Leveraging Best Industry Practices to Developing Software for Academic Research

Levi T. Connelly, Melody L. Hammel, Lan Lin
Department of Computer Science
Ball State University
Muncie, IN 47306, USA
{ltconnelly, mlhammel, 1lin4 } @bsu.edu

Abstract—Best industry practices in software development are
vital to the success of a project. When these practices are not well-
applied, the development process can be severely hindered, and
the final product can be of poor quality as a result. Implementing
techniques for managing source code: version control, issue
tracking, a branching strategy, a pull request strategy, a coding
standard, unit testing, CI/CD, and automated testing, are not just
widely-used industry practices for no reason. Thus, we took to
applying these practices to a development project for research
designed to reduce user time and effort in hydrologic modeling
studies, CyberWater. The software package is built on legacy
software and the development team is made up of a wide variety of
people from various backgrounds, not all computer science.
Applying these best industry practices to their development project
has made their lives easier and the final product better. We report
our experience in this paper and hope it provides some useful
suggestions to domain scientists in an academic setting regarding
how to develop high-quality research software.

Keywords-source code management; version control; issue
tracking; branching strategies; pull requests; coding standards;
clean code; automated testing; unit testing; Cl/CD;
specifications; software quality

1. INTRODUCTION

Many industry conflicts are a byproduct of poor industry
practices. Some of these conflicts, such as programming
errors or mistakes incurred through continuous development
on a repository, can be avoided by having a distinct guide for
software developers to follow such that focus can remain on
development and research. With a template already in place
for the practices the developers should be using for the
programming and maintenance process, more time is allotted
for other parts of the development process that take more
time and can help to make the product better. This also
significantly increases efficiency - with less time spent
wrestling with the problems brought about by poor industry
practices, more time can be spent actually developing the
product.

Domain scientists outside of the fields of computer
science and software engineering are typically given funding
to create a software project, but typically not enough funding
is given to hire experts in software development, so they end
up having to do it themselves. With little knowledge on
industry practices in software engineering and little
experience in developing software, conflicts can arise,
slowing down the development process and resulting in a

possibly worse product overall. Domain scientists may know
how to write domain software, but they typically are not
systematically educated on software engineering practices
and tools, leading to much more effort needing to be put into
the project than is necessary should best industry practices in
software development be applied.

II. THE SOFTWARE ENGINEERING PROBLEM PRESENTED
WITH CYBERWATER

The CyberWater project [1] was created with the goal of
creating a new cyberinfrastructure with open data, open
modeling framework software; as a result, the project is
expected to reduce the user time and effort required for
hydrologic modeling studies, allowing related discoveries to
be made sooner. The project team includes hydrologists,
climate experts, meteorologists, computer scientists and CI
experts, from multiple universities and CUAHSI, who
collaborate closely to ensure CyberWater will engage the
broad communities for domain scientists' benefits.

One software engineering problem presented with
CyberWater was that there is a lot of moving parts that
comprise CyberWater; therefore, it was expected that
without some grounding in positive industry practices such
as automated testing and version control workflows that
errors could slowly make themselves known in the project.
To mitigate this, Ball State was put in charge of managing
how development should be made on the project and what
tools should be used to design and implement automated
tests for CyberWater.

III. OUR EXPERIENCES IN APPLYING SOME BEST
INDUSTRY PRACTICES

A. Improving Workflow and Source Code

Taking care of source code can be very cumbersome.
There are a lot of methods that industries use to ensure that
functionality is communicated from the developer to the end-
user such that the intermediary steps require the code to be
refined and evaluated before reaching its user. For
CyberWater, this meant creating an environment to give the
developers assurance that the code they were writing was
considerably less likely to fault once it had reached its end-
user. By implementing a steady and explicit workflow,
enforcing version control and issue tracking, prompting code
to be held for review, holding that code to a professionally
proposed standard, and implementing automated pipelines to

test the code before releasing it, we could prevent a
considerable number of bugs from being introduced into the
final releases.

B. Enforcing Version Control and Issue Tracking

Version control and issue tracking were a necessary set
of industry practices that needed to be introduced to the
project. It is not feasible to work on a smaller project in size
without a fundamental understanding of version control, let
alone this project. Version control is a must if multiple
developers are going to work on a single repository at the
same time. Having version control ensures that features and
tasks can be split up into sections and merged into a
development branch such that work neither lost nor stunted.

Issue tracking is also vital, as it introduces a medium
through which bugs and errors can be monitored and settled.
As per best industry practices, it is expected that bugs and
errors do not go ignored, and that there exists a system
through which these issues can be mitigated. The issue
tracking system allows a user to communicate directly with
the developers such that progress on the repository can be
made in a timely fashion. There are many platforms that can
be used for issue tracking, such as Jira [2], which we
initially looked into but dropped due to limited budget. We
ended up using Bitbucket [3] for version control, and its
provided issue tracking feature called issues. Working in
tandem with the issue tracking system, just as with version
control, to have an organized way to manage in-progress
fixes for bugs and to merge them back into the production-
ready product, should be a branching strategy.

C. Defining a Branching Strategy

One of the hassles of version control is asserting that the
means by which branches are created, merged, and removed
implies that no work will be lost while developers work on
separate features at the same time. Setting up a branching
strategy allows a team of developers to be certain that their
work is not only consistently tracked and implemented, but
also that the versions they release are always in a
production-ready state.

The key to a good branching strategy is setting up
particular but arbitrary feature branches that then get
merged into a development branch. Through this
development branch, where integration occurs, we can move
passing code into a feature-branch or master-branch such
that all code in the master branch is in a production-ready
state. The main idea of having multiple branches is so that
no non-functional or non-production-ready code makes it
into the master branch. Thus, it can always be assured that
the master branch is free from known issues. If an issue
arises or is brought to attention with code that is already in
the master branch, a hotfix branch can be forked from the
master branch. The use cases are typically if an easily-
exploitable bug was found in the code of the master branch
or if the app is unresponsive or breaking. Post-hotfix, the
branch is merged into both the master and development
branch - this ensures that no one working on the
development branch is attempting to work around a bug that

has already been fixed, and that the master branch stays
production-ready and issue-free. Of these branches, the only
two that remain permanent are the master and development
branches - feature, hotfix, and release branches can be safely
deleted after merging with no harm to the repository. Figure
1 illustrates our proposed branching strategy.

master

|

hotfix

release

_’

-
orof J‘L. 540

develop

feature

Figure 1: Our proposed example branching strategy

D. Defining a Pull Request Strategy

Pull requests are an essential part of software
development in industry, as it creates an environment for the
code to be reviewed in an efficient and professional manner.
Pull requests were designed with merge conflicts in mind
such that an administrator, or group of administrators, of the
repository could mitigate conflicts by reviewing a small
subset of a developer’s code and decide whether or not to
merge that change into the preexisting codebase. They
provide a simple, web-based way for developers to submit
their work, and a similarly simple system for administrators
to review and possibly implement changes made by
developers. This also allows for less backtracking on old
code, since code is implemented and merged into the correct
branches in small intervals, making it easier to review and
catch mistakes.

Pull requests are much like voting on a bill that, when
passed, will change the existing logic of the system
dependent on what adaptations you make to it before
sending it on its way upstream. This fundamental part of
industry practices ensures that unkept code does not make
its way into release by placing responsibility on the
administrator and accountability on the developer. This
leaves more incentive for the developer to abide by coding
standards when they make small adaptations to the code.

Pull requests are typically used when a developer has
made changes that will affect the release. Thus, it raises
their code for review so that others working on the project
can make sure it is in good quality. Pull requests should be
used once a developer has finished cleaning and optimizing
their code, and are relatively sure that it is in a state where
the project can "pull" changes from their fork. Commonly,

developers make the mistake of "lazy merging," where their
code is not thoroughly reviewed before making a pull
request. Developers should ensure that they have tested
every feature and bug fix in the branch they are attempting
to merge, staying thorough to avoid breaking the master
branch. They can also be used when making changes to a
project of which a developer is not a part - for example,
patching an open-source project on GitHub [4]. Relative to
the branching strategy mentioned in the prior section, they
should be used when merging from development to release,
release to master, and hotfix to master. Pull requests should
not be made from the master branch - this is where we want
the code to be merged.

Although pull requests sound rather similar to peer
reviews, they differ in some notable ways. First, peer
reviews involve reviews by multiple users simultaneously.
With pull requests, administrators and developers are given
time to review the code individually, on their own time.
Peer reviews, as well, are a direct form of feedback -
suggestions will be given directly to the code author. With
pull requests, the feedback is more indirect - they can be
rejected with reasons given as to why, which the developer
must read, interpret, and fix on their own time. Peer reviews
are appropriate for only large releases, typically, whereas
pull requests are appropriate for any release, since they don't
require simultaneous attention of multiple project members.
Finally, peer reviews must be enforced by the project team,
whereas pull requests are built into most online repository
services, like GitHub and Bitbucket.

E. Defining a Coding Standard

It is appropriate to have all of the developers on board
with the same coding standards. One of Ball State's focuses
during the CyberWater project was asserting a coding
standard for the developers of the project. Given that the
language for this project was primarily Python, the focus
aimed towards closely aligning the habits of the developers
with the PEP 8 style guide [5]; however, it is expected that
for any given language, there exists a community that finds
the most appropriate standards for a given language and
implements these standards into a linter that can be used by
each developer on a given project to keep their styles
consistent across the repository.

General clean code practices are also given regarding
coding standards. Abiding by the concept of single-
indentation, or maintaining abstraction and complexity in a
given method, or even simply making your variable names
self-explanatory are essential principles for best industry
practices. Robert C. Martin goes over this in great detail in
his Clean Code book [6] released in 2008. The focus of
clean code is to ensure that maintainable code is delivered
during development that will be legible once time has
passed such that a lack of documentation would not heavily
inhibit the workflow of the project were adaptations needed
to be made to that code later. If a bug is later on discovered
in a piece of code, and that code follows no clean coding

standards, the code will be much harder to read in order to
discover where the bug lies, causing extensive time to be
lost simply trying to understand what each line of code
means, what variable names mean and are referring to, what
the side effects of a function are, and various other issues.

Beyond the PEP 8 standards of naming conventions and
how many lines to have between methods, the much more
important clean code standards to follow are ones involving
abstraction and descriptive (but not overly detailed) naming
schemes. If a method is named poorly, a user might have to
spend time looking over the method’s code to see what it
actually does and why it is used in a specific other method —
this leads to the possibility of a developer having to
backtrack through miles of code just to figure out what the
purpose of one single method call is. Similarly, this could
get even more complex if the variable names are inadequate.
Variable names should be descriptive of their purpose,
rather than difficult-to-understand acronyms or entirely
nameless, like x or a. The purpose of variables is to give a
higher-level name to a value in programming — if a
developer doesn’t give their variables useful names, then
there’s little point in using a variable at all, when everything
could essentially just be anonymous.

For example, take this method (shown in Figure 2)
designed to sum up two instance variables of a particular but
arbitrary class, then yield an original and a result as a
generator.

def add_stuff(self):
self.stuffl += self.stuff2
yield stuff2, stuffl

Figure 2: A method designed to sum up two variables

This method takes no parameters — how is a given user to
know what is actually happening here? What are these
variables being added? What is the purpose of this method?
Some of this could be communicated if both the method
itself and the variables were changed to be more descriptive,
as shown in Figure 3.

def calculate_total_balance(self):
self.current_balance += self.deposit
yield deposit, current_balance

Figure 3: The new-and-improved method and variable
names

Now the purpose of the method is clear, and users
reading the code can infer that these variables of the class
should already have been set in some way before this
method was called.

IV. OUR EXPERIENCES IN TESTING

Having an explicit and reliable workflow is nice, but if
there doesn't exist a system to require the environment to
filter bugs before releasing it, then the workflow is better

defined as an unnecessary set of extra steps for the
developer. Continuous Integration / Continuous Deployment
(CI/CD) pipelines ensure that when code is pushed to a given
branch, preferably the integration branch, it can
automatically be migrated to a higher-level branch where it
can then be pushed into production. By enforcing that
automated testing of the development code be in charge of
what code was released for production, we could assert that
production code always passed our given tests. We were able
to assert this using an open-source tool called Jenkins [7].

A. Using Jenkins for CI/CD

Jenkins was one of the most useful tools for the
CyberWater project. Although alternatives were available for
automated testing, like GitLab [8] CI/CD tools and Atlassian
Bamboo [9], the extensive work that has been done on
Jenkins and the fact that it is open source made it a viable
candidate for what we needed to use it for. Many of the
extensions made available through Jenkins simplified the
process through which automated testing could be performed
on the CyberWater project.

Some of the extensions available for Jenkins that
simplified our experience were tools like the Environment
Variable Injection extension which wrapped logic for
modifying the Path variable on Windows machine so we
could make our Path variables relative to the machine the
project was being run on. This was vital given that our
project required we access the Python distro and packages
contained within the project that we downloaded for
VisTrails [10] (an open-source scientific workflow and
provenance management system used by CyberWater) and
CyberWater.

Setting up Jenkins is simple. By downloading the jar or
war files necessary to get the server started, you can execute
those files with Java and start a server locally on the machine
it is being executed from. Next, go through the account set-
up and configure the repository you want to target using
Jobs. This was how our team was able to set up Jenkins with
our Bithucket repository after configuring the credentials for
an administrative account monitoring the repository.

Jenkins jobs can also be run automatically, by setting up
Build Triggers to determine when tests are run. The notable
option we utilized was ‘Build when a change is pushed to
BitBucket,” shown in Figure 4. Figure 5 shows how we set
up build steps in a Jenkins job.

Build Triggers

Trigger builds remotely (e.g., from scripts) ?
Build after other projects are built ?

Build periodically ?

Build when a change is pushed to BitBucket
GitHub hook trigger for GITScm polling ?
PollSCM ?

Figure 4: Build Triggers in Jenkins

Dashboard bitbucket repo

General Source Code Management Build Triggers Build Environment Build
Post-build Actions

Execute shell (2]

‘Command

python2.7 -m unittest discover -v
See the list of available environment variables
Advanced...
Execute shell (2]

Command

ptest -t /home/rokolinkon/python_calc_test.PythonCalcTest

See the list of available environment variables

“ g2

Figure 5: Setting up build steps in a Jenkins job

Advanced...

B. Automated Unit Testing Using Python Unittest or Ptest

One of the final necessary steps for implementing proper
automated tests into the project was finding a suitable unit
test library. Ptest [11] proved to be one of the best options,
despite the fact that the project was locked in Python 2.7,
because much of its development was done early on before
the deprecation of Python 2. In addition, the Python library
simplified the means by which test could be written by
utilizing decorators to denote tags, groupings, setup-
teardown practice, and whether to run the tests concurrently
or in parallel.

Ptest was also an exceptional wrapper for basic unit tests
because it allowed for a clean visual output of passing or
failing tests by graphing these rates and outputting them to a
stylized HTML file (see Figure 6). By linking the location
of the outputs and using Jenkins automated scripts to give
them a unique location each time a test was run, we could
retrieve a unique graphical output for all passing tests
through Jenkins via Ptest.

eee [@ @ Bazelgeuss | Mon.. B nloadsftest-outputhtmi-report/index htm @ @ +
Generated by ptest 1.9.5 at 2021-12-29 12:39:45,878410
Test Results papermache.attlocal.net / Python 2.7.18 / Darwin-21.2.@-x86_64-1386-64bit
m pefaultsuite) €
Start Time 2021-12-29 12:39:41.781379
- Defaultsuite End Tine 2021-12-20 12:39:45.797270
T Duration 4.915891s
- test_report_test
= Test W Passed
—_— Failed
. test_add Skipped
. test_divide_by_zero
test_inequality_false
I test_inequatity_true

Figure 6: Ptest HTML test report

Unittest [12], however, proved to be ultimately more
useful in the end, as it integrated well with CI/CD and test
automation, especially within Jenkins. Ptest relies primarily
on the developer reading the output and is more focused
toward an individual developer testing their code manually.
Unittest has one key functionality that makes it viable for
automated testing on Jenkins: AssertionError. Since
assertions in Unittest are essentially just functions that
compare the output of the first argument to the other,
throwing an exception if the comparison is false, a failing
test in Unittest can be detected by Jenkins as a failed build.
Failed tests in Ptest, on the other hand, are marked only in
the terminal output of the tests and in the GUI test report -
since no exceptions are thrown, Jenkins sees nothing out of
the ordinary and will assume, failing tests aside, the build to
be successful. Therefore, since Unittest utilizes exceptions
to communicate test results, allowing them to be recognized
through automated test running systems, we decided to
continue using Unittest moving forward. Ptest could
technically still be used, if a system was designed so that an
exception is raised when a test fails, but if no one is ever
using the graphical test report, the extra hassle isn't
necessarily worth it.

Though considering all of this, none of the backend unit
testing would have been feasible had there not been a
separation between backend and UI in VisTrails. Luckily,
since the project is built in Python, object-method
replacement was an option by using the dictionary structure
of instantiated Python objects and swapping them out with
method-structured functions. Using this method, the project
could successfully sever the connection from the user
interface and focus on the backend code alone for testing.
We refer the readers to [13] for details of how we used this
novel technique for backend black-box unit testing.

Similarly, when applied to the CyberWater project, the
testing is still external. In the prior state of the project, code
was written and no or few test cases were developed — the
principle of Test-Driven Development was entirely ignored.
Ideally, test cases should be developed in tandem with the
code if not before it. With Test-Driven Development,
projects of a similar nature or similar scale are less likely to
allow bugs into the final version, and are likely to have a
smoother development process, with the project team able to
focus more closely on the domain-specific aspects of the
project, rather than wrestling with bugs due to the lack of a
good testing workflow.

C. Defining a CI/CD Pipeline

Continuous Integration / Continuous Development is an
involved process with many steps and is an industry standard
when working on a software development project. In our
experiences with the CyberWater project, we made many
suggestions to aid in the development process, making the
final product higher quality and the development process
easier. Notably, we focused rather closely on testing. We
developed a system of testing modules based on their input

ports and output ports, since this is an integral functionality
of VisTrails that the developers work with for their
CyberWater extension. We applied this, most recently, to a
workflow designed to pull data from the USGS website. We
wrote tests based on specific inputs and the expected outputs
they were to generate, whether that was a direct output or a
changed state as a result of a function call. However, our
progress with testing was quickly slowed by the lack of
detailed specifications.

D. The Importance of Good Specifications

Specifications are an integral part of designing and
writing code to be tested by someone else, especially in a
black-box scenario. If a developer in test cannot write tests
for whatever reason, whether it be limitations because they
don't know the expected type of an output, they don't know
what the intended output is, or they aren't aware of all the
valid inputs, then they often have to resort to reading the
code and guessing what the intended behavior is. This can
become even worse if the developers are not utilizing clean
code standards. The testers will often have to ask multiple
questions, using up a lot of the developers' time. The
problem could be solved before it is even brought about
with the existence of good specifications. We asserted that
specifications should be different from end-user
documentation. Documentation should be high-level,
describing the overall functionality of a module in a
domain-specific way. Specifications, on the other hand,
should be useful for the tester - often, testers don't know or
don't care about the high-level functionality of a module, but
rather what outputs it should produce based on specific
inputs. They need an expected outcome based on regular
inputs, so they don't need to read the code just to get started.
Having a test fail just because the tester wasn't aware of
what format the output would be in wastes time for the
developer having to explain it, and the tester having to try to
understand it. If detailed specifications were given in the
first place, the process would have moved forward much
more efficiently.

In our experience of applying automated unit testing to
CyberWater, we found ourselves with lots of end-user
documentation, but with very little helpful specifications in
the way of what would be useful to us. There was a
significant amount of time and effort involved in testing the
modules we were given when the development team was
unsure of what we needed for unit testing. To illustrate this
concept, consider a hypothetical Python class that a tester
should test. Let’s call this class SuperDog. It has methods
add, multiply, and chew homework, shown in Figure
7, and we want these all to be tested to ensure they work
properly. Bad specifications for the testers would be high-
level and contain very little information about how this code
is actually structured and what one would actually need to
know should they call these methods directly.

class SuperDog():
A dog that knows how to do math! Kinda.
add = lambda x,y: Xx+y
multiply = lambda x,y: xkky

def chew_homework(self, homework):
The dog chews up your homework
into a bunch of pieces.
match type(homework) is int:
case True:
raise MathSucksException
case False:
if type(homework) is type(self):
return "That's another dog!"
else:
for word in homework.split(" "):
yield word
Figure 7: The code for the SuperDog class to be tested

SuperDog Specifications

‘What it can do:

Add: sum the inputs

Multiply: times the inputs

Chew your homework: chews up your assignment into pieces, leaving you with a list of the
words in the essay

Figure 8: Less than optimal specifications for SuperDog

As shown in Figure 8, we are given a high-level
description, but we know very little about how to test it. The
verbiage is inconsistent: are we adding or summing the
inputs? Are we multiplying or timesing? Is it homework, an
assignment, or an essay? We are left with many more
questions: how do we test this? What types are the inputs?
What are the return types? Do these methods have any side
effects? What does it mean to “chew up homework™? What
is the homework? Is the input only of one possible type?
These are all questions a tester would likely have to ask the
developers about, taking up more time and effort for
everyone involved, assuming they don’t give up and read
the code. We don’t even know if these are all necessarily
methods — they are just listed as “what it can do.”

An example of good tester specifications is shown in
Figure 9. Everything, inputs and outputs, has its type listed
so the testers are not stuck guessing when writing their tests.
The verbiage is consistent: we know that the add and
multiply methods take in two arguments and perform
mathematical operations on them and return the result. We
have a description as to what the “homework™ argument is —
it can be of various types, and we know the intended output
for each type it should be. We also now know this method
has a side effect: if a file rubric.txt is not in the
working directory, it will fail. The testers now have specific
exception types to test for and know helpful things about the
function and output of the functions, notably
chew homework: the output will likely be iterable,
and the iterable should have specific things in it. Thus,
the code is much easier to test, even without ever having
seen the code itself. It is unnecessary for the testers to know

SuperDog Specifications
The SuperDog is an implementation of a dog that is super: it can do math.

Methods:
add(x, y):
-Typex: int
-Typey: int
- Adds the inputs and returns the sum
- Return type: int
multiply(x, y):
-Typex: int
-Typey: int
- Multiplies the inputs and returns the product
- Return type: int
chew_homework(homework):
- Takes in an argument of your homework
- If the homework is of type int, it should raise a MathSucksException
-If str, it should “chew up” the homework: returns an object of
type generator, containing every individual word in
the string when iterated through
-1f SuperDog, it should return a value of type Str, containing the string
“That’s another dog!”
- Anything else should throw a Python ValueError
- Looks for a file called “rubric.txt” in the working directory - necessary for it to run
- This is used to demonstrate that dogs do not read rubrics

Figure 9: Better specifications for SuperDog

how something is done, as long as they know whether it’s
being done right. Given those specifications, a tester could
write some tests like the ones shown in Figure 10.

def test_add(self):

self.assertEqual(self.dog.add(1, 2), 3)
def test_multiply(self):
self.assertEqual(self.dog.multiply(2, 5), 18)

def test_chew_homework_str(self):
self.assertListEqual(["This", "is", "test", "homework"],
list(self.dog.chew_homework("This is test homework")))
def test_chew_homework_int(self):
with self.assertRaises(MathSucksException):
self.dog.chew_homework(9)
def test_chew_homeweork_dog(self):

dog2 = SuperDog()
self.assertEqual("That's another dog!",self.dog.chew_homework(dog2))
del dog2
def test_chew_homework_other(self):
with self.assertRaises(ValueError):

self.dog.chew_homework(set())

Figure 10: SuperDog tests

From these tests, we learn about some errors in the
SuperDog code: the add and multiply methods are
missing the self parameter, the multiply method is
actually using exponentiation, and the chew homework
method has no error handling for an input of an unexpected
type. With these specifications, if a given tester is proficient
enough in Python to know what a generator is, then they
will easily be able to test the code we have written.

This specification philosophy was then applied to two of
the modules we were given to test for the CyberWater
project: TimeRange and SpaceRange. These are related
modules to be wused in larger workflows, so their
specifications are written in tandem. Figure 11 shows the
new specifications we wrote for TimeRange and
SpaceRange, for the developers’ use as good examples for
documenting future modules, while working with them
closely on testing these modules.

TimeRange + SpaceRange
Designed to format a range of dates + times and x + y coordinates to be used by
USGSAgent, defining the temporal and spacial ranges for the data to be pulled back.

Input ports
timeini + timeend:
- Type: String (VisTrails)

Exception

TimeRange compute method:
- Converts VisTrails String input objects into a format readable by USGSAgent

X_min + X_max + y_min + y_max:

- Type: Float (VisTrails)

- Integers do not work and will throw an exception

- If either *_max is lesser than its corresponding *_min, an Exception (base) is
thrown
subrange:

- Type: TimeRange

- A TimeRange that has already computed—pulls out the data from it and holds
it as a RangeModel within a RangeModel, which can be accessed with the .subrange
attribute

SpaceRange compute method:

- Converts VisTrails Float inputs into a SpaceRangeMeodel, similar to TimeRange,
extending the RangeModel class and using attributes corresponding to the names of
the input ports

Figure 11:
specifications

TimeRange and SpaceRange's new

For these specifications, there are clear descriptions as to
the inputs and outputs and what methods we need to call to
adequately test these modules. We know what inputs are
valid, and what results invalid inputs should produce. We
are also given some use cases, which allows us to determine
which tests could be necessary depending on how specific
attributes of the modules will be used. We also do not have
any information that does not matter to us — we do not need
to know how the values are converted into the correct
format or what they are typically used for in a larger,
higher-level sense.

In essence, when writing specifications for a tester, it
requires thinking much differently from writing
documentation for an end-user. Things written for the end-
user should be high-level and focus on (possibly domain
specific) functions, but things written for testers should be
low-level and focus on what can be accessed by a tester who
cannot see the code but must use the code to test in the
backend. If a project is going to be tested by individuals or
teams external to the project development team, it is
essential that they know what they need to be looking for
and how to write the tests without too much friction in
creating said tests, allowing the project to run smoothly for
everyone involved.

V. CONCLUSION

Industry practices in software development did not
become industry practices for no reason. Utilizing these
practices well in a project is vital to the ultimate success and
efficiency of the project, and we expect that applying these
practices to the CyberWater project will improve its
development process significantly, making it both more
efficient and causing the code produced to be of higher
quality. Establishing processes and workflows for managing
source code with version control, issue tracking, pull
requests, branching strategies, clean code, and CI/CD are
essential to working on a project with multiple people, and
help to improve the final product while making the
development process easier and less issue-prone, giving
developers a blueprint to follow and improving quality of
work for everyone involved, both for the developers and the
final product. Our experiences reported here can be tailored
to typical research projects in an academic setting, in which
domain scientists need to write code while assuring their
developed software is of high quality.

ACKNOWLEDGMENT

This work was generously funded by the National
Science Foundation (NSF) under Grant 1835602. Any
opinions, findings, conclusions, or recommendations
expressed in this material are those of the authors and do not
necessarily reflect the views of NSF.

REFERENCES

CyberWater, https://www.cuahsi.org/cyberwater.

(1]

[2] Jira Software, https://www.atlassian.com/software/jira.

[3] Bitbucket, https:/bitbucket.org/product/.

[4] GitHub, https://github.com.

[51 PEP 8 — Style Guide for Python Code, https://peps.python.org/pep-

0008/.

[6] R. C. Martin, Clean Code: A Handbook of Agile Software
Craftsmanship, 1st ed., Pearson, 2008.

Jenkins, https://www.jenkins.io.
The One DevOps Platform | GitLab, https://about.gitlab.com.

Bamboo Continuous Integration and Deployment Build Server,
https://www.atlassian.com/software/bamboo.

—
~
—

—
e <]
=

—
\O
—

VisTrails, https://www.vistrails.org//index.php/Main_Page.

—
—
(=1

=

Ptest, https://pypi.org/project/ptest/.

Unittest - Unit Testing
https://docs.python.org/3/library/unittest.html.

[13] L. T. Connelly, M. L. Hammel, B. T. Eger, and L. Lin, “Automated
Unit Testing of Hydrologic Modeling Software with CI/CD and
Jenkins,” Proceedings of the 34th International Conference on
Software Engineering and Knowledge Engineering (SEKE 22), 2022,
pp- 225-230.

—_
—

—
—
(S}

—

Framework,

