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ABSTRACT: Synthetic biology is creating genetically engineered organisms at an increasing rate for many potentially valuable
applications, but this potential comes with the risk of misuse or accidental release. To begin to address this issue, we have developed
a system called GUARDIAN that can automatically detect signatures of engineering in DNA sequencing data, and we have
conducted a blinded test of this system using a curated Test and Evaluation (T&E) data set. GUARDIAN uses an ensemble
approach based on the guiding principle that no single approach is likely to be able to detect engineering with perfect accuracy.
Critically, ensembling enables GUARDIAN to detect sequence inserts in 13 target organisms with a high degree of specificity that
requires no subject matter expert (SME) review.

KEYWORDS: artificial intelligence, bioinformatics, biosecurity, engineering detection, machine learning

B INTRODUCTION Prior to the FELIX program, there did not exist any curated
data sets or dedicated tools for detecting genetic engineering. A
handful of tools had been developed for engineering attribution,
but these tools effectively assumed that a sequence’s
classification as engineered or natural was known beforehand.>®
More recently, a genetic engineering attribution competition has
been held and has yielded improved results over these first
tools,” but none of these approaches yet address the question of
whether a sequence has been engineered or not.

Synthetic biology is creating purposefully engineered organisms
at an increasing rate and with increasing complexity. There are
many valuable applications of synthetic biology, including
treating disease’ and enhancing production of crops” and
chemicals.® There is also, however, an increasing risk of misuse
or accidental release of genetically engineered organisms. The
goal of the IARPA FELIX (Finding Engineering-Linked

Indicators) program was to determine whether genetic In the domain of genome editing, work has been done to
engineering could be accurately detected, with a focus on develop tools to identify edits and off-target sites for CRISPR
detecting signatures of engineering in DNA sequencing data

(https://www.iarpa.gov/research-programs/felix). Once engi- Received: June 30, 2023 Sfftheticiciooy
neered DNA is detected, a future step would be to understand Revised: ~ February 28, 2024 ]
the function of the engineering or attribute it to its lab-of-origin, Accepted: February 28, 2024

which would be a key step toward deterring the malicious Published: March 12, 2024

application of synthetic biology and genetic engineering
technologies.*
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Figure 1. Configuration of GUARDIAN modules for analyzing FELIX T&E samples. Pill box-shaped nodes represent input/output data, while
rectangular nodes represent Dockerized software modules. Arrows represent the flow of data to/from modules. Dashed boxes group together like
modules. The modules for Prymetime,'® Abyss,"" and BGAF overlap to signify their tight integration as part of a single Docker container.

editing experiments,”” which could potentially be adapted to
detect CRISPR edits in samples of unknown provenance. While
these approaches would initially be limited to the detection of
small edits made using CRISPR-based technologies, they would
address a type of engineering signature that proved to be difficult
to detect by most systems as part of the FELIX program (small
edits as opposed to larger sequence inserts and deletions).

As part of the Guard for Uncovering Accidental Release,
Detecting Intentional Alterations, and Nefariousness (GUARD-
IAN) project under the IARPA FELIX program, we have
developed software modules and connected them into a system
that use a variety of techniques from bioinformatics, artificial
intelligence (AI), and machine learning to screen DNA
sequencing data for signatures of engineering. As part of
FELIX, we have conducted a blinded test of GUARDIAN
against samples provided by a Test and Evaluation (T&E) team.
In doing so, we have demonstrated that ensembling over
standardized evidence of engineering can be an effective
approach to automate the detection of sequence inserts in
large numbers of samples with unknown provenance. We will
show how ensembling can greatly increase specificity (true
negative rate) of detection with a minimal decrease in detection
sensitivity and without requiring subject matter expert (SME)
review. In addition, we will discuss lessons learned from
participation in the FELIX program and future directions for
detection of engineered organisms and beyond.

B RESULTS AND DISCUSSION

The design of our GUARDIAN whole-genome sequencing
analysis system is based on the guiding principle that no single
approach is likely to be able to detect every signature of
engineering for every potential use case with perfect accuracy.
Consequently, rather than architect GUARDIAN as a
monolithic system, we have loosely connected its modules by
standardizing their inputs and outputs in terms of a common
data model, sequence file formats (FASTQ, FASTA), and a
domain-specific JSON schema for evidence of engineering.
Critically, this enables us to rapidly reconfigure GUARDIAN’s
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modules for different use cases while still allowing us to
ensemble their detected signatures of engineering.

Figure 1 shows the configuration of GUARDIAN’s modules
that we applied to the final FELIX T&E test. In this
configuration, we send short-read sequencing data for a sample
to our two reads-first analysis modules, Targeted Search and
JHUARDIAN. These modules work in parallel to produce
signatures of engineering and information on sample taxonomy,
the latter of which can be used by other modules to optimize
their choice of model to use for analysis. In parallel, we send both
short-read and long-read sequencing data to the BBN Genetic
Anomaly Filter (BGAF), which assembles them into genomes
using our custom hybrid assembly pipeline Prymetime'’ and the
Abyss'" assembly tool. BGAF then taxonomically classifies each
assembled sequence contig and shares this information with the
other assembly first modules N-Gram, Hidden Markov Models
(HMM), and BED-DD, at which point they all work in parallel
to produce signatures of engineering. These are primarily
putative sequence inserts, although BED-DD focuses solely on
detecting sequence deletions.

Finally, we ensemble all modules’ signatures via a series of
pairwise sequence alignments and throw out any that do not
match at least one signature detected by another module.
Because each module uses different types of models, heuristics,
and in some cases training data, they are less likely to make the
same false positive calls. Thus, we can expect ensembling in this
manner to increase the overall specificity (true negative rate) of
our system, ideally without negatively impacting its sensitivity
too much. A decrease in sensitivity due to ensembling can occur
when one or more modules exhibit truly unique detection
capabilities (i.e, when they are capable of detecting signatures
that no other module can).

Table 1 counts all 100 samples tested during the final FELIX
T&E by their organism(s) and whether or not they have been
engineered via a sequence insert (see the Excel file in the
Supporting Information for additional sample metadata
including BioSample Accession Numbers). These samples
were estimated to have 20—40X sequencing coverage. Their
organisms include a diverse set of 16 species of bacteria, fungi,
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Table 1. FELIX T&E Sample Organisms and Number With/
Without Inserts

# samples without
insert

# samples with
organism insert
Arabadopsis thaliana 1 1

Bacillus subtilis

~

Citrobacter freundii

—_

Escherichia coli

Influenza A

Oceanobacillus oncorhynchi
Oryza sativa

P1 phage

Pseudomonas aeruginosa
Pseudomonas putida

Rabies lyssavirus

N O WD O W o = =N

Rhodosporidium toruloides
Saccharomyces cerevisiae
Salmonella enterica

T7 phage

Yarrowia lipolytica

bacteria + yeast mixture

metagenomic soil

[ T S T N O N S S NV R P N S SO S o0

8
0
2
bacteria mixture 0
0
4
4

metagenomic gut

&
=)

total

plants, and viruses. While the T&E samples did include types of
engineering signatures besides inserts such as small edits and
deletions, our analysis will focus on detection of inserts since
GUARDIAN as a whole was able to distinguish this signature
type from natural variation with the greatest consistency (see the
CSV file in the Supporting Information for a complete listing of
T&E engineering signatures by sample, and see the FASTA file
in the Supporting Information for each engineering signature’s
DNA sequence). Later on, we will discuss future approaches to
improve detection of subtler signatures of engineering such as
small edits.

Based on our results for the 100 T&E samples in Table 1, we
calculate that GUARDIAN's ensembled detection of samples
with sequence inserts has a sensitivity of 0.62 and a specificity of
0.95, compared to a slightly higher sensitivity of 0.65 but a
markedly worse specificity of 0.8 when using blinded SME
review to identify and discard potential false positive insert
detections (see Figure 2). Both SME review and ensembling
improve specificity significantly over a naive approach of calling
a sample engineered if any one of GUARDIAN’s modules detect
engineering in its raw results (0.8 and 0.95 versus 0.28,
respectively). In terms of processing time, however, SME review
took 5 days to complete, whereas ensembling took less than 2 h.
Thus, compared to SME review, ensembling greatly lowers the
time and expertise required to achieve engineering detection
with few false positives (high specificity).

With ensembling, GUARDIAN only makes two false positive
calls for the FELIX T&E samples: one for a sample of the E. coli
strain Evo1, wild-type (SAMN29939563) and one for a strain of
P1 phage that carries a deletion, P1_A(cra-darB),
(SAMN38524478). The precise cause of these false positives
is unknown, in part because these samples were the only
examples of their respective strains, and because there was only
one sample of P1 phage in the entire T&E batch. The most likely
explanation, however, is that these particular strains are not well
represented in the nonengineered training data for GUARD-
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Figure 2. FELIX T&E results for naive analysis of the raw results from
GUARDIAN’s modules versus applying SME review or automated
ensembling. These include (A) true positive, false negative, false
positive, and true negative (TP, FN, FP, and TN) sample counts for
these three approaches and (B) sensitivities and specificities (true
positive and true negative rates) calculated from these sample counts.

IAN, and they also include sequences that are commonly used in
artificial cloning vectors and may be mistaken for engineering.

As for the 23 false negative calls that GUARDIAN makes with
ensembly, we first examined whether the taxonomy of the host
organism appears to have any effect on these missed detections.
As shown in Figure 3, while samples of some organisms such as
E. coli, P. putida, soil (containing engineered P. aeruginosa), and
Influenza A are fractionally overrepresented among false
negative samples when compared to their fractions among
positively engineered samples, this observation is also consistent
with their overrepresented fractions among samples engineered
with sequence inserts having total length less than 1000 bp. In
other words, missed detections in samples of these organisms
seem more likely to have been caused by the character of these
organisms’ engineering (i.e, having a larger fraction of their
samples engineered with short inserts compared to other
organisms) than their taxonomy. We will see this again shortly
when considering the limits of detection of this configuration of
the GUARDIAN.

Ultimately, rather than host organism or another factor, it
appears that total insert length and the proportion of engineered
cells have the greatest effect on the performance of GUARD-
IAN’s ensembled detection capability. If we exclude samples
based on GUARDIAN’s apparent limits of detection in Figure 4
(total insert length greater than 1000 base pairs, engineered cell
fraction greater than 5.5 X 107%), then 19 out of 23 false
negatives are removed and sensitivity rises from 0.62 to 0.9 with
no loss in specificity. This leaves only four false negative samples:
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Figure 3. Analyzing the potential effect of host organism taxonomy on GUARDIAN'’s false negative calls with ensembling. Shown here are fractions of
samples of different host organisms among samples that are positively (P) engineered, false negatives (FN) missed by GUARDIAN, and positively
engineered with sequence inserts having total length less than 1000 bp. The label “Meta. Soil” refers to metagenomic soil samples containing
engineered P. aeruginosa (SAMN38676624-7), while “Meta. Gut” refers to metagenomic gut samples evenly divided between those containing
engineered S. enterica (mouse cecal, SAMN37954766-7) and engineered E. coli (cow rumen, SAMN38676619-20).
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Figure 4. FELIX T&E true positive (TP) and false negative (FN)
sample counts by (A) total insert length and (B) engineered cell
fraction.

two of S. enterica strain JE4199-cured (SAMN38524180 and
SAMN38524181, spiked with a compound insertion of 11,184
bp at 1/20 and 1/30, respectively), one of S. cerevisiae strain
LGS811-9A (SAMN37931218, carrying a new TY1 transposon
engineered to integrate at the URA3 gene on chromosome V),
and one of Y. lipolytica strain pexl7-1 (SAMN37931223,
carrying an insertion of a SacC gene disrupting URA3). In the
case of the S. enterica samples, these may have been missed since
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they had the lowest engineered cell fractions (1/20 and 1/30) in
a group of samples of the same strain but different dilution
factors.

Table 2 shows the effect of excluding samples based on a low
total insert length or engineered cell fraction alone. Excluding

Table 2. GUARDIAN Sensitivity and Specificity Outside/
Within Limits of Detection

samples of all total
insert lengths

samples with total insert

length length >1000 bp

parameter

samples of all engineered
cell fractions

sensitivity = 0.62
specificity = 0.95
sensitivity = 0.67
specificity = 0.95

sensitivity = 0.84
specificity = 0.95
sensitivity = 0.9

specificity = 0.95

samples with engineered
cell fraction >5.5E-06

samples with total insert length of 1000 bp or below removes 16
out of 23 false negatives and causes sensitivity to rise from 0.62
to 0.84. For reference, the average gene length in prokaryotes
such as bacteria is close to 1000 base pairs and is over 1300 base
pairs in eukaryotes such as yeast and plants. Excluding samples
with engineered cell fraction below 5.5 X 107%, on the other
hand, removes 5 out of 23 false negatives and only causes
sensitivity to rise from 0.62 to 0.67. Note that, while
GUARDIAN’s apparent limits of detection are inserts greater
than 1000 bp in length and engineered cell fractions greater than
5.5 % 107%, these limits are for ensembled detection and do not
necessarily extend to GUARDIAN’s individual submodules,
which in some cases may have lower limits. Without significant
tuning, however, the results of individual modules that go below
these limits of detection likely require SME review, which may
not be feasible for use cases involving large numbers of samples.

We also examined the performance of GUARDIAN’s
individual modules to determine their contribution to the
overall T&E results. Specifically, we looked at these modules’
informedness (sensitivity + specificity — 1) for detection of
insert samples with and without SME review and ensembling
(see Figure S). Without any SME review or ensembling, most
modules have an informedness less than or equal to 0.1, with two
notable exceptions being HMM (0.3) and N-Gram (0.18). This
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Figure S. Informedness (sensitivity + specificity — 1) of GUARDIAN
and its submodules during the FELIX T&E. Informedness is shown for
three different approaches to processing calling samples engineered
based on module signatures: calling samples engineered when any
signature is present in the raw results, calling based on SME review of
signatures, and calling based on automated ensembling of signatures.

is likely due in part to HMM and N-Gram’s implementation of
better controls to avoid false positive calls. These controls
include HMM’s exclusion list of UniVec sequences aligning to
the reference genomes for our target organisms and N-Gram’s
BLAST-based check of whether potential engineered sequences
align to these reference genomes with high coverage.
Interestingly, two of GUARDIAN’s modules with the lowest
informedness prior to SME review or ensembling (JHUAR-
DIAN and Targeted Search) have the greatest informedness
afterward (0.53 and 0.51, respectively). The initial low
informedness of JHUARDIAN and Targeted Search is due to
their low specificity (0.4 and 0.51, respectively, see Figure 6),

B Raw Sensitivity Ensembling Sensitivity [l Raw Specificity Ensembling Specificity

1.0

GUARDIAN  JHUARDIAN  T_SEARCH HMM NGRAM BGAF

Figure 6. FELIX T&E sensitivity and specificity for naive analysis of the
raw results from GUARDIAN’s modules versus automated ensembling
of their engineering signatures.

which is partly caused by their having less stringent controls
implemented relative to other modules. Using ensembling,
however, we can increase their specificity with little or no
decrease in their initially high sensitivity. This high sensitivity
relative to other modules is partly because JHUARDIAN and
Targeted Search, as reads-first modules, were the only ones able
to analyze all eight engineered metagenomic samples. Many of
these samples could not be assembled in a tractable amount of
time during the T&E using Prymetime'® or Abyss,"" although, in
the future, this could be optimized (for example, by adding
additional taxonomic classification steps of raw reads prior to
assembly). In addition, there are some assembly first modules
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(primarily BGAF), which could be reconfigured to analyze raw
reads as needed.

While every module increased in specificity and most did not
decrease in sensitivity following ensembling, there were two
(JHUARDIAN and BGAF) that had small decreases in
sensitivity. This is because these modules were unique in
being the only modules to detect sequence inserts in certain
samples, which may be due to the fact that both of these modules
use BLAST'” to match suspicious sequences against NCBI and
not just UniVec, thereby increasing the likelihood of their
detecting some genomic inserts that would be missed by
approaches focused on plasmid vector sequences.

Finally, we note that ensembling yields roughly equal or better
performance than SME review for every one of GUARDIAN’s
modules. Only two of GUARDIAN’s modules (JHUARDIAN
and BGAF) experience any loss in sensitivity due to ensembling,
and this is because they are able to detect some signatures found
by no other module. In addition, the informedness of
GUARDIAN'’s ensembled approach as a whole is greater than
its best performing module (0.57 versus 0.53 for JHUARDIAN),
and the latter is not possible without ensembling or a time-
consuming SME review.

To summarize, we have designed GUARDIAN to be a
collection of software modules loosely connected using a
common data model. This allows us to not only rapidly
reconfigure GUARDIAN's modules for application to different
use cases, but it also enables us to readily ensemble their output
signatures of engineering, even as new modules are added to the
system. Most significantly, ensembling gives us the ability to
quickly analyze evidence of DNA engineering while requiring
less expertise and maintaining a high degree of specificity. This
makes ensembling well-suited as a heuristic for implementing
systems to detect engineering in large numbers of samples of
potentially unknown provenance at a high rate of throughput.
Another benefit of ensembling that we have demonstrated
during the FELIX T&E is that not all modules need to be
especially well-tuned. Some modules can be overly sensitive and
others can be overly specific, but ensembling will help to
produce a system that has performance greater than any of its
individual parts.

Future Directions. Next, we discuss five future directions
that are key to facilitating the deployment of GUARDIAN and
similar systems for the detection of genetic engineering and
related applications.

Develop Standards and Associated Tooling for Modeling
Evidence of Genetic Engineering. Data standards are a critically
important but often overlooked component of Al and machine
learning. For GUARDIAN, our development of a data model
and associated JSON schema to represent evidence of DNA
engineering was absolutely necessary to permit ensembling over
the output of five different modules and enable highly specific
detection of sequence inserts with no SME review. In addition,
while our ensembling approach during FELIX T&E primarily
focused on pairwise alignment of sequences, our data model
encodes other useful metadata that could be used to compare
engineering signatures, such as assembly coordinates and host/
insert taxonomy. Going forward, standards such as these should
be disseminated through open source projects such as the
Synthetic Biology Open Language (SBOL)" to facilitate
collaboration between the greater Al, synthetic biology, and
biosecurity communities and help establish networks of
interoperable detectors at different organizations.
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Curate Data Sources for Natural Sequences. A very
common failure mode among all FELIX performers was the
presence of engineered sequences that were not labeled as such
in training data obtained from public databases like NCBL
Errors like these reduce the sensitivity of anomaly-based
approaches to engineering detection by causing them to filter
out engineered sequences as though they were native to the host.
Addressing this issue required weeks of SME effort to curate
genomes for new target organisms and build exclusion lists for
genomes that contained engineering. In addition, recent studies
have highlighted the pitfalls of using general purpose sequence
repositories such as NCBI to train screening systems.'*
Consequently, new databases and methods are needed to
aggregate and curate natural sequence data for the purposes of
biosecurity. In addition, new approaches to screening are needed
that are robust to mislabeled training data (whether uninten-
tional or deliberate).

Develop and Aggregate Data Sources for Engineered
Sequences. While the argument can be made that additional
natural sequence data are needed to enhance anomaly-based
approaches to engineering detection, the space of unknown
natural DNA is very large, changes continuously, and will be
difficult, if not impossible, to characterize fully. Engineered
sequences, on the other hand, are far fewer in number and do not
change as frequently but have even less availability via publicly
accessible data sources. Based on our experiences during FELIX,
signature-based approaches trained on engineered sequences
were essential for handling real-world samples that contained
many different species and novel natural sequences that could be
mistaken for engineering by anomaly-based approaches alone.

Enhance Methods for Detecting Subtle Signatures of
Engineering. More examples of engineering will also likely be
crucial for detecting signatures of engineering that are subtler
than sequence inserts such as small sequence edits and deletions.
Because these signatures can be difficult to distinguish from
natural sequence variation, it becomes necessary to consider
their greater sequence context in terms of whether they occur in
features known to work together or that have been previously
engineered or whether they occur near sequence features
required for making sequence modifications (such as CRISPR
PAM sites). To obtain greater sequence context, it will not only
be important to improve pipelines for sequence annotation and
their training data, but it will also be vital to develop methods for
generating more contiguous genome assemblies (such those
produced by our Prymetime assembly pipeline'®).

Enhance Methods for Analysis of Complex Metagenomic
Samples. Real-world samples are frequently metagenomic and
contain DNA sequences from many different species that can be
difficult to assemble into contigs. Consequently, we found it
valuable to have modules such as Targeted Search and
JHUARDIAN for directly analyzing sequencing reads or filtering
them before assembling a much smaller fraction of the genome
for subsequent analysis. To better prepare GUARDIAN and
other engineering detection systems for deployment, we
recommend adapting approaches that nominally require
whole-genome assemblies as input to alternatively analyze
filtered sequencing reads and/or partial assemblies instead.
Furthermore, given our experiences using JHUARDIAN and
Targeted Search during the FELIX T&E, we recommend using
metrics such as read depth to avoid false positives during reads-
first analysis due to errors in sequencing, assembly, and/or
sample preparation.
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Decompile Engineered Sequence Function and Attribute
Lab-of-Origin. Beyond engineering detection, our work on
FELIX could be extended to help the biosecurity community
answer more relevant investigative questions about the function
or purpose of an engineered sequence and its lab-of-origin. In
particular, we can imagine developing a biological decompiler
that takes known design motifs linked to specific biological
functions or laboratories and maps these motifs to detected
signatures of engineering and other predicted sequence features.
Such a decompiler would not only be useful for the purposes of
biosecurity but could also significantly enhance Design-Build-
Test-Learn (DBTL) cycles for synthetic biology by supporting
automated quality control checks on built sequences against
their original design specification.

B METHODS

GUARDIAN. Our heuristic approach to ensembly consists of
aligning the DNA sequence signatures detected by its modules
and grouping them based on their sequence similarity.
GUARDIAN then calls a sample engineered if it has at least
one group of signatures that originated from at least two
different modules.

To form DNA signature groups, GUARDIAN pairwise aligns
a target sequence with those in any available groups until a
matching sequence is found, in which case the target sequence is
added to the matching sequence’s group. If no match is found,
then the target sequence becomes the sole member of the new
signature group. All sequence alignments are performed using
the BioPython'® PairwiseAligner class and the following
parameters: match_score 1, mismatch_score 2, and
internal_gap_score = —2.5. An alignment between a pair of
sequences is accepted if both are >20 bp in length and if the
alignment score is greater than max (0.5L, L-0.0005L*), where L
is the length of the shorter sequence in the pair. This is a sliding
scale threshold for which a sequence with a small L (100s of base
pairs) must completely overlap with its partner to be considered
a match, whereas a sequence with a large L (1000s of base pairs)
can overlap by just half of its length.

To produce DNA sequence signatures for ensembling, most
of GUARDIAN’s modules combine anomaly-based and
signature-based strategies for engineering detection. Anomaly-
based strategies use models of natural sequences to predict
whether a new sequence is unnatural. Signature-based strategies,
on the other hand, use models of engineered sequences to
predict whether a new sequence is engineered. Next, we will
briefly discuss how each of GUARDIAN'’s modules implements
these strategies and key distinctions between them, including
whether they analyze sequencing data directly or whether they
require sequencing reads to be assembled into contigs first.
BED-DD is excluded from this discussion, since it was used to
detect sequence deletions rather than inserts and was not
included in our ensembling approach.

JHUARDIAN. This read analysis module includes taxonomic
classification with Kraken'® and Bracken,'” read mapping with
Bowtie,'® read assembly with Megahit,'” and sequence
annotation with BLAST. The Kraken and Bracken methods
are run with the largest available prebuild Kraken database with a
read length of 300 and read counts down to the species level.
Bracken results are parsed to identify taxa at the family level that
account for at least 1,000,000 reads or 5% of the total reads
(these parameters are adjustable and were chosen according to
the anticipated data). For anomaly-based detection, the
reference genomes for all of the corresponding species are
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gathered from NCBI RefSeq and used to generate a bowtie2
index. Reads are then mapped using bowtie2 using parameters
“--end-to-end”, “--very-fast”, and “--no-discordant”. The un-
mapped reads are collected and assembled using Megahit with
default parameters. Megahit assemblies with at least 10 reads are
then annotated using BLAST. The minimum read count of 10 is
an adjustable parameter, and for low-coverage sequencing, a
read count of 1 provides improved sensitivity at the expense of
greater computational time. The BLAST annotations are
classified as signatures of engineering if the taxonomic
classification does not match the host organism’s, or if a
suspicious keyword is present in the description (“artificial”,
“cloning”, “mutant”, “synthetic”, or “vector”). For signature-
based detection, JHUARDIAN filters in reads that map to
engineering vector sequences in the UniVec database.
JHUARDIAN then assembles the reads that survive filtering
and uses BLAST against the NCBI database to annotate the
resulting contigs, as described above.

Targeted Search. This read analysis module uses the
Burrows-Wheeler Aligner (BWA)* to implement signature-
based detection of engineering. Targeted Search focuses on
identifying engineering signatures in 300 bp Illumina reads.
First, Targeted Search uses BWA to align a sample of Illumina
reads against the reference genomes for our target organisms and
to a curated list of sequence features commonly used in genetic
engineering (named FUNYES). Then, a series of filtering steps
can limit the list of suspicious reads to those for which there are
partial, nonoverlapping alignments to both the closest matching
reference genome and a sequence feature in FUNYES. These
partial alignments suggest that an engineering sequence feature
has been inserted into the target organism’s DNA. Alternatively,
Targeted Search can retain all reads with alignments to a
sequence feature in FUNYES, which is the mode that we used in
this work (this enables detection of engineering sequence
features in foreign plasmid vectors). Targeted Search calls a
sample engineered if it contains at least 10 reads that align with a
sequence feature in FUNYES (this is an adjustable threshold).

BBN Genetic Anomaly Filter (BGAF). This sequence
analysis module is based on techniques from malware detection
that were later adapted for pathogenic DNA screening as part of
BBN’s FAST-NA tool.'* BGAF includes whole-genome
assembly with Abyss'' and Prymetime'® (our custom hybrid
assembly pipeline) taxonomic classification and read mapping
with FAST-NA, and annotation with BLAST. Prymetime uses
the assembly tools Flye*' and Unicycler”” to combine short-read
and long-read sequencing data to produce highly contiguous
genome assemblies.

The inputs to the training process for BGAF consist of
sequences for the target organism (preferably reference
genomes) formatted as FASTA and curated to remove any
sequences that contain engineering. To train on a target
organism, BGAF extracts all k-mers of length k = 16 from the
sequences in the corpus for that target organism and then inserts
them into a Bloom filter. The Bloom filter is a very space efficient
data structure that has a function similar to that of a “set” in
higher level languages, such that k-mers from a new sample can
be tested for membership in the Bloom filter.

The analysis steps performed by BGAF on each sample
separately are as follows:

1. Assembly: The input to the assembly stage consists of
both Illumina short reads and Nanopore long reads. The
Ilumina reads are assembled into contigs using Abyss,
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and both the Illumina and Nanopore reads are assembled
into contigs using GUARDIAN’s Prymetime assembly
module. If the setting for the “AssemblerTypes”
parameter in the configuration file is for “illumina” and
“nanopore”, both Abyss and Prymetime will be run. If
only “illumina” is set, only Abyss will be run. Some of the
contigs produced by Abyss will be subregions of the
contigs produced by Prymetime. BGAF uses MUMmer””
to find those Abyss contigs that are wholly contained
within a Prymetime contig and removes them from the
final assembly.

2. Taxonomic classification: BGAF classifies the contigs in
the final assembly by comparing them to the Bloom filters
for each target organism. Specifically, BGAF breaks each
contig into k-mers and checks them against the Bloom
filters for each target organism one at a time. If there is one
target organism that all k-mers in a contig match, then that
contig is classified as that organism and no further checks
are performed on its k-mers. If there is no such organism,
BGAF then determines if the majority of the contig’s k-
mers match a single target organism, in which case the
contig is as classified as that organism. If there is no such
majority, then the contig is classified as “unknown” and is
not subject to additional analysis by BGAF.

3. Region of interest (ROI) extraction: At this point, each
contig has a taxonomic classification. BGAF then checks
the k-mers from each contig classified as a particular
organism against that organism’s Bloom filter and collects
the k-mers not found in the filter along with their contig
locations. Using this location information, BGAF
assembles the filtered, overlapping k-mers into regions
of interest (ROIs). BGAF then drops any ROIs less than
175 bp in length and submits the remaining ROIs to
BLAST analysis.

. BLAST analysis and scoring: BGAF uses BLAST to align
each ROI against a selected NCBI mirror and our
FUNYES list of common engineering sequence features.
BGAF then retains and calls “engineered” any ROI that
(a) matches an NCBI record with a suspicious keyword in
its English language description such as “Vector”,
“Synthetic”, or “Complementation Plasmid”, (b) matches
a sequence feature in our FUNYES list, or (c) is greater
than 300 bp in length. In this work, however, we did not
retain long ROIs without a BLAST match.

HMM. This genome analysis module uses Hidden Markov
Models (HMMs) constructed from the aligned reference
genomes of our target organisms to compute HMM scores for
sample assemblies and BLAST ROIs with high scores. The
training of an HMM for a new target organism involves several
key steps:

1. Sequence alignment: First, we align chromosomal
sequences from the reference genomes for the target
organism undergo using the progressiveMauve”* multiple
sequence alignment tool with default parameters.

2. HMM model construction: Next, we construct an HMM
model for each chromosome by computing transition and
emission probabilities for every position, utilizing a
preselected reference genome. In these models, each
column of symbols in the alignment is represented by a
frequency distribution of four nucleotides, including
insertions and deletions as states. The model records
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Figure 7. Diagram summarizing key classes and relationships in the GUARDIAN data model. Each box represents a different class of evidence, and
each arrow represents a relationship between classes. The beginning of each arrow is a closed or an open diamond. A closed diamond indicates that a
relationship is a strict “contains” relationship in which the object of the relationship does not have that relationship with any class instance other than
the subject of the relationship (e.g., each instance of the Region class is contained by a single instance of the ReadReference class, ContigReference
class, or Alteration class). An open diamond indicates that a relationship is a loose aggregation in which the object of the relationship is referenced by its
unique ID and can be the object of other relationships as well (e.g., an instance of the Feature class can be the derived feature of one instance of the
Alteration class and the target feature of another instance of the Alteration class).

both emission probabilities and the probabilities of
transitioning from one state to another.

. Vector exclusion list: To obtain organism-specific “vector
exclusion lists”, we BLAST sequences from the UniVec
database against the reference genomes for our target
organisms and add any matches to said lists.

Following training, analysis with the HMM module consists of
the following steps:

1. Sequence alignment: We first align sample sequences
against the reference genome for a target organism using
the progressiveMauve multiple sequence alignment tool.

. HMM scoring: Following alignment, we use the HMM
model trained for the target organism to score all sample
sequences. This process uses the sample sequence
alignment as input to the HMM model, resulting in the
multiplication of emission and transition probabilities and
the calculations of a probability (HMM score) for each
nucleotide position or insertion/deletion within the
sample sequences. We do not penalize “deletion to
deletion” transitions in the HMM models to account for
lower sequencing coverage in some samples.

. HMM peak scoring: Next, the HMM module detects
peaks or regions with significant sequence deviations from
the pretrained profile above an organism-specific thresh-
old (which we determined via testing with data outside of
the T&E data set analyzed in this work). Then, the HMM
module computes an overall HMM peak score by
integrating the area under all peaks.

. BLAST analysis and final decision: Finally, the HMM
module BLASTs the HMM peaks against the UniVec
database. As previously described, matches containing
sequences from the vector exclusion lists are filtered out.
A sample sequence is then called “engineered” if its overall
HMM peak score exceeds an organism-specific threshold,
or if its number of significant BLAST matches against
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UniVec exceeds zero (Bit score >50, E-value >1el0, and
vector coverage >65%).

N-Gram. This sequence analysis module uses n-gram
language models constructed from the reference genomes of
our target organisms to compute sequence entropy scores for
sample assemblies and BLAST sequences with high scores. In
this work, N-Gram used lists of reference genome FASTA files as
inputs to train classic n-gram language models (LMs) with n =
14 or n = 13 using the SRI language modeling (SRILM) toolkit™
or a custom script.

For analysis, N-Gram uses a list of LMs and FASTA files as
input, with the latter preferably containing sequence contigs
assembled from a sample. Raw reads can be used as input to N-
Gram, but this may not be practical, except in cases when the
number of reads is small enough to preclude genome assembly.
For efficiency, input sequences should ideally be taxonomically
classified using another module such as JHUARDIAN or BGAF,
although N-Gram can optionally classify input sequences based
on the minimum sequence entropy (that is, which organism’s
LM computes the least entropy for the input sequences). N-
Gram performed the following analysis steps:

1. Entropy calculations: Given list FASTA files and
candidate LMs for analysis, N-Gram generates base pair
entropy scores for each combination of a file and LM.

. ROI extraction: Given sequences and their base pair
entropy scores, N-Gram extracts ROIs containing a high
proportion of base pairs with entropy above an organism-
specific threshold (also determined via testing with data
outside of the T&E data set analyzed in this work).

. ROI postprocessing: Finally, N-Gram can invoke various
postprocessing steps for additional information relevant
to engineering detection. For example, N-Gram can
BLAST ROIs against UniVec, our FUNYES list of
common engineering sequence features, and reference
genomes for our target organisms, then filter out ROIs
based on their matches (or lack thereof) to these
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resources. In addition, N-Gram can use an LM trained on
UniVec and FUNYES to compute entropies based on
how different samples are from known engineering
sequences, then combine these entropies with those
based on differences from natural sequences to generate a
likelihood ratio score that captures whether a sample
appears engineered in addition to being unnatural. In this
work, we filtered out N-Gram ROIs with high coverage
BLAST matches to the reference genomes for our target
organisms, and we called the remaining ROIs engineered
if they had a BLAST match to UniVec or FUNYES.

GUARDIAN Data Model. Our data model represents and
aggregates evidence of engineering in terms of two primary
classes: Detections and Features (see Figure 7). Features
represent identified sequence features of a potentially known
function (e.g, pBAD promoter). By contrast, Detections can
provide metadata on the location within a read or assembly
contig where engineering has been detected and metadata on the
supposed sequence alteration (inset, deletion, etc.) represented
by the engineering. The engineering in question could be a
known feature, but this is not a strict requirement (a sequence
insert can be detected without knowing that it is the pBAD
promoter).

We have implemented this data model as a JSON schema and
made it available with documentation on GitHub as part of the
Minimum Information for Detection of Engineering (MIDOE)
repository (see the Software and Data Availability). This schema
enables us to validate that engineering signatures detected by
different modules are comparable and gives us the ability to
access the metadata necessary to ensemble them. For
ensembling, we have written a Python application named
DetectionsToCSV that takes instances of GUARDIAN’s JSON
schema as input and produces an instance of the JSON schema
that groups engineering signatures using the pairwise alignment
procedure discussed at the beginning of this section. In addition
to ensembling, DetectionsToCSV can produce a CSV spread-
sheet summary of its output for quick review by an analyst.

T&E Results Analysis. We compared the groups DNA
engineering signatures produced by GUARDIAN against insert
signatures in the T&E samples by pairwise aligning all
signatures’ sequences in accordance with GUARDIAN’s
ensembling procedure described at the beginning of Methods.
If at least one engineering signature in a GUARDIAN group
matched an insert signature in a sample, then we called the
sample a true positive (TP); otherwise, we called it a false
negative (FN). If GUARDIAN produced any engineering
signature for a sample containing no insert signatures, then we
called it a false positive (FP); otherwise, we called it a true
negative (TN). Metadata for T&E samples such as host
organism, whether or not they contain an insert, their
engineering signatures, and these signatures’ sequences were
obtained from the files generated by the FELIX T&E team and
are listed in the Supporting Information.

In the 100 T&E sample we received, there are 1004
engineering signature representing 234 unique elements. Each
T&E engineering signature has an ID (IF#) that is structured
according the to the type of engineering it represents, including
compound insertions and deletions, single element insertions
and deletions, chromosomal inversions, transpositions and
reassortments, single point mutations causing frameshifts,
amber and ochre stop codons, base substitutions and transitions,
and transformation of plasmids. For deletions and single-base
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changes, the T&E team annotated sequences on both sides of
the change and designated them as “flankl” or “flank2”,
accordingly. The name of each IF element includes descriptors
for any mutated gene, whether it generates a partial CDS, or
whether it represents the insertion of a promoter, terminator,
origin of replication, polyA-signal, protein tag, FRT, plasmid
component, or “scar” left behind due to the type of sequence
change.

B ASSOCIATED CONTENT

Data Availability Statement

Source code and documentation for MIDOE are available on
GitHub at https://github.com/raytheonbbn/midoe under the
Apache License, Version 2.0. Evidence of engineering produced
by GUARDIAN’s modules is also available on GitHub from the
same MIDOE repository. Sample sequencing data provided by
the FELIX T&E team are at NCBI under the BioProject
PRJNA607328. The reads are available from SRA and the
assemblies are in GenBank. The accession numbers for these
data are in the Excel file in the Supporting Information and are
also available via the MIDOE repository.

© Supporting Information

The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acssynbio.3c00398.

Excel file with sample metadata from FELIX T&E team,
CSV file from FELIX T&E team linking sample IDs to
engineering signature IDs, and FASTA file from FELIX
T&E team with DNA sequences for engineering
signatures headed by signature IDs (ZIP)
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