 112-116.

551 Teng, J. G., & Rotter, J. M. (1989). Non-symmetric bifurcation of geometrically nonlinear elastic-
552 plastic axisymmetric shells under combined loads including torsion. *Computers &*
553 *structures*, 32(2), 453-475.

554 Timoshenko, S.P., Gere, J. M. (1961). Theory of Elastic Stability. McGraw Hill (reprinted by
555 Dover in 2009), 541 pp.

556 Wang, J., Fajuyitan O.K., Orabi, A., Rotter, J. M., Sadowski, A. J. (2020) "Cylindrical shells under
557 uniform bending in the framework of Reference Resistance Design." *Journal of Constructional*
558 *Steel Research*. Vol 166 105920.

559 Winterstetter, Th.A., Schmidt, H. (2002) "Stability of circular cylindrical steel shells under
560 combined loading." *Thin-Walled Structures*. Vol. 40 893-909.

561 Yamaki, N. (1984). Elastic Stability of Circular Cylindrical Shells, North Holland, Elsevier
562 Applied Science Publishers, Amsterdam, 1984.

563 Yun, X., Gardner, L. (2017). "Stress-strain curves for hot-rolled steels." *Journal of Constructional*
564 *Steel Research*, 133, 36-46.

565 Zhao, X., Tootkaboni, M., Schafer, B.W. (2015). "Development of a Laser-based Geometric
566 Imperfection Measurement Platform with Application to Cold-Formed Steel Construction."
567 *Experimental Mechanics* 55 (9) 1779-1790.