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ABSTRACT: Deep neural networks (DNNs) and generative AI (GenAl) are increasingly vulnerable to backdoor
attacks, where adversaries embed triggers into inputs to cause models to misclassify or misinterpret target labels.
Beyond traditional single-trigger scenarios, attackers may inject multiple triggers across various object classes, forming
unseen backdoor-object configurations that evade standard detection pipelines. In this paper, we introduce DBOM
(Disentangled Backdoor-Object Modeling), a proactive framework that leverages structured disentanglement to
identify and neutralize both seen and unseen backdoor threats at the dataset level. Specifically, DBOM factorizes input
image representations by modeling triggers and objects as independent primitives in the embedding space through
the use of Vision-Language Models (VLMs). By leveraging the frozen, pre-trained encoders of VLMs, our approach
decomposes the latent representations into distinct components through a learnable visual prompt repository and
prompt prefix tuning, ensuring that the relationships between triggers and objects are explicitly captured. To separate
trigger and object representations in the visual prompt repository, we introduce the trigger-object separation and
diversity losses that aids in disentangling trigger and object visual features. Next, by aligning image features with
feature decomposition and fusion, as well as learned contextual prompt tokens in a shared multimodal space, DBOM
enables zero-shot generalization to novel trigger-object pairings that were unseen during training, thereby offering
deeper insights into adversarial attack patterns. Experimental results on CIFAR-10 and GTSRB demonstrate that
DBOM robustly detects poisoned images prior to downstream training, significantly enhancing the security of DNN
training pipelines.
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1 Introduction

As deep neural networks (DNNs) become more prevalent in applications such as natural language
processing [1-3] and object classification [4-6], they are increasingly being targeted by sophisticated security
threats [7,8]. The rise of generative Al [9-11] has enabled the large-scale creation of datasets sourced from
online repositories. Although these datasets improve model robustness, they often bypass rigorous vetting,
making them vulnerable to backdoor attacks [12-15]. Such attacks embed hidden triggers in training samples,
causing models to misclassify inputs containing the trigger, for example, altering a stop sign’s label to a speed
limit sign.

Recent work has focused on identifying backdoored samples in pre-trained infected models [16-19],
but less attention has been given to proactively scanning training data for suspicious triggers before the final
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model is trained. This lack of focus on the dataset creation phase represents a significant gap in input-level
backdoor defense strategies [20-23]. Malicious triggers can be embedded in training samples well before the
model is exposed to them, undermining the integrity of the entire training process. Addressing this stage
early in the pipeline not only prevents contaminated data from infiltrating the training process, but also
reduces the computational costs associated with post-training purification efforts [24,25]. Lastly, proactively
analyzing the dataset offers deeper insights into the adversarial logic behind these backdoors, specifically
how triggers interact with objects and how attackers strategically embed them to exploit vulnerabilities.

Although existing defenses can detect single or multiple backdoor triggers in a compromised data
set [26-30], they remain strictly trigger-centric, where flagged samples are discarded, and images of objects
classes bearing those triggers are ignored. This removes valuable co-occurrence information into how specific
triggers map onto particular objects, which could expose systematic attacker strategies. In realistic many-to-
many attack scenarios [31], where adversaries plant various triggers across a wide range of object categories,
a trigger-only approach would fail to recognize novel trigger-object combinations outside of its training set
of known trigger—object pairings. For instance, assume a square-patch trigger is only ever seen on stop signs
and a pixel-noise trigger only on speed-limit signs. If an attacker then applies that same square patch to
yield signs or the pixel noise to pedestrian-crossing signs (pairings never observed before) those trigger-
centric detectors may sharply degrade in performance, since they do not explicitly model which object the
trigger appears on. By contrast, a co-occurrence-aware model that simultaneously identifies both triggers
and object classes preserves the relational context between adversarial triggers and their targets. Rather
than excluding compromised samples, this approach leverages modular relationships to learn comprehensive
backdoor patterns and infer previously unseen trigger—object combinations. As a result, the model can
accurately recognize the underlying object despite the presence of a trigger, integrate attacked examples into
both training and inference workflows, and reduce false positives by distinguishing benign from malicious
features. Moreover, modeling trigger—object relationships provides deeper forensic insights into attacker
tactics, enabling dynamic update strategies that proactively defends models against evolving many-to-many
backdoor attacks. Overall, we can summarize that existing input-level defenses in current state-of-the-
art (SOA) attack scenarios remain strictly trigger-centric, where: (1) they identify and discard adversarial
samples, losing the underlying object semantics and missing the opportunity to reveal adversarial strategies,
(2) do not focus on concurrently identifying triggers and the associated object class, and (3) fail to generalize
to novel trigger-object pairings.

To address these gaps, we present Disentangled Backdoor-Object Modeling (DBOM), a proactive
framework based on VLMSs and prompt tuning [9], designed to identify and isolate unseen backdoor-object
configurations. Instead of inspecting a potentially compromised model, this approach focuses on learning
trigger-object configurations within web-scraped training images before they are ever fed into a downstream
model. Our method surpasses current SOA pre-training defense algorithms by detecting not only the types
of backdoor triggers in compromised datasets, but also the underlying objects they target, thereby capturing
the adversarial logic behind these malicious trigger-object pairings. Here, we define a trigger as the backdoor
attack pattern embedded into an image and an object as the benign semantic class being manipulated. DBOM
then factorizes these two primitives into independent embeddings (Fig. 1), enabling modular representations
of trigger—object configurations [32]. Furthermore, by capturing the relationship among triggers and objects
during training, previously unseen trigger-object pairings can be detected during inference, a problem
traditional single-trigger detection pipelines overlook. The contributions of our approach are as follows:
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o Weintroduce DBOM, a novel end-to-end disentangled representation learning framework that separates
triggers and objects into independent latent visual primitives. By leveraging cross-modal attention for
structured latent decomposition, DBOM aims to learn each trigger pattern and each object class in isola-
tion. At inference, it recomposes these known trigger and object embeddings to recognize combinations
never seen during training, achieving zero-shot generalization over trigger—object pairings and resulting
in a robust method against adaptive backdoor strategies.

o Our approach incorporates a dual-branch module that features a learnable visual prompt repository
along with a dynamic soft prompt prefix adapter for prompt tuning. The use of a learnable visual prompt
repository allows us to capture primitive-specific features for both triggers and objects, aiding in feature
disentanglement. Furthermore, dynamically tuning text prompt representations based on image content,
our module enhances the semantic context of each sample and improves the separation between trigger
and object features. This design allows the framework to capture diverse trigger patterns across multiple
object classes, overcoming the limitations of conventional defenses that assume a single, static trigger
per dataset.

« By integrating a proactive backdoor detection mechanism into the data curation process, DBOM
identifies unseen backdoor-object attacks before downstream model training begins. A composite loss
function that minimizes cross-entropy, disentanglement, and prompt alignment losses together ensures
that poisoned samples are identified and isolated for removal from the dataset.
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Figure 1: Overview of our disentangling process for trigger-object pairings. During training, the system learns separate
representations of triggers and objects. By factorizing these components, the model can generalize to unseen trigger—
object configurations, although they were never observed together during training

2 Related Work

Disentanglement involves separating visual primitives of images into independent components
[33-37]. A central strategy for addressing this task is to train models that learn these independent compo-
nents and recombine them in novel ways, thereby enabling the flexible recognition of previously unseen
trigger—object pairings. Li et al. [14] apply symmetry and group theory to model primitive relationships,
introducing a novel distance function. A Siamese Contrastive Embedding Network (SCEN) [38] embeds
visual features into a contrastive space to separately model primitive diversity. A retrieval-augmented
approach improves recognition of unseen primitive component pairings by retrieving and refining repre-
sentations [39]. Recent methods integrate vision-language models (VLMs) such as CLIP [9] to enhance the
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recognition of structured relationships between the underlying nature of images and text prompts. Composi-
tional Soft Prompting (CSP) [40] utilizes a static prompt prefix alongside learned primitive embeddings, with
predictions based on cosine similarity between text and image features. Later works remove the static prefix,
making the entire prompt learnable [41,42]. In the context of DBOM, disentangling triggers and objects
allows our model to factor visual embeddings into two primitive subspaces: one that captures adversarial
trigger patterns and one that encodes the class object semantics. Once these primitives are learned, unseen
trigger-object pairings can be inferred upon during testing.

Backdoor Attacks became prominent with the introduction of Badnets [12]. Badnets demonstrated how
adversaries can embed backdoors into DNNs by poisoning the training data with trigger-patterned images,
such as a single white square or pixelated patterns, to misclassify inputs. Liu et al. [13] introduced trojaning
attacks, which differ from Badnets, by reverse-engineering neuron activations to generate adversarial triggers
that maximize activations in specific neurons. Li et al. [43] explored techniques to make triggers more covert
to detection by implementing steganographic embedding, where backdoor triggers are hidden within images
at a pixel level. Recent backdoor attacks include Wanet [15], a warping-based trigger, which introduces
imperceptible image distortions as triggers instead of traditional noise perturbations.

Backdoor Defenses mostly operate in the adversarial machine learning life-cycle at the model level,
leaving the dataset vetting process largely unexplored [44]. Several works attempt to filter adversarial images
before training [20-22,29], but these rely on detecting known trigger-object configurations and fail to
generalize to unseen pairings. VisionGuard [21] compares the softmax outputs of original and transformed
images using metrics like the Kullback-Leibler divergence to detect attacks without altering the target
network. Deep k-NN [20] leverages deep feature space clustering and k-nearest neighbor voting to detect and
remove poisoned images from the training set prior to downstream model training. HOLMES [22] employs
multiple external detectors trained on both dedicated labels and top-k logits to capture subtle differences
between benign and adversarial inputs. Traditional backdoor defenses assume a compromised model and
attempt to mitigate attacks post-training [17-19]. However, these techniques reactively address attacks after
deployment by cleaning the model, whereas our approach proactively filters poisoned images before they
enter the downstream training pipeline, preventing backdoor contamination at its source. Furthermore, these
methods overlook the opportunity to identify unseen trigger—object configurations that were not seen in
their model training, which is addressed in this paper.

3 Preliminaries and Insights
3.1 Trigger-Object Representation

We define a backdoor configuration as a pairing of a trigger and an object, where the trigger serves as the
adversarial modification and the object represents the underlying semantic class being targeted (e.g., “stop
sign,” “yield sign,” “airplane”). Let T be the set of all possible triggers, and O be the set of object categories,
where T = {to, t1,...,t,} and O = {0¢,01,...,0,}. The complete set of potential trigger—object pairings
is given by P = T x O, where each pair (¢,0) € P corresponds to a unique backdoor attack configuration.
These pairings can be categorized into two groups: (1) seen pairings (Ps), which are explicitly observed during
training, and (2) unseen pairings (P,), which do not appear in the training set but may still be encountered
during deployment. These subsets are disjoint (P; N P, = &) and together form the complete space of possible
attack configurations (P; U P, = P). During evaluation, test samples are drawn from a predefined set Pest €
P, which contains both seen and unseen pairings. The objective of our approach is to learn a function f :
X — Pieqr, where X represents the input space of images containing these trigger-object configurations. The
function f is designed to map an image to its corresponding attack configuration, enabling generalization
to unseen trigger-object pairs that were not part of the training distribution. Furthermore, we note that
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the goal of this paper is not to train an infected model or defend against attacked models, but to detect
backdoored images before downstream model training begins.

3.2 Threat Model and Defender Goals

Threat Model. We assume an adversary injects backdoor attacks based on trigger—object pairings into a
web-scraped or publicly available dataset used for training a downstream DNN. The goal is to cause the model
to misclassify inputs containing triggers into a target label while maintaining normal classification on clean
images. Since large datasets are rarely vetted on a per-sample basis, malicious samples blend easily with clean
data. Furthermore, attackers can escalate this threat by injecting multiple triggers across different classes,
including novel, unseen trigger-object pairings, so that conventional defenses which expect a single static
trigger fail to detect them. Consequently, the compromised data is used in downstream training, embedding
hidden adversarial behaviors into the final model.

Defender’s Goal. The defender’s goal is to identify backdoored images prior to downstream model
training, ensuring they are isolated while minimizing the misclassification of clean images. Given a poten-
tially poisoned dataset that contains several triggers—object configurations, the defender must distinguish
legitimate images from those carrying triggers. Furthermore, by concurrently identifying both the trigger
and the underlying object, the defender learns vital information into the adversary’s strategies. Moreover,
separating the adversarial trigger from the underlying object enables the recovery of correct object semantics
in backdoored samples, eliminating the need to discard these adversarial samples from training or inference.

4 Proposed Framework

DBOM leverages CLIP as its backbone by freezing its pre-trained visual and text encoders. Let fy(-)
denote the CLIP image encoder and g4 (+) denote the CLIP text encoder. Given an input image x;, the image
encoder extracts visual features f, = fy(x;) € R?, which serve two purposes: (i) they are used to retrieve the
most relevant visual prompts from a learnable repository, and (ii) they provide the bias for shifting a set of
learnable prefix text tokens [v1] [v2] [v3] via a prompt adapter network. Unlike fixed prefix templates
(i.e.,a photo of),ourapproach employs prompt tuning, a technique where these prefix tokens are treated
aslearnable parameters and optimized end-to-end to capture task-specific context for each image. This allows
the text prompt to be tailored to the visual content of each image, promoting the alignment between visual
and textual modalities. The shifted prefix is then appended to the trigger and object word embeddings to
form the final prompt ¢, which is processed by the text encoder to produce text features f; = gs(#;) € R7%.
Lastly, f, and f; are decomposed and fused, and their joint representation is mapped into a separate pair
space where the similarity between the image and fused features helps determine the final trigger-object
prediction. Fig. 2 displays the overall architecture of the proposed approach.
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Figure 2: DBOM utilizes a visual prompt repository and a similarity-based retrieval mechanism to detect unseen
backdoor trigger-object representations through the use of CLIP’s pre-trained visual and textual encoders. During
training, each image retrieves visual prompts from the repository, shifts a learnable text prefix with a prompt adapter,
and fuses decomposed image-text features via cross-attention. During inference, the framework again retrieves the top
visual prompts, shifts the text prompt for each new image, and computes similarity scores to pinpoint unseen trigger-
object pairings. Lastly, in separate pair spaces, the logits are computed by comparing the fused image-text features with
the visual features from the frozen visual encoder, as well as the selected visual prompts and the text features from the
frozen text encoder. The highest-scoring trigger—object pair is then selected as the predicted configuration. By detecting
malicious seen and unseen configurations in this way, DBOM identifies backdoored configurations and isolates them
for removal prior to downstream model training

4.1 Visual Prompt Repository

The visual prompt repository comprises a collection of M learnable visual prompts {P;},, with each
prompt P; € R4 paired with a learnable key a; € R?. These prompts capture high-level visual semantics
and are refined during training. For a given image, cosine similarity is computed between the normalized
image features f, and each normalized key. Based on the similarity scores, the two most similar prompts
are selected. One is intended to align with the image’s trigger and the other with the object. To enforce this
specialization, we introduce two auxiliary losses. The trigger-object separation loss is formulated as:

. 1 N1 eXp(COS(ﬁ/(i))at(:izg ) 1
R ) <o) '
i= v > trig p v > Tobj

Because our primary objective is to accurately flag backdoored images, the loss function prioritizes the
trigger key by encouraging it to achieve a higher similarity score than the object key, with the object serving
as complementary context for the image. The visual prompt diversity loss is defined as:

RS (i) ()
Ly = N ;max(o, m — cos(atrig,aobj)), (2)

where m = 0.5 is a fixed margin. This term penalizes any excessive similarity between the retrieved trigger
and object visual prompts, thereby promoting disentangled features for more distinct representations [45].
Combining these terms yields:

ﬁvis = ﬁsep + £diV) (3)

which guides the prompts to distinctly capture trigger and object characteristics. During training, the visual
prompt repository is updated end-to-end with L. This ensures that the repository vectors are not static but
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are continuously refined to distinguish between trigger and object features. The final representation of the
retrieved visual prompts can be denoted by f,.;.

4.2 Dynamic Prefix Adapter

Traditional prompt tuning approaches [9,40,46] use a fixed soft prompt prefix, where a sequence such as
[trigger] [object] is appended with an initialized phrase a photo of. This means that the same
prefix is applied to every sample, regardless of the unique characteristics of the trigger or object in the image.
This prefix rigidity can hinder the system’s ability to accurately distinguish between different trigger—object
pairs. Motivated by the work in [46], we propose an adaptive prompt network module that dynamically
adjusts the learnable prefix tokens based on the visual content of the input image. This has been shown to
transfer the frozen backbone’s generalization power to entirely new tasks with very few labeled examples
[46-48].

Specifically, the prompt adapter utilizes the image features f, to compute a bias term that is added to the
base prompt tokens, thus tailoring the prompt to each individual sample. Besides, by dynamically shifting the
soft-prompt prefix based on each image’s visual features, the prompt prefix adapter aligns the text embeddings
more closely with the specific trigger and object primitives, which in turn lets the model accurately recombine
those known primitives into novel, unseen pairings at inference, improving zero-shot pairing performance.
The prompt adapter is implemented as a lightweight neural network defined by:

APNet(f,) =W, -0(W;- f, +b;) + by, (4)

where ¢ (-) denotes the ReLU activation function, and Wy, W5, b;, and b, are trainable parameters. The
output, ¢(f,), represents the bias added element-wise to the original prompt embeddings {6y, 61,...,0,}
via 07 = 0; + ¢;(f,) for i = 0,..., p. The final text prompt ¢; is constructed by appending {6, 6],...,0},}
with the trigger and object word embeddings, 6, and 0,, respectively. Lastly, ¢; is fed into the text encoder
to generate the text features f;.

4.3 Feature Decomposition and Fusion

To disentangle and jointly embed the representations of triggers and objects for backdoor detection, we
decompose and then fuse the visual features, f,, and the text features, f; [42]. We first isolate how each trigger
and object contributes to the text representation by averaging their respective logits. This decomposition
helps the model treat triggers and objects as independent primitives, ensuring that potential backdoor
triggers are not blended with the underlying objects during subsequent fusion. During training, we explicitly
supervise these decomposed features to capture the semantics of each trigger and object class.

Formally, we compute the trigger and object probabilities as follows:

exp(fy - f1)

P()’:f\x§9):W> (5)
p(y=o| x:0) = =2Ur S ©

< exp(fy f1)
0O
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where 7T is the set of possible triggers, O is the set of possible objects, and 6 denotes the learnable parameters.
We then optimize cross-entropy losses for the trigger (Ly,;) and object (Loy;) predictions:

1

Lyi=—-= > log(p(y =(t) | x; 9)), (7)
T (< 3yer:

Lobj=—= . log(p(y=(0)|x:9)), (8)
O] (2 3ye:

where P° denotes the set of seen triggers—object pairings.

Next, f, and f; are fused with a cross-attention mechanism that aligns the image and text features within
a joint embedding space. Specifically, we define the query Q from f;, and the key K and value V from f,. The
query identifies the textual aspects that need to be emphasized in the visual representation; the key-value
pairs in the visual space highlight regions or features corresponding to each textual element:

T

Attention(Q, K, V) = softmax( QK 9)

i)

where d is the feature dimensionality. The result of this cross-attention is f;_,,, a fused representation that
integrates the textual context of the triggers and objects with the corresponding visual features.

4.4 Training and Inference

Our framework trains in two main stages: we first adapt the soft prompt so that the fused features
fi—v correctly capture the target trigger—object pairings, and then we ensure the textual representation f; is
consistent with the retrieved visual prompt. We compute the probability of a trigger—object pair (t, o) by
comparing the image feature f, to the fused representation f;_,,:

exp(fy - fir)
22(11,0")ePs eXP(fv 'ft—W)

PSP()/ =(t,0) | x; 9) = (10)

Minimizing the cross-entropy over these probabilities yields the soft prompt alignment loss L. This
encourages the shifted soft prompt to correctly identify the trigger—object pairs for samples in P*. Next,
we require that the textual representation f; matches the retrieved pairing from the prompt repository. We
define:

exp(fret ft)

. (11)
Z(t’,o’)E'P‘ eXP(fret 'ft)

pret(}/ = (t,o) |x;0) =

Minimizing the cross-entropy over these probabilities produces the retrieval alignment loss L. The
total loss is a weighted sum of these components along with the prompt losses:

Etotal = ﬁret + /ltri_obj (Etri + £0bj) + Asp ﬁsp + Avisﬁviy (12)

During inference, the learned prompt adapter shifts the prefix tokens, the visual prompts are retrieved
and averaged, and the logits are computed based on the similarity between the image and text features in the
pair space. The predicted trigger—object text labels are selected by:

= argmax p,(y = (t,0) | x;6), (13)
(to)ePrest
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where P*¢** denotes the set of test trigger-object pairings, which includes seen and unseen configurations,
and p;, is computed following the same procedure in Eq. (10).

5 Experiments and Results
5.1 Experimental Setup

Attacks and Splits. We conduct experiments using two benchmark datasets: CIFAR-10 [49] and
GTSRB [50]. CIFAR-10 contains 50,000 training images and 10,000 test images across 10 object classes, while
GTSRB consists of 39,209 training images and 12,630 test images spanning 43 traffic sign classes. Recent
studies [21,51] have shown that adversaries can place backdoor triggers directly on traffic signs to mislead
advanced driver-assistance and autonomous-driving systems. Therefore, GTSRB provides a practical, safety-
critical testbed for evaluating our proposed data-level defense system. To introduce backdoor vulnerabilities,
we generate contaminated versions of all clean images using six attack patterns, while retaining the clean
images themselves as an individual class. The six widely recognized backdoor attacks which are employed
are: Badnets Square (Badnets-SQ) [12], Badnets Pixels (Badnets-PX) [12], Trojan Square (Trojan-SQ) [13],
Trojan Watermark (Trojan-WM) [13], [,-inv [43], and [y-inv [43]. These attacks encompass a diverse range
of backdoor characteristics, including universality, label specificity, and variations in trigger shape, size, and
placement. This results in a trigger—object pairing space of 301 unique pairings for GTSRB and 70 pairings
for CIFAR-10.

Implementation Details. We utilize PyTorch 1.12.1 [52] for the implementation of our model. The model
is optimized using the Adam optimizer [53] and is trained over 20 epochs on the previously mentioned
datasets. Both the image encoder and text encoder are based on the pretrained CLIP ViT-L/14 model, and the
entire model is trained and evaluated on a single NVIDIA 2080 Ti GPU. We set M = 20 for both GTSRB and
CIFAR-10. To assess scalability and accuracy trade-offs, all experiments are implemented with the smaller
CLIP variants ViT-B/16 and ViT-B/32, repeating the same training schedule and hyperparameters.

5.2 Unseen Trigger-Object Evaluation

This experiment evaluates the performance of DBOM in both the seen (S) and unseen (U) trigger—
object pairing scenarios. Specifically, the accuracy for each trigger-object pairing type is measured, assessing
both the Attack (trigger) and Object classifications separately. To provide a comprehensive evaluation, we
report the Harmonic Mean (HM) of the seen and unseen accuracies, which balances performance across
known and novel pairings. In addition, we calculate the area under the curve (AUC), which serves as the
primary metric for assessing the overall effectiveness of the model in detecting trigger-object configurations.
We compare DBOM’s results with CoOP [46] and CSP [40] since they represent two distinct approaches
for leveraging CLIP in modeling triggers and objects as separate primitives in the embedding space. CoOP
uses fixed, pre-computed natural language representations for the triggers and objects while learning only a
context prompt prefix to condition CLIP. In contrast, CSP learns soft prompts by fine-tuning learnable tokens
for triggers and objects, allowing for more adaptive reconfiguration and improved generalization to unseen
trigger-object pairings.

Table 1 demonstrates that DBOM outperforms the baseline methods across nearly all metrics. DBOM
improves AUC over 53% on GTSRB and nearly 43% on CIFAR-10. Furthermore, DBOM successfully
identifies over 98% of backdoor triggers on both benchmarks while classifying nearly 95% of objects in the
diverse GTSRB dataset (43 classes) and over 95% on CIFAR-10 (10 classes). Importantly, the high accuracy
observed for unseen trigger-object pairings indicates that our model can detect trigger-object pairings that
were not encountered during training. Note that DBOM not only generalizes to unseen trigger—object
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pairings, it also accurately identifies seen triggers: the “Seen” columns in Table 1 show over 92 and 96%
accuracy on known trigger patterns.

Table 1: Comparison of backdoor trigger—object identification methods on GTSRB and CIFAR-10. Bold indicates the
best results

Method CLIP model GTSRB CIFAR-10
S U Att. Ob;. HM AUC S U Att. Obj;. HM AUC
CoOP [46] ViT-L/14 28.26 28.95 3726 35.59 11.59 4.95 65.64 67.81 46.31 92.69 4747  35.67
CSP [40] ViT-L/14 57.34 77.86 65.27 76.85 51.07 38.03 70.28 77.81 63.34  95.28 6223 5042

DBOM (Ours) ViT-B/32 92.65 93.70 98.31 8710 88.05 85.03 92.09  93.76 98.19 87.38 86.76  84.43
DBOM (Ours) ViT-B/16 93.19 95.47  98.63  90.32 90.21 87.86 93.40  94.90 98.31 89.51  90.22 8737
DBOM (Ours) ViT-L/14 96.89 96.88 9815 95.00 93.94 9229 96.90 9815 98.80 9520 94.19 93.07

Moreover, we report the results of smaller CLIP variants in Table | and average run-times across both
datasets for each variant in Table 2. We can observe that the ViT-B/32 and ViT-B/16 models run at an
average of 2.53 ms and 4.27 ms/image, compared to ViT-L/14’s 10.69 ms/image, respectively. Importantly,
this reduction in compute does not result in a significant drop in accuracy: the ViT-B/32-based DBOM still
achieves AUC scores of 85.03% on GTSRB and 84.43% on CIFAR-10, while the ViT-B/16 variant increases
those figures to 87.86% and 87.37%. These findings suggest that our approach can leverage smaller CLIP
backbones for real-time deployment without sacrificing the high trigger-object identification performance
afforded by the larger variant.

Table 2: Inference runtime per image on a single NVIDIA 2080 Ti GPU (batch size 64)

CLIP Variant Inference time (ms/img)

ViT-B/32 2.53
ViT-B/16 4.27
ViT-L/14 10.69

Overall, DBOM’s zero-shot generalization capability to novel trigger-object pairings is achieved by
leveraging the disentangled representation learning approach, which factors triggers and objects into inde-
pendent primitives. Although previous methods aim for similar generalization, our visual prompt repository,
dynamic prefix adapter, feature decomposition and fusion greatly improve the ability to recombine these
learned representations to accurately identify novel trigger-object pairings. Therefore, DBOM offers robust
protection against evolving backdoor attack strategies by possessing the ability to identify seen configurations
with high accuracy and then leveraging those seen pairings to identify unseen configurations, resulting in
an adaptive method that can simultaneously evolve to adversarial strategies.

5.3 Backdoor Poison Detection Evaluation

DBOM is compared against conventional pre-training dataset cleaning approaches [20-22] by sim-
ulating a realistic scenario where the poisoning rate is set at 5%, 10%, and 15%, reflecting the poisoning
ratios often encountered in web-scraped datasets. Overall accuracy (Acc.) measures the proportion of all
images, both clean and poisoned, that are correctly classified. Futhermore, we report the attack recall (Rec.),
indicating the percentage of poisoned images that are successfully identified. Additionally, attack precision
(Prec.) measures the proportion of images flagged as attacked that are truly poisoned, and the F1 Attack score
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is the harmonic mean of attack precision and recall. Table 3 summarizes the performance of DBOM relative
to baseline methods.

Table 3: Poison detection evaluation at 5%, 10%, and 15% poisoning levels on CIFAR-10 and GTSRB. Bold indicates the
best results for each poisoning rate

Method Poisoning rate GTSRB CIFAR-10

Acc. Rec.  Prec. F1 Acc. Rec.  Prec. F1
VisionGuard [21] 5% 88.43 5707 2323 33.02 8556 48.57 1694 2512
10% 85.09 6216 3583 4546 88.34 6532 44.34 52.82
15% 90.23 6329 6899 66.02 90.94 70.17 69.58 69.87
Deep k-NN [20] 5% 99.46 89.13 100.0 94.25 98.81 7619 100.0 86.49
10% 9711 7535 95.65 84.40 9759 7590 100.0 86.30
15% 94.69 6459 100.0 7848 9745 8295 100.0 90.68
HOLMES [22] 5% 95.99 3556 9697 52.03 99.29 80.00 100.0 88.89
10% 9691 69.81 100.0 82.22 9753 78.43 100.0 8791
15% 93.62 5720 99.29 7258 9745 83.10 100.0 90.77
DBOM (Proposed) 5% 98.36 98.49 9883 98.63 9786 9723 98.86 98.19
10% 98.05 95.52 9821 96.83 98.80 98.79 99.05 98.85
15% 97.86 98.19 98.28 98.23 9758 9758 98.06 9771

Evaluation shows that DBOM consistently results in high overall accuracy while keeping the misclas-
sification of clean samples to a minimum. For example, on GTSRB, DBOM achieves overall accuracies of
around 98% with an attack recall consistently exceeding 97% and F1 scores near 98% across poisoning rates
of 5%-15%. Similar trends are observed on CIFAR-10, where overall accuracies are in the range of 97%-
98%, and both attack recall and F1 scores remain high. Furthermore, our experimental results reveal an
important trade-off between precision and recall. While methods such as Deep k-NN and HOLMES achieve
near perfect precision, they often suffer from lower attack recall (typically around 75%-80%), leading to
significantly lower F1 scores. DBOM’s modest decrease in precision is acceptable because missing a poisoned
image can be far more harmful than incorrectly flagging a few additional clean images, especially when
clean images make up the majority of the dataset. Lastly, unlike existing SOA methods that solely focus on
identifying whether an image is backdoored or poisoned, DBOM disentangles each image’s representations
into primitives to identify both the trigger and the object concurrently, thereby enabling it to detect
unseen configurations that were not encountered during training, a crucial improvement over existing
SOA methods.

5.4 Ablation Study

Impact of A,;;. We investigate the influence of the visual prompt loss weight, Ayis, on DBOM’s ability to
disentangle trigger and object features. Recall that the visual prompt loss Lyis = Lsep + Laqiy enforces higher
similarity for the trigger visual prompt and diversity between the trigger and object visual prompts. Note
that when Ay = 0.0, the visual prompt loss is removed from the training objective and the model loses
supervision to disentangle trigger and object features from the visual prompt repository, although the top
two most similar prompts are still selected.
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The results, shown in in Fig. 3, reveal that at A;; = 0.0, the model achieves the lowest performance
across all metrics. As Ay;s increases, the supervision provided by the separation and diversity losses leads
to improvements in both AUC and unseen accuracy, reaching a peak at A,;; = 0.5. This peak indicates that
a moderate emphasis on the separation losses most effectively refines the latent representations. Therefore,
the model is able to generalize more robustly to unseen backdoor configurations. While selecting the top
two prompts from the visual repository yields acceptable performance, incorporating the explicit separation
and diversity losses significantly improves overall performance across all metrics. While results on CIFAR-10
show a more stable rise and fall of seen, unseen, and AUC values, the results on GTSRB show more variation
over each tested A5 value.

Impact of A,; on Various Metrics (CIFAR-10) Impact of A,;; on Various Metrics (GTSRB)
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Figure 3: Impact of A,;; on AUC and seen/unseen accuracy

Learnable vs. Static Prefix. In this experiment, we replace the learnable soft prompt adapter with a
static fixed prompt prefix, a photo of, to isolate the influence of a constant prefix context on model
performance. Table 4 details the performance improvement across all metrics of the learnable prefix adapter
over the fixed prefix. For GTSRB, the learnable prefix leads to a 5.07% increase in object classification
accuracy, AUC 3.31% and seen accuracy 2.19%. This improvement is especially significant for object
classification, given that GTSRB has a diverse set of 43 classes, making the task more challenging. Similarly,
on CIFAR-10, we see a notable 1.59% increase on unseen pairings, 1.38% for object classification, and 1.92%
for AUC. The improvements can be attributed to dynamically adjusting the prefix tokens based on each input
image’s content, leading to better alignment between visual and textual representations and more precise
detection. This improves the model’s capability to distinguish between triggers and objects, especially when
encountering unseen adversarial configurations.

Table 4: Learnable vs. Static Prefix

Method GTSRB CIFAR-10
“a photo of” [v1][v2][v3] “a photo of” [v1][v2][v3]
Seen 90.10 92.29 (+2.19) 96.75 96.90 (+0.15)
Unseen 94.92 95.54 (+0.62) 95.75 97.34 (+1.59)
Attack 97.76 98.04 (+0.28) 97.74 98.80 (+1.06)
Object 84.09 89.16 (+5.07) 93.82 95.20 (+1.38)
HM 86.40 87.50 (+1.10) 93.01 94.19 (+1.18)

AUC 83.29 86.60 (+3.31) 9115 93.07 (+1.92)
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5.5 Qualitative Analysis

Fig. 4 displays randomly selected images from the test set along with the predicted trigger—object pairs
and their ground-truth labels. The examples in the top row highlight successful predictions, illustrating how
our framework can handle diverse triggers, object classes, and varying image quality. Even in blurry or
distorted cases, such as the “Priority Road” sign, the model still distinguishes both the trigger and the
object accurately.

GT: (badnetspixels, airplane) GT: (badnetssquare, ship) GT: (clean, deer) GT: (12inv, childrencrossing)
Pred: (badnestpixels, airplane)  Pred: (badnetssquare, ship Pred: (clean, deer) Pred: (12inv, childrencrossing) Pred: (10inv, keepleft) Pred: (trojanwm, priorityroad) Pred: (tro]dnsq stop)
]

e i B 0 (I S,

GT (badnetspixels, 30kmh) GT (badnelssquare dog) GT: (clean, leftcurve) GT: (12inv, airplane) GT: (10inv, keepleft) GT: (trojanwm, 100kmh) GT: (trojansq, horse)
cat) Pred: (clean, rightcurve) Pred: (I2inv, bird) Pred: (10inv, keepright) Pred: (trojanwm, 120kmh) Pred: (trojansq, dog)

%
CPRCERE

Figure 4: Ground Truth vs. Prediction of DBOM

GT: (10inv, keepleft) GT: (trojanwm, priorityroad) GT: (trojansq, stop)

Success Cases

Failure Cases

In contrast, the bottom row depicts failure cases where the predicted objects differ from the ground truth
(though the triggers are correctly identified). For instance, in the first error image, “30 km/h” is misclassified
as “No Vehicles,” likely due to the heavy blur on the sign. Likewise, in the second example, the model predicts
“Dog” instead of “Cat’, a plausible mistake given the animal’s appearance. The fourth image is misjudged
as a “Bird” rather than an “Airplane,” suggesting that the system recognized a flying object but failed to
capture its specific category. This can be attributed to some key features, such as text or outlines, being
nearly imperceptible and making the difference between classes difficult to discern. Overall, despite a few
misclassifications caused by blurred or partially obscured features, our model successfully distinguishes
a wide range of triggers and objects. This highlights its strong robustness against challenging real-world
conditions, even when subtle distortions could easily mislead other systems.

6 Discussion and Limitations

The empirical results demonstrate that DBOM not only achieves SOA performance in detecting both
seen and unseen trigger—object pairings, but also maintains high overall accuracy and attack recall even at
low poisoning rates. By proactively vetting training data, DBOM prevents backdoor contamination before
downstream model training, reducing the need for costly post-training purification and preserving clean
samples for model learning.

By separating the backdoor trigger from the underlying object semantics, DBOM not only flags
poisoned images, but also recovers the correct object label despite the presence of a backdoor pattern. This
has several key benefits. First, it preserves the majority of clean examples so that benign object information
is retained rather than discarded, maintaining dataset diversity and reducing the risk of eliminating clean
samples. Second, disentanglement yields finer-grained forensic insights into how specific triggers map
onto different object categories, revealing systematic attacker strategies and enabling more targeted threat
intelligence. Third, the modular nature of trigger and object primitives enables zero-shot detection of



1014 Comput Mater Contin. 2025;85(1)

trigger-object pairings that were unseen during training, addressing a crucial limitation in conventional
trigger-centric defenses. In practice, this means DBOM can adapt to evolving backdoor tactics across
multiple object classes, lower false-positive rates by distinguishing benign from malicious features, and
streamline training-time vetting helping prevent data contamination at its source rather than reactively
purifying a compromised model.

Despite these strengths, it is important to discuss DBOM’s limitations. Our design assumes that
the defender maintains a library of T candidate trigger patterns, drawn from previously seen backdoor
signatures. In our experiments, T is composed of six well-studied backdoor attacks, but the repository can
be extended over time as new threats emerge by disentangling unknown triggers and adding them to the
trigger repository. When novel trigger patterns are encountered in new data, we can fine-tune only the visual
prompt repository and prefix adapter (rather than retraining the entire VLM backbone) on a small set of
those examples, allowing DBOM to rapidly incorporate and detect new triggers with minimal overhead.
Although DBOM currently focuses on triggers in T, exploring zero-shot discovery of entirely novel trigger
patterns remains an important avenue for future work. Furthermore, the effectiveness of the model depends
on the careful tuning of hyperparameters such as A, as shown in our ablation study. Moreover, DBOM is
currently dependent on VLM encoders, leading to a dependency on the VLM’s pre-trained weights. If the
VLM fails to classify certain object classes or detect a trigger pattern, then both the visual prompt retrieval
and the prefix-tuned text embedding can be skewed, leading to lower detection rates. Mitigating this risk
in the future may require fine-tuning the VLM on more diverse, trigger-specific data, or swapping in more
powerful multimodal backbones as they become available. However, in this manuscript, we showed base
CLIP models are well adept for this task.

While our experiments so far have focused on a select set of backdoor triggers, we have not yet evaluated
DBOM against adversarial perturbations generated by methods like Projected Gradient Descent (PGD) [54]
or Fast Gradient Signed Method (FGSM) [55]. Such attacks work by distributing pixel-level noise within
a perturbation budget: when the budget is very small, the changes are imperceptible but often yield lower
attack success; when it is larger, the attack becomes more effective but also more noticeable to humans. We
believe DBOM’s disentangled trigger—object framework could be extended to handle perturbations with
higher budgets, where the noise forms a distinct visual signature similar to the currently tested backdoor
patterns and thus can cluster effectively in our visual prompt repository. In future work, we plan to explore
these alternative attack types to further test DBOM’s resilience. Lastly, evaluating DBOM on larger and more
heterogeneous datasets and in real-world data-curation pipelines will further validate its practical utility.

7 Conclusion

In this paper, we introduced DBOM, a novel disentangled representation learning framework designed
to detect both seen and unseen backdoor trigger-object pairings in training datasets. By leveraging a
structured factorization of triggers and objects in the embedding space, DBOM enables robust generalization
to novel backdoor configurations that evade conventional defenses. Our approach integrates a visual
prompt repository and a dynamic prefix adapter to enhance the separation of adversarial triggers from
underlying object representations. Experimental results demonstrate that DBOM significantly improves
backdoor detection performance, outperforming SOA methods in identifying poisoned samples before
they compromise downstream model training. This proactive approach not only enhances the security of
DNN training pipelines but also provides deeper insights into backdoor strategies by identifying the objects
associated with triggers, offering a novel method for defending against evolving backdoor threats.
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