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ABSTRACT: Deep neural networks (DNNs) and generative AI (GenAI) are increasingly vulnerable to backdoor

attacks, where adversaries embed triggers into inputs to cause models to misclassify or misinterpret target labels.

Beyond traditional single-trigger scenarios, attackers may inject multiple triggers across various object classes, forming

unseen backdoor-object con�gurations that evade standard detection pipelines. In this paper, we introduce DBOM

(Disentangled Backdoor-Object Modeling), a proactive framework that leverages structured disentanglement to

identify and neutralize both seen and unseen backdoor threats at the dataset level. Speci�cally, DBOM factorizes input

image representations by modeling triggers and objects as independent primitives in the embedding space through

the use of Vision-Language Models (VLMs). By leveraging the frozen, pre-trained encoders of VLMs, our approach

decomposes the latent representations into distinct components through a learnable visual prompt repository and

prompt pre�x tuning, ensuring that the relationships between triggers and objects are explicitly captured. To separate

trigger and object representations in the visual prompt repository, we introduce the trigger–object separation and

diversity losses that aids in disentangling trigger and object visual features. Next, by aligning image features with

feature decomposition and fusion, as well as learned contextual prompt tokens in a shared multimodal space, DBOM

enables zero-shot generalization to novel trigger-object pairings that were unseen during training, thereby o�ering

deeper insights into adversarial attack patterns. Experimental results on CIFAR-10 and GTSRB demonstrate that

DBOM robustly detects poisoned images prior to downstream training, signi�cantly enhancing the security of DNN

training pipelines.
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1 Introduction

As deep neural networks (DNNs) become more prevalent in applications such as natural language

processing [1–3] and object classi�cation [4–6], they are increasingly being targeted by sophisticated security

threats [7,8]. �e rise of generative AI [9–11] has enabled the large-scale creation of datasets sourced from

online repositories. Although these datasets improve model robustness, they o�en bypass rigorous vetting,

making themvulnerable to backdoor attacks [12–15]. Such attacks embed hidden triggers in training samples,

causing models to misclassify inputs containing the trigger, for example, altering a stop sign’s label to a speed

limit sign.

Recent work has focused on identifying backdoored samples in pre-trained infected models [16–19],

but less attention has been given to proactively scanning training data for suspicious triggers before the �nal
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model is trained. �is lack of focus on the dataset creation phase represents a signi�cant gap in input-level

backdoor defense strategies [20–23]. Malicious triggers can be embedded in training samples well before the

model is exposed to them, undermining the integrity of the entire training process. Addressing this stage

early in the pipeline not only prevents contaminated data from in�ltrating the training process, but also

reduces the computational costs associated with post-training puri�cation e�orts [24,25]. Lastly, proactively

analyzing the dataset o�ers deeper insights into the adversarial logic behind these backdoors, speci�cally

how triggers interact with objects and how attackers strategically embed them to exploit vulnerabilities.

Although existing defenses can detect single or multiple backdoor triggers in a compromised data

set [26–30], they remain strictly trigger-centric, where �agged samples are discarded, and images of objects

classes bearing those triggers are ignored.�is removes valuable co-occurrence information into how speci�c

triggers map onto particular objects, which could expose systematic attacker strategies. In realistic many-to-

many attack scenarios [31], where adversaries plant various triggers across a wide range of object categories,

a trigger-only approach would fail to recognize novel trigger-object combinations outside of its training set

of known trigger–object pairings. For instance, assume a square-patch trigger is only ever seen on stop signs

and a pixel-noise trigger only on speed-limit signs. If an attacker then applies that same square patch to

yield signs or the pixel noise to pedestrian-crossing signs (pairings never observed before) those trigger-

centric detectors may sharply degrade in performance, since they do not explicitly model which object the

trigger appears on. By contrast, a co-occurrence-aware model that simultaneously identi�es both triggers

and object classes preserves the relational context between adversarial triggers and their targets. Rather

than excluding compromised samples, this approach leveragesmodular relationships to learn comprehensive

backdoor patterns and infer previously unseen trigger–object combinations. As a result, the model can

accurately recognize the underlying object despite the presence of a trigger, integrate attacked examples into

both training and inference work�ows, and reduce false positives by distinguishing benign from malicious

features. Moreover, modeling trigger–object relationships provides deeper forensic insights into attacker

tactics, enabling dynamic update strategies that proactively defends models against evolving many-to-many

backdoor attacks. Overall, we can summarize that existing input-level defenses in current state-of-the-

art (SOA) attack scenarios remain strictly trigger-centric, where: (1) they identify and discard adversarial

samples, losing the underlying object semantics and missing the opportunity to reveal adversarial strategies,

(2) do not focus on concurrently identifying triggers and the associated object class, and (3) fail to generalize

to novel trigger-object pairings.

To address these gaps, we present Disentangled Backdoor-Object Modeling (DBOM), a proactive

framework based on VLMs and prompt tuning [9], designed to identify and isolate unseen backdoor-object

con�gurations. Instead of inspecting a potentially compromised model, this approach focuses on learning

trigger-object con�gurations within web-scraped training images before they are ever fed into a downstream

model. Our method surpasses current SOA pre-training defense algorithms by detecting not only the types

of backdoor triggers in compromised datasets, but also the underlying objects they target, thereby capturing

the adversarial logic behind thesemalicious trigger–object pairings. Here, we de�ne a trigger as the backdoor

attack pattern embedded into an image and an object as the benign semantic class beingmanipulated.DBOM

then factorizes these two primitives into independent embeddings (Fig. 1), enablingmodular representations

of trigger–object con�gurations [32]. Furthermore, by capturing the relationship among triggers and objects

during training, previously unseen trigger-object pairings can be detected during inference, a problem

traditional single-trigger detection pipelines overlook. �e contributions of our approach are as follows:
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• We introduceDBOM, anovel end-to-enddisentangled representation learning framework that separates

triggers and objects into independent latent visual primitives. By leveraging cross-modal attention for

structured latent decomposition, DBOMaims to learn each trigger pattern and each object class in isola-

tion. At inference, it recomposes these known trigger and object embeddings to recognize combinations

never seen during training, achieving zero-shot generalization over trigger–object pairings and resulting

in a robust method against adaptive backdoor strategies.

• Our approach incorporates a dual-branch module that features a learnable visual prompt repository

along with a dynamic so� prompt pre�x adapter for prompt tuning.�e use of a learnable visual prompt

repository allows us to capture primitive-speci�c features for both triggers and objects, aiding in feature

disentanglement. Furthermore, dynamically tuning text prompt representations based on image content,

our module enhances the semantic context of each sample and improves the separation between trigger

and object features.�is design allows the framework to capture diverse trigger patterns across multiple

object classes, overcoming the limitations of conventional defenses that assume a single, static trigger

per dataset.

• By integrating a proactive backdoor detection mechanism into the data curation process, DBOM

identi�es unseen backdoor-object attacks before downstream model training begins. A composite loss

function that minimizes cross-entropy, disentanglement, and prompt alignment losses together ensures

that poisoned samples are identi�ed and isolated for removal from the dataset.

Figure 1: Overview of our disentangling process for trigger–object pairings. During training, the system learns separate
representations of triggers and objects. By factorizing these components, the model can generalize to unseen trigger–
object con�gurations, although they were never observed together during training

2 RelatedWork

Disentanglement involves separating visual primitives of images into independent components

[33–37]. A central strategy for addressing this task is to train models that learn these independent compo-

nents and recombine them in novel ways, thereby enabling the �exible recognition of previously unseen

trigger–object pairings. Li et al. [14] apply symmetry and group theory to model primitive relationships,

introducing a novel distance function. A Siamese Contrastive Embedding Network (SCEN) [38] embeds

visual features into a contrastive space to separately model primitive diversity. A retrieval-augmented

approach improves recognition of unseen primitive component pairings by retrieving and re�ning repre-

sentations [39]. Recent methods integrate vision-language models (VLMs) such as CLIP [9] to enhance the
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recognition of structured relationships between the underlying nature of images and text prompts. Composi-

tional So� Prompting (CSP) [40] utilizes a static prompt pre�x alongside learned primitive embeddings, with

predictions based on cosine similarity between text and image features. Later works remove the static pre�x,

making the entire prompt learnable [41,42]. In the context of DBOM, disentangling triggers and objects

allows our model to factor visual embeddings into two primitive subspaces: one that captures adversarial

trigger patterns and one that encodes the class object semantics. Once these primitives are learned, unseen

trigger-object pairings can be inferred upon during testing.

BackdoorAttacks became prominentwith the introduction of Badnets [12]. Badnets demonstrated how

adversaries can embed backdoors into DNNs by poisoning the training data with trigger-patterned images,

such as a single white square or pixelated patterns, to misclassify inputs. Liu et al. [13] introduced trojaning

attacks, which di�er fromBadnets, by reverse-engineering neuron activations to generate adversarial triggers

that maximize activations in speci�c neurons. Li et al. [43] explored techniques to make triggers more covert

to detection by implementing steganographic embedding, where backdoor triggers are hiddenwithin images

at a pixel level. Recent backdoor attacks include Wanet [15], a warping-based trigger, which introduces

imperceptible image distortions as triggers instead of traditional noise perturbations.

Backdoor Defenses mostly operate in the adversarial machine learning life-cycle at the model level,

leaving the dataset vetting process largely unexplored [44]. Several works attempt to �lter adversarial images

before training [20–22,29], but these rely on detecting known trigger-object con�gurations and fail to

generalize to unseen pairings. VisionGuard [21] compares the so�max outputs of original and transformed

images using metrics like the Kullback–Leibler divergence to detect attacks without altering the target

network. Deep k-NN [20] leverages deep feature space clustering and k-nearest neighbor voting to detect and

remove poisoned images from the training set prior to downstreammodel training. HOLMES [22] employs

multiple external detectors trained on both dedicated labels and top-k logits to capture subtle di�erences

between benign and adversarial inputs. Traditional backdoor defenses assume a compromised model and

attempt to mitigate attacks post-training [17–19]. However, these techniques reactively address attacks a�er

deployment by cleaning the model, whereas our approach proactively �lters poisoned images before they

enter the downstream training pipeline, preventing backdoor contamination at its source. Furthermore, these

methods overlook the opportunity to identify unseen trigger–object con�gurations that were not seen in

their model training, which is addressed in this paper.

3 Preliminaries and Insights

3.1 Trigger-Object Representation

Wede�ne a backdoor con�guration as a pairing of a trigger and an object, where the trigger serves as the

adversarial modi�cation and the object represents the underlying semantic class being targeted (e.g., “stop

sign,” “yield sign,” “airplane”). Let T be the set of all possible triggers, and O be the set of object categories,

where T = {t0 , t1 , . . . , tn} and O = {o0 , o1 , . . . , om}. �e complete set of potential trigger–object pairings

is given by P = T × O, where each pair (t, o) ∈ P corresponds to a unique backdoor attack con�guration.

�ese pairings can be categorized into two groups: (1) seen pairings (Ps), which are explicitly observed during

training, and (2) unseen pairings (Pu), which do not appear in the training set but may still be encountered

during deployment.�ese subsets are disjoint (Ps ∩ Pu = ∅) and together form the complete space of possible

attack con�gurations (Ps ∪ Pu = P). During evaluation, test samples are drawn from a prede�ned set Ptest ⊆
P, which contains both seen and unseen pairings. �e objective of our approach is to learn a function f ∶
X → Ptest, where X represents the input space of images containing these trigger–object con�gurations. �e

function f is designed to map an image to its corresponding attack con�guration, enabling generalization

to unseen trigger–object pairs that were not part of the training distribution. Furthermore, we note that
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the goal of this paper is not to train an infected model or defend against attacked models, but to detect

backdoored images before downstream model training begins.

3.2 �reat Model and Defender Goals

�reatModel.We assume an adversary injects backdoor attacks based on trigger–object pairings into a

web-scraped or publicly available dataset used for training a downstreamDNN.�egoal is to cause themodel

to misclassify inputs containing triggers into a target label while maintaining normal classi�cation on clean

images. Since large datasets are rarely vetted on a per-sample basis, malicious samples blend easily with clean

data. Furthermore, attackers can escalate this threat by injecting multiple triggers across di�erent classes,

including novel, unseen trigger–object pairings, so that conventional defenses which expect a single static

trigger fail to detect them. Consequently, the compromised data is used in downstream training, embedding

hidden adversarial behaviors into the �nal model.

Defender’s Goal. �e defender’s goal is to identify backdoored images prior to downstream model

training, ensuring they are isolated while minimizing the misclassi�cation of clean images. Given a poten-

tially poisoned dataset that contains several triggers–object con�gurations, the defender must distinguish

legitimate images from those carrying triggers. Furthermore, by concurrently identifying both the trigger

and the underlying object, the defender learns vital information into the adversary’s strategies. Moreover,

separating the adversarial trigger from the underlying object enables the recovery of correct object semantics

in backdoored samples, eliminating the need to discard these adversarial samples from training or inference.

4 Proposed Framework

DBOM leverages CLIP as its backbone by freezing its pre-trained visual and text encoders. Let fθ(⋅)
denote the CLIP image encoder and gϕ(⋅) denote the CLIP text encoder. Given an input image x i , the image

encoder extracts visual features fv = fθ(x i) ∈ Rd , which serve two purposes: (i) they are used to retrieve the

most relevant visual prompts from a learnable repository, and (ii) they provide the bias for shi�ing a set of

learnable pre�x text tokens [v1][v2][v3] via a prompt adapter network. Unlike �xed pre�x templates

(i.e.,a photo of), our approach employs prompt tuning, a technique where these pre�x tokens are treated

as learnable parameters and optimized end-to-end to capture task-speci�c context for each image.�is allows

the text prompt to be tailored to the visual content of each image, promoting the alignment between visual

and textual modalities. �e shi�ed pre�x is then appended to the trigger and object word embeddings to

form the �nal prompt t i , which is processed by the text encoder to produce text features ft = gϕ(t i) ∈ R768.

Lastly, fv and ft are decomposed and fused, and their joint representation is mapped into a separate pair

space where the similarity between the image and fused features helps determine the �nal trigger-object

prediction. Fig. 2 displays the overall architecture of the proposed approach.
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Figure 2: DBOM utilizes a visual prompt repository and a similarity-based retrieval mechanism to detect unseen
backdoor trigger-object representations through the use of CLIP’s pre-trained visual and textual encoders. During
training, each image retrieves visual prompts from the repository, shi�s a learnable text pre�x with a prompt adapter,
and fuses decomposed image–text features via cross-attention. During inference, the framework again retrieves the top
visual prompts, shi�s the text prompt for each new image, and computes similarity scores to pinpoint unseen trigger-
object pairings. Lastly, in separate pair spaces, the logits are computed by comparing the fused image–text features with
the visual features from the frozen visual encoder, as well as the selected visual prompts and the text features from the
frozen text encoder.�e highest-scoring trigger–object pair is then selected as the predicted con�guration. By detecting
malicious seen and unseen con�gurations in this way, DBOM identi�es backdoored con�gurations and isolates them
for removal prior to downstream model training

4.1 Visual Prompt Repository

�e visual prompt repository comprises a collection of M learnable visual prompts {Pi}Mi=1, with each

prompt Pi ∈ Rl×d paired with a learnable key ai ∈ Rd . �ese prompts capture high-level visual semantics

and are re�ned during training. For a given image, cosine similarity is computed between the normalized

image features fv and each normalized key. Based on the similarity scores, the two most similar prompts

are selected. One is intended to align with the image’s trigger and the other with the object. To enforce this

specialization, we introduce two auxiliary losses. �e trigger-object separation loss is formulated as:

Lsep = − 1

N

N

∑
i=1

log
⎛
⎝

exp(cos( f (i)v , a
(i)
trig))

exp(cos( f (i)v , a
(i)
trig)) + exp(cos( f (i)v , a

(i)
obj))

⎞
⎠. (1)

Because our primary objective is to accurately �ag backdoored images, the loss function prioritizes the

trigger key by encouraging it to achieve a higher similarity score than the object key, with the object serving

as complementary context for the image. �e visual prompt diversity loss is de�ned as:

Ldiv = 1

N

N

∑
i=1

max(0, m − cos(a(i)trig , a
(i)
obj
)), (2)

where m = 0.5 is a �xed margin. �is term penalizes any excessive similarity between the retrieved trigger

and object visual prompts, thereby promoting disentangled features for more distinct representations [45].

Combining these terms yields:

Lvis = Lsep +Ldiv , (3)

which guides the prompts to distinctly capture trigger and object characteristics. During training, the visual

prompt repository is updated end-to-end withLvis.�is ensures that the repository vectors are not static but
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are continuously re�ned to distinguish between trigger and object features. �e �nal representation of the

retrieved visual prompts can be denoted by fre t .

4.2 Dynamic Pre�x Adapter

Traditional prompt tuning approaches [9,40,46] use a �xed so� prompt pre�x, where a sequence such as

[trigger][object] is appended with an initialized phrase a photo of. �is means that the same

pre�x is applied to every sample, regardless of the unique characteristics of the trigger or object in the image.

�is pre�x rigidity can hinder the system’s ability to accurately distinguish between di�erent trigger–object

pairs. Motivated by the work in [46], we propose an adaptive prompt network module that dynamically

adjusts the learnable pre�x tokens based on the visual content of the input image. �is has been shown to

transfer the frozen backbone’s generalization power to entirely new tasks with very few labeled examples

[46–48].

Speci�cally, the prompt adapter utilizes the image features fv to compute a bias term that is added to the

base prompt tokens, thus tailoring the prompt to each individual sample. Besides, by dynamically shi�ing the

so�-prompt pre�x based on each image’s visual features, the prompt pre�x adapter aligns the text embeddings

more closelywith the speci�c trigger and object primitives, which in turn lets themodel accurately recombine

those known primitives into novel, unseen pairings at inference, improving zero-shot pairing performance.

�e prompt adapter is implemented as a lightweight neural network de�ned by:

APNet( fv) =W2 ⋅ σ(W1 ⋅ fv + b1) + b2 , (4)

where σ(⋅) denotes the ReLU activation function, and W1, W2, b1, and b2 are trainable parameters. �e

output, φ( fv), represents the bias added element-wise to the original prompt embeddings {θ0 , θ1 , . . . , θ p}
via θ′i = θ i + φ i( fv) for i = 0, . . . , p. �e �nal text prompt t i is constructed by appending {θ′0 , θ′1 , . . . , θ′p}
with the trigger and object word embeddings, θ t and θo , respectively. Lastly, t i is fed into the text encoder

to generate the text features ft .

4.3 Feature Decomposition and Fusion

To disentangle and jointly embed the representations of triggers and objects for backdoor detection, we

decompose and then fuse the visual features, fv , and the text features, ft [42].We �rst isolate how each trigger

and object contributes to the text representation by averaging their respective logits. �is decomposition

helps the model treat triggers and objects as independent primitives, ensuring that potential backdoor

triggers are not blended with the underlying objects during subsequent fusion. During training, we explicitly

supervise these decomposed features to capture the semantics of each trigger and object class.

Formally, we compute the trigger and object probabilities as follows:

p(y = t ∣ x; θ) = exp( fv ⋅ ft)
∑
t̄∈T

exp( fv ⋅ ft) , (5)

p(y = o ∣ x; θ) = exp( fv ⋅ ft)
∑
ō∈O

exp( fv ⋅ ft) , (6)
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where T is the set of possible triggers,O is the set of possible objects, and θ denotes the learnable parameters.

We then optimize cross-entropy losses for the trigger (Ltri) and object (Lobj) predictions:

Ltri = − 1

∣T ∣ ∑(x ,y)∈P s

log(p(y = (t) ∣ x; θ)), (7)

Lobj = − 1

∣O∣ ∑(x ,y)∈P s

log(p(y = (o) ∣ x; θ)), (8)

where P s denotes the set of seen triggers–object pairings.

Next, fv and ft are fusedwith a cross-attentionmechanism that aligns the image and text features within

a joint embedding space. Speci�cally, we de�ne the queryQ from ft , and the key K and valueV from fv . �e

query identi�es the textual aspects that need to be emphasized in the visual representation; the key–value

pairs in the visual space highlight regions or features corresponding to each textual element:

Attention(Q ,K ,V) = so�max(QKT

√
d
)V , (9)

where d is the feature dimensionality. �e result of this cross-attention is ft→v , a fused representation that

integrates the textual context of the triggers and objects with the corresponding visual features.

4.4 Training and Inference

Our framework trains in two main stages: we �rst adapt the so� prompt so that the fused features

ft→v correctly capture the target trigger–object pairings, and then we ensure the textual representation ft is

consistent with the retrieved visual prompt. We compute the probability of a trigger–object pair (t, o) by
comparing the image feature fv to the fused representation ft→v :

psp(y = (t, o) ∣ x; θ) = exp( fv ⋅ ft→v)
∑(t′ ,o′)∈P s exp( fv ⋅ ft→v) . (10)

Minimizing the cross-entropy over these probabilities yields the so� prompt alignment loss Lsp. �is

encourages the shi�ed so� prompt to correctly identify the trigger–object pairs for samples in P s . Next,

we require that the textual representation ft matches the retrieved pairing from the prompt repository. We

de�ne:

pret(y = (t, o) ∣ x; θ) = exp( fre t ⋅ ft)
∑(t′ ,o′)∈P s exp( fre t ⋅ ft) . (11)

Minimizing the cross-entropy over these probabilities produces the retrieval alignment loss Lret. �e

total loss is a weighted sum of these components along with the prompt losses:

Ltotal = Lret + λtri_obj(Ltri +Lobj) + λsp Lsp + λvisLvis . (12)

During inference, the learned prompt adapter shi�s the pre�x tokens, the visual prompts are retrieved

and averaged, and the logits are computed based on the similarity between the image and text features in the

pair space. �e predicted trigger–object text labels are selected by:

ŷ = argmax
(t ,o)∈P test

psp(y = (t, o) ∣ x; θ), (13)
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where P test denotes the set of test trigger–object pairings, which includes seen and unseen con�gurations,

and psp is computed following the same procedure in Eq. (10).

5 Experiments and Results

5.1 Experimental Setup

Attacks and Splits. We conduct experiments using two benchmark datasets: CIFAR-10 [49] and

GTSRB [50]. CIFAR-10 contains 50,000 training images and 10,000 test images across 10 object classes, while

GTSRB consists of 39,209 training images and 12,630 test images spanning 43 tra�c sign classes. Recent

studies [21,51] have shown that adversaries can place backdoor triggers directly on tra�c signs to mislead

advanced driver-assistance and autonomous-driving systems.�erefore, GTSRB provides a practical, safety-

critical testbed for evaluating our proposed data-level defense system. To introduce backdoor vulnerabilities,

we generate contaminated versions of all clean images using six attack patterns, while retaining the clean

images themselves as an individual class. �e six widely recognized backdoor attacks which are employed

are: Badnets Square (Badnets-SQ) [12], Badnets Pixels (Badnets-PX) [12], Trojan Square (Trojan-SQ) [13],

Trojan Watermark (Trojan-WM) [13], l2-inv [43], and l0-inv [43]. �ese attacks encompass a diverse range

of backdoor characteristics, including universality, label speci�city, and variations in trigger shape, size, and

placement. �is results in a trigger–object pairing space of 301 unique pairings for GTSRB and 70 pairings

for CIFAR-10.

ImplementationDetails.Weutilize PyTorch 1.12.1 [52] for the implementation of ourmodel.�emodel

is optimized using the Adam optimizer [53] and is trained over 20 epochs on the previously mentioned

datasets. Both the image encoder and text encoder are based on the pretrained CLIPViT-L/14model, and the

entire model is trained and evaluated on a single NVIDIA 2080 Ti GPU.We setM = 20 for both GTSRB and

CIFAR-10. To assess scalability and accuracy trade-o�s, all experiments are implemented with the smaller

CLIP variants ViT-B/16 and ViT-B/32, repeating the same training schedule and hyperparameters.

5.2 Unseen Trigger–Object Evaluation

�is experiment evaluates the performance of DBOM in both the seen (S) and unseen (U) trigger–

object pairing scenarios. Speci�cally, the accuracy for each trigger–object pairing type is measured, assessing

both the Attack (trigger) and Object classi�cations separately. To provide a comprehensive evaluation, we

report the Harmonic Mean (HM) of the seen and unseen accuracies, which balances performance across

known and novel pairings. In addition, we calculate the area under the curve (AUC), which serves as the

primary metric for assessing the overall e�ectiveness of the model in detecting trigger-object con�gurations.

We compare DBOM’s results with CoOP [46] and CSP [40] since they represent two distinct approaches

for leveraging CLIP in modeling triggers and objects as separate primitives in the embedding space. CoOP

uses �xed, pre-computed natural language representations for the triggers and objects while learning only a

context prompt pre�x to conditionCLIP. In contrast, CSP learns so� prompts by �ne-tuning learnable tokens

for triggers and objects, allowing for more adaptive recon�guration and improved generalization to unseen

trigger–object pairings.

Table 1 demonstrates that DBOM outperforms the baseline methods across nearly all metrics. DBOM

improves AUC over 53% on GTSRB and nearly 43% on CIFAR-10. Furthermore, DBOM successfully

identi�es over 98% of backdoor triggers on both benchmarks while classifying nearly 95% of objects in the

diverse GTSRB dataset (43 classes) and over 95% on CIFAR-10 (10 classes). Importantly, the high accuracy

observed for unseen trigger-object pairings indicates that our model can detect trigger-object pairings that

were not encountered during training. Note that DBOM not only generalizes to unseen trigger–object
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pairings, it also accurately identi�es seen triggers: the “Seen” columns in Table 1 show over 92 and 96%

accuracy on known trigger patterns.

Table 1: Comparison of backdoor trigger–object identi�cation methods on GTSRB and CIFAR-10. Bold indicates the
best results

Method CLIP model GTSRB CIFAR-10

S U Att. Obj. HM AUC S U Att. Obj. HM AUC

CoOP [46] ViT-L/14 28.26 28.95 37.26 35.59 11.59 4.95 65.64 67.81 46.31 92.69 47.47 35.67

CSP [40] ViT-L/14 57.34 77.86 65.27 76.85 51.07 38.03 70.28 77.81 63.34 95.28 62.23 50.42

DBOM (Ours) ViT-B/32 92.65 93.70 98.31 87.10 88.05 85.03 92.09 93.76 98.19 87.38 86.76 84.43

DBOM (Ours) ViT-B/16 93.19 95.47 98.63 90.32 90.21 87.86 93.40 94.90 98.31 89.51 90.22 87.37

DBOM (Ours) ViT-L/14 96.89 96.88 98.15 95.00 93.94 92.29 96.90 98.15 98.80 95.20 94.19 93.07

Moreover, we report the results of smaller CLIP variants in Table 1 and average run-times across both

datasets for each variant in Table 2. We can observe that the ViT-B/32 and ViT-B/16 models run at an

average of 2.53 ms and 4.27 ms/image, compared to ViT-L/14’s 10.69 ms/image, respectively. Importantly,

this reduction in compute does not result in a signi�cant drop in accuracy: the ViT-B/32–based DBOM still

achieves AUC scores of 85.03% on GTSRB and 84.43% on CIFAR-10, while the ViT-B/16 variant increases

those �gures to 87.86% and 87.37%. �ese �ndings suggest that our approach can leverage smaller CLIP

backbones for real-time deployment without sacri�cing the high trigger-object identi�cation performance

a�orded by the larger variant.

Table 2: Inference runtime per image on a single NVIDIA 2080 Ti GPU (batch size 64)

CLIP Variant Inference time (ms/img)

ViT-B/32 2.53

ViT-B/16 4.27

ViT-L/14 10.69

Overall, DBOM’s zero-shot generalization capability to novel trigger–object pairings is achieved by

leveraging the disentangled representation learning approach, which factors triggers and objects into inde-

pendent primitives. Although previousmethods aim for similar generalization, our visual prompt repository,

dynamic pre�x adapter, feature decomposition and fusion greatly improve the ability to recombine these

learned representations to accurately identify novel trigger-object pairings. �erefore, DBOM o�ers robust

protection against evolving backdoor attack strategies by possessing the ability to identify seen con�gurations

with high accuracy and then leveraging those seen pairings to identify unseen con�gurations, resulting in

an adaptive method that can simultaneously evolve to adversarial strategies.

5.3 Backdoor Poison Detection Evaluation

DBOM is compared against conventional pre-training dataset cleaning approaches [20–22] by sim-

ulating a realistic scenario where the poisoning rate is set at 5%, 10%, and 15%, re�ecting the poisoning

ratios o�en encountered in web-scraped datasets. Overall accuracy (Acc.) measures the proportion of all

images, both clean and poisoned, that are correctly classi�ed. Futhermore, we report the attack recall (Rec.),

indicating the percentage of poisoned images that are successfully identi�ed. Additionally, attack precision

(Prec.) measures the proportion of images �agged as attacked that are truly poisoned, and the F1 Attack score
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is the harmonic mean of attack precision and recall. Table 3 summarizes the performance of DBOM relative

to baseline methods.

Table 3: Poison detection evaluation at 5%, 10%, and 15% poisoning levels on CIFAR-10 and GTSRB. Bold indicates the
best results for each poisoning rate

Method Poisoning rate GTSRB CIFAR-10

Acc. Rec. Prec. F1 Acc. Rec. Prec. F1

VisionGuard [21] 5% 88.43 57.07 23.23 33.02 85.56 48.57 16.94 25.12

10% 85.09 62.16 35.83 45.46 88.34 65.32 44.34 52.82

15% 90.23 63.29 68.99 66.02 90.94 70.17 69.58 69.87

Deep k-NN [20] 5% 99.46 89.13 100.0 94.25 98.81 76.19 100.0 86.49

10% 97.11 75.35 95.65 84.40 97.59 75.90 100.0 86.30

15% 94.69 64.59 100.0 78.48 97.45 82.95 100.0 90.68

HOLMES [22] 5% 95.99 35.56 96.97 52.03 99.29 80.00 100.0 88.89

10% 96.91 69.81 100.0 82.22 97.53 78.43 100.0 87.91

15% 93.62 57.20 99.29 72.58 97.45 83.10 100.0 90.77

DBOM (Proposed) 5% 98.36 98.49 98.83 98.63 97.86 97.23 98.86 98.19

10% 98.05 95.52 98.21 96.83 98.80 98.79 99.05 98.85

15% 97.86 98.19 98.28 98.23 97.58 97.58 98.06 97.71

Evaluation shows that DBOM consistently results in high overall accuracy while keeping the misclas-

si�cation of clean samples to a minimum. For example, on GTSRB, DBOM achieves overall accuracies of

around 98% with an attack recall consistently exceeding 97% and F1 scores near 98% across poisoning rates

of 5%–15%. Similar trends are observed on CIFAR-10, where overall accuracies are in the range of 97%–

98%, and both attack recall and F1 scores remain high. Furthermore, our experimental results reveal an

important trade-o� between precision and recall. While methods such as Deep k-NN andHOLMES achieve

near perfect precision, they o�en su�er from lower attack recall (typically around 75%–80%), leading to

signi�cantly lower F1 scores. DBOM’smodest decrease in precision is acceptable becausemissing a poisoned

image can be far more harmful than incorrectly �agging a few additional clean images, especially when

clean images make up the majority of the dataset. Lastly, unlike existing SOA methods that solely focus on

identifying whether an image is backdoored or poisoned, DBOM disentangles each image’s representations

into primitives to identify both the trigger and the object concurrently, thereby enabling it to detect

unseen con�gurations that were not encountered during training, a crucial improvement over existing

SOA methods.

5.4 Ablation Study

Impact of λvis.We investigate the in�uence of the visual prompt loss weight, λvis, on DBOM’s ability to

disentangle trigger and object features. Recall that the visual prompt loss Lvis = Lsep +Ldiv enforces higher

similarity for the trigger visual prompt and diversity between the trigger and object visual prompts. Note

that when λvis = 0.0, the visual prompt loss is removed from the training objective and the model loses

supervision to disentangle trigger and object features from the visual prompt repository, although the top

two most similar prompts are still selected.
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�e results, shown in in Fig. 3, reveal that at λvis = 0.0, the model achieves the lowest performance

across all metrics. As λvis increases, the supervision provided by the separation and diversity losses leads

to improvements in both AUC and unseen accuracy, reaching a peak at λvis = 0.5. �is peak indicates that

a moderate emphasis on the separation losses most e�ectively re�nes the latent representations. �erefore,

the model is able to generalize more robustly to unseen backdoor con�gurations. While selecting the top

two prompts from the visual repository yields acceptable performance, incorporating the explicit separation

and diversity losses signi�cantly improves overall performance across all metrics.While results on CIFAR-10

show amore stable rise and fall of seen, unseen, and AUC values, the results on GTSRB showmore variation

over each tested λvis value.

Figure 3: Impact of λvis on AUC and seen/unseen accuracy

Learnable vs. Static Pre
x. In this experiment, we replace the learnable so� prompt adapter with a

static �xed prompt pre�x, a photo of, to isolate the in�uence of a constant pre�x context on model

performance. Table 4 details the performance improvement across all metrics of the learnable pre�x adapter

over the �xed pre�x. For GTSRB, the learnable pre�x leads to a 5.07% increase in object classi�cation

accuracy, AUC 3.31% and seen accuracy 2.19%. �is improvement is especially signi�cant for object

classi�cation, given that GTSRB has a diverse set of 43 classes, making the task more challenging. Similarly,

on CIFAR-10, we see a notable 1.59% increase on unseen pairings, 1.38% for object classi�cation, and 1.92%

for AUC.�e improvements can be attributed to dynamically adjusting the pre�x tokens based on each input

image’s content, leading to better alignment between visual and textual representations and more precise

detection. �is improves the model’s capability to distinguish between triggers and objects, especially when

encountering unseen adversarial con�gurations.

Table 4: Learnable vs. Static Pre�x

Method GTSRB CIFAR-10

“a photo of” [v1][v2][v3] “a photo of” [v1][v2][v3]

Seen 90.10 92.29 (+2.19) 96.75 96.90 (+0.15)
Unseen 94.92 95.54 (+0.62) 95.75 97.34 (+1.59)
Attack 97.76 98.04 (+0.28) 97.74 98.80 (+1.06)
Object 84.09 89.16 (+5.07) 93.82 95.20 (+1.38)
HM 86.40 87.50 (+1.10) 93.01 94.19 (+1.18)
AUC 83.29 86.60 (+3.31) 91.15 93.07 (+1.92)
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5.5 Qualitative Analysis

Fig. 4 displays randomly selected images from the test set along with the predicted trigger–object pairs

and their ground-truth labels. �e examples in the top row highlight successful predictions, illustrating how

our framework can handle diverse triggers, object classes, and varying image quality. Even in blurry or

distorted cases, such as the “Priority Road” sign, the model still distinguishes both the trigger and the

object accurately.

Figure 4: Ground Truth vs. Prediction of DBOM

In contrast, the bottom row depicts failure caseswhere the predicted objects di�er from the ground truth

(though the triggers are correctly identi�ed). For instance, in the �rst error image, “30 km/h” is misclassi�ed

as “NoVehicles,” likely due to the heavy blur on the sign. Likewise, in the second example, themodel predicts

“Dog” instead of “Cat”, a plausible mistake given the animal’s appearance. �e fourth image is misjudged

as a “Bird” rather than an “Airplane,” suggesting that the system recognized a �ying object but failed to

capture its speci�c category. �is can be attributed to some key features, such as text or outlines, being

nearly imperceptible and making the di�erence between classes di�cult to discern. Overall, despite a few

misclassi�cations caused by blurred or partially obscured features, our model successfully distinguishes

a wide range of triggers and objects. �is highlights its strong robustness against challenging real-world

conditions, even when subtle distortions could easily mislead other systems.

6 Discussion and Limitations

�e empirical results demonstrate that DBOM not only achieves SOA performance in detecting both

seen and unseen trigger–object pairings, but also maintains high overall accuracy and attack recall even at

low poisoning rates. By proactively vetting training data, DBOM prevents backdoor contamination before

downstream model training, reducing the need for costly post-training puri�cation and preserving clean

samples for model learning.

By separating the backdoor trigger from the underlying object semantics, DBOM not only �ags

poisoned images, but also recovers the correct object label despite the presence of a backdoor pattern. �is

has several key bene�ts. First, it preserves the majority of clean examples so that benign object information

is retained rather than discarded, maintaining dataset diversity and reducing the risk of eliminating clean

samples. Second, disentanglement yields �ner-grained forensic insights into how speci�c triggers map

onto di�erent object categories, revealing systematic attacker strategies and enabling more targeted threat

intelligence. �ird, the modular nature of trigger and object primitives enables zero-shot detection of
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trigger-object pairings that were unseen during training, addressing a crucial limitation in conventional

trigger-centric defenses. In practice, this means DBOM can adapt to evolving backdoor tactics across

multiple object classes, lower false-positive rates by distinguishing benign from malicious features, and

streamline training-time vetting helping prevent data contamination at its source rather than reactively

purifying a compromised model.

Despite these strengths, it is important to discuss DBOM’s limitations. Our design assumes that

the defender maintains a library of T candidate trigger patterns, drawn from previously seen backdoor

signatures. In our experiments, T is composed of six well-studied backdoor attacks, but the repository can

be extended over time as new threats emerge by disentangling unknown triggers and adding them to the

trigger repository.When novel trigger patterns are encountered in new data, we can �ne-tune only the visual

prompt repository and pre�x adapter (rather than retraining the entire VLM backbone) on a small set of

those examples, allowing DBOM to rapidly incorporate and detect new triggers with minimal overhead.

Although DBOM currently focuses on triggers in T, exploring zero-shot discovery of entirely novel trigger

patterns remains an important avenue for future work. Furthermore, the e�ectiveness of the model depends

on the careful tuning of hyperparameters such as λvis, as shown in our ablation study. Moreover, DBOM is

currently dependent on VLM encoders, leading to a dependency on the VLM’s pre-trained weights. If the

VLM fails to classify certain object classes or detect a trigger pattern, then both the visual prompt retrieval

and the pre�x-tuned text embedding can be skewed, leading to lower detection rates. Mitigating this risk

in the future may require �ne-tuning the VLM on more diverse, trigger-speci�c data, or swapping in more

powerful multimodal backbones as they become available. However, in this manuscript, we showed base

CLIP models are well adept for this task.

While our experiments so far have focused on a select set of backdoor triggers, we have not yet evaluated

DBOM against adversarial perturbations generated by methods like Projected Gradient Descent (PGD) [54]

or Fast Gradient Signed Method (FGSM) [55]. Such attacks work by distributing pixel-level noise within

a perturbation budget: when the budget is very small, the changes are imperceptible but o�en yield lower

attack success; when it is larger, the attack becomes more e�ective but also more noticeable to humans. We

believe DBOM’s disentangled trigger–object framework could be extended to handle perturbations with

higher budgets, where the noise forms a distinct visual signature similar to the currently tested backdoor

patterns and thus can cluster e�ectively in our visual prompt repository. In future work, we plan to explore

these alternative attack types to further test DBOM’s resilience. Lastly, evaluating DBOMon larger andmore

heterogeneous datasets and in real-world data-curation pipelines will further validate its practical utility.

7 Conclusion

In this paper, we introduced DBOM, a novel disentangled representation learning framework designed

to detect both seen and unseen backdoor trigger-object pairings in training datasets. By leveraging a

structured factorization of triggers and objects in the embedding space, DBOMenables robust generalization

to novel backdoor con�gurations that evade conventional defenses. Our approach integrates a visual

prompt repository and a dynamic pre�x adapter to enhance the separation of adversarial triggers from

underlying object representations. Experimental results demonstrate that DBOM signi�cantly improves

backdoor detection performance, outperforming SOA methods in identifying poisoned samples before

they compromise downstream model training. �is proactive approach not only enhances the security of

DNN training pipelines but also provides deeper insights into backdoor strategies by identifying the objects

associated with triggers, o�ering a novel method for defending against evolving backdoor threats.
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