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Abstract—Best industry practices in software development are 
vital to the success of a project. When these practices are not well-
applied, the development process can be severely hindered, and 
the final product can be of poor quality as a result. Implementing 
techniques for managing source code: version control, issue 
tracking, a branching strategy, a pull request strategy, a coding 
standard, unit testing, CI/CD, and automated testing, are not just 
widely-used industry practices for no reason. Thus, we took to 
applying these practices to a development project for research 
designed to reduce user time and effort in hydrologic modeling 
studies, CyberWater. The software package is built on legacy 
software and the development team is made up of a wide variety of 
people from various backgrounds, not all computer science. 
Applying these best industry practices to their development project 
has made their lives easier and the final product better. We report 
our experience in this paper and hope it provides some useful 
suggestions to domain scientists in an academic setting regarding 
how to develop high-quality research software. 
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I.  INTRODUCTION 
Many industry conflicts are a byproduct of poor industry 

practices. Some of these conflicts, such as programming 
errors or mistakes incurred through continuous development 
on a repository, can be avoided by having a distinct guide for 
software developers to follow such that focus can remain on 
development and research. With a template already in place 
for the practices the developers should be using for the 
programming and maintenance process, more time is allotted 
for other parts of the development process that take more 
time and can help to make the product better. This also 
significantly increases efficiency - with less time spent 
wrestling with the problems brought about by poor industry 
practices, more time can be spent actually developing the 
product. 

Domain scientists outside of the fields of computer 
science and software engineering are typically given funding 
to create a software project, but typically not enough funding 
is given to hire experts in software development, so they end 
up having to do it themselves. With little knowledge on 
industry practices in software engineering and little 
experience in developing software, conflicts can arise, 
slowing down the development process and resulting in a 

possibly worse product overall. Domain scientists may know 
how to write domain software, but they typically are not 
systematically educated on software engineering practices 
and tools, leading to much more effort needing to be put into 
the project than is necessary should best industry practices in 
software development be applied.  

II. THE SOFTWARE ENGINEERING PROBLEM PRESENTED 
WITH CYBERWATER 

The CyberWater project [1] was created with the goal of 
creating a new cyberinfrastructure with open data, open 
modeling framework software; as a result, the project is 
expected to reduce the user time and effort required for 
hydrologic modeling studies, allowing related discoveries to 
be made sooner. The project team includes hydrologists, 
climate experts, meteorologists, computer scientists and CI 
experts, from multiple universities and CUAHSI, who 
collaborate closely to ensure CyberWater will engage the 
broad communities for domain scientists' benefits. 

One software engineering problem presented with 
CyberWater was that there is a lot of moving parts that 
comprise CyberWater; therefore, it was expected that 
without some grounding in positive industry practices such 
as automated testing and version control workflows that 
errors could slowly make themselves known in the project. 
To mitigate this, Ball State was put in charge of managing 
how development should be made on the project and what 
tools should be used to design and implement automated 
tests for CyberWater. 

III. OUR EXPERIENCES IN APPLYING SOME BEST 
INDUSTRY PRACTICES 

A. Improving Workflow and Source Code 
Taking care of source code can be very cumbersome. 

There are a lot of methods that industries use to ensure that 
functionality is communicated from the developer to the end-
user such that the intermediary steps require the code to be 
refined and evaluated before reaching its user. For 
CyberWater, this meant creating an environment to give the 
developers assurance that the code they were writing was 
considerably less likely to fault once it had reached its end-
user. By implementing a steady and explicit workflow, 
enforcing version control and issue tracking, prompting code 
to be held for review, holding that code to a professionally 
proposed standard, and implementing automated pipelines to 



test the code before releasing it, we could prevent a 
considerable number of bugs from being introduced into the 
final releases.  

B. Enforcing Version Control and Issue Tracking 
Version control and issue tracking were a necessary set 

of industry practices that needed to be introduced to the 
project. It is not feasible to work on a smaller project in size 
without a fundamental understanding of version control, let 
alone this project. Version control is a must if multiple 
developers are going to work on a single repository at the 
same time. Having version control ensures that features and 
tasks can be split up into sections and merged into a 
development branch such that work neither lost nor stunted.  

Issue tracking is also vital, as it introduces a medium 
through which bugs and errors can be monitored and settled. 
As per best industry practices, it is expected that bugs and 
errors do not go ignored, and that there exists a system 
through which these issues can be mitigated. The issue 
tracking system allows a user to communicate directly with 
the developers such that progress on the repository can be 
made in a timely fashion. There are many platforms that can 
be used for issue tracking, such as Jira [2], which we 
initially looked into but dropped due to limited budget. We 
ended up using Bitbucket [3] for version control, and its 
provided issue tracking feature called issues. Working in 
tandem with the issue tracking system, just as with version 
control, to have an organized way to manage in-progress 
fixes for bugs and to merge them back into the production-
ready product, should be a branching strategy. 

C. Defining a Branching Strategy 
One of the hassles of version control is asserting that the 

means by which branches are created, merged, and removed 
implies that no work will be lost while developers work on 
separate features at the same time. Setting up a branching 
strategy allows a team of developers to be certain that their 
work is not only consistently tracked and implemented, but 
also that the versions they release are always in a 
production-ready state.  

The key to a good branching strategy is setting up 
particular but arbitrary feature branches that then get 
merged into a development branch. Through this 
development branch, where integration occurs, we can move 
passing code into a feature-branch or master-branch such 
that all code in the master branch is in a production-ready 
state. The main idea of having multiple branches is so that 
no non-functional or non-production-ready code makes it 
into the master branch. Thus, it can always be assured that 
the master branch is free from known issues. If an issue 
arises or is brought to attention with code that is already in 
the master branch, a hotfix branch can be forked from the 
master branch. The use cases are typically if an easily-
exploitable bug was found in the code of the master branch 
or if the app is unresponsive or breaking. Post-hotfix, the 
branch is merged into both the master and development 
branch - this ensures that no one working on the 
development branch is attempting to work around a bug that 

has already been fixed, and that the master branch stays 
production-ready and issue-free. Of these branches, the only 
two that remain permanent are the master and development 
branches - feature, hotfix, and release branches can be safely 
deleted after merging with no harm to the repository. Figure 
1 illustrates our proposed branching strategy. 

 

 
Figure 1: Our proposed example branching strategy 

 

D. Defining a Pull Request Strategy 
Pull requests are an essential part of software 

development in industry, as it creates an environment for the 
code to be reviewed in an efficient and professional manner. 
Pull requests were designed with merge conflicts in mind 
such that an administrator, or group of administrators, of the 
repository could mitigate conflicts by reviewing a small 
subset of a developer’s code and decide whether or not to 
merge that change into the preexisting codebase. They 
provide a simple, web-based way for developers to submit 
their work, and a similarly simple system for administrators 
to review and possibly implement changes made by 
developers. This also allows for less backtracking on old 
code, since code is implemented and merged into the correct 
branches in small intervals, making it easier to review and 
catch mistakes. 

Pull requests are much like voting on a bill that, when 
passed, will change the existing logic of the system 
dependent on what adaptations you make to it before 
sending it on its way upstream. This fundamental part of 
industry practices ensures that unkept code does not make 
its way into release by placing responsibility on the 
administrator and accountability on the developer. This 
leaves more incentive for the developer to abide by coding 
standards when they make small adaptations to the code. 

Pull requests are typically used when a developer has 
made changes that will affect the release. Thus, it raises 
their code for review so that others working on the project 
can make sure it is in good quality. Pull requests should be 
used once a developer has finished cleaning and optimizing 
their code, and are relatively sure that it is in a state where 
the project can "pull" changes from their fork. Commonly, 



developers make the mistake of "lazy merging," where their 
code is not thoroughly reviewed before making a pull 
request. Developers should ensure that they have tested 
every feature and bug fix in the branch they are attempting 
to merge, staying thorough to avoid breaking the master 
branch. They can also be used when making changes to a 
project of which a developer is not a part - for example, 
patching an open-source project on GitHub [4]. Relative to 
the branching strategy mentioned in the prior section, they 
should be used when merging from development to release, 
release to master, and hotfix to master. Pull requests should 
not be made from the master branch - this is where we want 
the code to be merged. 

Although pull requests sound rather similar to peer 
reviews, they differ in some notable ways. First, peer 
reviews involve reviews by multiple users simultaneously. 
With pull requests, administrators and developers are given 
time to review the code individually, on their own time. 
Peer reviews, as well, are a direct form of feedback - 
suggestions will be given directly to the code author. With 
pull requests, the feedback is more indirect - they can be 
rejected with reasons given as to why, which the developer 
must read, interpret, and fix on their own time. Peer reviews 
are appropriate for only large releases, typically, whereas 
pull requests are appropriate for any release, since they don't 
require simultaneous attention of multiple project members. 
Finally, peer reviews must be enforced by the project team, 
whereas pull requests are built into most online repository 
services, like GitHub and Bitbucket. 

E. Defining a Coding Standard 
It is appropriate to have all of the developers on board 

with the same coding standards. One of Ball State's focuses 
during the CyberWater project was asserting a coding 
standard for the developers of the project. Given that the 
language for this project was primarily Python, the focus 
aimed towards closely aligning the habits of the developers 
with the PEP 8 style guide [5]; however, it is expected that 
for any given language, there exists a community that finds 
the most appropriate standards for a given language and 
implements these standards into a linter that can be used by 
each developer on a given project to keep their styles 
consistent across the repository. 

General clean code practices are also given regarding 
coding standards. Abiding by the concept of single-
indentation, or maintaining abstraction and complexity in a 
given method, or even simply making your variable names 
self-explanatory are essential principles for best industry 
practices. Robert C. Martin goes over this in great detail in 
his Clean Code book [6] released in 2008. The focus of 
clean code is to ensure that maintainable code is delivered 
during development that will be legible once time has 
passed such that a lack of documentation would not heavily 
inhibit the workflow of the project were adaptations needed 
to be made to that code later. If a bug is later on discovered 
in a piece of code, and that code follows no clean coding 

standards, the code will be much harder to read in order to 
discover where the bug lies, causing extensive time to be 
lost simply trying to understand what each line of code 
means, what variable names mean and are referring to, what 
the side effects of a function are, and various other issues. 

Beyond the PEP 8 standards of naming conventions and 
how many lines to have between methods, the much more 
important clean code standards to follow are ones involving 
abstraction and descriptive (but not overly detailed) naming 
schemes. If a method is named poorly, a user might have to 
spend time looking over the method’s code to see what it 
actually does and why it is used in a specific other method – 
this leads to the possibility of a developer having to 
backtrack through miles of code just to figure out what the 
purpose of one single method call is. Similarly, this could 
get even more complex if the variable names are inadequate. 
Variable names should be descriptive of their purpose, 
rather than difficult-to-understand acronyms or entirely 
nameless, like x or a. The purpose of variables is to give a 
higher-level name to a value in programming – if a 
developer doesn’t give their variables useful names, then 
there’s little point in using a variable at all, when everything 
could essentially just be anonymous. 

For example, take this method (shown in Figure 2) 
designed to sum up two instance variables of a particular but 
arbitrary class, then yield an original and a result as a 
generator. 

 

 
Figure 2: A method designed to sum up two variables 

  
     This method takes no parameters – how is a given user to 
know what is actually happening here? What are these 
variables being added? What is the purpose of this method? 
Some of this could be communicated if both the method 
itself and the variables were changed to be more descriptive, 
as shown in Figure 3. 
 

 
Figure 3: The new-and-improved method and variable 
names 

 
     Now the purpose of the method is clear, and users 
reading the code can infer that these variables of the class 
should already have been set in some way before this 
method was called. 

IV. OUR EXPERIENCES IN TESTING 
Having an explicit and reliable workflow is nice, but if 

there doesn't exist a system to require the environment to 
filter bugs before releasing it, then the workflow is better 



defined as an unnecessary set of extra steps for the 
developer. Continuous Integration / Continuous Deployment 
(CI/CD) pipelines ensure that when code is pushed to a given 
branch, preferably the integration branch, it can 
automatically be migrated to a higher-level branch where it 
can then be pushed into production. By enforcing that 
automated testing of the development code be in charge of 
what code was released for production, we could assert that 
production code always passed our given tests. We were able 
to assert this using an open-source tool called Jenkins [7]. 

A. Using Jenkins for CI/CD 
Jenkins was one of the most useful tools for the 

CyberWater project. Although alternatives were available for 
automated testing, like GitLab [8] CI/CD tools and Atlassian 
Bamboo [9], the extensive work that has been done on 
Jenkins and the fact that it is open source made it a viable 
candidate for what we needed to use it for. Many of the 
extensions made available through Jenkins simplified the 
process through which automated testing could be performed 
on the CyberWater project. 

Some of the extensions available for Jenkins that 
simplified our experience were tools like the Environment 
Variable Injection extension which wrapped logic for 
modifying the Path variable on Windows machine so we 
could make our Path variables relative to the machine the 
project was being run on. This was vital given that our 
project required we access the Python distro and packages 
contained within the project that we downloaded for 
VisTrails [10] (an open-source scientific workflow and 
provenance management system used by CyberWater) and 
CyberWater. 

Setting up Jenkins is simple. By downloading the jar or 
war files necessary to get the server started, you can execute 
those files with Java and start a server locally on the machine 
it is being executed from. Next, go through the account set-
up and configure the repository you want to target using 
Jobs. This was how our team was able to set up Jenkins with 
our Bitbucket repository after configuring the credentials for 
an administrative account monitoring the repository. 

Jenkins jobs can also be run automatically, by setting up 
Build Triggers to determine when tests are run. The notable 
option we utilized was ‘Build when a change is pushed to 
BitBucket,’ shown in Figure 4. Figure 5 shows how we set 
up build steps in a Jenkins job. 

 

 
      Figure 4: Build Triggers in Jenkins 

 
      Figure 5: Setting up build steps in a Jenkins job 

 

B. Automated Unit Testing Using Python Unittest or Ptest 
One of the final necessary steps for implementing proper 

automated tests into the project was finding a suitable unit 
test library. Ptest [11] proved to be one of the best options, 
despite the fact that the project was locked in Python 2.7, 
because much of its development was done early on before 
the deprecation of Python 2. In addition, the Python library 
simplified the means by which test could be written by 
utilizing decorators to denote tags, groupings, setup-
teardown practice, and whether to run the tests concurrently 
or in parallel. 

Ptest was also an exceptional wrapper for basic unit tests 
because it allowed for a clean visual output of passing or 
failing tests by graphing these rates and outputting them to a 
stylized HTML file (see Figure 6). By linking the location 
of the outputs and using Jenkins automated scripts to give 
them a unique location each time a test was run, we could 
retrieve a unique graphical output for all passing tests 
through Jenkins via Ptest. 

 
          Figure 6: Ptest HTML test report 

 



Unittest [12], however, proved to be ultimately more 
useful in the end, as it integrated well with CI/CD and test 
automation, especially within Jenkins. Ptest relies primarily 
on the developer reading the output and is more focused 
toward an individual developer testing their code manually. 
Unittest has one key functionality that makes it viable for 
automated testing on Jenkins: AssertionError. Since 
assertions in Unittest are essentially just functions that 
compare the output of the first argument to the other, 
throwing an exception if the comparison is false, a failing 
test in Unittest can be detected by Jenkins as a failed build. 
Failed tests in Ptest, on the other hand, are marked only in 
the terminal output of the tests and in the GUI test report - 
since no exceptions are thrown, Jenkins sees nothing out of 
the ordinary and will assume, failing tests aside, the build to 
be successful. Therefore, since Unittest utilizes exceptions 
to communicate test results, allowing them to be recognized 
through automated test running systems, we decided to 
continue using Unittest moving forward. Ptest could 
technically still be used, if a system was designed so that an 
exception is raised when a test fails, but if no one is ever 
using the graphical test report, the extra hassle isn't 
necessarily worth it. 

Though considering all of this, none of the backend unit 
testing would have been feasible had there not been a 
separation between backend and UI in VisTrails. Luckily, 
since the project is built in Python, object-method 
replacement was an option by using the dictionary structure 
of instantiated Python objects and swapping them out with 
method-structured functions. Using this method, the project 
could successfully sever the connection from the user 
interface and focus on the backend code alone for testing. 
We refer the readers to [13] for details of how we used this 
novel technique for backend black-box unit testing. 

Similarly, when applied to the CyberWater project, the 
testing is still external. In the prior state of the project, code 
was written and no or few test cases were developed – the 
principle of Test-Driven Development was entirely ignored. 
Ideally, test cases should be developed in tandem with the 
code if not before it. With Test-Driven Development, 
projects of a similar nature or similar scale are less likely to 
allow bugs into the final version, and are likely to have a 
smoother development process, with the project team able to 
focus more closely on the domain-specific aspects of the 
project, rather than wrestling with bugs due to the lack of a 
good testing workflow. 

C. Defining a CI/CD Pipeline 
Continuous Integration / Continuous Development is an 

involved process with many steps and is an industry standard 
when working on a software development project. In our 
experiences with the CyberWater project, we made many 
suggestions to aid in the development process, making the 
final product higher quality and the development process 
easier. Notably, we focused rather closely on testing. We 
developed a system of testing modules based on their input 

ports and output ports, since this is an integral functionality 
of VisTrails that the developers work with for their 
CyberWater extension. We applied this, most recently, to a 
workflow designed to pull data from the USGS website. We 
wrote tests based on specific inputs and the expected outputs 
they were to generate, whether that was a direct output or a 
changed state as a result of a function call. However, our 
progress with testing was quickly slowed by the lack of 
detailed specifications. 

D. The Importance of Good Specifications 
Specifications are an integral part of designing and 

writing code to be tested by someone else, especially in a 
black-box scenario. If a developer in test cannot write tests 
for whatever reason, whether it be limitations because they 
don't know the expected type of an output, they don't know 
what the intended output is, or they aren't aware of all the 
valid inputs, then they often have to resort to reading the 
code and guessing what the intended behavior is. This can 
become even worse if the developers are not utilizing clean 
code standards. The testers will often have to ask multiple 
questions, using up a lot of the developers' time. The 
problem could be solved before it is even brought about 
with the existence of good specifications. We asserted that 
specifications should be different from end-user 
documentation. Documentation should be high-level, 
describing the overall functionality of a module in a 
domain-specific way. Specifications, on the other hand, 
should be useful for the tester - often, testers don't know or 
don't care about the high-level functionality of a module, but 
rather what outputs it should produce based on specific 
inputs. They need an expected outcome based on regular 
inputs, so they don't need to read the code just to get started. 
Having a test fail just because the tester wasn't aware of 
what format the output would be in wastes time for the 
developer having to explain it, and the tester having to try to 
understand it. If detailed specifications were given in the 
first place, the process would have moved forward much 
more efficiently. 

In our experience of applying automated unit testing to 
CyberWater, we found ourselves with lots of end-user 
documentation, but with very little helpful specifications in 
the way of what would be useful to us. There was a 
significant amount of time and effort involved in testing the 
modules we were given when the development team was 
unsure of what we needed for unit testing. To illustrate this 
concept, consider a hypothetical Python class that a tester 
should test. Let’s call this class SuperDog. It has methods 
add, multiply, and chew_homework, shown in Figure 
7, and we want these all to be tested to ensure they work 
properly. Bad specifications for the testers would be high-
level and contain very little information about how this code 
is actually structured and what one would actually need to 
know should they call these methods directly. 



Figure 7: The code for the SuperDog class to be tested 
 

 
Figure 8: Less than optimal specifications for SuperDog 

 
As shown in Figure 8, we are given a high-level 

description, but we know very little about how to test it. The 
verbiage is inconsistent: are we adding or summing the 
inputs? Are we multiplying or timesing? Is it homework, an 
assignment, or an essay? We are left with many more 
questions: how do we test this? What types are the inputs? 
What are the return types? Do these methods have any side 
effects? What does it mean to “chew up homework”? What 
is the homework? Is the input only of one possible type? 
These are all questions a tester would likely have to ask the 
developers about, taking up more time and effort for 
everyone involved, assuming they don’t give up and read 
the code. We don’t even know if these are all necessarily 
methods – they are just listed as “what it can do.” 

An example of good tester specifications is shown in 
Figure 9. Everything, inputs and outputs, has its type listed 
so the testers are not stuck guessing when writing their tests. 
The verbiage is consistent: we know that the add and 
multiply methods take in two arguments and perform 
mathematical operations on them and return the result. We 
have a description as to what the “homework” argument is – 
it can be of various types, and we know the intended output 
for each type it should be. We also now know this method 
has a side effect: if a file rubric.txt is not in the 
working directory, it will fail. The testers now have specific 
exception types to test for and know helpful things about the 
function and output of the functions, notably 
chew_homework: the output will likely be iterable, 
and the iterable should have specific things in it. Thus, 
the code is much easier to test, even without ever having 
seen the code itself. It is unnecessary for the testers to know 

 
Figure 9: Better specifications for SuperDog 

 
how something is done, as long as they know whether it’s 
being done right. Given those specifications, a tester could 
write some tests like the ones shown in Figure 10. 
 

 
Figure 10: SuperDog tests 
 
      From these tests, we learn about some errors in the 
SuperDog code: the add and multiply methods are 
missing the self parameter, the multiply method is 
actually using exponentiation, and the chew_homework 
method has no error handling for an input of an unexpected 
type. With these specifications, if a given tester is proficient 
enough in Python to know what a generator is, then they 
will easily be able to test the code we have written. 
      This specification philosophy was then applied to two of 
the modules we were given to test for the CyberWater 
project: TimeRange and SpaceRange. These are related 
modules to be used in larger workflows, so their 
specifications are written in tandem. Figure 11 shows the 
new specifications we wrote for TimeRange and 
SpaceRange, for the developers’ use as good examples for 
documenting future modules, while working with them 
closely on testing these modules. 
 



 
Figure 11: TimeRange and SpaceRange's new 
specifications 
 
      For these specifications, there are clear descriptions as to 
the inputs and outputs and what methods we need to call to 
adequately test these modules. We know what inputs are 
valid, and what results invalid inputs should produce. We 
are also given some use cases, which allows us to determine 
which tests could be necessary depending on how specific 
attributes of the modules will be used. We also do not have 
any information that does not matter to us – we do not need 
to know how the values are converted into the correct 
format or what they are typically used for in a larger, 
higher-level sense. 
      In essence, when writing specifications for a tester, it 
requires thinking much differently from writing 
documentation for an end-user. Things written for the end-
user should be high-level and focus on (possibly domain 
specific) functions, but things written for testers should be 
low-level and focus on what can be accessed by a tester who 
cannot see the code but must use the code to test in the 
backend. If a project is going to be tested by individuals or 
teams external to the project development team, it is 
essential that they know what they need to be looking for 
and how to write the tests without too much friction in 
creating said tests, allowing the project to run smoothly for 
everyone involved. 

V. CONCLUSION 
Industry practices in software development did not 

become industry practices for no reason. Utilizing these 
practices well in a project is vital to the ultimate success and 
efficiency of the project, and we expect that applying these 
practices to the CyberWater project will improve its 
development process significantly, making it both more 
efficient and causing the code produced to be of higher 
quality. Establishing processes and workflows for managing 
source code with version control, issue tracking, pull 
requests, branching strategies, clean code, and CI/CD are 
essential to working on a project with multiple people, and 
help to improve the final product while making the 
development process easier and less issue-prone, giving 
developers a blueprint to follow and improving quality of 
work for everyone involved, both for the developers and the 
final product. Our experiences reported here can be tailored 
to typical research projects in an academic setting, in which 
domain scientists need to write code while assuring their 
developed software is of high quality. 
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